правила обустройства гравитационной системы воздухообмена
В обустройстве загородных домов гравитационную вентиляцию нередко выбирают чаще, чем более эффективную и независимую, механическую. Проверенная временем естественная вентиляция в частном доме проще в реализации и значительно практичней. Она не требует особого ухода, не нуждается в обслуживании и электропитании.
Мы расскажем о том, как организовать воздухообмен, происходящий естественным образом. В представленной нами статье детально изложен принцип действия гравитационного вентилирования. Познакомим с устройствами, которые используют в сооружении систем, действующих без стороннего принуждения.
Содержание статьи:
- Как устроен процесс воздухообмена?
- Составляющие гравитационного воздухообмена
- Оконный приточный клапан
- Стеновое вытяжное или приточное устройство
- Межкомнатные переточные решетки
- Специфика канальной вытяжки
- Виды вентиляционных каналов
- Что такое дефлектор?
- Основные правила и рекомендации
- Преимущества и недостатки естественного воздухообмена
- Выводы и полезное видео по теме
Как устроен процесс воздухообмена?
Основное назначение гравитационного варианта устройства воздухообмена: поддержание необходимого микроклимата. Кроме насыщения пространства свежим воздухом, она еще и выполняет удаление отработанного воздуха, продуктов горения газа, различных запахов.
Эффективность работы системы естественной вентиляции, устроенной в загородном доме или на даче, обусловлена разницей атмосферного давления внутри и снаружи дома, которое также зависит от температуры, влажности воздуха и силы ветра.
Естественная вентиляция должна обеспечивать равномерную поставку, движение внутри и отвод воздушных потоков, независимо от этажности дома
Естественный воздухообмен работает следующим образом:
- Воздух с улицы попадает в дом через открытые фрамуги, неплотно прилегающие друг к дружке элементы оконных и дверных конструкций. Потоки воздуха устремляются внутрь в ходе проветривания через приоткрытые пластиковые окна или через вентиляционные приточные клапаны.
- Перемещение воздуха от одного помещения к другому и внутри него происходит самопроизвольно. Чтобы у потока не было препятствий между полом и дверьми оставляют зазоры. Их функцию с успехом выполняют переточные решетки, устанавливаемые в стены.
- Отработанный воздух покидает дом через вытяжные вентиляционные каналы. Находятся они в помещениях с нестабильной влажностью/температурой — в кухнях, раздельных и совмещенных санузлах.
С вытяжными компонентами отлично знакомы все городские жители. Это каналы, соединенные с общественной вентиляционной шахтой. Их закрывают решетками, которые требуется периодически чистить.
В обустройстве частного дома может существенно различаться. К примеру, это может быть отдушина в верхней части стены, вытяжная труба или отверстие в потолке с выходом в вентиляционный канал на чердак, а оттуда на улицу.
Составляющие гравитационного воздухообмена
Одной из распространенных проблем устройства естественной вентиляции в частном доме является недостаток поступления свежего воздуха в помещение. Гравитационное вентилирование безупречно действует только тогда, когда плотность воздушной массы за окном значительно выше, чем внутри помещений. Летом, когда их плотность уравнивается, воздух с улицы сам не течет.
К тому же на пути естественно перемещающихся воздушных потоков теперь устанавливают серьезные препятствия. Уплотнители окон и дверей, предложенных в наши дни потребителю, отлично сопротивляются утечкам тепла, но и воздух они не пускают снаружи.
Для того чтобы обеспечить естественный приток в домах с герметичными окнами, стоит поставить приточные клапаны в стену, а вытяжные вентиляционные трубы снабдить дефлекторами
Вопрос поступления свежего воздуха в помещения с практически герметичными окнами и дверьми решается путем установки . Если не хочется устанавливать клапаны, придется приобретать приточные устройства на пластиковые окна или покупать оконные пакеты с вмонтированными в них изначально приточниками.
Оконный приточный клапан
Это устройство называется также оконным проветривателем. Относится к самым распространенным вариантам решения проблемы воздухообмена. Конструкция такого клапана монтируется непосредственно в оконный профиль.
Поток поступающего воздуха через оконный проветриватель направлен вверх, чтобы холодный приточный воздух эффективней перемешивался с уже нагретым внутри помещения и не доставлял дискомфорт жителям
Некоторые клапаны оборудованы автоматической регулировкой притока воздуха. Стоит заметить, что механической регулировкой производители оснащают не все модели проветривателей. Это может создать определенные проблемы при резких перепадах температур.
Основным недостатком является относительно невысокая производительность. Его пропускная способность ограничена размерами профиля.
Стеновое вытяжное или приточное устройство
Для установки стенового проветривателя требуется сделать сквозное отверстие в стене. Производительность такого клапана обычно выше чем оконного. Как и в случае оконного приточника, поступающий объем свежего воздуха контролируются как вручную, так и автоматикой.
Стеновые вытяжные клапаны обычно располагают в верхней части стены, там, куда естественным образом поднимается отработанный воздух. в стену чаще всего монтируют между окном и радиатором. Делают так для того, чтобы поступающий холодный воздух заодно еще и нагревался.
Если стеновой вентиляционный клапан установить прямо над радиатором, то поток свеженго воздуха будет самопроизвольно нагреваться перед поставкой его в помещение
Преимущества установки приточного клапана перед обычным проветриванием:
- Возможность регулировать приток свежего воздуха;
- Способность пропускать значительно меньше уличного шума;
- Наличие фильтров разной степени очистки воздуха.
Конструкция стенового приточного и не позволяет проникнуть влаге внутрь помещения. Многие модели этих устройство местной вентиляции часто включают в себя фильтры для очистки воздуха.
Межкомнатные переточные решетки
Для того чтобы свежий воздух мог беспрепятственно проникать во все части дома, нужны переточные компоненты. Они позволяют потокам воздуха свободно течь от притока к вытяжке, захватив с собой взвешенную в воздушной массе пыль, шерсть животных, углекислый газ, неприятные запахи, бытовые испарения и подобные включения.
Переток осуществляется через открытые дверные проемы. Однако он не должен прекращаться и в случае, если межкомнатные двери закрыты. Для этого между полом и полотном межкомнатных дверей оставляют зазор в 1,5-2,0 см.
Для того чтобы свежий воздух мог свободно двигаться к вытяжке и омывать все помещения, в дверные полотна устанавливают переточные решетки. Если их нет, то между плоскостью пола и полотном оставляют зазор до 2 см
Также для этих целей используются переточные решетки, монтируемые в дверь или стену. Конструкция таких решеток состоит из двух рамок с жалюзи. Изготавливаются они из пластика, металла или дерева.
Специфика канальной вытяжки
Отработанный воздух покидает дом через отдушины, вентиляционные шахты или воздуховоды. Вентиляционные каналы обычно выводятся на чердак или подсоединяют к расположенной в центре дома вентиляционной шахте.
Вентиляционные каналы в устройстве и организации естественной вентиляции частного дома используют преимущественно при устройстве вытяжной части системы. Естественный приток по воздуховодам чаще всего невозможен или малоэффективен. Чтобы он хоть как-то работал, пришлось бы монтировать канальный вентилятор.
В схемах естественного вентилирования каналами обеспечивают вытяжную часть системы. Вытяжные воздуховоды в частных домах нередко объединяют в шахты
К вытяжке гравитационного вентилирования воздушные массы подталкивают свежие порции воздуха, затянутые через форточку, приточник ПВХ окна или открытую входную дверь. Сечение воздуховодов выбирают с учетом нормативов воздухообмена для отдельных типов помещений, которые приведены в сборнике СНиП 41-01-2003.
Кроме жилых и подсобных помещений в частном доме системами вентилирования требуется обеспечить подвал и сооруженное в нем хранилище, фундамент без подвала, холодный чердак или обустроенную мансарду. В естественных схемах они обеспечиваются продухами, фронтонными и слуховыми окнами.
Виды вентиляционных каналов
По расположению различают:
- Встроенные. Сооружают из пустотелых бетонных или керамических блоков, кирпича. Такие вытяжные каналы обычно возводят еще на этапе строительства.
- Подвесные. Выполненные из оцинкованной стали или армированного пластика. Обустроить подвесные каналы довольно легко, даже после того, как дом уже построен.
Воздуховоды разделяют на круглую и прямоугольную форму сечения. У каждого типа свои преимущества:
- Круглый воздуховод. Легкий монтаж, лучший воздухообмен, меньший вес;
- Прямоугольный воздуховод. Занимает меньшее пространство, легче маскируется коробами, фальшь потолками и стенами.
В свою очередь, трубы для круглого воздуховода бывают жесткими и гибкими, т.е. гофрированными.
Гофрированные вентиляционные трубы проще в укладке, но их монтаж возможен только по горизонтальным поверхностям и на небольших участках вертикальных стен
По жестким трубам воздух перемещается без каких-либо препятствий, поэтому они обеспечивают наименьшее сопротивление и минимальный шум. Однако с помощью быстрей и легче осуществить монтаж.
Что такое дефлектор?
Дефлектор — это специальный колпак, который устанавливается на устье вытяжной трубы системы вентилирования. Он рассекает поток ветра, за счет чего образуется зона низкого давления, при этом сила тяги может увеличиться до 20%.
Также исключает попадание атмосферной воды в вентиляционную систему и предотвращает задувание ветра в вентиляционный канал.
Дефлектор устанавливают на устье вытяжной трубы. Это устройство выполняет две важные функции: усиливает тягу + защищает от атмосферных осадков
Существуют следующие типы дефлекторов:
- Цилиндрический или зонт Волпера. Представляет из себя изогнутый цилиндр, прикрытый тарелкой. Обладает средней эффективностью, хорошо защищает вентиляционные каналы от задувания ветра;
- Н-образный дефлектор. Корпус изготавливается из труб в виде буквы H. Отличается повышенной защитой от задувания ветра, попадания в канал влаги и обратной тяги, но из-за особенностей конструкции имеет невысокую производительность;
- Дефлектор типа ЦАГИ. Конструкция включает в себя стакан с расширением на конце, крышку-зонт и цилиндрическую обечайку. Признан одним из самых эффективных. Хорошо защищает от ветра, снегопадов, дождей, имеет наименьший коэффициент сопротивления;
- Турбодефлектор. Представляет из себя вращающийся шар с лопастями, отличается повышенной эффективностью, но стоит обычно несколько дороже;
- Флюгер. Напоминает крыло. Принцип действия схож с турбодефлектором.
Выбор модели дефлектора зависит от местных условий. В регионах с высокой ветровой нагрузкой предпочитают обычные грибки. В областях с низкой активностью ветра лучше поставить дефлектор с турбиной, он обеспечит тягу даже при легком дуновении.
Основные правила и рекомендации
Нормативные данные об объеме воздухообмена приведены в СП 44.13330.2011, СП 66.13330.2012 и уже указанном выше СНиП 41-01-2003.
Естественная система вентилирования должна обеспечивать:
- В основных помещениях, таких как гостиная, спальни, детские комнаты, величина воздухообмена на каждого человека должна составлять не менее 30 м3/ч;
- Для кухни постоянный воздухообмен по правилам составляет 100 м3/ч. Из них на обслуживание электроплиты — 60 м3/ч, на 1 конфорку газовой варочной плиты — 80 м3/ч;
- В душевой и ванной постоянный воздухообмен должен быть менее 75 м3/ч;
- В туалетах с одним унитазом 50 м3/ч, если установлено биде, то его надо увеличить на 25 м3/ч. В совмещенных санузлах нормы на каждый сантехнический прибор суммируются;
- В кладовой и гардеробной постоянный воздухообмен равен 10 м3/ч, та же цифра и в режиме обслуживания.
Если естественная система не справляется с нормативным воздухообменом, на приток или вытяжку ставят вентиляторы.
Нормативные данные о воздухообмене нужны для расчетов производительности приточников и диаметра вытяжных каналов
Трубы для устройства вентиляционных каналов желательно подбирать одного диаметра. Все элементы воздуховода должны быть закреплены ровно и надежно. Чем меньше поворотов вентиляционных каналов, тем выше эффективность вентиляционной системы.
Приточные отверстия естественной системы должны располагаться не выше 1,5 м от уровня земли, чтобы была возможность их очищать и обслуживать.
Чем длинней и шире воздуховод, тем сильней тяга. Рассчитать необходимые размеры воздуховода можно, воспользовавшись одним из онлайн-калькуляторов.
Преимущества и недостатки естественного воздухообмена
Как и любая инженерно-техническая система естественная разновидность не лишена недостатков, но и обладает вескими преимуществами. Чтобы наверняка определиться, устраивать ее или нет, стоит сравнить список плюсов с перечнем минусов.
Положительные стороны:
- Лёгкая и недорогая установка. Это самый дешевый вариант организации стабильного воздухообмена.
- Низкие расходы на обслуживание. Если в системе нет механических приборов, то она нуждается всего-лишь в периодической чистке.
- Энергонезависимость. Не потребляет электроэнергию, за исключением установки дополнительных электроприборов.
- Предельно тихая работа. Отличается пониженным шумом.
- Инженерная гибкость. Вентиляцию можно модернизировать, доукомплектовать различными устройствами. Есть возможность регулировки производительности системы.
Отрицательные стороны:
- Нестабильность тяги. Ее зависимость от атмосферного давления и конкретных погодных условий. Эффективность работы естественной вентиляции летом может быть недостаточной.
- Формирование сквозняков. В зимний период сильная тяга может не только доставить жителям дома дискомфорт сквозняками, но и существенно увеличить теплопотери. Отсюда вытекают повышенные расходы на отопление помещения. Стоит отметить, что существуют различные пути решения этой проблемы.
Организовать систему естественной вентиляции в частном доме под силу каждому. Ее несовершенство компенсируется простотой конструкции и минимальными расходами на обслуживание.
Выводы и полезное видео по теме
Со спецификой устройства системы воздухообмена по естественной схеме ознакомит следующий ролик:
youtube.com/embed/w40qRK4JhZI» allowfullscreen=»allowfullscreen»/>Нормальный воздухообмен благоприятно сказывается на здоровье человека, повышает работоспособность мозга, противодействует возникновению симптомов вялости, слабости и сонного состояния, а также препятствует появлению в доме сырости, грибка и плесени.
Хотите рассказать о том, как устраивали систему вентилирования собственного дома или дачи? Есть желание поделиться полезной информацией по теме статьи? Оставляйте, пожалуйста, комментарии в расположенной ниже блок-форме, размещайте фотоснимки и задавайте вопросы.
Естественная вентиляция в частном доме —
Воздухообмен между улицей и внутренним пространством необходим в каждом здании. Это важно и для людей, поскольку мы проводим внутри строений около ¾ времени и нам жизненно важен свежий воздух. Это важно и самому сооружению для продления его ресурса. В строительной отрасли существует несколько технологий обустройства этой коммуникации, принципиально специалисты подразделяют два вида: вентиляция естественная и принудительная. Во втором случае устанавливается специальное оборудование, которое выбрасывает отработанный воздух наружу и закачивает свежий внутрь. Естественная вентиляция в частном доме осуществляется за счет перепада давления и температур в постройке и на улице.
Оглавление статьи
- Принцип функционирования естественной вентиляции
- Различия вентиляции на объектах и в частном доме
- Проектирование вентиляции
- Технологии обустройства естественной вентиляции
- Аэрация
- Конвекция
- Давление ветра
- Рекуперация тепла
- Пример расчета естественной вентиляции
- Выбор технологии вентилирования, экономическая целесообразность
Принцип функционирования естественной вентиляции
Этот способ воздухообмена имеет только один недостаток – это отсутствие тяги в условиях одинаковой температуры внутри и вне здания и предельно низких значениях ветра. То есть коммуникация в такой ситуации просто не работает. Естественная тяга вентиляции максимально функциональна при существенном перепаде температур в внутри строения и на улице. Но такой тип проветривания используется в каждом здании и сооружении, поскольку он имеет простую конструкцию, стоит недорого, не требует дополнительного оборудования и не потребляет электроэнергию. Если вы хотите обустроить естественную вентиляцию в доме своими руками схема должна быть максимально адекватна всем техническим параметрам сооружения.
Различия вентиляции на объектах и в частном доме
В многоквартирном доме, общественном здании или в производственных цехах устройство естественной вентиляции осуществляется шахтенным способом. Подобная технология не применима для частного дома. Вытяжная вентиляция с естественным пробуждением в индивидуальном строении сооружается по иным принципам, а ее схема разрабатывается для каждого конкретного здания. Вентиляция жилой комнаты может отличаться от вентиляции в ванной комнате и туалете.
Проектирование вентиляции
Проектирование осуществляется с учетом особенностей внутренней планировки постройки и сообразно необходимым объемам воздухообмена. Также в зависимости от типа загородного поместья и его особенностей естественная вентиляция в доме может быть организована несколькими способами. Возможно, для эффективности коммуникации будет необходима установка дополнительного оборудования. Например, решетка с обратным клапаном для естественной вентиляции, которая предотвратит повтор потока воздуха.
Технологии обустройства естественной вентиляции
Специалисты различают несколько типов конструкции вентиляционной коммуникации. Выбор способа обустройства естественной приточной вытяжной вентиляции зависит от функциональности конкретной комнаты, его объемов и целесообразности. Но следует понимать, что вне зависимости от того, какая технология используется, каждое помещение должно быть обустроено приточным каналом и обратным клапаном для естественной вентиляции.
Аэрация
Это общеобменная естественная вентиляция в доме, в установленных параметрах. Результативной такая коммуникация может быть лишь при определенном расположении сооружения, которое должно быть возведено под углом в 45 или 90 градусов к господствующему направлению ветра на территории. Эффективным результат работы аэрации будет только при регулярном открывании фрамуг, которые должны быть максимально грамотно рассчитаны.
Конвекция
Эта естественная вентиляция в частном доме из сип-панелей применима, когда присутствуют избытки теплого воздуха. Тяжелые наружные массы, поступая во внутрь, вытесняют из него легкие. Естественная вентиляция в жилом доме осуществляется за счет циркуляции воздуха вокруг источника тепла. Технология предполагает обязательный перепад (не менее трех метров) между уровнем забора и выброса воздушных масс. Скорость их перемещения не должна превышать 1 м/с.
Давление ветра
Этот принцип естественной приточной вентиляции в частных домах по энергоэффективной технологии предполагает высокое давление воздуха с наветренной стороны и низкое – с подветренной. При проектировании системы берется в расчет расположение дома. Массы поступают в помещение через каналы естественной вентиляции, расположенные с наветренной стороны и выходят из противоположных. Скорость приточной вентиляции с естественным побуждением зависит от скорости ветра.
Рекуперация тепла
Естественная вытяжная вентиляция вместе с отработанными воздушными массами выводит из помещения и тепло. Потеря ресурса требует его возобновления для комфортного проживания человека. Естественная приточно вытяжная вентиляция рекуперационного типа способна обеспечить возврат тепла до 90%. Для эффективной и надежной работы системы необходим профессиональный расчет естественной вентиляции для каждого конкретного объекта.
Пример расчета естественной вентиляции
Расчет системы естественной вентиляции в частном энергопассивном доме производится согласно установленным нормативам. Для примера возьмем одноэтажный коттедж с жилой площадью в 60 кв.м. Также в доме есть туалет, кухня, ванная комната и кладовка. Высота потолка – 3 метра. Естественная вытяжная вентиляция сооружается из бетонных блоков.
Приток воздушных масс, согласно нормативам, должен составлять 180 куб.м/час. Вытяжка из помещений с воздухоотводами (кухня, ванная и туалет) – 140 куб.м/час и в кладовке 0,2 куб.м/час. Так, требуемый вывод воздушных масс должен составлять 142, 7 куб.м/час. Одноэтажный коттедж имеет чердак, поэтому высота канала будет составлять 4 метра. Далее нужно руководствоваться таблицей.
Высота канала (м) | Температура воздуха в помещении | |||
t=32°с (м³/час) | t=25°с (м³/час) | t=20°с (м³/час) | t=16°с (м³/час) | |
2 | 54,03 | 43,56 | 34,17 | 24,16 |
4 | 72,67 | 58,59 | 45,96 | 32,50 |
6 | 85,09 | 68,56 | 53,79 | 38,03 |
8 | 94,18 | 75,93 | 59,57 | 42,12 |
10 | 101,32 | 81,69 | 64,08 | 45,31 |
При температуре в 20 градусов и согласно значениям в таблице производительность 1 воздуховода естественной вытяжной вентиляции составляет 45,96 куб.
Если же вы хотите, чтобы система работала эффективно, лучше доверить проектирование схемы и расчет естественной вентиляции в частном доме профильным инженерам. Кроме этого, необходимо понимать, что производительность системы снижается или увеличивается выбором места и конструкции таких элементов, как клапан обратный вентиляционный или вентиляционная решетка для естественной вентиляции.
Выбор технологии вентилирования, экономическая целесообразность
Если вы задались вопросом, какую систему воздухообмена выбрать, стоит произвести несложные экономические расчеты. Стоимость коммуникации складывается из двух значений – цена возведения и цена эксплуатации. Выбрав традиционную конструкцию, вы затратите меньше денежных средств в процессе строительства. Но уже с первого дня использования вы столкнетесь с эксплуатационными расходами, поскольку потери тепла потребуют дополнительного расхода ресурсов (дров, угля, электроэнергии, бензина или дизеля).
Практика показывает, что вентиляция с рекуперацией – это наиболее экономически выгодная и технологически целесообразная технология вентиляционной системы. Например, если вы отапливаете коттедж с помощью электричества, то при установке традиционной системы воздухообмена, вы будете расходовать от 6 до 10 кВт/час, в то время как вентилирование с рекуперацией снизит расход до 1-2 кВт/час. Согласитесь, что показатели значительные.
Факторы, влияющие на использование вытяжек в домах и квартирах для малоимущих в Калифорнии
1. Уоллес Л., Ван Ф., Ховард-Рид С., Персили А. Вклад газовых и электрических плит в концентрацию ультрадисперсных частиц в жилых помещениях от 2 до 64 нм: Распределение размеров и эмиссия и ремиссия коагуляции и скорость коагуляции. Окружающая среда. науч. Технол. 2008; 42:8641–8647. doi: 10.1021/es801402v. [PubMed] [CrossRef] [Google Scholar]
2. Dennekamp M. Ультратонкие частицы и оксиды азота, образующиеся при приготовлении пищи на газу и электричестве. Занять. Окружающая среда. Мед. 2001; 58: 511–516. doi: 10.1136/oem.58.8.511. [Бесплатная статья PMC] [PubMed] [CrossRef] [Google Scholar]
3. Мошандреас Д.Дж., Релвани С.М. Полевые измерения интенсивности выброса газа NO2 горелками в верхней части диапазона. Окружающая среда. Междунар. 1989; 15: 489–492. doi: 10.1016/0160-4120(89)
-4. [CrossRef] [Google Scholar]
4. Wallace L.A., Emmerich S.J., Howard-Reed C. Сила источника ультрадисперсных и мелких частиц при приготовлении пищи на газовой плите. Окружающая среда. науч. Технол. 2004; 38: 2304–2311. doi: 10.1021/es0306260. [PubMed] [CrossRef] [Google Scholar]
5. Маллен Н.А., Ли Дж., Рассел М.Л., Спирс М., Лесс Б.Д., Сингер Б.К. Результаты исследования качества воздуха в помещениях Healthy Homes в Калифорнии за 2011–2013 годы: влияние приборов, работающих на природном газе, на концентрацию загрязнителей воздуха. Воздух в помещении. 2016; 26: 231–245. дои: 10.1111/ina.12190. [PubMed] [CrossRef] [Google Scholar]
6. Лесс Б., Маллен Н., Сингер Б., Уокер И. Качество воздуха в помещении в 24 калифорнийских резиденциях, спроектированных как дома с высокими эксплуатационными характеристиками. науч. Технол. Построенная среда. 2015;21:14–24. doi: 10.1080/10789669.2014.961850. [CrossRef] [Google Scholar]
7. Сингер Б.К., Апте М.Г., Блэк Д.Р., Хотчи Т., Лукас Д., Лунден М.М., Мирер А.Г., Спирс М., Салливан Д.П. Изменчивость природного газа в Калифорнии: воздействие на окружающую среду и производительность устройств: экспериментальная оценка выбросов загрязняющих веществ из бытовых приборов. Калифорнийская энергетическая комиссия; Сакраменто, Калифорния, США: 2010. [Google Scholar]
8. Лог Дж.М., Клепеис Н.Е., Лобшайд А.Б., Сингер Б.К. Воздействие загрязняющих веществ от горелок для приготовления пищи на природном газе: оценка на основе моделирования для Южной Калифорнии. Окружающая среда. Перспектива здоровья. 2014; 122:43–50. doi: 10.1289/ehp.1306673. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
9. Сингер Б.К., Пасс Р.З., Делп В.В., Лоренцетти Д.М., Маддалена Р.Л. девять калифорнийских домов. Строить. Окружающая среда. 2017;122:215–229. doi: 10.1016/j.buildenv.2017.06.021. [CrossRef] [Google Scholar]
10. Белэнджер К., Холфорд Т.Р., Гент Дж.Ф., Хилл М.Е., Кезик Дж.М., Лидерер Б.П. Бытовые уровни диоксида азота и тяжесть детской астмы. Эпидемиология. 2013;24:320–330. doi: 10.1097/EDE.0b013e318280e2ac. [Бесплатная статья PMC] [PubMed] [CrossRef] [Google Scholar]
11. Lin W.W., Brunekreef B., Gehring U. Метаанализ воздействия двуокиси азота в помещении и приготовления пищи на газе на астму и хрипы у детей. Междунар. Дж. Эпидемиол. 2013;42:1724–1737. дои: 10.1093/ije/dyt150. [PubMed] [CrossRef] [Google Scholar]
12. Абдуллахи К.Л., Дельгадо-Саборит Дж.М., Харрисон Р.М. Выбросы и концентрации твердых частиц и их конкретных химических компонентов в результате приготовления пищи: обзор. Атмос. Окружающая среда. 2013;71:260–294. doi: 10.1016/j.atmosenv.2013.01.061. [CrossRef] [Google Scholar]
13. Буонанно Г., Моравска Л., Стабиле Л. Коэффициенты выбросов частиц при приготовлении пищи. Атмос. Окружающая среда. 2009;43:3235–3242. doi: 10.1016/j.atmosenv.2009.03.044. [CrossRef] [Google Scholar]
14. Фортманн Р., Карихер П., Клейтон Р. Качество воздуха в помещении: кулинарные воздействия в жилых помещениях. Подготовлено для Калифорнийского совета по воздушным ресурсам; Сакраменто, Калифорния, США: 2001. [Google Scholar]
15. Фуллана А., Карбонелл-Баррачина А.А., Сидху С. Выбросы летучих альдегидов из нагретых кулинарных масел. J. Sci. Фуд Агрик. 2004;84:2015–2021. doi: 10.1002/jsfa.1904. [CrossRef] [Google Scholar]
16. Симэн В.Ю., Беннетт Д.Х., Кэхилл Т.М. Выбросы акролеина в помещении и скорость распада в результате приготовления пищи в домашних условиях. Атмос. Окружающая среда. 2009 г.;43:6199–6204. doi: 10.1016/j.atmosenv.2009.08.043. [CrossRef] [Google Scholar]
17. Zhang Q.F., Gangupomu R.H., Ramirez D., Zhu Y.F. Измерение ультрадисперсных частиц и других загрязнителей воздуха, выделяемых при приготовлении пищи. Междунар. Дж. Окружающая среда. Рез. Здравоохранение. 2010;7:1744–1759. doi: 10.3390/ijerph7041744. [Бесплатная статья PMC] [PubMed] [CrossRef] [Google Scholar]
18. Чжао Ю.Дж., Чжао Б. Выбросы загрязняющих веществ в атмосферу при приготовлении пищи в Китае: обзор литературы. Строить. Симул. 2018;11:977–995. doi: 10.1007/s12273-018-0456-6. [CrossRef] [Google Scholar]
19. Торкмахалле М.А., Горжинежад С., Унлуевчек Х.С., Хопке П.К. Обзор факторов, влияющих на выбросы/концентрацию твердых частиц, образующихся при приготовлении пищи. науч. Общая окружающая среда. 2017; 586:1046–1056. doi: 10.1016/j.scitotenv.2017.02.088. [PubMed] [CrossRef] [Google Scholar]
20. Chen W., Wang P., Zhang D., Liu J., Dai X. Влияние воды на выбросы частиц из нагретого растительного масла. Аэрозоль Эйр Квал. Рез. 2020; 20: 533–543. дои: 10. 4209/aaqr.2019.09.0427. [CrossRef] [Google Scholar]
21. Агентство по охране окружающей среды США. Заключительный отчет: Комплексная научная оценка твердых частиц. Агентство по охране окружающей среды США; Washington, DC, USA: 2009. [Google Scholar]
22. Yu I.T.S., Chiu Y.L., Au J.S.K., Wong T.W., Tang J.L. Зависимость доза-реакция между воздействием дыма при приготовлении пищи и раком легких у некурящих китайских женщин. Рак Рез. 2006; 66: 4961–4967. doi: 10.1158/0008-5472.CAN-05-2932. [PubMed] [CrossRef] [Академия Google]
23. Лю С., Дун Дж., Цао Ц., Чжоу С., Ли Дж., Линь С., Цин К., Чжан В., Чен К. Тепловая среда и качество воздуха в жилых помещениях в китайском стиле кухни. Воздух в помещении. 2020;30:198–212. doi: 10.1111/ina.12631. [PubMed] [CrossRef] [Google Scholar]
24. Delp W.W., Singer B.C. Оценка эффективности кухонных вытяжек в жилых домах США. Окружающая среда. науч. Технол. 2012;46:6167–6173. doi: 10.1021/es3001079. [PubMed] [CrossRef] [Google Scholar]
25. Рим Д., Уоллес Л., Набингер С., Персили А. Уменьшение воздействия ультрадисперсных частиц кухонными вытяжными шкафами: влияние скорости потока выхлопных газов, размера частиц, и положение горелки. науч. Общая окружающая среда. 2012; 432:350–356. doi: 10.1016/j.scitotenv.2012.06.015. [PubMed] [CrossRef] [Академия Google]
26. Сингер Б.К., Делп В.В., Прайс П.Н., Апте М.Г. Производительность установленных варочных вытяжных устройств. Воздух в помещении. 2012; 22: 224–234. doi: 10.1111/j.1600-0668.2011.00756.x. [PubMed] [CrossRef] [Google Scholar]
27. Лунден М.М., Делп В.В., Сингер Б.К. Эффективность улавливания мелких и ультрадисперсных частиц, связанных с приготовлением пищи, с помощью вытяжных шкафов в жилых помещениях. Воздух в помещении. 2015;25:45–58. doi: 10.1111/ina.12118. [PubMed] [CrossRef] [Google Scholar]
28. Чжао Ю., Чжао Б. Снижение воздействия на человека PM2,5, образующихся при приготовлении типичных блюд китайской кухни. Строить. Окружающая среда. 2020;168:106522. doi: 10.1016/j.buildenv.2019.106522. [CrossRef] [Google Scholar]
29. Доббин Н.А., Сан Л., Уоллес Л., Кулка Р., Ю Х.Ю., Шин Т., Обен Д., Сен-Жан М., Сингер Б.К. Польза от использования кухонного вытяжного вентилятора после приготовления пищи – экспериментальная оценка. Строить. Окружающая среда. 2018; 135: 286–296. doi: 10.1016/j.buildenv.2018.02.039. [CrossRef] [Google Scholar]
30. О’Лири К., де Клуизенаар Ю., Джейкобс П., Борсбум В., Холл И., Джонс Б. Исследование измерений выбросов мелких частиц (PM2,5) из приготовление пищи и смягчение воздействия с помощью вытяжки. Воздух в помещении. 2019;29:423–438. doi: 10.1111/ina.12542. [PubMed] [CrossRef] [Google Scholar]
31. Исследование энергопотребления в жилых помещениях Управления энергетической информации США (RECS) [(по состоянию на 17 июля 2020 г.)]; Доступно в Интернете: https://www.eia.gov/consumment/ Residential/index.php
32. Исследование насыщения бытовыми приборами Комиссии по энергетике Калифорнии. [(по состоянию на 17 июля 2020 г.)]; 2019 г. Доступно в Интернете: https://www.energy.ca.gov/data-reports/surveys/2019-residental-appliance-saturation-study
33. Bradman A., Chevrier J., Tager I., Lipsett M., Sedgwick J., Macher J., Vargas A.B., Cabrera E.B., Camacho J.M., Weldon R., et al. Ассоциация показателей ветхости жилья с заражением тараканами и грызунами в когорте беременных латиноамериканок и их детей. Окружающая среда. Перспектива здоровья. 2005; 113:1795–1801. doi: 10.1289/ehp.7588. [Бесплатная статья PMC] [PubMed] [CrossRef] [Google Scholar]
34. Пьяцца Т., Ли Р., Шерман М., Прайс П. Изучение методов вентиляции и характеристик домохозяйств в домах Новой Калифорнии. Заключительный отчет по контракту Энергетической комиссии 500-02-023 и контракту АРБ 03-026. Калифорнийская энергетическая комиссия и Калифорнийский совет по воздушным ресурсам; Сакраменто, Калифорния, США: 2007. [Google Scholar]
35. Чан В.Р., Ким Ю.-С., Лесс Б.Д., Сингер Б.К., Уокер И.С. Вентиляция и качество воздуха в помещениях в домах в Новой Калифорнии с газовыми приборами и механической вентиляцией. Национальная лаборатория Лоуренса Беркли; Беркли, Калифорния, США: 2019. [Google Scholar]
36. ANSI/ASHRAE. Вентиляция и качество воздуха в жилых помещениях СН 62.2-2019. АШРАЭ; Атланта, Джорджия, США: 2019. [Google Scholar]
37. Energy Star . Программные требования к бытовым вентиляторам. Агентство по охране окружающей среды США; Вашингтон, округ Колумбия, США: 2018. [Google Scholar]
38. Совет по международному кодексу. Международный механический кодекс. Международный совет по кодексам, Inc.; Country Club Hills, IL, USA: 2017. [Google Scholar]
39. International Code Council. Международный кодекс энергосбережения. Международный совет по кодексам, Inc.; Country Club Hills, IL, USA: 2017. [Google Scholar]
40. Калифорнийская энергетическая комиссия. Стандарты энергоэффективности зданий. Калифорнийская энергетическая комиссия; Сакраменто, Калифорния, США: 2008. [Google Scholar]
41. Холм С.М., Бальмес Дж., Джиллетт Д., Хартин К., Сето Э., Линдеман Д., Поланко Д., Фонг Э. Поведение при приготовлении пищи связано с воздействием твердых частиц в домашних условиях у детей с астмой в городских условиях. Район Восточного залива в Северной Калифорнии. ПЛОС ОДИН. 2018;13:e0197199. doi: 10.1371/journal.pone.0197199. [Бесплатная статья PMC] [PubMed] [CrossRef] [Google Scholar]
42. Клуг В.Л., Сингер Б.К., Бедросян Т., Д’Круз К. Характеристики вытяжек в калифорнийских домах – данные, собранные с веб-сайта по недвижимости ЛБНЛ-5067Е. Berkeleyca Lawrence Berkeley National Lab; Калифорния, Калифорния, США: 2011. [Google Scholar]
43. Лю С., Уоллес Л. Приготовление пищи и кухонная вентиляция в жилых помещениях и влияние на воздействие. JAWMA Rev. 2020 doi: 10.1111/ina.12676. [CrossRef] [Google Scholar]
44. Сингер Б.К., Чан В.Р., Ким Ю.-С., Офферманн Ф.Дж., Уокер И.С. Качество воздуха внутри помещений в калифорнийских домах с механической вентиляцией, требуемой кодом. Воздух в помещении. 2020 г.: 10.1111/ina.12676. [PubMed] [CrossRef] [Google Scholar]
45. Chan W., Kim Y.-S., Delp W., Walker I., Singer B. Данные из: Качество воздуха в помещении в калифорнийских домах с требуемым кодом механическим вентиляция. Дриада. Дои 2020 г.: 10,7941/D1ZS7X. [PubMed] [CrossRef] [Google Scholar]
46. Чжао Х., Чан В., Кон С., Делп В.В., Уокер И.С., Сингер Б.К. Качество воздуха внутри помещений в новых и отремонтированных квартирах для малоимущих с механической вентиляцией и приготовлением пищи на природном газе в Калифорнии. Дриада. 2020 г.: 10.1111/ina.12764. [PubMed] [CrossRef] [Google Scholar]
47. Zhao H., Chan W.R., Cohn S., Delp W.W., Walker I.S., Singer B.C. Качество воздуха внутри помещений в новых и отремонтированных квартирах для малоимущих с механической вентиляцией и приготовлением пищи на природном газе в Калифорнии. Воздух в помещении. 2020 г.: 10.1111/ina.12764. [PubMed] [CrossRef] [Академия Google]
48. Танг Х., Чан В. Р., Сон М. Автоматизация интерпретации измерений PM 2.5 с временным разрешением с использованием подхода, основанного на данных. Воздух в помещении согласно версии 2019; 12:69. [Google Scholar]
49. Chan W.R., Logue J.M., Wu X., Klepeis N.E., Fisk W.J., Noris F., Singer B.C. Количественная оценка событий выброса мелких частиц на основе измерений с временным разрешением: описание метода и его применение в 18 квартирах с низким доходом в Калифорнии. Воздух в помещении. 2018;28:89–101. doi: 10.1111/ina.12425. [PubMed] [CrossRef] [Академия Google]
50. Ван З., Делп В.В., Сингер Б.К. Производительность недорогих мониторов качества воздуха в помещении на наличие PM2,5 и PM10 из бытовых источников. Строить. Окружающая среда. 2020;171:106654. doi: 10.1016/j.buildenv.2020.106654. [CrossRef] [Google Scholar]
51. Singer B.C., Delp W.W. Реакция мониторов качества воздуха в помещениях потребительского и исследовательского класса на жилые источники мелких частиц. Воздух в помещении. 2018; 28: 624–639. doi: 10.1111/ina.12463. [PubMed] [CrossRef] [Google Scholar]
Энергетическое воздействие эффективного использования вытяжки для всех жилых домов в США (Технический отчет)
Энергетическое воздействие эффективного использования вытяжных вытяжек для приготовления пищи в жилых домах США (технический отчет) | ОСТИ.GOV перейти к основному содержанию- Полная запись
- Другие родственные исследования
Использование вытяжки во время приготовления пищи в жилых помещениях имеет важное значение для поддержания хорошего качества воздуха в помещении. Однако широкое использование повлияет на спрос на энергию в жилом фонде США. В этом документе описывается исследование моделирования для определения энергии объекта, источника энергии и потребительских затрат на всестороннее использование вытяжек. Чтобы оценить энергетическое воздействие на все 113 миллионов домов в США, мы экстраполировали результаты моделирования репрезентативной взвешенной выборки из 50 000 виртуальных домов, разработанной в 2009 году.База данных обследования бытового энергопотребления. К каждому дому была применена имитационная модель, основанная на физике, которая учитывала энергию вентилятора, энергию для кондиционирования дополнительного поступающего воздуха и влияние на отопление и охлаждение дома из-за отвода тепла от приготовления пищи. Вытяжки, работающие на уровне, обычном для вытяжек, используемых в настоящее время в домах США, потребуют 19–33 ТВтч [69–120 ПДж] энергии объекта, 31–53 ТВтч [110–190 ПДж] энергии источника; и будет стоить потребителям 1,2–2,1 миллиарда долларов (2010 долларов США) в год в жилищном фонде США. Средняя семья тратит менее 15 долларов в год. Уменьшение требуемого расхода воздуха, т.е. с конструкциями, способствующими лучшему улавливанию загрязняющих веществ, в среднем имеет больший потенциал энергосбережения, чем повышение эффективности вентилятора.
- Авторов:
- Лог, Дженнифер М.; Певица, Бретт
- Дата публикации:
- Исследовательская организация:
- Национальная лаборатория Лоуренса Беркли. (LBNL), Беркли, Калифорния (США)
- Организация-спонсор:
- Отдел экологических энергетических технологий
- Идентификатор ОСТИ:
- 1163746
- Номер(а) отчета:
- ЛБНЛ-6683Е
- Номер контракта DOE:
- ДЕ-АС02-05Ч21231
- Тип ресурса:
- Технический отчет
- Страна публикации:
- США
- Язык:
- Английский
- Тема:
- 32 ЭНЕРГОСБЕРЕЖЕНИЕ, ПОТРЕБЛЕНИЕ И ИСПОЛЬЗОВАНИЕ; 99 ОБЩИЕ И РАЗНЫЕ
Форматы цитирования
- MLA
- АПА
- Чикаго
- БибТекс
Лог, Дженнифер М. , и Сингер, Бретт. Энергетическое воздействие эффективного использования вытяжных шкафов для всех жилых помещений США для приготовления пищи . США: Н. П., 2014.
Веб. дои: 10.2172/1163746.
Копировать в буфер обмена
Лог, Дженнифер М. и Сингер, Бретт. Энергетическое воздействие эффективного использования вытяжных вытяжек для всех жилых помещений США для приготовления пищи . Соединенные Штаты. https://doi.org/10.2172/1163746
Копировать в буфер обмена
Лог, Дженнифер М., и Сингер, Бретт. 2014.
«Энергетическое воздействие эффективного использования вытяжки для приготовления пищи во всех жилых помещениях США». Соединенные Штаты. https://doi.org/10.2172/1163746. https://www.osti.gov/servlets/purl/1163746.
Копировать в буфер обмена
@статья{osti_1163746,
title = {Энергетическое воздействие эффективного использования вытяжных вытяжек для всех жилых домов в США},
автор = {Лог, Дженнифер М. и Сингер, Бретт},
abstractNote = {Использование вытяжки во время приготовления пищи в жилых помещениях необходимо для поддержания хорошего качества воздуха в помещении. Однако широкое использование повлияет на спрос на энергию в жилом фонде США. В этом документе описывается исследование моделирования для определения энергии объекта, источника энергии и потребительских затрат на всестороннее использование вытяжек. Чтобы оценить энергетическое воздействие на все 113 миллионов домов в США, мы экстраполировали результаты моделирования репрезентативной взвешенной выборки из 50 000 виртуальных домов, разработанной в 2009 году.База данных обследования бытового энергопотребления. К каждому дому была применена имитационная модель, основанная на физике, которая учитывала энергию вентилятора, энергию для кондиционирования дополнительного поступающего воздуха и влияние на отопление и охлаждение дома из-за отвода тепла от приготовления пищи. Вытяжки, работающие на уровне, обычном для вытяжек, используемых в настоящее время в домах США, потребуют 19–33 ТВтч [69–120 ПДж] энергии объекта, 31–53 ТВтч [110–190 ПДж] энергии источника; и будет стоить потребителям 1,2–2,1 миллиарда долларов (2010 долларов США) в год в жилищном фонде США. Средняя семья тратит менее 15 долларов в год. Уменьшение требуемого расхода воздуха, т.е. с конструкциями, способствующими лучшему улавливанию загрязняющих веществ, в среднем имеет больший потенциал энергосбережения, чем повышение эффективности вентилятора.},
URL = {https://www.osti.gov/biblio/1163746},
журнал = {},
номер = ,
объем = ,
место = {США},
год = {2014},
месяц = {6}
}
Копировать в буфер обмена
Посмотреть технический отчет (2,01 МБ)
https://doi.org/10.2172/1163746
Экспорт метаданных
Сохранить в моей библиотеке
Вы должны войти в систему или создать учетную запись, чтобы сохранять документы в своей библиотеке.
Аналогичных записей в сборниках OSTI.