Что такое освещенность?
Физическая величина, численно равная световому потоку, падающему на единицу площади освещаемой поверхности, называется освещенностью.
Освещенность обозначают символом Е, и находят ее значение по формуле Е = Ф/S, где Ф — световой поток, а S – площадь освещаемой поверхности.
Для примера приведем некоторые типичные значения освещенности:
- Солнечный день в средних широтах — 100000 Лк;
- Пасмурный день в средних широтах — 1000 Лк;
- Светлая комната, освещенная лучами солнца — 100 Лк;
- Искусственное освещение на улице — до 4 Лк;
- Свет ночью при полной луне — 0,2 Лк;
- Свет звездного неба темной безлунной ночью — 0,0003 Лк
Освещенность напрямую связана и с силой света, и чем больше сила света, тем больше и освещенность. Экспериментально давно установлено, что освещенность прямо пропорциональна силе света источника.
В Америке и Англии используют единицу измерения освещенности Люмен на квадратный Фут или Фут-Кандела, в качестве единицы освещенности от источника, обладающего силой света в одну канделу, и расположенного на расстоянии в один фут от освещаемой поверхности. Исследователи доказали, что через сетчатку человеческого глаза, свет воздействует на процессы, протекающие в мозге. По этой причине недостаточная освещенность вызывает сонливость, угнетает трудоспособность, а избыточное освещение — наоборот, возбуждает, помогает включить дополнительные ресурсы организма, однако, изнашивая их, если это происходит неоправданно.
В процессе ежедневной работы осветительных установок, возможен спад освещенности, поэтому для компенсации данного недостатка, еще на стадии проектирования осветительных установок вводят специальный коэффициент запаса.
Для естественного освещения вводят коэффициент снижения КЕО (коэффициента естественной освещенности), ведь со временем могут загрязнится светопрозрачные заполнители световых проемов, и загрязниться отражающие поверхности помещений.
Освещенность измеряют портативным прибором — люксметром. Его принцип работы аналогичен фотометру. Свет попадает на фотоэлемент, стимулируя ток в полупроводнике, и величина получаемого тока как раз пропорциональна освещенности. Есть аналоговые и цифровые люксметры.
Поделиться записью
Как рассчитать освещенность помещения – коэффициент неравномерности освещения
Правильно организованное освещение производственных помещений весьма благотворно отражается на работоспособности персонала и его здоровье. Недостаток света, наоборот, приводит к утомляемости и раздражительности человека. Кроме того, при длительном нахождении в плохого расчёта освещения в помещении от чрезмерного напряжения глаз падает уровень остроты зрения. Слишком яркий свет может привести к фотоожогам глаз, перевозбуждению нервной системы и прочим неприятностям. Поэтому вопрос рационального освещения рабочей зоны настолько важен, что для его нормирования разработаны санитарные и строительные нормативы. Соблюдение их требований обязательны для проектировщиков и руководителей предприятий.
Правильное освещение производственного помещения
По видам производственное освещение помещения (как и любого другого) делится на естественное и искусственное. Естественный свет – наиболее ценен: человеческий глаз максимально к нему приспособлен. Он поступает внутрь здания через окна и прочие прозрачные строительные конструкции (например, аэрационные фонари).
Виды искусственного освещения: общим; местным; комбинированным. Местное освещение само по себе не используется, его применяют только в комбинации с общим. Подходящий для этого осветительный прибор может быть переносным или стационарным. Световое пятно от него не освещает даже прилегающие к нему площади.
Комбинированный метод освещенности здания
Комбинированное – требуется при выполнении рабочим высокоточных операций, не допускающих возникновения резких теней от каких-либо предметов.
Общее – организуется в цехах с однотипными работами (например, в литейных). Встречаются случаи, когда комбинированное освещение просто нет возможности организовать. Установленная освещенность для рабочих мест с мелкими работами соответствует 500-м Лк, постепенно снижаясь до 50 Лк в различных хранилищах. Для максимальной экономичности, можно осветить технические или уличные территории приборами с датчиками движения для включения света.
Общая методика расчета
Расчетом параметров осветительной системы занимается инженер-электрик (проектировщик). Он может выполнить эту работу одним из трех способов:
- через коэффициент использования потока света;
- установки удельной мощности;
- точечным.
Первым способом рассчитывается общее (равномерное) освещение рабочих поверхностей, расположенных в горизонтальной плоскости. В процессе работы вычисляется коэффициент для отдельно взятого помещения. В методике учитываются геометрические размеры производственного участка и степень светового отражения поверхностей.
Расчет через удельную мощность. Способ светотехнического расчета через удельную мощность используется только для предварительной прикидки установленной мощности осветительных установок, так как дает весьма приближенный результат. Такие данные часто требуются для заполнения опросных листов, которые используются при получении технических условий или при составлении сметной стоимости монтажа осветительной системы предприятия. Точечный метод. Такой способ пригоден для расчета освещения – локализованного и общего – при наличии осветительных приборах прямого света. На него не влияет пространственная ориентация анализируемой поверхности. Освещенность подсчитывают в каждой точке поверхности для каждого источника света в отдельности.
Реализация точечного метода представляет собой очень трудоемкий процесс, но и точность результата высокая. Правда, она зависит от добросовестности специалиста, выполняющего анализ.
Как рассчитать алгоритм
Расчет освещения участков производственных предприятий производится в следующей последовательности:
- обосновывается нормированная освещенность каждого рабочего места;
- выбирается наиболее рациональный и экономичный светильник;
- оцениваются коэффициенты неравномерности освещения, запаса освещенности, отражения поверхностей, находящихся внутри помещения.
После этого рассчитываются: индекс помещения; коэффициент использования светового потока; необходимое количество светильников; На заключительном этапе выполняется чертеж или эскиз, на котором размечается расположение всех светильников.
Как рассчитывается норма КЕО
Естественный свет – величина непостоянная, потому и нормируется он не по освещенности, а по ее коэффициенту (КЕО). Он рассчитывается по формуле:
Е = (Ев/Ен) х 100, %, где:
Ев – естественная освещенность точки, расположенной внутри помещения;
Ен – наружная освещенность (горизонтальная) при небосводе, открытом полностью.
Очередность шагов
Первым делом выбирается система освещения. Оно может быть боковым, верхним или комбинированным. Выбор зависит от назначения производственного помещения с обязательным учетом особенностей технологического процесса.
Нормированное значение КЕО выбирается по таблице СНиП 23-05-95. Его величина зависит от разряда зрительной работы (а разряд определяется в зависимости от величины самого мелкого элемента, с которым приходится работать рабочему).
Величина Ен корректируется в зависимости от района расположения производственного объекта.
КЕО снижается из-за запыленности поверхностей, пропускающих свет. Для учета степени загрязненности остекления выбирается коэффициент запаса Кз.
Световая характеристика проемов определяется в соответствии с:
- соотношением длины и глубины помещения, глубины и высоты (от уровня рабочей поверхности до верхней границы окна) – при боковом освещении;
- соотношением длины и ширины помещения, его высоты и ширины и типа фонаря – при верхнем освещении.
При боковом освещении нормируется КЕО (его минимальное значение) для рабочего места, наиболее удаленного от окна. При верхнем или комбинированном – нормированный показатель является средним для пяти точек, равноудаленных друг от друга и расположенных на рабочей поверхности. Целью расчета естественного освещения является определение площади оконных проемов. Если рабочее место расположено менее чем в двенадцати метрах от окна, достаточно одностороннего освещения. При увеличении расстояния свыше 12 метров необходимо обеспечить рабочую точку двухсторонним боковым освещением.
Естественный свет
Имеется помещение длиной L = 10 м, шириной B – 10 м, высотой H -5 м. оконный проем имеет размеры 4х3,5 м с двойным остеклением.
По условиям задачи помещение расположено в третьем световом поясе. Точность зрительной работы персонала – высокая.
Нормированное значение КПО – 2%.
Окна ориентированы на север, они обеспечивают КЕО не менее 1,5%.
Для обеспечения КПО 2% необходимо наличие в помещении трех окон общей площадью 42 кв.м.
Искусственный свет
Дано помещение с геометрическими размерами 8х6х3,5 м.
Нормируемая освещенность для данного производства – 300 лк.
Напряжение в сети предприятия – 220 В, предполагается использовать светильники люминесцентные ЛПО (коэффициент использования светового потока – 49%).
Отражательная способность:
- потолка -0,7;
- стен – 0,5;
- рабочей поверхности – 0,3.
Коэффициенты:
- запаса Кз = 1,75;
- неравномерности освещения – 1,1.
Разряд зрительных работ, выполняемых персоналом в данном помещении – III.
Рабочая поверхность КРЛ размещена на высоте 0,8 м, высота свеса – 0,1 м.
Площадь участка составляет 48 кв. м. Индекс помещения (S/(h2 – h3) (L+B) = 48/(3,5 – 0,8) (8 + 6) = 1,26
Расположение осветительных приборов и их количество
Светильники могут размещаться с учетом, либо без учета размещения рабочих мест.
Если выбирается за основу система равномерного освещения цеха, они располагаются высоко от рабочих поверхностей, могут оснащаться дополнительными отражателями.
Поток света иногда направляется не только вниз, но и вверх или в стороны.
При организации комбинированного освещения местные светильники устанавливаются на каждом рабочем месте. Световой поток от местного осветительного прибора не должен попадать в поле зрения работающего. В качестве источника света в производственных помещениях могут использоваться лампы различных типов: люминесцентные (наиболее часто применяемые), газоразрядные, накаливания.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 | 0,000 0,0175 0,035 0,052 0,070 0,087 0,104 0,122 0,139 0,156 0,174 0,191 0,208 0,225 0,242 0,259 0,276 0,292 0,309 0,326 0,342 0,358 0,375 0,391 0,407 0,423 0,438 0,454 0,469 0,485 0,500 0,515 0,530 0,545 0,559 0,574 0,588 0,602 0,616 0,629 0,643 0,656 0,669 0,682 0,695 | 0,000 0,0175 0,035 0,052 0,070 0,088 0,105 0,123 0,140 0,158 0,176 0,194 0,213 0,213 0,249 0,268 0,287 0,306 0,325 0,344 0,364 0,384 0,404 0,424 0,445 0,466 0,488 0,510 0,532 0,554 0,577 0,601 0,625 0,649 0,674 0,700 0,726 0,754 0,781 0,810 0,839 0,869 0,900 0,932 0,966 | 1,000 0,999 0,998 0,996 0,993 0,989 0,984 0,978 0,971 0,964 0,955 0,946 0,936 0,925 0,913 0,901 0,882 0,874 0,860 0,845 0,830 0,814 0,797 0,780 0,762 0,744 0,726 0,707 0,688 0,669 0,649 0,630 0,610 0,590 0,570 0,550 0,530 0,509 0,489 0,469 0,449 0,430 0,410 0,391 0,372 | 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 | 0,707 0,719 0,731 0,743 0,755 0,766 0,777 0,788 0,799 0,809 0,819 0,829 0,839 0,848 0,857 0,866 0,875 0,883 0,891 0,899 0,906 0,914 0,920 0,927 0,934 0,940 0,946 0,951 0,956 0,961 0,966 0,970 0,974 0,978 0,982 0,985 0,988 0,990 0,992 0,994 0,996 0,998 0,999 0,999 1,000 | 1,000 1,036 1,072 1,111 1,157 1,199 1,235 1,280 1,327 1,376 1,428 1,483 1,540 1,600 1,664 1,732 1,804 1,881 1,963 2,050 2,145 2,246 2,356 2,475 2,605 2,747 2,904 3,078 3,271 3,487 3,732 4,011 4,331 4,705 5,14 5,67 6,31 7,12 8,14 9,51 11,43 14,3 19,1 28,6 57,3 | 0,353 0,335 0,317 0,299 0,282 0,266 0,249 0,233 0,218 0,203 0,189 0,175 0,161 0,149 0,136 0,125 0,114 0,103 0,094 0,084 0,075 0,067 0,0596 0,0525 0,0460 0,0399 0,0345 0,0294 0,0249 0,0209 0,0173 0,0141 0,0113 0,0090 0,0069 0,0052 0,0038 0,0027 0,0018 0,0011 0,00066 0,00034 0,00014 0,000042 — |
Люмен, люкс, кандела, ватт, мощность светового потока. Как в этом разобраться?
Люмен, люкс, кандела, Ватт, мощность, световой поток, сила света. Не всегда легко разобраться, что означают эти значения. Мы поможем вам с этим, ниже вы найдете статью, в которой простым языком написано в каких случаях все эти значения взаимосвязаны. |
Люмен (лм, lm) — единица измерения светового потока в СИ. Где СИ — система единиц физических величин, (фр. Le Syst?me International d’Unit?s, SI).
Один люмен равен световому потоку, испускаемому точечным изотропным источником c силой света, равной одной канделе, в телесный угол величиной в один стерадиан (1 лм = 1 кд ? ср). Полный световой поток, создаваемый изотропным источником, с силой света одна кандела, равен 4? люменам.
Обычная лампа накаливания мощностью 100 Вт создаёт световой поток, равный примерно 1300 лм. Компактная люминисцентная лампа дневного света мощностью 26 Вт создаёт световой поток, равный примерно 1600 лм. Световой поток Солнца равен 3,63·10 в 28 степени лм.
Люмен — полный световой поток от источника. Однако, это измерение обычно не принимает во внимание сосредотачивающую эффективность отражателя или линзы и поэтому не является прямым параметром оценки яркости или полезной производительности луча фонаря. У широкого светового луча может быть тот же самый показатель люмен, как и у узкосфокусированного. Люмены не могут использоваться, чтобы определить интенсивность луча, потому что оценка в люменах включает в себя весь рассеянный бесполезный свет.
Люкс (лк, lx) — единица измерения освещённости в системе СИ.
Люкс равен освещённости поверхности площадью 1 кв м при световом потоке падающего на неё излучения, равном 1 люмен .
100 люменов собрали и спроецировали на 1-метровую квадратную область. Освещенность области составит 100 люкс. Те же самые 100 люменов, направленные на 10 квадратных метров, дадут освещенность 10 люкс.
Кандела (кд, cd) — одна из семи основных единиц измерения системы СИ, равна силе света, испускаемого в заданном направлении источником монохроматического излучения частотой 540·10 в 12 степени Гц, энергетическая сила света которого в этом направлении составляет (1/683) Вт/ср. Стерадиа?н (русское обозначение: ср, международное: sr) — единица измерения телесных углов.
Выбранная частота соответствует зелёному цвету. Человеческий глаз обладает наибольшей чувствительностью в этой области спектра. Если излучение имеет другую частоту, то для достижения той же силы света требуется бо’льшая энергетическая интенсивность.
Ранее кандела определялась как сила света, излучаемого чёрным телом перпендикулярно поверхности площадью 1/60 кв см при температуре плавления платины (2042,5 К). В современном определении коэффициент 1/683 выбран таким образом, чтобы новое определение соответствовало старому.
Сила света, излучаемая свечой, примерно равна одной канделе (лат. candela — свеча), поэтому раньше эта единица измерения называлась «свечой», сейчас это название является устаревшим и не используется.
Сила света типовых источников:
Источник | Мощность, Вт | Примерная сила света, кд |
Свеча | 1 | |
Современная (2016 г) лампа накаливания | 100 | 100 |
Обычный светодиод | 0,015 | 5 мкд |
Сверхъяркий светодиод | 1 | 25 |
Сверхъяркий светодиод с коллиматором | 1 | 1500 |
Современная (2016 г) люминесцентная лампа | 20 | 100 |
Black Diamond – фирма-законодатель мирового профессионального альпинистского и скалолазного снаряжения. Бренд выпускает высококачественные налобные и подвесные фонари, которые можно использовать даже на глубине одного метра под водой в течение получаса. BD предлагает туристические осветительные приборы с показателями светового потока до 200 люмен при сравнительно небольшом весе. Многие фонари наделены несколькими режимами освещения для удобства работы на альпинистском маршруте и в быту. Яркие, легкие, аккуратные и практичные, фонари БлекДиамонд не подведут даже в самой экстремальной ситуации.
Световой поток фонарей (лм)
big LED-high, big LED-med, big LED-low, 5 MM — High, 5 MM — medium, 5 MM — low
Фонарь Black Diamond (BD) | Световой поток, (лм) |
Icon | 200 |
Spot new | 200 |
Cosmo new | 90 |
Wiz new | 30 |
Ion | 80 |
Ember Power Light | 150 |
Orbit Lantern | 105 |
Voyager Lantern | 140 |
Фонарь Petzl | Световой поток (лм) |
Tikka XP | 180 |
MYO XP | 140 |
Все фонари Black Diamond
Расчет освещенности
Рассмотрим три наиболее часто используемые осветительные системы с люминесцентными лампами.
1). Светильники с отражателями и экранирующей решеткой из анодированного алюминия. Оптическая схема светильника показана на Рис. 1. Световой поток нижней полусферы ламп непосредственно направлен на освещаемую поверхность, а для направления светового потока верхней полусферы ламп используется отражатель. Это наиболее распространенная конструкция светильников для офисных помещений, встраиваемых в подвесные потолки.
Оптическая схема светильника с отражателем
Рис.1 Оптическая схема светильника с отражателем
Графики зависимостей коэффициентов использования светового потока светильника от индекса помещения при разных коэффициентах отражения показаны на Рис.2.
Коэффициенты использования светильника с отражателем
Рис. 2 Коэффициенты использования светильника с отражателем
2). Светильники отраженного света, в которых световой поток как нижней, так и верхней полусфер ламп попадает на освещаемую поверхность после отражения от отражателей светильника. Оптическая схема светильника показана на Рис. 3. Данный светильник так же предназначен для подвесных потолков. Они имеют низкие значения коэффициентов использования за счет потерь светового потока в конструктивных элементах светильника, но по показателям ослепленности они значительно превосходят другие типы осветительных приборов.
Оптическая схема светильника отраженного света
Рис. 3 Оптическая схема светильника отраженного света
Графики коэффициентов использования для таких светильников показаны на Рис. 4
Коэффициенты использования светильника отраженного света
Рис. 4 Коэффициенты использования светильника отраженного света
3). Светильники прямого и отраженного света, в которых световой поток нижней полусферы ламп направлен на освещаемую поверхность, а верхней полусферы – на потолок. В таких светильниках можно добиться коэффициентов использования светового потока, близких к 1, при большой отражающей способности потолка. Оптическая схема светильника показана на Рис. 5. Данный осветительный прибор относится к классу подвесных светильников.
Оптическая схема светильника прямого и отраженного света
Рис. 5 Оптическая схема светильника прямого и отраженного света
Графики коэффициентов использования представлены на Рис. 6.
Коэффициенты использования светильника прямого и отраженного света
Рис. 6 Коэффициенты использования светильника прямого и отраженного света
Чаще задача заключается в нахождении количества светильников N, обеспечивающих требуемую освещенность. Для этого выражение (1) представим в виде:
N= Eср S k/U n Фл (3),
В выражении (3) использована средняя освещенность, но нормируется минимальная освещенность Eн в помещении, поэтому в выражение (3) добавим коэффициент z=Eср/Emin, который можно принять равным 1,1 при количестве светильников более 4 в помещениях с отношением длины к ширине менее 3; 1,2 при количестве светильников 2 – 4 и 1,4 при использовании одного светильника в помещении, либо в помещениях с большим отношением длины к ширине (в длинных коридорах).
N= Eн S k z/U n Фл (4),
При проектировании освещения всегда необходимо контролировать суммарную мощность использованных источников света и удельную мощность, измеряемую как отношение суммы мощностей всех ламп к площади освещаемого помещения:
Руд=Рсумм/S, Вт/м2 (5),
Для однотипных помещений иногда расчет освещенности выполняют по величине удельной мощности, хотя точность такого расчета, как правило, не высока.
При использовании светильников с пускорегулирующей аппаратурой (ПРА), мощность, потребляемая светильниками от электрической сети, всегда будет больше, чем суммарная мощность ламп вследствие потерь в ПРА.
При проведении вычислений удобно пользоваться электронными таблицами Excel. Для расчетов необходимо использовать формулы 2, 4 и 5. Применение электронных таблиц позволяет оперативно выполнить расчеты при использовании различных светильников.
В приложенном к статье файле «Примеры расчета освещенности» представлены результаты вычислений освещенности при использовании светильников, содержащих четыре люминесцентных лампы с улучшенной цветопередачей мощностью 18 Вт, которые имеют длину 600 мм, диаметр 26 мм, цоколь G13 и световой поток 1350 лм. Расчеты выполнены для помещений площадью 24 м2, 40 м2, 80 м2, 150 м2 и 300 м2. Рассмотрен вариант помещений со светлыми поверхностями (коэффициенты отражения потолка, стен и пола 80, 50 и 30 %) и темными (коэффициенты отражения потолка, стен и пола 30, 30 и 10 %). Результаты вычислений показаны на рисунках 7, 8 и 9. Данный файл можно скачать и пользоваться им для своих расчетов, вводя в его поля свои данные. Что бы файл случайно не «испортить», его желательно хранить в отдельной папке, а для выполнения расчетов копировать в другую папку.
Результаты вычисления освещенности – светильники с отражателем
Рис. 7 Результаты вычисления освещенности – светильники с отражателем
Рис. 8 Результаты вычисления освещенности – светильники отраженного света
Рис. 9 Результаты вычисления освещенности – светильники прямого и отраженного света
Как видно из представленных результатов вычислений, по энергоэффективности светильники прямого и отраженного света превосходят светильники с отражателями только в помещениях со светлыми поверхностями, имеющих площадь не менее 50 – 80 м2. Хотя их часто используют для освещения небольших кабинетов ввиду их оригинального дизайна.
Светильники отраженного света чаще используют для освещения помещений с нормированной освещенностью не более 300 лк.
При проектировании освещения иногда необходимо учитывать устанавливаемую в помещениях мебель, так как она коренным образом может повлиять на отражающую способность стен, и, как правило, снизить освещенность в помещении.
В больших помещениях светильники необходимо располагать максимально равномерно по потолку, если нет необходимости осуществлять их привязку к проходам и оборудованию. В каждом конкретном случае индивидуально выбирают места установки осветительных приборов.
17 июля 2013 г.
К ОГЛАВЛЕНИЮ (Все статьи сайта)
К разделу СВЕТИЛЬНИКИ
Расчет освещенности помещений врукопашную / Хабр
Постараюсь очень кратко и просто изложить метод ручного расчета освещения в помещениях, которому меня научили на курсе «Расчет освещения» школы светодизайна LiDS.Какой должна быть освещенность
При планировании освещения, в первую очередь нужно определить соответствующую нормам целевую освещенность и посчитать общий световой поток, который должны давать светильники в помещении.
С нормативами определиться просто – либо ищем свой тип помещения в таблицах СанПиН 2.21/2.1.1/1278-03 «Гигиенические требования к естественному, искусственному и совмещенному освещению жилых и общественных зданий» и СП 52.13330.2011 «Естественное и искусственное освещение», либо соглашаемся с основным требованием по освещенности жилых помещений – 150лк или офисных помещений с компьютерами – 400лк.
Грубая оценка необходимого светового потока
По умолчанию расчет освещенности делается в программе Dialux. Но результат хотя бы приблизительно нужно знать заранее, чтобы сверить данные с оценкой «на глазок».
Как написано даже в Википедии, средняя освещенность поверхности — это отношение падающего на нее светового потока к площади. Но в реальном помещении часть светового потока светильника рабочих плоскостей не достигает, пропадая на стенах. Освещенность в помещении – это отношение общего светового потока светильников к площади помещения с поправочным коэффициентом «η».
Долю света «η», который доходит до рабочих поверхностей, можно оценить на глазок. В самом общем приближении для некоего очень среднего помещения с какими-то там светильниками до рабочих поверхностей доходит примерно половина света, а значит для очень грубой оценки можно использовать коэффициент η = 0,5.
Например, в комнате площадью 20м2 светильник со световым потоком 700лм (эквивалент лампы накаливания 60Вт) создаст освещенность Е = 0,5 × 700лм / 20м2 = 18лк. А это значит, что для достижения норматива в 150лк, нужно F = 700лм × (150лк / 18лк) =5800лм, или эквивалент 8-ми лампочек накаливания по 60Вт!
(Полкиловатта ламп накаливания на небольшую комнату! Понятно, почему нормы освещенности для жилых помещений гораздо ниже, чем для учреждений, и почему учреждения уже давно никто лампами накаливания не освещает.)
Более точный метод ручного расчета
Но так как помещения бывают с разными стенами, разной формы, с высокими или низкими потолками, поправочный коэффициент не обязательно равен 0,5 и для каждого случая свой: на практике, от 0,1 до 0,9. При том, что разница между η = 0,3 и η = 0,6 уже означает разбег результатов в два раза.
Точное значение η нужно брать из таблиц коэффициента использования светового потока, разработанных еще в СССР. В полном виде с пояснениями таблицы привожу в отдельном документе. Здесь же воспользуемся выдержкой из таблиц для самого популярного случая. Для стандартного светлого помещения с коэффициентами отражения потолка стен и пола в 70%, 50%, 30%. И для смонтированных на потолок светильников, которые светят под себя и немного вбок (то есть имеют стандартную, так называемую, «косинусную» кривую силы света).
Табл. 1 Коэффициенты использования светового потока для потолочных светильников с косинусной диаграммой в комнате с коэффициентами отражения потолка, стен и пола – 70%, 50% и 30% соответственно.
В левой колонке таблицы указан индекс помещения, который считается по формуле:
, где S — площадь помещения в м2, A и B — длина и ширина помещения, h — расстояние между светильником и горизонтальной поверхностью, на которой рассчитываем освещенность.
Если нас интересует средняя освещенность рабочих поверхностей (стола) в комнате площадью 20м2 со стенами 4м и 5м, и высоте подвеса светильника над столами 2м, индекс помещения будет равен i = 20м2 / ( ( 4м + 5м ) × 2,0м ) = 1,1. Удостоверившись, что помещение и лампы соответствуют указанным в подписи к таблице, получаем коэффициент использования светового потока – 46%. Множитель η = 0,46 очень близок к предположенному навскидку η = 0,5. Средняя освещенность рабочих поверхностей при общем световом потоке 700лм составит 16лк, а для достижения целевых 150лк, потребуется F = 700лм × ( 150лк / 16лк ) = 6500лм.
Но если бы потолки в комнате были выше на полметра, а комната была не «светлым», а «стандартным» помещением с коэффициентами отражения потолка, стен и пола 50%, 30% и 10%, коэффициент использования светового потока η составил бы (см. расширенную версию таблицы) η = 0,23, и освещенность была бы ровно вдвое меньше!
Проверяем расчеты в диалюксе
Построим в диалюксе комнату 4 × 5м, высотой 2,8м, с высотой рабочих поверхностей 0,8м и теми же коэффициентами отражения, что и при ручном счете. И повесим 9шт мелких светильников с классической косинусной диаграммой по 720лм каждый (6480лм на круг).
Рис. 1 Взятый для примера светильник Philips BWG201 со световым потоком 720лм, и его классическое «косинусное» светораспределение
Получится ли у нас средняя освещенность рабочих поверхностей в 150лк, как мы оценили вручную? Да, результат расчета в Dialux – 143лк (см. рис2), а в пустой комнате без мебели и человеческой фигуры – 149лк. В светотехнике же значения, различающиеся менее чем на 10% считаются совпадающими.
Рис. 2 Результат расчета в диалюксе – средняя освещенность рабочей поверхности (при коэффициенте запаса 1,0) составила 143лк, что соответствует целевому значению 150лк.
Рис. 3 Красивые картинки, в которые верят люди.
Заключение:
На грубую оценку примитивным методом по формуле E = 0.5 × F / S потребуется 1 минута времени, на уточнение коэффициента использования по таблицам – еще 3 минуты, на проект в диалюксе после некоторого обучения – около 20 минут и еще 20 минут, если хочется «навести красоту». Диалюкс выдает очень красивые картинки (см. рис. 3), которые стоят потраченного труда, потому что в них верят люди. Но по соотношению эффективности и трудозатрат оценка освещенности врукопашную вне конкуренции. Ручной счет прост, надежен и эффективен как саперная лопатка, дает уверенность и понимание.
Светотехнические параметры
Свет, улавливаемый человеческим глазом – это не что иное, как электромагнитное излучение, длина волны которого колеблется в пределах от 400 до 780 нм. Импульсы с параметрами, не входящими в эти границы, нашим зрением уже не воспринимается – это ультрафиолетовое (ниже 400 нм) и инфракрасное (выше 780 нм) излучение. Отрасль светотехники изучает количественные и качественные параметры, характеризующие специфические признаки всех излучающих свет приборов.
Основные количественные показатели осветительных устройств – это освещенность, яркость, сила света и световой поток. Для любых расчетов в светотехнике необходимо владеть некой базовой информацией, которая включает:
- Габариты помещения – ширину, длину, высоту;
- Коэффициенты отражения пола, стен и потолка;
- Расстояние между осветительным прибором и рабочей поверхностью;
- Коэффициент использования светильников;
- Тип и мощность применяемых ламп;
- Показатель требуемого уровня освещенности.
Оперируя исходными данными и дополнительной информацией, можно рассчитать цифровые значения каждого из четырех светотехнических параметров.
Освещенность
Эта физическая величина характеризует освещение поверхности, которое создается падающим на нее световым потоком. Освещенность рассчитывается в люксах (1 люкс – это 1 люмен на кв. метр поверхности) и находится в прямо пропорциональной зависимости от силы света осветительного прибора. Удаление светильника от освещаемой поверхности уменьшает освещенность в обратной пропорции к квадрату расстояния. А при наклонном падении лучей на поверхность уменьшение освещенности находится в зависимости от косинуса угла падения лучей.
Освещенность в светотехнике обозначается Е и рассчитывается по формуле:
В случаях, когда для проекта требуется составить точный план построения света, рассчитать освещенность помещений и найти необходимое количество светильников можно, воспользовавшись формулой:
Яркость
Этот параметр, который обозначается знаком L, характеризует яркость ламп и вычисляется в канделах на кв. метр. Это один из главных факторов, участвующих в световом восприятии человеческого глаза. L – это яркость поверхности, излучающей силу света в 1 канделу с поверхности в 1 кв. метр в перпендикулярном направлении.
Именно яркость определяет интенсивность ощущения от того или иного источника света. Грамотное распределение яркости зависит от расположения светильников и отражающих свойств различных поверхностей в помещении. И хоть наши глаза способны адаптироваться к перепадам яркости, резкие скачки вызывают ощутимое утомление.
Световой поток
Этот параметр, обозначаемый символом F (или Ф) и измеряемый в люменах, характеризует мощность излучения осветительного прибора и представляет собой количественный показатель той энергии, которую излучают источники освещения в телесном углу и которая протекает за принятую единицу времени по принятой единице площади.
В отличие от мощности излучения, измеряемой в ваттах, световой поток оценивается исключительно человеческим зрением и зависит от графика чувствительности глаза к различным длинам волн различимого света. Поскольку человеческий глаз обладает неодинаковой чувствительностью к различным длинам волн, имеющим разный цвет, то излучение равной мощности воспринимается им по-разному, в зависимости от цвета длины волны.
Сила света
Силой света называют пространственную плотность светового потока и рассчитывают как отношение исходящего от источника света потока к величине телесного угла, внутри которого он распространяется. Этот параметр обозначается символом I и измеряется в канделах.
Как следует из формулы, сила света неразрывно связана со световым потоком и выражает его отношение к величине телесного угла. Количественные показатели силы света позволяют судить о преимуществах и недостатках тех или иных осветительных приборов и потому имеют большую ценность. Для измерения этой величины используют специальные приборы – фотометры, показания которых, к сожалению, не отличаются высокой точностью. И дело не столько в устройстве, сколько в индивидуальных особенностях человеческого глаза, который и является главным инструментом фотометрии – науки, изучающей силу света.
Как рассчитать освещенность | Sciencing
Обновлено 28 декабря 2020 г.
Автор S. Hussain Ather
При установке лампочек или регулировке яркости экрана компьютера понимание яркости света может помочь вам определить, насколько они эффективны.
Освещенность поверхности, характеристика, отличная от яркости , измеряет, сколько света падает на нее, а яркость — это количество света, отраженного или испускаемого от нее.Четкое понимание терминологии, касающейся яркости и электричества, может помочь вам принять более правильные решения.
Расчет освещенности
Освещенность измеряется как количество света, падающего на поверхность, в единицах фут-кандел или люкс . 1 люкс (единица СИ) равен примерно 0,0929030 фут-канделе. 1 люкс также равен 1 люмен / м 2 , в котором люмен является мерой светового потока , количества видимого света, излучаемого источником в единицу времени, и 1 люкс также равен.0001 фот (ph). Эти устройства позволяют использовать широкий диапазон шкал для определения освещенности для различных целей.
Вы можете рассчитать освещенность E , связанную со световым потоком «phi» Φ , используя
E = \ frac {\ Phi} {A}
над заданной площадью A . Это уравнение обозначает световой поток с Φ , тот же символ для магнитного потока, и показывает сходство с уравнением для магнитного потока
\ Phi = BA
для площади поверхности, параллельной магниту A и напряженность магнитного поля B .Это означает, что освещенность параллельна магнитному полю в том смысле, как его рассчитывают ученые и инженеры, и вы можете преобразовать единицы освещенности (поток / м 2 ) непосредственно в ватты, используя интенсивность (в канделах).
\ Phi = I \ times \ Omega
для потока Φ , интенсивности I и углового диапазона «Ом» Ом для углового диапазона в стерадиан (ср) , или квадратный радиан, а полная сфера имеет угловой размах 4π .Свет, рассчитанный по освещенности, падает на поверхность и распространяется, заставляя объект становиться ярким, поэтому освещенность можно использовать в качестве меры яркости.
Например: Освещенность поверхности составляет 6 люкс, а поверхность находится в 4 метрах от источника света. Какова интенсивность источника?
Поскольку свет распространяется по излучающей схеме, вы можете представить, что источник света — это центр сферы с радиусом, равным расстоянию между источником света и объектом.Это означает, что соответствующая площадь поверхности для использования — это площадь поверхности сферы, которая соответствует этому расположению.
Умножение площади поверхности сферы на радиус 4 как 4π4 2 м 2 на освещенность 6 люмен / м 2 дает 1206,37 люмен потока Φ . Свет распространяется прямо на поверхность, поэтому угловой размах Ом составляет 4π кандел, а, используя Φ = I x Ом, интенсивность I составляет 15159.69 люмен / м 2 .
Расчет других значений
Кандела, используемая в угловом диапазоне, используется для измерения количества света, излучаемого источником света в диапазоне в трехмерном диапазоне. Как показано в примере, угловой диапазон измеряется через стерадиан по площади поверхности, на которую распространяется свет. Стерадиан полной сферы составляет 4π кандел. Не перепутайте люкс и канделу.
В то время как кандел, — это измерение углового диапазона, люкс, — это освещенность самой поверхности.В точках, более удаленных от источника света, уровень люкс ниже, поскольку до этой точки может попасть меньше света. Это важно в реальных приложениях и точных расчетах, которые должны учитывать точный источник света, который может быть, например, в вольфрамовой проволоке лампочки, а не в самой лампочке. Для небольших лампочек, таких как определенные светодиодные источники света, расстояние может быть более незначительным в зависимости от масштаба ваших расчетов.
Один стерадиан сферы радиусом в один метр охватывал бы поверхность размером 1 м 2 .Вы можете получить это, зная, что полная сфера покрывает 4π кандел, поэтому для площади поверхности 4π (из 4πr 2 с радиусом 1) стерадиан поверхность сфера покрывает 1 м 2 . Вы можете использовать эти преобразования, вычислив реальные примеры лампочек и свечей, излучающих свет, используя площадь поверхности сферы для учета геометрии света. Затем их можно связать с яркостью.
В то время как освещенность измеряет свет, падающий на поверхность, яркость — это свет, излучаемый или отраженный этой поверхностью в канделах / м 2 или «нитах».Значения яркости L и люкс E связаны через идеальную поверхность, которая излучает весь свет, с уравнением E = L x π .
Использование таблицы измерения в люксах
Если наличие такого количества различных способов измерения одних и тех же величин может показаться сложным, онлайн-калькуляторы и диаграммы выполняют вычисления для преобразования между разными единицами, чтобы упростить задачу. RapidTables предлагает калькулятор люмен в ватт, который рассчитывает мощность для различных стандартов освещения.В таблице на веб-сайте показаны эти значения, поэтому вы можете увидеть, как они соотносятся друг с другом. Обратите внимание на единицы люмен и ватт при выполнении этих преобразований, которые также используют световую отдачу по «eta» η.
EngineeringToolBox также предлагает методы расчета освещенности и освещенности для эталонов лампочек и ламп наряду с таблицей измерения люкс. Освещение — это еще один метод расчета освещенности, в котором используются электрические эталоны лампы или источника света вместо экспериментальных измерений испускаемого света.Он задается уравнением для освещенности I как
I = \ frac {L_I \ timesC_u \ timesL_ {LF}} {A_I}
для яркости лампы L l (в люменах), коэффициент коэффициент использования C u , коэффициент световых потерь L LF и площадь лампы A l (в м 2 ).
Эффективность освещения
Согласно расчетам веб-сайта RapidTables, световая эффективность излучения — это обычный способ описания того, как лампочка или другой источник света хорошо использует свои энергетические ресурсы, но официальный метод определения эффективности света Источники — это световая отдача источника, а не радиация.
Ученые и инженеры обычно выражают эффективность освещения как процентное значение с максимальным теоретическим значением эффективности освещения 683,002 лм / Вт, которое излучает свет с длиной волны 555 нм. В качестве одного примера, типичный современный белый ватт, «освещенный», может достигать эффективности более 100 лм / Вт с эффективностью 15%, что на самом деле больше, чем у многих других типов источников света.
При измерении яркости и освещенности в науке и технике учитываются способы, которыми сами глаза воспринимают яркость света, чтобы получить более точные и объективные измерения.Изучая распределение яркости света с помощью экспериментов, попытайтесь понять, вызвана ли реакция на яркость сигналами конусного или стержневого фоторецептора в человеческом глазу.
Другие исследования, такие как фотометрические, направлены на обнаружение определенных форм излучения на основе линейности их отклика. Если два световых потока Θ 1 и Θ 2 должны были давать два разных сигнала, фотометрические детекторы измеряют сигнал, генерируемый в результате линейного сложения обоих потоков.Линейность отклика является мерой этой зависимости.
Объяснение измерений освещенности | LEDwatcher
Что такое люмен? Как измерить свет? Сколько ватт потребляет светодиодная лампа? Это лишь некоторые из тем о свете, затронутых в этой статье. Мы попытались объяснить основы света и то, как измеряются различные аспекты света, на реальных примерах, выделив наиболее важные формулы, используя информационные изображения, графики и таблицы, а также сделали несколько калькуляторов для упрощения расчетов.Надеюсь, вы найдете эту статью полезной, и если у вас есть какие-либо комментарии, предложения или дополнения, не стесняйтесь использовать форму комментариев под статьей.
Вот содержание со ссылками на темы, затронутые в этой статье, для упрощения навигации:
- ЛЮМЫ И КАНДЕЛИ (световой поток, сила света)
- ОСВЕЩЕНИЕ, ОСВЕЩЕНИЕ, ЛЮКС И НОЖНЫЕ СВЕЧИ
- КАК ИЗМЕРИТЬ СВЕТ?
- Световые метры
- Приложения для экспонометра
- ЛЮМЫ И ВОДА
- Калькулятор световой отдачи
- Люмен в ватт на калькуляторе
- Калькулятор ватт в люмен
- Люмен диаграмма
ЛЮМЫ И КАНДЕЛИ
Что такое просвет?
Световой поток или сила света измеряет общее количество света, излучаемого источником света за период времени.Проще говоря, световой поток показывает, сколько света излучает лампа во всех направлениях в секунду, световой поток выражается в единицах, называемых люмен, (лм) . Световой поток измеряет только свет, излучаемый человеческим глазом в видимых длинах волн в диапазоне примерно 400-750 нм.
Световой поток — люмен (лм) — единица измерения светового потока или силы света. Один люмен равен количеству света, излучаемого источником света (излучающим равное количество света во всех направлениях) через телесный угол в один стерадиан с интенсивностью 1 кандела.
Световой поток (в люменах) обычно указывается на упаковке лампочки (или его можно найти в специальных каталогах лампочек) и используется в качестве объективного измерения светоотдачи источника света, чтобы лучше сравнить различные типы лампочек. Однако, поскольку люмен измеряется на определенном расстоянии во всех направлениях от источника света, это не лучшее измерение, чтобы описать, насколько ярким будет свет в определенной области. Для описания этого используется термин «освещенность» и единицы измерения, называемые люкс или фут-свеча.
Сила света (кандела)
Сила света — это сила света или количество видимого света, излучаемого источником света в заданном направлении на единицу телесного угла. Сила света измеряется в канделах (кд) , что является базовой единицей СИ. По сути, он измеряет количество видимого света, излучаемого под одним определенным углом от источника света, что является полезным измерением при сравнении устройств, производящих сфокусированный луч света, таких как прожекторы, фонарики и лазерные указки.
Определение канделы — кандела (кд) — единица измерения силы света в СИ. Кандела заменил старую единицу измерения силы света — силу свечи. Одна обычная свеча излучает приблизительно 1 канделу силы света, поэтому канделу в прежние времена называли свечой.
Поскольку свеча не была самым точным источником света для измерения силы света, были определены гораздо более строгие правила и определения для измерения силы света, официальное определение канделы:
Кандела — это сила света в заданном направлении источника, излучающего монохроматическое излучение с частотой 540 x 1012 герц и имеющего силу излучения в этом направлении 1/683 ватт на стерадиан.
Из http://physics.nist.gov/cuu/Units/current.html
Пояснение
Напомним, световой поток измеряет, сколько всего видимого света излучается источником света, единицей светового потока является люмен (лм) . Сила света измеряет, сколько света излучается источником света в одном направлении, единицей силы света является кандела (кд) . Итак, в основном, если вам нужна лампочка, которая излучает свет во всех направлениях (например, потолочный светильник в доме) , посмотрите на люмены при сравнении различных лампочек, однако, если вам нужен свет, который может сфокусировать максимальное количество яркости в луч меньшего размера, такой как прожектор или фонарик, смотрите на свечки, сравнивая такие огни.Помимо этих двух, освещенность также является важным показателем, измеряющим количество света, падающего на заданную поверхность (измеряется в люксах или фут-канделах) , но позже с этим.
Классический пример объяснения люменов и кандел. Представьте, что вы помещаете прозрачную сферу радиусом 1 метр над свечой. Свеча дает силу света в 1 канделу и равномерно излучает свет во всех направлениях. Если вы прорежете в сфере отверстие размером 1 квадратный метр, из этого отверстия будет выходить 1 люмен света.Это дает в виде уравнения:
1лм = 1кд * ср
где:
- 1 лм = один люмен;
- 1 кд = одна кандела;
- sr = стерадиан (квадратный радиан, один квадратный радиан общей сферы можно рассчитать с помощью уравнения A = r², где r — радиус сферы) .
Так в данном случае:
1лм = 1кд * 11 люмен = 1 кандела; источник света с интенсивностью 1 кандела дает световой поток 1 люмен в сфере с площадью поверхности 1 квадратный метр.
Мы также можем рассчитать световой поток всей сферы, используя то же уравнение. Для этого сначала нам нужно знать площадь поверхности сферы, ее можно рассчитать по формуле:
4π r² = 4 * 3,14 * 1 = 12,56sr
Итак, если мы возьмем предыдущее уравнение 1 лм = 1 кд * sr и знаем, что сила света равна 1 кд , а площадь поверхности сферы составляет 12,57 м² , мы можем вычислить:
1лм = 1кд * 12,57ср
лм = 12,57 ; источник света с интенсивностью 1 кандела излучает световой поток 12,57 люмен в сфере с радиусом 1 метр (или площадью поверхности 12,57 м²).
То же уравнение можно преобразовать для вычисления кандел:
1 кд = 1 лм / ср
Давайте посмотрим на новый пример, у нас есть лампочка, излучающая 700 люмен света равномерно во всех направлениях, с такой же прозрачной сферой с радиусом 1 м над лампочкой.
Теперь, если мы возьмем преобразованную формулу 1 кд = 1 лм / ср и узнаем, что световой поток равен 700 лм , а площадь поверхности сферы равна 12,57 м² , мы можем вычислить силу света лампы:
1лм / ср = 1кд
700лм / 12,57лм ≈ 56 кд
Но если мы хотим вычислить интенсивность света в определенном направлении, скажем, проходя через один стерадиан , как в первом примере, мы можем использовать ту же формулу:
700лм / 1ср ≈ 700 кд; это подтверждает первое правило, что 1 люмен = 1 кандела, когда свет проходит через сферу в 1 стерадиан.
Чтобы еще лучше проиллюстрировать разницу между световым потоком (люмен) и силой света (кандел) , представьте себе лампочку, которая производит 1 канделу или 12,57 люмен, если вы закроете одну сторону лампы, она все равно будет производить такая же сила света в 1 кандела, но вдвое меньше светового потока — 6,28лм. Это связано с тем, что свечи измеряют мощность света, насколько яркий свет будет в определенном направлении, поэтому в этом случае покрытие половины лампы не повлияет на интенсивность света (если она измеряется на непокрытой части лампы. ) .Но поскольку люмены измеряют общее количество видимого света от источника, покрытие половины лампы уменьшит общее количество видимого света вдвое.
Вот почему вам следует сравнивать кандели при покупке точечного светильника или фонарика с концентрированным световым лучом и люмен (или люкс) при покупке внутреннего освещения, такого как потолочные светильники или наружное прожекторное освещение.
Эти предыдущие вычисления и формулы в основном относились к источнику света, который является изотропным или, другими словами, излучает свет равномерно во всех направлениях.Теперь давайте посмотрим, как рассчитать канделы и люмены в лампочках под определенными углами.
Люмен, кандел, углы обзора
В том же уравнении 1cd = 1 лм / ср sr указывает угол обзора (также называемый углом при вершине) , через который излучается свет при вычислении силы света и светового потока. В предыдущих примерах мы рассчитывали люмены и свечи, предполагая, что свет излучается равномерно во всех направлениях (или в одном примере через телесный угол в один стерадиан, где 1 люмен равен 1 канделе) , но обычно мы покупаем осветительные приборы, которые освещают свет в под определенным углом прожекторы освещают под более узким углом, чтобы обеспечить более сфокусированный луч, в то время как прожекторы освещают под более широким углом, чтобы покрыть большую площадь поверхности.
Рассматривая то же уравнение 1cd = 1 лм / ср , мы можем заключить, что, увеличивая силу света (кандел) , мы должны уменьшить угол обзора (стерадианы) для получения того же светового потока (люменов). ) .
И наоборот, если мы уменьшим силу света (кандел) , мы должны увеличить угол обзора (стерадианы) , чтобы получить тот же световой поток (люмен) .Таким образом, мы можем сказать, что сила света обратно пропорциональна углу обзора, что означает, что, увеличивая одно значение с той же скоростью, другое будет уменьшаться.
В то же время при расчете светового потока, если мы увеличиваем либо силу света, либо угол обзора, световой поток увеличивается, и наоборот, если мы уменьшаем силу света или угол обзора, световой поток также будет уменьшаться. .
Итак, как мы можем определить этот угол при вершине светового луча?
По сути, угол при вершине — это угол между осью источника света, который дает наивысшую силу света, и осью, где сила света уменьшается до 50%.Формула для вычисления телесного угла (Ом) в стерадианах (ср) :
Ом = 2π (1 − cos (α / 2))
где α — угол при вершине, измеренный в градусах.
Так, например, если вы хотите вычислить телесный угол (Ом) в стерадианах (ср) , чтобы вычислить люмены или канделы светового курса, скажем, для светового луча с углом при вершине 40 ° , используя приведенное выше уравнение, получаем:
Ом = 2π (1 − cos (40/2))
Ом ≈ 2 * 3,14 * (1-0,94)
Ом ≈ 6,28 * 0,06
Ом ≈ 0,38sr
Теперь, если мы хотим рассчитать световой поток источника света с интенсивностью 1 кандела и углом обзора 40 ° , мы можем вставить ранее рассчитанный телесный угол Ом ≈ 0,38sr в основное уравнение. :
1 лм = 1 кд * ср
лм = 1 * 0,38
лм ≈ 0,38
Полное уравнение для расчета светового потока (люмен) источника света, если нам известна сила света (кандел) и угол при вершине (стерадианы) :
Φ = I2π (1 − cos (α / 2))
люмен = канделы * 2π * (1-cos (угол при вершине / 2))
- Φ — световой поток (лм)
- I — сила света (кд)
- π — постоянная (≈3,14)
- α — угол при вершине (°)
Для расчета силы света (кандел) , если известны световой поток (люмен) и угол при вершине (стерадианы) , используйте это уравнение:
I = Φ / (2π * (1 − cos½ * α))
кандел = люмен / (2π * (1-cos½ * угол при вершине))
Теперь давайте проверим это уравнение на более практическом примере.Допустим, у нас есть лампа, которая дает силу света 3cd при угле при вершине 40 ° , и мы хотим рассчитать люмен для этой лампы. Мы можем использовать предыдущее уравнение:
Φ = I2π (1 − cos (α / 2))
лм = 3cd * 2 * π * (1-cos (40 ° / 2))
лм = 18,84 * 0,06
лм ≈ 1, 13 (осветительный прибор с силой света 3 кд при угле при вершине 40 ° будет производить световой поток около 1,13 люмен)
Если мы увеличим угол обзора с 40 ° до 70 ° и оставим силу света на уровне 3cd , общий световой поток должен увеличиться:
лм = 3cd * 2 * π * (1-cos (70 ° / 2))
лм ≈ 3,39
Итак, это правда, если мы увеличиваем угол наклона лампы, сохраняя при этом силу света, световой поток также увеличится.
Мы также можем проверить это наоборот, оставив угол при вершине 70 ° , но уменьшив интенсивность света вдвое, с 3 кд до 1,5 кд . Теперь лампа должна давать меньше люмен:
лм = 1,5 кд * 2 * π * (1-cos (70 ° / 2))
лм ≈ 1,69
Так оно и есть, 3,39 лм> 1,69 лм.
Сводка люменов и кандел
Итак, световой поток измеряет общее количество видимого света, излучаемого во всех направлениях, единицей светового потока является люмен (лм) .Сила света измеряет количество видимого света, излучаемого источником света в заданном направлении под телесным углом, единицей силы света является кандела (кд) . Уравнение для расчета люменов, когда известны канделы и телесный угол источника света: 1 лм = 1 кд * ср .
Канделы в основном используются для описания яркости осветительных приборов, которые производят сфокусированный луч света под более узким углом в одном направлении, например, лазерная указка, фонарик и прожектор.Люмены используются для сравнения лампочек или осветительных приборов, которые освещают под широким углом и должны производить свет одинаково во всех направлениях, например потолочные светильники и некоторые типы пищевых светильников. Как правило, чем шире угол луча света, тем ниже его интенсивность, а чем уже угол луча, тем выше интенсивность света.
ОСВЕЩЕНИЕ, ОСВЕЩЕНИЕ, ЛЮКС, НОЖНАЯ СВЕЧА
Освещенность
Освещенность — это количество света или светового потока, падающего на поверхность.Освещенность измеряется в люкс (люмен на квадратный метр) или в фут-канделах (люмен на квадратный фут) с использованием американских и британских метрик. Освещенность не зависит от типа поверхности, на которую она освещает, и зависит только от количества света, падающего на эту поверхность, поэтому она будет одинаковой при освещении на стене, земле, полу, дереве или любом другом объекте. Освещенность (в отличие от люменов и других показателей освещения) можно легко измерить с помощью простого устройства, называемого люксметром, или даже с помощью смартфона, на котором установлено специальное приложение.
Люкс
Определение люкс — люкс (лк) — это единица измерения освещенности, люкс измеряет световой поток на единицу площади или количество света, падающего на заданную поверхность. По сути, люкс определяет, насколько яркой будет освещенная поверхность. Один люкс равен одному люмену на квадратный метр площади поверхности:
1лк = 1лм / м²
или
1 люкс = 1 кд * ср / м²
, потому что 1 лм = 1 кд * ср
В приведенных выше формулах м² представляет собой целевую площадь поверхности, на которую падает свет.
Ножная свеча
В британских и американских системах измерения вместо люкс используется термин фут-свеча (fc) . Фут-свеча также измеряет количество света, падающего на поверхность, но вместо люмен на квадратный метр, используемых для измерения люкс, люмен на квадратный фут используются для измерения фут-свечки. Одна фут-свеча составляет прибл. 10,764 лк. Фут-свечи рассчитываются по формуле:
1fc = 1 лм / фут²
Пояснение
Освещенность можно легко рассчитать, если известны световой поток (люмен), , выходящий из источника света, и площадь освещаемой поверхности.Например, сконцентрированный луч света со световым потоком 400 люмен будет освещать большую площадь площадью 1 квадратный метр с освещенностью 400 люкс:
лк = 400 лм / 1 м²
лк = 400
Однако, если мы увеличим площадь поверхности, на которую падает свет, в два раза с 1 квадратного метра до 2 квадратных метра и оставим световой поток на уровне 400 люмен , освещенность на этой площади уменьшится в два раза :
лк = 400 лм / 2 м²
лк = 200
Это означает, что чем дальше расстояние от освещаемой поверхности или больше угол освещения, тем ниже будет освещенность света, падающего на поверхность.
Освещенность полезна при выборе подходящих лампочек или осветительных приборов для определенных областей, таких как спальня, гостиная, офис, магазин, театры, сцены и тому подобное. Люкс также является важным показателем при выборе освещения для выращивания растений в помещении.
Яркость
Яркость — это сила света, которая отражается или излучается от объекта на единицу площади в определенном направлении. Яркость зависит от того, сколько света попадает на объект и от отражения света от этой поверхности.Единица измерения яркости — кандела на квадратный метр — кд / м² .
В основном, яркость используется для расчета того, сколько световой мощности будет излучаться от данной поверхности под определенным углом обзора и обнаруживаться человеческим глазом, или, другими словами, насколько яркой будет данная поверхность для человеческого глаза. На самом деле яркость — это единственная световая форма, которую мы можем видеть. Яркость используется, например, при оформлении дорожных знаков и дорожного освещения.
КАК ИЗМЕРИТЬ ОСВЕЩЕНИЕ?
Измерение люменов
Многие думают, что люмены для лампочки или осветительного прибора можно легко измерить с помощью дешевого люксметра или даже мобильного приложения, но на самом деле для этого требуется специальное устройство, называемое интегрирующей сферой , подключенное к спектрометру и компьютеру, на котором установлено специальное программное обеспечение. должен быть установлен, который может отображать несколько показателей, таких как световой поток или люмен, световая отдача, распределение светового спектра, цветовая температура и другие характеристики освещения.На самом деле люмен-метр — это не маленькое портативное устройство, которое вы можете приобрести за пару долларов, а больше похоже на лабораторию для измерения люменов и других показателей лампочек.
Вот видео от Diode Dynamics, демонстрирующее интегрирующую сферу, используемую для измерения люменов.
Световые метры
Существуют также другие типы измерителей для измерения различных световых метрик:
- люксметр для измерения освещенности (люкс или фут-свечи) ;
- измеритель силы света для измерения силы света кандел ;
- измеритель яркости для измерения яркости.
Люксметры — самые распространенные из них, которые используются для измерения освещенности или количества света, падающего на поверхность. Люксметр используется для измерения количества света при фото- и видеосъемке в отдельных домах и многих общественных местах, таких как офисы, магазины, библиотеки, музеи и другие места, чтобы определить, имеет ли место достаточный уровень яркости в целях безопасности. условия труда сотрудников (в офисах) или просто в целях дизайна (в художественных галереях), а также для определения видимости на открытых площадках, например, при выборе подходящего уличного освещения.
Люксметрчасто называют экспонометром из-за его популярности по сравнению с другими устройствами для измерения освещенности. На рынке доступен широкий ассортимент люксметров в зависимости от их цены, функциональности и точности, от пары долларов до нескольких сотен долларов за более продвинутые счетчики. Есть даже множество приложений для измерения освещенности (бесплатные и платные) , доступных на устройствах iOS и Android, которые могут измерять освещенность, и некоторые из этих приложений на самом деле довольно хороши для основных задач измерения освещенности.
Приложения для экспонометра
Вот несколько из самых популярных приложений для экспонометров для устройств iOS или Android, которые вы можете протестировать самостоятельно.
Приложения для экспонометра iOS:
- Карманный измеритель освещенности (от Nuwaste studios) ;
- myLightMeter Free (Дэвид Квилс).
Приложения для экспонометра Android:
- LightMeter Free (Дэвид Квилс) ;
- люксметр (Borce Trajkovski) ;
- Измеритель света beeCam (FM.Bee Corp.).
ЛЮМЫ И МОЩНОСТЬ
Измерение, которое описывает соотношение между люменами и ваттами, составляет световой отдачи . Световая отдача — это соотношение между световым потоком и электрической мощностью источника света, она измеряет, насколько эффективен источник света при преобразовании электрической энергии в видимый свет. Единица световой отдачи — лм / Вт (люмен на ватт) .
Калькулятор световой отдачи
Световую отдачу можно легко рассчитать по формуле:
Световая отдача (лм / Вт) = световой поток (лм) / мощность (Вт)
Так, например, световая отдача лампы 10 Вт , которая дает 600 люмен, , будет 60 лм / Вт :
600 лм / 10 Вт = 60 лм / Вт
Калькулятор для перевода
люмен в ватт
Мы также можем преобразовать это уравнение для расчета мощности лампочки, если мы знаем световой поток (люмен) и световую отдачу этой лампы.Возьмем тот же пример, если мы знаем, что лампочка дает 600 люменов с эффективностью 60 лм / Вт , используя уравнение:
мощность = люмен / люмен на ватт-час
600 лм / 60 лм / Вт = 10 Вт
мы можем подсчитать, что лампочка потребляет 10 ватт электроэнергии, чтобы произвести 600 люмен света.
Калькулятор для перевода ватт в люмены
Аналогичным образом мы можем рассчитать световой поток (люмен) лампочки, если мы знаем мощность ватт и световую отдачу лампы , преобразовав ту же формулу:
люмен = мощность * люмен на ватт-час
10 Вт * 60 лм / Вт = 600 лм
Сравнение люменов
Количество люмен в ватте зависит от типа лампы, используемой в осветительном приборе.В среднем старые вольфрамовые лампы накаливания производят 15 люмен на ватт, а эффективные светодиодные лампы — около 75 люмен на ватт.
Среднее преобразование люмен в ватт для светодиодных, CFL, галогенных ламп и ламп накаливания:
- LED Эффективность лампы накаливания ≈ 75 люмен на ватт (лм / Вт) ;
- CFL КПД лампы накаливания ≈ 65 люмен на ватт (лм / Вт) ;
- Галогенная лампа КПД ≈ 20 люмен на ватт (лм / Вт) ;
- Лампа накаливания Эффективность лампы накаливания ≈ 15 люмен на ватт (лм / Вт) .
Яркость в люменах
Здесь мы составили сравнительную таблицу люменов для светодиодных, CFL, галогенных ламп и ламп накаливания (с использованием среднего значения люмен на ватт для каждого типа лампы) .
Законы освещенности (объяснения и формулы)
Закон обратных квадратов освещенности
Этот закон гласит, что освещенность (E) в любой точке на плоскости, перпендикулярной линии, соединяющей точку и источник, обратно пропорциональна квадрату расстояние между источником и плоскостью.
Где, I — сила света в заданном направлении.
Предположим, что присутствует источник с силой света I в любом направлении. Два расстояния от этого источника принимаются в качестве радиуса, делая этот источник центром.
Как показано на рисунке выше, два радиуса: r 1 и r 2 . На расстоянии r 1 dA 1 — взятая элементарная площадь поверхности. В этом направлении dA 1 , dA 2 считается на расстоянии r 2 .
dA 1 и dA 2 находятся в пределах одного телесного угла Ω с одинаковым распределенным световым потоком Φ.
Площадь dA 1 при r 1 получает такое же количество светового потока, что и область dA 2 при r 2 , поскольку твердое тело такое же.
Снова телесный угол для обеих элементарных поверхностей
Освещенность на расстоянии
Освещенность на расстоянии
Теперь из уравнения (i) мы получаем,
Теперь в уравнении (iii)
Это указывает на хорошо известную зависимость закона обратных квадратов для точечного источника.
Видно, что освещенность изменяется обратно пропорционально квадрату освещенной точки от источника.
Если источник света не точечный, то мы можем принять этот большой источник как сумму многих точечных источников.
Это соотношение может применяться ко всем источникам света.
Косинусный закон освещенности
Закон гласит, что освещенность в точке на плоскости пропорциональна косинусу угла падения света (угла между направлением падающего света и нормалью к плоскости).
Это уравнение освещенности точечного источника.
Где, I θ — сила света источника в направлении освещенной точки, Ɵ — угол между нормалью к плоскости, содержащей освещенную точку, и линией, соединяющей источник с освещенной точкой, а d — расстояние до освещенной точки.
Но для неточечного источника косинусный закон освещенности можно проанализировать с точки зрения светового потока, а не силы света.
Освещенность или поверхностная плотность светового потока, принимаемого элементарной областью, изменяется в зависимости от расстояния от источника света и угла элементарной области по отношению к направлению светового потока.
Максимальная освещенность возникает, когда элемент площади получает световой поток, перпендикулярный его поверхности.
Когда элемент площади наклоняется относительно направления светового потока, освещенность или плотность потока на элементарной поверхности уменьшается. Об этом можно думать двояко.
- Наклоненная элементарная область (δA) не может перехватить весь световой поток, который она получила ранее, поэтому освещенность падает.
- Если элементарная площадь (δA) увеличивается, освещенность падает.
Для случая (1), когда элемент δA наклонен на угол Ɵ, величина перехваченного потока δA равна
Таким образом, поток, принимаемый посредством δA, уменьшается на коэффициент cosƟ.
Теперь освещенность при δA равна
Для случая (2), если весь поток перехватывается большим элементом δA ’:
Таким образом, освещенность становится
Оба случая этого подхода приводят к
Расчет освещенности
Расчет освещенности ПРИМЕЧАНИЕ: это вырезано из заметок проф.Класс CS184 Fall04 Sequin. Для полный документ см. http://www.cs.berkeley.edu/~ug/slide/pipeline/assignments/as8/SLIDEHOME/docs/slide/spec/spec_frame_nongeonode.shtml#lightingРасчет освещенности
В этом разделе объясняется, как различное освещение параметры используются для характеристики освещенности сцены.
Модель освещения используется для расчета цвета каждого точка на освещенной поверхности. Он определяется как сумма освещение от каждого отдельного источника света.
Следующие символы используются во всех расчетах освещения. ниже:
- d : расстояние от источника света до точки на рассмотрении.
- C : тройной цвет. Каждое из приведенных ниже уравнений с участием C или любого нижнего индекса C , может быть разлагается на три эквивалентных уравнения для красного, зеленого и компоненты синего цвета. Каждое из значений цвета должно лежать от 0 до 1.Если в любом из вычислений значение цвета выходит за пределы этого диапазона, его необходимо нормализовать.
- C diff : Рассеянный цвет поверхности — задается параметром цвета на поверхности утверждение.
- C spec : Зеркальный цвет поверхности — рассчитано из C diff и C light .
- C light : Цвет светящейся лампы — задается параметром цвет в любом свете утверждение.
- I : тройка цветов, представляющая освещение или воспринимаемый цвет. Каждое из приведенных ниже уравнений с участием I или любого другого с индексом I , можно разложить на компоненты красного, зеленого и синего цветов и должны быть нормализованы в так же, как тройной цвет, C .
- D : вектор направления для направленного света или пятна свет.
- P : положение точечного света или прожектора.
- L : световой вектор — имеет направление, противоположное направлению направление падающего света.
- V : вектор от рассматриваемой точки к глаз.
- N : нормаль к поверхности на той же стороне поверхности как V . Обратите внимание, что это не обязательно нормаль к внешней поверхности.
- R : вектор отражения, определяющий отражение направление светового луча в идеальном случае плоской зеркало.Он рассчитывается как R = 2 ( N . L ) N — L .
Примечание: L , V , N и R — все единичные векторы
Освещение в точке на поверхности зависит как от свойства поверхности и свойства освещающих источников света. Параметры поверхность заявление определить различные свойства поверхности.
поверхность | id цвет ( C r C g C b ) отражательная способность (спецификация K50 909 amb ) показатель степени N фонг металлик м |
торцевая поверхность |
( C r C g C b ) triple определяет диффузный цвет поверхности — i.е. в цвет поверхности при рассеянном освещении или нормальный цвет поверхности. Это C дифференциал .
K amb , K diff , и K spec — окружающий, диффузный и коэффициенты зеркального отражения соответственно. Все должно быть от 0 до 1. Каждый умножается на три значения цвета поверхности, чтобы обеспечить отражательные свойства поверхности для каждого из три цвета.Коэффициент K amb контролирует долю окружающий свет, который отражается от поверхности. Этот коэффициент можно поднимать или опускать, чтобы соответствовать общей отражательной способности поверхность (например, K amb = K diff ) или чтобы представить количество окружающего света, которое влияет на объект (т.е. коэффициент внешней освещенности может быть уменьшен, если Предполагается, что объект находится в темном углу сцены.) Коэффициент K diff определяет долю свет, диффузно отраженный от поверхности.Это диффузное отражение рассчитывается по закону Ламберта. Коэффициент K spec контролирует долю свет, который зеркально отражается от поверхности. Это зеркальное отражение рассчитывается согласно Модель подсветки Фонга.
N phong — показатель степени Фонга зеркальный термин.
Расчеты освещения должны выполняться в Система координат light . Светящаяся точка и ее нормальный вектор должны быть преобразован в систему координат источника света с помощью Q свет <-объект и Q объект <-light T соответственно.Это позволит правильно рассчитать спад в случай светильника, который был масштабирован и учитывает прожекторы или точечные светильники должны быть неравномерно масштабированы в Мир.
Металлические поверхности
м — коэффициент металла поверхности и используется для расчета C spec , зеркальный цвет поверхность. Значение м должно быть от 0 до 1. Чем более металлической является поверхность, тем более естественный ее цвет. отражается в зеркальных отражениях .Если поверхность чисто металлическая ( м = 1), то зеркальные отражения от поверхности будет иметь тот же цвет, что и диффузные отражения; если поверхность чисто пластиковая ( м = 0), то зеркальные отражения будет в точности соответствовать цвету падающего света. Если C light — цвет светящейся лампы, потом
C spec = м C diff C light + (1- m ) C lightОкружающий свет
свет id тип SLF_AMBIENT цвет ( C r C g C b ) торцевой свет
Окружающий свет определяет ненаправленное фоновое освещение.Цвет поверхности, освещенной окружающим светом, равен
I amb = K amb C diff C lightНапример:
свет bg тип SLF_AMBIENT цвет (0,86 0,2 0) конец светаопределяет красноватую фоновую подсветку.
Направленный свет
свет id тип SLF_DIRECTIONAL цвет ( C r C g C b ) торцевой свет
Направленный свет — это источник света, находящийся в бесконечности, при этом свет
излучается в одном главном направлении, D = ( x d y d z d ).По умолчанию это направление (0 0 -1)
,
по оси — z ,
но это может быть изменено преобразованиями, которые помещают свет в
сцена. Если Q мир <-light — преобразование света
потом
L = — D / | D |
Точно так же поверхность и нормаль к ней могут быть преобразованы в
система координат света с использованием Q свет <-world и Q world <-light T соответственно.Тогда вектор света по умолчанию (0 0-1)
равен
использовал.
Этот метод даст правильные результаты в случае масштабированного света.
источник.
Для направленного света нормализованный вектор света, L , равен постоянная для всех рассматриваемых точек.
Цвет точки на поверхности, освещенной направленным светом. источник
I дирек = K дифференциал ( N . L ) C дифференциал C свет + K спецификация ( R . V ) Nphong C specТочечный свет
свет id тип SLF_POINT цвет ( C r C g C b ) deaddistance ( d 0 ) спад ( n 1 ) торцевой свет
Точечный источник света расположен в точке P = ( x p y p z p ),
и излучает свет одинаково во всех направлениях.По умолчанию эта позиция находится в начале координат, (0 0 0)
,
но это может быть изменено преобразованиями, которые помещают свет в
сцена.
Если Q мир <-light — преобразование света
потом
— положение источника света в мировых координатах.
Точно так же поверхность и нормаль к ней могут быть преобразованы в
система координат света с использованием Q свет <-world и Q world <-light T соответственно.Тогда положение источника света по умолчанию, (0 0 0)
, будет
использовал.
Этот метод даст правильные результаты в случае масштабированного света.
источник.
Световой вектор L различен для каждой точки на поверхности. — вектор от рассматриваемой точки до источника света. d 0 — мертвая дистанция и n 1 — показатель степени спада.
Цвет точки на поверхности, освещенной точечным источником света. то же, что и для направленного источника света, за исключением того, что ослабляется с расстоянием в раз 1 / ( d 0 + d ) n 1 .Если d — это расстояние от источника света до точки рассматриваемый цвет точки на поверхности, освещенной точечный источник света:
I точка = [ K diff ( N . L ) C дифференциал C свет + K спецификация ( R . V ) Nphong C spec ] / ( d 0 + d ) n 1Точечный свет
свет id тип SLF_SPOT цвет ( C r C g C b ) deaddistance ( d 0 ) спад ( n 1 ) angularfalloff ( n 2 ) торцевой светТочечный источник света расположен в точке P = ( x p y p z p ), но, как источник направленного света, он излучает свет одним главное направление. D = ( x d y d z d ) — вектор в главном направлении излучаемого света. По умолчанию точечный источник света расположен в начале координат,
(0 0 0)
, если смотреть вниз по оси — z , (0 0 -1)
. Их можно изменить с помощью
трансформации, которые помещают свет в сцену так же, как и
в
точечный свет
и
направленный свет
соответственно.Световой вектор, L , различен для каждой точки на поверхности и является единичным вектором из рассматриваемый пункт на P . d — это расстояние от источника света до точки. д 0 и n 1 такие же, как для точечного света и n 2 — показатель углового спада между D и — L . Цвет точки на поверхности, освещенной точечным источником света. то же, что и для точечного источника света, за исключением того, что ослабляется с углом выхода из луча в раз [ D . (- L )] n 2 .Цвет точки на поверхности, освещенной прожектором, равен
I место = [ K diff ( N . L ) C дифференциал C свет + K спецификация ( R . V ) Nphong C spec ] [ D . (- L )] n 2 / ( d 0 + d ) n 1Candela, Lumen, Lux: уравнения
Пожалуйста, включите JavaScript, чтобы отображать математику на этой странице.
Свет измеряется разными методами, поэтому существует несколько родственные, но разные единицы измерения. В этой статье дается краткий обзор из наиболее широко используемых мер и представляет несколько уравнений для преобразования одной меры в другую. Для удобства стол с калькуляторами конвертации находится внизу этой страницы.
Оптическое излучение охватывает широкий спектр, включая инфракрасный и ультрафиолетовый. свет. Для краткости в этой статье основное внимание уделяется видимому свету . (область фотометрии).
Кандела
Кандела (единица кд) происходит от яркости «стандартная свеча», но более точное определение она получила в Международной Система единиц (СИ) — в то время эта единица также была переименована в «свечу». на «канделу».
Кандела измеряет количество излучаемого света в диапазоне (трехмерном) угловой пролет. Поскольку сила света описывается с помощью угла, расстояние, на котором вы измеряете эту интенсивность, не имеет значения.Для простоты иллюстрации на картинке справа три измерения сведены до двух. В На этой картинке экран B будет улавливать точно такое же количество световых лучей (испускаемых от источника света) в качестве экрана A — при условии, что экран A был удален, чтобы не затемнение экрана B. Это связано с тем, что экран B покрывает тот же угол, что и экран A.
Угловой диапазон для канделы выражается в стерадианах, без единицы измерения. (например, радиан для углов в двумерном пространстве). Один стерадиан на сфера радиусом в один метр дает поверхность в один метр 2 .Полная сфера измеряет \ (4 \ pi \) стерадианы.
См. Раздел о люксе, чтобы узнать о соотношении канделы и люкс.
Люмен
Если вы посмотрите на светодиоды, особенно светодиоды высокой яркости, вы можете заметить, что светодиоды с высокой силой света (в канделах или милликанделах, мкд) обычно имеют узкий угол при вершине. Аналогично светодиоды с широким угол при вершине обычно имеет относительно низкую яркость интенсивность. То же самое и с галогенными пятнами с отражателем: с узконаправленными отражатель имеет более высокий рейтинг в канделах, чем прожекторы того же мощность.
Причиной этой связи является полная энергия, производимая светодиодом. Светодиоды определенного класса (например, «высокий поток») все производят примерно одинаковое количество световая энергия. Однако, когда светодиод излучает свою полную энергию в пучке с узким угол, интенсивность будет больше (в направлении этого угла), чем когда та же энергия была излучена под большим углом.
Люмен (единица лм) дает полный световой поток источника света на умножение интенсивности (в канделах) на угловой диапазон, на котором свет испускается.С символом \ (\ Phi_v \) для просвета, \ (I_v \) для канделы и \ (\ Omega \) для углового размаха в стерадиане соотношение:
\ [\ Phi_v = I_v \ cdot \ Omega \]Если источник света изотропный (что означает: однородный во всех направлениях), \ (\ Phi_v = 4 \ pi \ I_v \). Это потому, что сфера измеряет \ (4 \ pi \) стерадианы. См. Тему об углах при вершине, чтобы получить трехмерный угловой пролет \ (\ Omega \) от угла раскрытия.
Для справки: стандартная лампочка 120 В / 60 Вт имеет мощность 850 лм и эквивалентная лампа мощностью 230 В / 60 Вт рассчитана на 700 лм.Низкое напряжение (12 В) Вольфрамовая галогенная лампа мощностью 20 Вт дает примерно 310 лм.
Люкс
Люкс (единица люкс) — это мера освещенности поверхности. Люксметры часто измерять значения люкс (или фут-кандел, но они напрямую связаны: один фут-кандела составляет 10,764 лк). Формально люкс — это производная единица от люмена, т.е. производная единица от канделы. Тем не менее, понятие люкс легче по сравнению с кандела, чем просвет.
Разница между люксом и канделой в том, что люкс измеряет освещенность поверхность, а не угол.В конечном итоге расстояние эта поверхность от источника света становится важным фактором: чем дальше что поверхность от источника света, тем меньше она будет освещена им. На картинке справа экран A имеет тот же размер, что и экран B.
Один стерадиан на сфере радиусом один метр дает поверхность в один метр. м 2 (см. раздел о канделах). Отсюда следует, что при расстояние измерения 1 метр, значения для кандел (люмен на стерадиан) и люкс (люмен на м 2 2 ) такие же.Как правило, измерения в люксах могут можно преобразовать в канделы и обратно, если известно расстояние измерения. Примечание что при измерении светодиодов виртуальное происхождение источника света лежит в нескольких миллиметры позади физического точечного источника из-за линзы светодиода — это становится актуальным при измерении светодиодов на небольшом расстоянии.
Яркость
Яркость — это мера количества света, излучаемого поверхностью (в конкретное направление). Мера яркости лучше всего подходит для плоских рассеивающие поверхности, которые равномерно излучают свет по всей поверхности, например (компьютер) отображать.2 \) (неофициально, но все еще широко используется) — «Нит».
Яркость и освещенность («люкс») связаны в том смысле, что яркость — это мера света, испускаемого поверхностью (либо из-за отражения, либо из-за это светоизлучающая поверхность), а освещенность — это мера попадания света на поверхность. Предполагая идеальную диффузно отражающую поверхность, вы можете умножить измерьте в «Нитах» на \ (\ pi \), чтобы получить эквивалентное значение в люксах. То есть с \ (L_v \) для яркости и \ (E_v \) для люкс:
\ [E_v = L_v \ cdot \ pi \]Как и в случае с Lux, существует несколько более старых единиц яркости, из которых фут-ламберт, вероятно, самый распространенный (из-за его отношения 1 к 1 с свеча на ламбертово-отражающей поверхности).Эти старые агрегаты легко конвертируются в канделы на квадратный метр путем умножения их на масштабный коэффициент. Для фут-ламберта, масштабный коэффициент равен 3,425.
Угол при вершине
Поскольку просвет и размеры канделы связаны через угол обзора (или угол при вершине ), полезно знать, как этот угол определяется.
Один измеряет угол между осью, где источник света дает наибольшее сила света и ось, на которой эта сила уменьшается до 50%.в на картинке справа этот угол обозначен \ (\ theta \). Угол при вершине вдвое больше этого угла (что означает \ (2 \ theta \)).
Обратите внимание, что снижение интенсивности до 50% основано на линейной шкале, но что наше восприятие яркости , а не линейно. CIE стандартизировал соотношение между силой света и воспринимаемой яркостью как кубический корень; другие источники утверждают, что квадратный корень лучше аппроксимирует это соотношение. Смотрите также страница по цветовой метрике.
Трехмерный угловой диапазон для угла при вершине с использованием \ (\ Omega \) для угловой размах (в стерадианах) и \ (2 \ theta \) для угла при вершине:
\ [\ Omega = 2 \ pi \ left ({1 — \ cos {2 \ theta \ over 2}} \ right) \]Эффективность освещения
Есть множество способов осветить поверхность или комнату: лампы накаливания, люминесцентные лампы, светодиоды, вольфрамово-галогенные лампы, электролюминесцентные листы, и другие. Их часто сравнивают по эффективности поворота электрических энергия к световой энергии.
Официальное название световой отдачи — «световая отдача источника». Этот не следует путать со «световой эффективностью излучения», которое не учитывает потери из-за тепловыделения и др. (и поэтому дает значительно более высокие значения). Эффективность освещения измеряется в лм / Вт (люмен на ватт).
Эффективность освещения часто выражается в процентах, исходя из теоретических значений. максимальное значение светоотдачи 683,002 лм / Вт (на длине волны 555 нм).Например, на момент написания этой статьи белый светильник мощностью 1 Вт может достигать КПД более 100 лм / Вт, что дает КПД 15%. Хотя это может кажутся низкими, светодиоды на самом деле довольно эффективны по сравнению с другими методами освещения.
Уравнения
Уравнения в этом разделе даны без дополнительных объяснений или выводов. За подробностями обращайтесь к технической литературе или Википедия.
От | до | Учитывая | Уравнение |
---|---|---|---|
Кандела (\ (I_v \)) | Люмен (\ (\ Phi_v \)) | угол при вершине α | \ (\ Phi pi I_v \ left ({1 — \ cos {\ alpha \ over 2}} \ right) \) |
Люмен (\ (\ Phi_v \)) | Кандела (\ (I_v \)) | угол при вершине α | \ (I_v = {\ Phi_v \ over {2 \ pi \ left ({1 — \ cos {½ \ alpha}} \ right)}} \) |
Люмен (\ (\ Phi_v \)) | Люкс (\ (E_v \)) | Площадь поверхности A (м 2 ) | \ (E_v = {\ Phi_v \ over A} \) |
Люкс (\ (E_v \)) | Люмен (\ (\ Phi_v \)) | площадь поверхности A (м 2 ) | \ (\ Phi_v = E_v \ cdot A \) |
Кандела (\ (I_v \)) | Люкс (\ (E_v \)) | расстояние измерения D (м) | 910 54 \ (E_v = {I_v \ over {D ^ 2}} \)|
Люкс (\ (E_v \)) | Кандела (\ (I_v \)) | расстояние измерения D (м) | \ (I_v = E_v \ cdot D ^ 2 \) |
Например, если в техническом паспорте светодиода высокой яркости упоминается, что он производит 1500 мкд (1.\ circ} \ right) \ cr & \ приблизительно 1,70 \, {\ rm lm} } \]
Калькулятор преобразования
Основываясь на уравнениях, разработанных и представленных выше, приведенная ниже таблица позволяет вам чтобы быстро преобразовать одну меру в другую.
Для калькуляторов, указанных в таблице ниже, требуется JavaScript.
Если ваш браузер поддерживает JavaScript, убедитесь, что он включен.
Оценка
Результат уравнений (и калькуляторов на их основе) может отличаться от данные, предоставленные производителем светодиода или прожектора, или от того, что вы измеряете с помощью люксметр по нескольким причинам.Производитель может указать силу света. (в канделах или милликанделах) перпендикулярно свету источник, а не среднее значение по углу при вершине. Другая сложность заключается в том, что значения кандел, люмен и люкс стандартизированы. для света с длиной волны 555 нм или зеленого света. Для светодиодов другого цвет, следует применить весовую функцию, используя стандартизированную модель человеческий глаз. Стандартные люксметры имеют в лучшем случае только фильтры дневного света и лампа накаливания, поэтому светодиоды могут значительно отклоняться (даже белые Светодиоды, так как спектр не такой, как у ламп накаливания).
Плотность светового потока| Освещенность | Освещение | Люкс | Световой выход
Плотность светового потока
Освещенность
Световая мощность
Освещение — устаревший термин для обозначения «Освещенность».
Световая эмиссия — устаревший термин для
Световой выход.
(Условия фотометрии )
Плотность светового потока фотометрически взвешена. Плотность лучистого потока , что означает Световой поток на единицу площади при точка на поверхности, где поверхность может быть реальной или воображаемой.Например, воображаемую поверхность можно использовать для измерить или рассчитать освещенность в любом месте космоса, возможно для определения коэффициента дневного света на рабочей плоскости.
Есть два случая:
Освещенность (обычно E в формулах) — это общая количество видимого света, освещающего (падающего на) точка на поверхности со всех сторон над поверхностью. Эта «поверхность» может быть физической поверхностью или воображаемой плоскостью. Таким образом, освещенность эквивалентна энергетической освещенности . взвешен с кривой отклика человеческого глаза.
Стандартная единица освещенности Люкс (лк) что составляет люмен на квадратный метр (лм / м 2 ).
Есть несколько более старых единиц освещенности:
фут-свеча 1 fc = 10,764 лк. dalx (на канадском
правила техники безопасности)1 dalx = 10,764 лк. фот (устарело) 1 фаза = 10’000 люкс Типичные значения освещенности:
1 лк полнолуние 10 лк уличное освещение 100-1’000 лк освещение рабочего места 10’000 люкс хирургическое освещение 100’000 люкс простой солнечный свет Поверхность получит 1 люкс освещенности от точечный источник света, излучающий 1 кд с силой света в ее направлении с расстояния 1 м.
При использовании нестандартных единиц США это переводится в 1 fc получен от источника 1 cd на расстоянии 1 фута.Световая отдача или это общее количество видимого света оставляя точку на поверхности во всех направлениях над поверхность. Следовательно, яркость эквивалентна яркость излучения взвешен с кривой отклика человеческого глаза.
Единица световой отдачи: люмен на квадратный метр (лм / м 2 ) .
Определение средней освещенности — Meccanismo Complesso
Просмотры сообщений: 9 583
Средняя освещенностьОбычно, когда мы говорим об освещенности, мы имеем в виду рабочую средняя освещенность E м , особенно при применении уровней, предписанных действующими нормативами. Это значение представляет собой среднюю освещенность столешницы в рассматриваемой среде, относящуюся к промежуточному состоянию старения и полученную при обычном освещении.Вместо этого, в общих чертах, мы склонны рассматривать серию точек освещения, которые не имеют никакого отношения к реальной средней освещенности данной среды.
Для измерения средней освещенности необходимо определить определенное количество точек освещенности. Этого числа должно быть достаточно для получения приемлемого среднего значения. Вы должны выбрать это число в зависимости от размеров комнаты, высоты столешницы и высоты осветительных приборов.
Термин освещенность , измеренный в люкс , относится к фотометрической величине, которая представляет собой соотношение между световым потоком Φ на поверхности и площадью S той же поверхности, т. Е. Количеством света. присутствует на заданной поверхности, заданной , столешница (эта поверхность имеет значение 0.8 м над полом на рабочем месте и 0,2 м над полом в транзитных зонах), а не количество падающего света на возможного наблюдателя.
Чтобы оценить количество света, который действительно достигает глаз, вы должны также учитывать другие переменные, такие как яркость, освещенность сетчатки, световой поток, блики. Эти факторы также учитывают как отражающие свойства поверхностей, так и положение наблюдателя, а также саму освещенность.
Следовательно, взаимосвязь между уровнем освещенности и визуальными характеристиками следует считать чисто ориентировочной, поскольку, например, молодому объекту требуется 200 лк для чтения документа, а пожилому объекту — не менее 600 лк.
Следовательно, уровни освещенности, необходимые для определения оптимальной визуализации объекта, не могут быть определены в абсолютном выражении. Это происходит не только потому, что коэффициенты отражения от стен и предметов могут изменять освещенное визуальное восприятие, но также потому, что каждый человек по-разному реагирует на световой раздражитель.
Часто во время моей работы, либо в качестве консультанта, либо в результате расследований и жалоб, мне приходилось определять или проверять уровень средней освещенности данной среды (банки, торговые центры, магазины).Именно по этой причине я всегда применял и мог убедиться в полезности простой и практичной процедуры, описанной в этой статье.
Описание метода
Сначала необходимо рассчитать коэффициент обнаружения K R окружающей среды по следующей формуле:
- a = длина помещения в метрах;
- b = ширина области в метрах;
- h = расстояние в метрах между осветительными приборами и плоскостью, на которой необходимо измерить освещенность (например, высота осветительных приборов 2.80 м, столешница на высоте 0,8 м, h = 2,80 до 0,8 = 2).
После того, как вы получили значение K R, , вы можете определить минимальное количество точек измерения «n», используя следующую таблицу:
n представляет количество зон, необходимых для проведения измерения освещенности. Стороны каждой зоны можно получить, применив следующую формулу:
- a = длина помещения
- a 1 = длина зоны измерения
- b = ширина помещения
- b 1 = Ширина зоны измерения
- n = количество зон измерения
Если a 1 больше, чем удвоенное b 1 , вы должны действовать методом проб и ошибок, увеличивая n количество точек измерения при соблюдении следующих условий:
- a 1 ≤ 2 · b 1 ;
- a 1 / b 1 ≤ 2;
- зон с большей стороной ≤ 2 · зоны с меньшей стороной.
После того, как вы определили минимальное количество точек измерения, вы можете начать определять точки измерения, а затем выполнять фактическое измерение, но не раньше, чем датчик люксметра подвергнется воздействию окружающего освещения в течение минимум 5 минут.
Измерения должны выполняться без участия других источников света, и вам необходимо проверить значение, полученное с небольшими смещениями вокруг выбранной точки измерения (15/20 см), стараясь не располагать прибор непосредственно под каким-либо источником света.Если вам нужно проводить измерения на столешнице, например на столе или прилавке в магазине, вы должны держать измерительный датчик на высоте не менее 3/4 см от поверхности, а не ставить непосредственно на нее.
Следует отметить, что только что описанная процедура определяет минимальное количество точек измерения, чтобы значение средней освещенности можно было считать приемлемым ; поэтому рекомендуется увеличивать количество точек измерения, а не уменьшать их, особенно когда вы выполняете измерение в особенно сложных условиях или с целью более надежного обнаружения.
Практические примеры
Пример 1
Размер помещения 20 х 15 м, расстояние h между осветительными приборами и рабочей поверхностью 2 м, высота столешницы 0,80 м; равно R = (20 x 15) / 2 x (20 +15) = 300/70 = 4,3; для этого требуется минимум 25 точек измерения с площадями сторон a 1 = 20/5 = 4 м b 1 = 5/15 = 3 м. Поскольку большая сторона a 1 не более чем в два раза длиннее меньшей стороны b 1 , соотношение между a 1 и b 1 меньше 2, количество зон на более длинной стороне меньше чем в два раза что на меньшей стороне; количество 25 зон (5 × 5 при 1 = 4 м и b1 = 3 м) можно считать приемлемым.
Пример 2
Размер помещения 15 х 4 м, расстояние h между осветительными приборами и столешницей 2 м, высота столешницы 0,8 м; оказывается, что R = (15 x4) / 2 x (15 +4) = 60/38 = 1,6, таким образом, требуется минимум 9 точек измерения с зонами стороны a 1 = 15/3 = 5 m и b 1 = 4/3 = 1,33 м. Поскольку большая сторона a 1 больше чем в два раза меньшая сторона b 1 , количество зон необходимо увеличить.Посредством серии последующих вычислений мы получаем разбиение, которое можно считать приемлемым: 32 зоны (8 × 4 me с a 1 = 1,88 b 1 = 1 м).
Анализ результатовСредняя освещенность E м определяется как среднее арифметическое значений освещенности, измеренных в центре зон:
- E м = средняя освещенность
- E 1 ÷ E n = значения освещенности измеренных точек
- n = всего количество точек измерения
После того, как вы получили значение средней освещенности E м , вы можете оценить равномерность освещения с помощью отношения E min / E m .В частности, соотношение E мин / E м не должно быть меньше 0,8, тогда как в случае смежных комнат средняя освещенность E м более освещенного помещения не должна превышать 5 раз больше, чем у комнаты с средняя освещенность E м ниже.