Как сделать из трехфазного двигателя однофазный: Как подключить трехфазный электродвигатель к однофазной сети | Полезные статьи

Содержание

Подключение однофазного электродвигателя к сети. Способы включения трехфазных двигателей в однофазную сеть

Некоторые мастера самостоятельно собирают станки по обработке древесины или металла в домашних условиях. Для этого могут использоваться любые доступные двигатели подходящей мощности. В некоторых случаях приходится разбираться с тем, как подключить трехфазный двигатель к однофазной сети. Именно этой теме и посвящена статья. Также будет рассказано о том, как правильно подобрать требуемые конденсаторы.

Однофазные и трехфазные


Чтобы правильно понимать предмет обсуждения, который объясняет подключение двигателя 380 на 220 вольт, необходимо разобраться, в чем лежит принципиальное отличие таких агрегатов. Все трехфазные двигатели являются асинхронными. Это означает, что фазы в нем подключены с некоторым смещением. Конструктивно двигатель состоит из корпуса, в который помещена статическая часть, которая не вращается, ее называют статором. Также есть вращающийся элемент, который называется ротором. Ротор находится внутри статора. На статор подается трехфазное напряжение, каждая фаза по 220 вольт. После этого происходит образование электромагнитного поля. Из-за того, что фазы находятся в угловом смещении, появляется электродвижущая сила. Она и заставляет ротор, который находится в магнитном поле статора вращаться.


Обратите внимание! Напряжение на обмотки трехфазного двигателя подается через тип соединения, которое выполняется в форме звезды или треугольника.

Однофазные асинхронные агрегаты имеют немного иной тип подключения, т. к. питаются от сети 220 вольт. В ней есть только два провода. Один называется фазным, а второй нулевым. Чтобы запуститься, двигателю необходимо иметь только одну обмотку, к которой подключается фаза. Но только одной будет мало для пускового импульса. Поэтому присутствует еще она обмотка, которая задействована во время пуска. Чтобы она выполнила свою роль, она может быть подключена через конденсатор, что бывает чаще всего, или кратковременно замыкаться.

Подключение трехфазного двигателя


Обычное подключение трехфазного двигателя к трехфазной сети может стать непростой задачей для тех, кто никогда не сталкивался с ней. В некоторых агрегатах есть только три провода для подключения. Они позволяют сделать это по схеме «звезда». В других приборах есть шесть проводов. В таком случае появляется выбор между треугольником и звездой. Ниже на фото можно видеть реальный пример подключения звездой. В белой обмотке подходит питающий кабель, и он подключается только к трем выводам. Дальше установлены специальные перемычки, которые обеспечивают правильное питание обмоток.


Чтобы было понятнее, как это реализовать самостоятельно, ниже будет приведена схема такого подключения. Подключение треугольником несколько проще, т. к. три дополнительные клеммы отсутствуют. Но это говорит лишь о том, что механизм перемычек реализован уже в самом двигателе. При этом нет возможности повлиять на способ соединения обмоток, а значит необходимо будет соблюсти нюансы при подключении такого двигателя в однофазную сеть.


Подключение к однофазной сети


Трехфазный агрегат с успехом можно подключить к однофазной сети. Но стоит учитывать, что при схеме, которая называется «звезда», мощность агрегата не будет превышать половины его номинальной мощности. Чтобы увеличить этот показатель, необходимо обеспечить подключение по типу «треугольник». В таком случае можно будет добиться лишь 30-процентного падения мощности. Бояться при этом не стоит, ведь в сети 220 вольт невозможно возникновение критического напряжения, которое бы повредило обмотки двигателя.

Схемы подключения



Когда трехфазный двигатель подключен к сети 380, тогда каждая его обмотка запитана от одной фазы. При соединении его к 220 вольтовой сети на две обмотки приходит фазный и нулевой провод, а третья остается незадействованной. Чтобы исправить этот нюанс, необходимо подобрать правильный конденсатор, который в требуемый момент сможет подать на нее напряжение. В идеале в цепи должно быть два конденсатора.

Один из них является пусковым, а второй рабочим. Если мощность трехфазного агрегата не превышает 1,5 кВт, и нагрузка на него подается уже после того, как он наберет требуемые обороты, тогда можно использовать только рабочий конденсатор.


Обратите внимание! Без дополнительных конденсаторов или других приспособлений подключить напрямую двигатель на 380 к 220 не получиться.

В этом случае его необходимо его необходимо установить в разрыв между третьим контактом треугольника и нулевым проводом. Если необходимо добиться эффекта, при котором двигатель будет вращаться в обратном направлении, тогда необходимо на один вывод конденсатора подключить не нулевой, а фазный провод. Если двигатель по мощности превосходит, указанную выше, тогда понадобится еще и пусковой конденсатор. Он монтируется параллельно рабочему. Но стоит учитывать, что в провод, который дет между ними, на разрыв должен быть установлен выключатель без фиксации. Такая кнопка позволит задействовать конденсатор только во время пуска.

При этом придется после включения двигателя в сеть несколько секунд удерживать эту клавишу для того, чтобы агрегат набрал требуемые обороты. После этого ее необходимо отпустить, чтобы не сжечь обмотки.


Если потребуется реализовать включение такого агрегат реверсивно, тогда монтируется тумблер на три вывода. Средний должен быть постоянно подключен к рабочему конденсатору. Крайние должны быть подключены к фазному и нулевому проводу. В зависимости от того, в какую сторону должно быть вращение, потребуется выставить тумблер либо на ноль, либо на фазу. Ниже схематически изображена схема такого подключения.

Подбор конденсатора



Не существует универсальных конденсаторов, которые бы подходили ко всем агрегатам без разбора. Их характеристикой служит емкость, которую они способны держать. Поэтому каждый придется подбирать индивидуально. Основным требованием для него будет работа при напряжении сети в 220 вольт, чаще они рассчитаны на 300 вольт.

Чтобы определиться, какой именно элемент потребуется, необходимо воспользоваться формулой. Если соединение осуществляется звездой, тогда необходимо силу тока разделить на напряжение в 220 вольт и умножить на 2800. Показателем силы тока берется цифра, которая указана в характеристиках двигателя. Для подключения треугольником формула остается такой же, но последний коэффициент изменяется на 4800.


Например, если на агрегате написано, что номинальный ток, который может протекать по его обмоткам составляет 6 ампер, тогда емкость рабочего конденсатора будет 76 мкФ. Это при подключении звездой, для подключения треугольником результат будет 130 мкФ. Но выше говорилось, что если агрегат испытывает нагрузку при старте или имеет мощность больше 1,5 кВт, тогда понадобится еще один конденсатор — пусковой. Его емкость обычно в 2 или в 3 раза больше рабочего. То есть для соединения звездой понадобится второй конденсатор с емкостью 150-175 мкФ. Подбирать его придется опытным путем.

В продаже может не быть конденсаторов требуемой емкости, тогда можно собрать блок для получения требуемой цифры. Для этого доступные конденсаторы соединяются параллельно, чтобы их емкость сложилась.


Обратите внимание! Есть некоторое ограничение по мощности трехфазных агрегатов, которые можно запитать от однофазной сети. Оно составляет 3 кВт. При превышении этого значения может выйти из строя проводка.

Почему пусковые конденсаторы лучше подбирать опытным путем начиная с наименьшего? Дело в том, что при недостаточном его значении будет подаваться ток большего значения, что может вывести из строя обмотки. Если его значение будет больше требуемого, тогда агрегату будет недостаточно импульса для запуска. Более наглядно представить себе подключение можно с помощью видео.

Вывод


Во время работы с электрическим током соблюдайте технику безопасности. Не запускайте ничего, если до конца неуверены в правильности выполненного подключения. Обязательно посоветуйтесь с опытным электриком, который подскажет, сможет ли проводка выдержать требуемую нагрузку от агрегата.

Общие сведения.

Всякий асинхронный трехфазный двигатель рассчитан на два номинальных напряжения трехфазной сети 380 /220 — 220/127 и т. д. Наиболее часто встречаются двигатели 380/220В. Переключение двигателя с одного напряжения на другое производится подключением обмоток «на звезду» — для 380 В или на «треугольник» — на 220 В. Если у двигателя имеется колодка подключения, имеющая 6 выводов с установленными перемычками, следует обратить внимание в каком порядке установлены перемычки. Если у двигателя отсутствует колодка и имеются 6 выводов — обычно они собраны в пучки по 3 вывода. В одном пучке собраны начала обмоток, в другом концы (начала обмоток на схеме обозначены точкой).

В данном случае «начало» и «конец» — понятия условные, важно лишь чтобы направления намоток совпадали, т. е. на примере «звезды» нулевой точкой могут быть как начала, так и концы обмоток, а в «треугольнике» — обмотки должны быть соединены последовательно, т. е. конец одной с началом следующей. Для правильного подключения на «треугольник» нужно определить выводы каждой обмотки, разложить их попарно и подключить по след. схеме:

Если развернуть эту схему, то будет видно, что катушки подключены «треугольником».

Если у двигателя имеется только 3 вывода, следует разобрать двигатель: снять крышку со стороны колодки и в обмотках найти соединение трёх обмоточных проводов (все остальные провода соединены по 2). Соединение трёх проводов является нулевой точкой звезды. Эти 3 провода следует разорвать, припаять к ним выводные провода и объединить их в один пучок. Таким образом мы имеем уже 6 проводов, которые нужно соединить по схеме треугольника.

Трехфазный двигатель вполне успешно может работать и в однофазной сети, но ждать от него чудес при работе с конденсаторами не приходится. Мощность в самом лучшем случае будет не более 70% от номинала, пусковой момент сильно зависит от пусковой емкости, сложность подбора рабочей емкости при изменяющейся нагрузке. Трехфазный двигатель в однофазной сети это компромис, но во многих случаях это является единственным выходом. Существуют формулы для рассчета емкости рабочего конденсатора, но я считаю их не корректными по следующим причинам: 1. Рассчет производится на номинальную мощность, а двигатель редко работает в таком режиме и при недогрузке двигатель будет греться из-за лишней емкости рабочего конденсатора и как следствие увеличенного тока в обмотке. 2. Номинальная емкость конденсатора указаная на его корпусе отличается от фактической + /- 20%, что тоже указано не конденсаторе. А если измерять емкость отдельного конденсатора, она может быть в два раза большей или на половину меньшей. Поэтому я предлагаю подбирать емкость к конкретному двигателю и под конкретную нагрузку, измеряя ток в каждой точке треугольника, стараясь максимально выравнять подбором емкости. Поскольку однофазная сеть имеет напряжение 220 В, то двигатель следует подключать по схеме «треугольник». Для запуска ненагруженного двигателя можно обойтись только рабочим конденсатором.

Направление вращения двигателя зависит от подключения конденсатора (точка а) к точке б или в.
Практически ориентировочную ёмкость конденсатора можно определить по сл. формуле: C мкф = P Вт /10,
где C — ёмкость конденсатора в микрофарадах, P — номинальная мощность двигателя в ваттах. Для начала достаточно, а точная подгонка должна производиться после нагрузки двигателя конкретной работой. Рабочее напряжение конденсатора должно быть выше напряжения сети, но практика показывает, что успешно работают старые советские бумажные конденсаторы рассчитаные на 160В. А их найти значительно легче, даже в мусоре. У меня мотор на сверлилке работает с такими конденсаторами, расположеными для защиты от хлопка в заземленной коробке от пускателя не помню сколько лет и пока все цело. Но к такому подходу я не призываю, просто информация для размышления. Кроме того, если включить 160и Вольтовые конденсаторы последовательно, вдвое потеряем в емкости зато рабочее напряжение увеличится вдвое 320В и из пар таких конденсаторов можно собрать батарею нужной емкости.

Включение двигателей с оборотами выше 1500 об/мин, либо нагруженных в момент пуска, затруднено. В таких случаях следует применить пусковой конденсатор, ёмкость которого зависит от нагрузки двигателя, подбирается экспериментально и ориентировочно может быть от равной рабочему конденсатору до в 1,5 — 2 раза большей. В дальнейшем, для понятности, все что относится к работе будет зеленого цвета, все что относится к пуску будет красного, что к торможению синего.

Включать пусковой конденсатор в простейшем случае можно при помощи нефиксированной кнопки.

Для автоматизации пуска двигателя можно применить реле тока. Для двигателей мощностью до 500 Вт подойдёт реле тока от стиральной машины или холодильника с небольшой переделкой. Т. к. конденсатор остаётся заряженным и в момент повторного запуска двигателя, между контактами возникает довольно сильная дуга и серебряные контакты свариваются, не отключая пусковой конденсатор после пуска двигателя. Чтобы этого не происходило, следует контактную пластинку пускового реле изготовить из графитовой или угольной щётки (но не из медно-графитовой, т. к. она тоже залипает). Также необходимо отключить тепловую защиту этого реле, если мощность двигателя превышает номинальную мощность реле.

Если мощность двигателя выше 500 Вт, до 1,1кВт можно перемотать обмотку пускового реле более толстым проводом и с меньшим количеством витков с таким расчётом, чтобы реле отключалось сразу же при выходе двигателя на номинальные обороты.

Для более мощного двигателя можно изготовить самодельное реле тока, увеличив размеры оригинального.

Большинство трехфазных двигателей мощностью до трех кВт хорошо работают и в однофазной сети за исключением двигателей с двойной беличьей клеткой, из наших это серия МА, с ними лучше не связываться, в однофазной сети они не работают.

Практические схемы включения.

Обобщающая схема включения

С1- пусковой, С2- рабочий, К1- нефиксирующаяся кнопка, диод и резистор- система торможения.

Работает схема следующим образом: при переводе переключателя в положение 3 и нажатии на кнопку К1 происходит пуск двигателя, после отпускания кнопки остается только рабочий конденсатор и двигатель работает на полезную нагрузку. При переводе переключателя в положение 1, на обмотку двигателя подается постоянный ток и двигатель тормозится, после остановки необходимо перевести переключатель в положениие 2, иначе двигатель сгорит, поэтому переключатель должен быть специальным и фиксироваться только в положении 3 и 2, а положение 1 должно быть включено только при удержании. При мощности двигателя до 300Вт и необходимости быстрого торможения, гасяший резистор можно не применять, при большей мощности сопротивление резистора подбирается по желаемому времени торможения, но не должно быть меньше сопротивления обмотки двигателя.

Эта схема похожа на первую, но торможение здесь происходит за счет энергии запасенной в электролитическом конденсаторе С1 и время торможения будет зависить от его емкости. Как и в любой схеме пусковую кнопку можно заменить на реле тока. При включении переключателя в сеть двигатель запускается и происходит заряд конденсатора С1 через VD1 и R1. Сопротивление R1 подбирается в зависимости от мощности диода, емкости конденсатора и времени работы двигателя до начала торможения. Если время работы двигателя между пуском и торможением превышает 1 минуту, можно использовать диод КД226Г и резистор 7кОм не менее 4Вт. рабочее напряжение конденсатора не менее 350В Для быстрого торможения хорошо подходит конденсатор от фотовспышки, фотовспышек много, а нужды в них больше нет. При выключении переключатель переходит в положение замыкающее конденсатор на обмотку двигателя и происходит торможение постоянным током. Используется обычный переключатель на два положения.

Схема реверсивного включения и торможения.

Эта схема развитие предыдущей, здесь автоматически происходит запуск при помощи токового реле и торможение электролитическим конденсатором, а также реверсивное включение. Отличие этой схемы: сдвоеный трехпозиционный переключатель и пусковое реле. Выкидывая из этой схемы лишние элементы, каждый из которых имеет свой цвет, можно собрать схему нужную для конкретных целей. При желании можно перейти на кнопочное включение, для этого понадобятся один или два автоматических пускателя с катушкой на 220В Используется сдвоеный переключатель на три положения

Еще одна не совсем обычная схема автоматического включения.

Как и в других схемах здесь есть система торможения, но ее при ненадобности легко выкинуть. В этой схеме включения две обмотки соединены паралельно, а третья через систему пуска и вспомогательный конденсатор, емкость которого примерно в два раза меньше необходимого при включении треугольником. Для изменения направления вращения нужно поменять местами начало и конец вспомогательной обмотки, обозначеной красной и зеленой точками. Запуск происходит за счет зарядки конденсатора С3 и продолжительность запуска зависит от емкости конденсатора, а емкость должна быть достаточно велика, чтобы двигатель успел выйти на номинальные обороты. Емкость можно брать с запасом, так как после заряда конденсатор не оказывает заметного действия на работу двигателя. Резистор R2 нужен для разрядки конденсатора и тем самым подготовки его для следующего пуска, подойдет 30 кОм 2Вт. Диоды Д245 — 248 подойдут любому двигателю. Для двигателей меньшей мощности соответственно уменьшится и мощность диодов, и емкость конденсатора. Хоть и затруднительно сделать реверсивное включение по данной схеме, но при желании и это можно. Потребуется сложный переключатель или пусковые автоматы.

Использование электролитических конденсаторов в качестве пусковых и рабочих.

Стоимость неполярных конденсаторов достаточно высока, да и не везде их можно найти. Поэтому, если их нет, можно применить электролитические конденсаторы, включенные по схеме не намного сложнее. Емкость их достаточно велика при небольшом объеме, они не дефицитны и не дороги. Но нужно учесть вновь возникшие факторы. Рабочее напряжение должно быть не менее 350 Вольт, включаться они могут только парами, как указано на схеме черным цветом, а в таком случае емкость уменьшается вдвое. И если двигателю для работы нужно 100 мкФ, то конденсаторы С1 и С2 должны быть по 200мкФ.

У электролитических конденсаторов большой допуск по емкости, поэтому лучше собрать батарею конденсаторов (обозначена зеленым цветом), легче будет подбирать фактическую емкость нужную двигателю и кроме того у электролитов очень тонкие выводы, а ток при большой емкости может достигать значительных величин и выводы могут греться, а при внутреннем обрыве вызвать взрыв конденсатора. Поэтому вся батарея конденсаторов должна находиться в закрытой коробке, особенно во время экспериментов. Диоды должны быть с запасом по напряжению и по току, необходимому для работы. До 2кВт вполне подойдут Д 245 — 248. При пробое диода сгорает (взрывается) конденсатор. Взрыв конечно сказано громко, пластмассовая коробка вполне защитит от разлета деталей конденсатора и от блестящего серпантина тоже. Ну вот, страшилки рассказаны, теперь немного конструкции. Как видно из схемы, минусы всех конденсаторов соединены вместе и, стало быть, конденсаторы старой конструкции с минусом на корпусе можно просто плотно перемотать изолентой и поместить в пластмассовую коробку соответствующих размеров. Диоды нужно расположить на изоляционной пластинке и при большой мощности поставить их на небольшие радиаторы, а если мощность не велика и диоды не греются, то их можно поместить в ту же коробку. Включенные по такой схеме электролитические конденсаторы, вполне успешно работают как пусковыми так и рабочими.

Сейчас в доводке электронная схема включения, но пока она сложна в повторении и настройке.

Как запускать трехфазный асинхронный двигатель от однофазной сети?

Самый простой способ запуска трехфазного двигателя в качестве однофазного, основывается на подключении его третьей обмотки через фазосдвигающее устройство. В качестве такого устройство может выступать активное сопротивление, индуктивность или конденсатор.

Прежде, чем подключать трехфазный двигатель в однофазную сеть, необходимо убедиться, что номинальное напряжение его обмоток соответствуют номинальному напряжению сети. Асинхронный трехфазный двигатель имеет три статорных обмотки. Соответственно в клемной коробке должно быть выведено 6 клемм для подключения питания. Если открыть клеммную коробку, то мы увидим борно двигателя. На борно, выведены 3 обмотки двигателя. Их концы подключены к клеммам. На эти клеммы и подключается питание двигателя.

Каждая обмотка имеет начало и конец. Начала обмоток маркируют как С1, С2, С3. Концы обмоток промаркированы соответственно С4, С5, С6. На крышке клемной коробки мы увидим схему включения двигателя в сеть при разных напряжениях питания. Согласно этой схемы мы и должны подключить обмотки. Т..е. если двигатель допускает использование напряжений 380/220, то для его подключения к однофазной сети 220В, необходимо переключить обмотки в схему «треугольник».


Если же его схема подключения допускает 220/127 В, то к однофазной сети 220 В, его необходимо подключать по схеме «звезда», как показано на рисунке.


Схема с пусковым активным сопротивлением

На рисунке показана схемы однофазного включения трехфазного двигателя с пусковым активным сопротивлением. Такая схема используется только в двигателях малой мощности, так как в резисторе теряетя большое количество энергии в виде тепла.

Наибольшее распространение получили схемы с конденсаторами. Для изменения направления вращения двигателя необходимо применять переключатель. В идеале для нормальной работы такого двигателя необходимо, чтобы емкость конденсатора изменялась в зависимости от числа оборотов. Но такое условие выполнить довольно трудно, поэтому обычно применяют схему двухступенчатого управления асинхронным электродвигателем. Для работы механизма, приводимого в движение таким двигателем, используют два конденсатора. Один подключается только при запуске, а после окончания пуска его отключают и оставляют только один конденсатор. При этом происходит заметное снижение его полезной мощности на валу до 50…60% от номинальной мощности при включении в трехфазную сеть. Такой пуск двигателя получил название конденсаторного пуска.


При применении пусковых конденсаторов имеется возможность увеличить пусковой момент до величины Мп/Мн=1,6-2. Однако, при этом значительно увеличивается емкость пускового конденсатора, из за чего вырастают его размеры и стоимость всего фазосдвигающего устройства. Для достижения максимального пускового момента, величину емкости необходимо выбирать из соотношения, Xc=Zk, т. е. емкостное сопротивление равно сопротивлению короткого замыкания одной фазы статора. По причине высокой стоимости и габаритов всего фазосдвигающего устройства конденсаторный пуск применяется лишь при необходимости большого пускового момента. В конце пускового периода пусковой обмотки необходимо отключить, в противном случае пусковая обмотка перегреется и сгорит. В качестве пускового устройства можно применять индуктивность- дроссель.

Пуск трехфазного асинхронного двигателя от однофазной сети, через частотный преобразователь


Для пуска и управления трехфазным асинхронным двигателем от однофазной сети, можно применять преобразователь частоты с питанием от однофазной сети. Структурная схема такого преобразователя представлена на рисунке. Пуск трехфазного асинхронного двигателя от однофазной сети с помощью преобразователя частоты является одним из самых перспективных. Поэтому именно он наиболее часто используется в новых разработках систем управления регулируемыми электроприводами. Принцип его лежит в том, что, меняя частоту и напряжение питания двигателя, можно в соответствии с формулой, изменять его частоту вращения.

Сам преобразователь состоит состоят из двух модулей, которые обычно заключены в один корпус:
— модуль управления, который управляет функционированием устройства;
— силовой модуль, который питает двигатель электроэнергией.

Применение преобразователя частоты для пуска трехфазного асинхронного двигателя. позволяет значительно снизить пусковой ток, так как электродвигатель имеет жесткую зависимость между током и вращающим моментом. Причем значения пускового тока и момента можно регулировать в достаточно больших пределах. Кроме того с помощью частотного преобразователя можно регулировать обороты двигателя и самого механизма, уменьшая при этом значительную часть потерь в механизме.

Недостатки применения частотного преобразователя для пуска трехфазного асинхронного двигателя от однофазной сети: достаточно высокая стоимость самого преобразователя и периферийных устройств к нему. Появление несинусоидальных помех в сети и снижение показателей качества сети.

Запуск трехфазного двигателя без конденсаторов: 4 цепи

Максимально вставленный резистор R7 закрывает электронный ключ.

Содержание

Подключение трехфазного двигателя к однофазной сети без конденсаторов: 4 схемы для начинающих электриков

Асинхронные двигатели просты в изготовлении, дешевы и широко используются в различных отраслях промышленности. Домашние мастера не могут обойтись без них, подключая их от 220 вольт с пусковыми и ходовыми конденсаторами.

Но есть и альтернатива. Это подключение трехфазного двигателя к однофазной сети без конденсаторов, которая также имеет право на существование.

Ниже приведены 4 схемы такой конструкции. Вы можете выбрать любой из них в соответствии с вашими личными интересами и местными условиями эксплуатации.

Впервые я столкнулся с этим в конце 1998 года, когда друг-инженер связист пришел в нашу релейную лабораторию с журналом “Радио 1996”, выпуск 6, и показал нам статью о бесконденсаторном запуске.

Мы сразу же решили попробовать, потому что у нас были все детали, включая тиристоры и подходящий двигатель. Это был просто перерыв на обед.

Для испытания мы спаяли электронный блок с помощью шарнирного узла. Это заняло у нас меньше часа. Схема работала практически без регулировок. Мы оставили его для наждака.

Меня порадовал небольшой размер блока и отсутствие необходимости в конденсаторах. Мы не заметили большой разницы в потере мощности по сравнению с конденсаторным запуском.

В однофазных конденсаторных двигателях обмотка конденсатора работает постоянно. Две обмотки – основная и вспомогательная – смещены относительно друг друга на 90°. Это позволяет изменить направление вращения на противоположное. Конденсатор в этих двигателях обычно прикреплен к корпусу, и его нетрудно определить.

Асинхронный или коммутаторный: как их отличить?

В целом, тип двигателя можно отличить по заводской табличке, на которой написаны данные и тип двигателя. Но это только в том случае, если он не был отремонтирован. В конце концов, под корпусом может быть что угодно. Поэтому, если вы не уверены, лучше определить тип самостоятельно.

Вот как выглядит новый однофазный конденсаторный двигатель

Коллекторные двигатели

По конструкции различают асинхронные и коллекторные двигатели. Коллекторный двигатель всегда имеет щетки. Они расположены вблизи коллектора. Еще одним обязательным атрибутом этого типа двигателя является наличие медного барабана, разделенного на секции.

Эти двигатели выпускаются только однофазными и часто устанавливаются в бытовых приборах, так как обеспечивают высокое число оборотов при запуске и после ускорения. Они также удобны в том смысле, что легко позволяют менять направление вращения – достаточно изменить полярность. Также легко изменить скорость, изменяя амплитуду питающего напряжения или угол отсечки. Именно поэтому такие двигатели используются в большинстве бытового и строительного оборудования.

Конструкция коллекторного двигателя

Недостатком двигателей с коммутатором является то, что они шумят на высоких скоростях. Вспомните дрель, болторез, пылесос, стиральную машину и т.д. Их работа очень шумная. Коллекторные двигатели не так сильно шумят на низких оборотах (стиральная машина), но не все инструменты работают в таком режиме.

Второй неприятный момент заключается в том, что наличие щеток и постоянное трение делают необходимым регулярное обслуживание. Если контактное кольцо не чистить, графитовый мусор (от трущихся щеток) может привести к слиянию соседних секций в барабане, двигатель просто перестанет работать.

Асинхронный

Асинхронный двигатель имеет стартер и ротор и может быть однофазным или трехфазным. Эта статья посвящена подключению однофазных двигателей, поэтому мы обсудим только их.

Асинхронные двигатели имеют низкий уровень шума во время работы, поэтому их устанавливают в оборудовании, где уровень шума является критическим. К ним относятся кондиционеры, сплит-системы и холодильники.

Конструкция асинхронных двигателей

Существует два типа однофазных асинхронных двигателей – бифилярные (с пусковой обмоткой) и конденсаторные. Разница в том, что в однофазных бифилярных двигателях пусковая обмотка действует только до момента запуска двигателя. Затем он отключается специальным устройством – центробежным выключателем или пусковым реле (в холодильниках). Это необходимо, поскольку после ускорения он только снижает эффективность.

В однофазных конденсаторных двигателях обмотка конденсатора работает постоянно. Две обмотки – основная и вспомогательная – смещены относительно друг друга на 90°. Это позволяет изменить направление вращения на противоположное. Конденсатор в этих двигателях обычно прикреплен к корпусу, и его нетрудно определить.

Более точное определение того, имеет ли человек дело с биполярным или конденсаторным двигателем, может быть получено путем измерения обмоток. Если сопротивление вспомогательной обмотки меньше половины (разница может быть и больше), то, вероятно, вы имеете дело с двухполюсным двигателем, и эта вспомогательная обмотка является пусковой, что означает, что в цепи должен присутствовать пусковой выключатель или реле. В конденсаторных двигателях обе обмотки всегда находятся в работе, и однофазный двигатель может быть подключен с помощью простой кнопки, выключателя, автомата.

Добавлено спустя 1 минуту 37 секунд:
кстати, почему это в ремонте.

Как запустить электродвигатель без конденсатора?

220 В. Обычно для запуска используются конденсаторы. Согласно рекомендуемым расчетам, на 1 кВт мощности требуется 66 мкФ. Поэтому в моем случае 66 x 0,75 = 50 мкФ. Проблема заключалась в том, что имелся только один бумажный конденсатор 20 мкФ x 400 В. С его помощью двигатель включился, как бы нехотя, но включился. Затем что-то случилось с конденсатором – двигатель не заводился сам по себе, а крутить рукоятку вручную было не очень весело. Новые конденсаторы относительно дороги. Я начал думать об этом:
Конденсатор необходим в двигателе для сдвига фазы между пусковой и рабочей обмотками (когда запуск двигателя обязателен). Но что если тиристор сдвигает фазу! После поиска в интернете я нашел одну схему, где автор предлагает семисторонний запуск двигателя, я думаю, что он не совсем понимает, что он сделал правильно (смесь запуска с симисторным аналогом конденсаторного запуска и с короткозамкнутым стартером). Отсюда высокие потери мощности.http://www.radiopill.net/load/dlja_doma . 76-1-0-660
Не будучи полностью уверенным в работоспособности схемы, которую я придумал, я решил сделать тиристорный регулятор немного сложнее, чем требовалось. Это не сработает здесь, вы можете использовать это в другом месте, в другом месте.

JLCPCB, всего $2 за прототип печатной платы! Любой цвет!

Подпишитесь и получите два купона на $5 каждый:https://jlcpcb.com/cwc

_________________
Глобализм, нет.
Глобализация – это смерть суверенных государств.
Независимым может считаться только то государство, которое санкционировано торговцами дрянной демократией и их пособниками.

Сборка печатных плат от $30 + БЕСПЛАТНАЯ доставка по всему миру + шаблон

Модули Navigator позволяют значительно сократить время проектирования оборудования. Во время вебинара 17 ноября вы сможете узнать о новых семействах Teseo-LIV3x, Teseo-VIC3x и Teseo-LIV4F. Вы узнаете, как легко добавить функцию позиционирования с повышенной точностью с помощью двухдиапазонного приемника и навигационной функции MEMS-датчика. Работайте в Teseo Suite и смотрите результаты полевых испытаний.

_________________
Глобализм – нет.
Глобализация – это смерть суверенных государств.
Независимой может считаться только та страна, которая была санкционирована агитаторами дерьмократии и их пособниками.

Компания Infineon выпустила семейство 40-вольтовых МОП-транзисторов OptiMOS 5. Эти транзисторы относятся к категории MOSFET нормального уровня и имеют более высокое пороговое напряжение (по сравнению с другими низковольтными MOSFET) для обеспечения защиты от ложных срабатываний в условиях повышенного шума.

_________________
Я еще не думал о подписи.

Схема хороша и нужна в гараже и лесу, но щетки в заголовке статьи – это пустая трата времени. многие люди даже не посмотрят туда.
Я бы не стал строить их на Ку202н, они слишком дубовые и слишком большие для 2 трамвайных остановок. Они открыты в сифу ток THM199 транзюк для гальваноразвязки 2 тиристора хотя в этой схеме, вроде бы, это не нужно, но можно без выбора запихать любую хрень из металлолома и наплевать на симметрию 0 и сделать сифу узел 1 (хочет на 2т117 как в паромном стартере СССР) стоит симистор ТС112-40) хочет 2 инлайн cou2xx из Муморки

Добавлено спустя 1 минуту 37 секунд:
кстати, почему это в ремонте.

_________________
Мудрость (опыт и выносливость) приходит с годами.
Все ваши беды и проблемы связаны с недостатком знаний.
Мудрый человек может учиться у дурака, а дурак может учиться у …
Альберт Эйнштейн не поможет, ВВП не спасется, а МЧС опоздает.
Так что теперь Дураки и Толеранты умирают по пятницам!

_________________
Мудрость (опыт и стойкость) приходит с годами.
Все ваши беды и проблемы – от недостатка знаний.
Мудрый человек может учиться у дурака, а дурак может учиться у …
Альберт Эйнштейн не поможет, ВВП не спасет, а МЧС опоздало.
Так что теперь Дураки и Толерантные умирают по пятницам!

Последний раз редактировалось Николай Петрович Tue Sep 26, 2017 11:07:12 am, всего редактировалось 1 раз.

Часовой пояс: UTC + 3 часа

Кто в настоящее время находится на форуме

Сейчас этот форум просматривают: нет зарегистрированных пользователей или гостей: 16

Электродвигатель асинхронного типа – это устройство переменного тока, в котором напряжение находится в роторе. Основной задачей тока ротора является создание крутящего момента посредством электромагнитной индукции, возникающей от магнитного поля обмотки статора.

Теория В. Голика

Данная реализация основана на запуске двигателя с помощью имеющихся цепей. Силовая часть электрического выключателя, которая используется для коммутации, состоит из следующих сильных компонентов

  • два диода: VD 1 и 2;
  • тиристоры: VS 1 и 2.

Все эти части соединены с помощью простой мостовой схемы. Однако в данной схеме эти элементы выполняют другую функцию – они реализуют шунтирование обмотки подключенного двигателя через свои “руки” из одного диода и одного транзистора. Это происходит, когда устройство достигает параметров амплитуды синусоиды, показанных на диаграмме. Эта комбинация образует электронный двунаправленный триггер, который реагирует на гармонические волны во время работы. Они бывают двух типов:

  • положительный;
  • отрицательный.

VD диоды 3 и 4 используются для реализации импульсного напряжения с двумя полупериодами. Этот сигнал передается непосредственно на схемы управления. Он ограничен и дополнительно стабилизирован резистором R1 и стабилизатором VD5.

Сигналы на открытие тиристоров электрического переключателя поступают от двухполюсных транзисторов, на рисунке обозначенных VT 1 и 2. Переменный резистор R7, номиналом 10 кОм, выполняет важную функцию регулирования момента открытия тиристора.

Когда его регулятор находится в положении начального сопротивления, электроагрегат будет работать даже при самом низкоамплитудном напряжении, которое имеет место в обмотке “В”.

Наличие на входе наибольшего резистора R7 позволяет деактивировать ключ. Схема активируется, когда положение вышеуказанного движка резистора соответствует наибольшему сдвигу фазы тока между катушками.

Запуск схемы довольно прост – ползунок R7 нужно перевести в положение, полностью соответствующее наибольшему сдвигу фаз токов между катушками. Затем контроллер изменяет режим работы, определяя таким образом наиболее стабильный режим работы, который напрямую зависит от уровня приложенной нагрузки и мощности двигателя. Приводы с различными номиналами взаимозаменяемы и широко представлены на внутреннем рынке.

Силовые компоненты системы, рассчитанные на работу с маломощными двигателями, могут быть спроектированы без радиаторов охлаждения в конструкции. Когда распределители работают на максимальной мощности, требуется теплоотвод.

Электроагрегаты питаются от сети 220 В. Отдельные компоненты должны быть тщательно изолированы и защищены от случайного контакта. Соблюдение мер безопасности – еще один важный аспект реализации соединения, который необходимо соблюдать.

Рекомендуется к использованию – установка стартера не вызовет никаких проблем. В результате при подключении двигатель запускается с максимальной мощностью и практически без потери мощности, в отличие от стандартной схемы с использованием конденсатора.

Определение схемы электропроводки

Прежде чем выбрать конкретную схему подключения электродвигателя 220 В, необходимо определить, какое у него соединение обмоток и при каких номиналах он вообще может работать. Для этого выполните следующие действия:

  • Найдите и проанализируйте паспорт двигателя.

Паспорт содержит всю важную информацию, например, обозначение типа соединения – дельта или звезда – Yмощность, количество оборотов, напряжение (220 или 380 или 220/380) и возможность подключения по определенной схеме.

  • Откройте клеммную коробку и проверьте на практике правильность схемы..

Начало и конец каждого витка подписывается в соответствии с вышеуказанной числовой номенклатурой. Пользователю остается проверить на схеме перемычек, является ли соединение звездой или треугольником.

Обратите внимание! Если на заводской табличке (информационном листе) имеется следующий знак Y и только 380 В, то при подключении двигателя в треугольник обмотка сгорит. Только профессиональные электрики могут перевести такой двигатель на 220 В. Поэтому нет никакого резона его модифицировать, тем более что сейчас существует множество агрегатов, способных работать в альтернативном режиме – как на 220, так и на 380 В.

Открытие окна терминала Источник pikabu.ru

Для двигателя мощностью 1,1 кВт достаточно конденсатора емкостью 80 мкФ. В нашем случае мы используем 4 штуки емкостью 20 мкФ. Мы соединяем их вместе с помощью паяных перемычек. Они будут выполнять функцию запуска и дальнейшей работы.

Трехфазный двигатель в однофазной цепи без конденсаторовПринципиальная схема

Принципиальная схема

Наткнувшись на эту схему в Интернете, человек будет очень рад. Кстати, это решение было впервые опубликовано в 1967 году.

Стоимость невелика, так почему бы не попробовать создать устройство, которое обеспечит бесперебойное подключение асинхронного трехфазного двигателя к однофазной сети. Но прежде чем вооружиться паяльником, следует ознакомиться с отзывами и комментариями.

Теоретически схема верна, но на практике она обычно не работает. Возможно, требуется более тщательная настройка. Невозможно утверждать это однозначно или дать гарантию. Большинство участников форума считают, что установка такого устройства – пустая трата времени, хотя некоторые утверждают обратное.

Из этого аргумента можно сделать следующие выводы:

  • схема может работать с двигателем мощностью до 2,2 кВт и скоростью вращения 1 500 об/мин
  • большие потери мощности на валу двигателя;
  • схема требует тщательной опции задающей цепи C1R7, которую нужно настроить так, чтобы напряжение на конденсаторе открывало и закрывало ключ, скорее всего перестали работать транзисторы ключа, для этого нужно заменить резистор R6 или один из R3R4;
  • Более надежными способами подключения трехфазного двигателя к однофазной сети являются конденсаторы или частотный преобразователь.

Эта схема была усовершенствована в 1999 г. Были усовершенствованы две простые схемы для работы трехфазного двигателя в однофазной сети без конденсаторов.

Оба были протестированы на электродвигателях мощностью от 0,5 до 2,2 кВт и показали неплохие результаты (время запуска немного больше, чем в трехфазном режиме).

В целях экономии средств можно подключить трехфазный двигатель с помощью современных схем.

В этих схемах используются симисторы, которые управляются импульсами разной полярности, и симметричный диод, который создает управляющие сигналы в течение каждого полупериода напряжения питания.

Цепь №1 для низкоскоростных двигателей

Он предназначен для запуска электродвигателя с номинальной скоростью вращения, равной или менее 1500 об/мин. Обмотки этих двигателей соединены в треугольник. Фазовращатель в этой схеме представляет собой специальную цепь.

Изменяя сопротивление, мы получаем напряжение на конденсаторе, смещенное от основного напряжения питания на определенный угол.

Ключевым элементом в этой схеме является симметричный диод. Когда напряжение на конденсаторе достигает уровня, при котором диод переключается, заряженный конденсатор подключается к управляющему контакту симистора.

В этот момент активируется двунаправленный переключатель питания.

Цепь № 2 для высокоскоростных электрических машин

Он необходим для пуска электродвигателей с номинальной скоростью вращения 3000 об/мин и двигателей, работающих на механизмах со значительным моментом пускового сопротивления.

В этих случаях требуется более высокий пусковой момент. По этой причине был изменен способ подключения обмотки двигателя для получения максимального пускового момента. В этой схеме фазосдвигающие конденсаторы заменены парой электронных переключателей.

Первый ключ подключается последовательно с фазной обмоткой и создает индуктивный сдвиг тока в цепи. Второй подключен параллельно фазной обмотке и создает опережающее емкостное смещение тока в фазной обмотке.

Эта схема учитывает обмотки двигателя, смещенные в пространстве относительно друг друга на 120 электрических градусов.

Регулировка заключается в определении оптимального угла сдвига тока в фазных обмотках, при котором двигатель надежно запускается.

Эта операция может быть выполнена без использования специального оборудования.

Процесс осуществляется следующим образом. Двигатель приводится в действие ручным стартером ПНВС-10, центральный полюс которого подключен к цепи сдвига фаз.

Контакты центрального полюса замыкаются только при нажатии кнопки пуска.

При нажатии этой кнопки выбирается необходимый пусковой момент путем вращения двигателя с помощью триммера. То же самое относится и к другим схемам.

Читайте далее:

  • Шаговые двигатели: свойства и практические схемы управления. Часть 2.
  • Биполярные транзисторы.
  • Основные параметры выпрямительных диодов; Школа для инженеров-электриков: Электротехника и электроника.
  • Принцип работы транзисторов Мосфета.
  • Рабочие характеристики асинхронного двигателя; Школа для электриков: электротехника и электроника.
  • Как найти начало и конец обмотки электродвигателя – ООО «СЗЭМО Электродвигатель».
  • Как запустить однофазный двигатель в обратном направлении – несколько примеров.

Как преобразовать 3 фазы в одну фазу 220 В

Вы хотите преобразовать трехфазное питание в однофазное? Независимо от того, модернизируете ли вы старую фазу или просто хотите сэкономить энергию в своем доме, это руководство покажет вам, как преобразовать трехфазную сеть в однофазную, используя правильную формулу и правильный метод. Попутно вы также узнаете, что такое однофазное питание, а также трехфазное питание. Прочитав эту статью, вы сможете легко и эффективно преобразовать свой блок питания!

Трехфазная сеть переменного тока используется во многих случаях, и большая часть оборудования переменного тока в промышленности использует трехфазную сеть переменного тока (трехфазный четырехпроводный источник питания). А в повседневной жизни большинство используют однофазное питание.

Что такое однофазное питание?

Однофазная электрическая энергия относится к фазному проводу (обычно известному как противопожарный провод или провод под напряжением) и нейтральному проводу в форме передачи электрической энергии, при необходимости будет третий провод (заземление), используемый для предотвращения поражения электрическим током. шок.

Если речь идет о бытовом электроснабжении, то лучше всего использовать однофазный тип. Он известен как однофазный, потому что использует один электрический ток во всем диапазоне — от напряжения до частоты. Это означает, что техника работает более эффективно и с меньшей вероятностью выйдет из строя. Чтобы преобразовать вашу трехфазную систему в однофазную, выполните следующие действия: проконсультируйтесь с профессиональным электриком. Они смогут посоветовать вам лучший способ преобразования вашей системы и убедиться, что вы получаете максимальную отдачу от своей однофазной системы.

Что такое трехфазное питание?

Если вы похожи на большинство домовладельцев, вам, вероятно, в тот или иной момент было интересно узнать о трехфазном питании. Ну, не удивляйтесь больше! Трехфазная мощность — это тип электричества, в котором используются три переменных тока для создания вращающегося магнитного поля. Это создает электричество, которое можно использовать по-разному, в том числе для питания домов и предприятий.

Трехфазное питание в основном используется в качестве источника питания для фазного двигателя, т. е. нагрузки, которую необходимо вращать, поскольку все три фазы трехфазного питания разнесены на 120 градусов и ротор не заклинит. Ротор двигателя состоит из трех наборов катушек, расположенных под углом 120 градусов друг к другу. Генератор вырабатывает энергию переменного тока, поэтому три набора катушек производят переменный ток с разностью фаз 120 градусов. Трехфазное питание означает, что эти три набора токов подключены к разным приборам как провод под напряжением, и они подключены к общему нулевому проводу.

Формула преобразования трехфазной системы в однофазную 220 В

Если вы хотите преобразовать трехфазную систему в однофазную, вам необходимо использовать формулу преобразования.

Используется следующая формула: (3–1) x (240–110) = 260 В.

Итак, если у вас есть трехфазная система, которая в настоящее время работает на 220 В, вам нужно будет преобразовать ее в однофазную, используя приведенную выше формулу.

Имейте в виду, что напряжение будет ниже, чем было раньше, поэтому обязательно учитывайте это при принятии решения. Если вы не знаете, как выполнить фазовое преобразование, не беспокойтесь — существует множество онлайн-калькуляторов преобразования, которые могут вам помочь.

Как преобразовать 3 фазы в одну фазу 220 В

Когда дело доходит до преобразования 3 фаз в одну фазу 220 В, первый способ, который вы можете сделать, это использовать инвертор (фазовый преобразователь). Инверторы бывают двух типов – непрерывные и импульсные. С непрерывными инверторами питание будет оставаться включенным все время; при переключении инверторов питание отключается через определенные промежутки времени (обычно каждые полчаса).

Убедитесь, что вы выбрали правильный инвертор для ваших нужд – импульсные инверторы часто дешевле и хороши для быстрой и простой установки, в то время как инверторы непрерывного действия лучше подходят для долгосрочного использования и более надежны.

Чтобы преобразовать эту мощность в однофазную, вам понадобится блок выключателя и частотно-регулируемый инвертор. Инвертор преобразует трехфазный электрический ток в однофазный, что упрощает его использование в домах и коммерческих зданиях. Обязательно проконсультируйтесь с местными властями о правилах безопасности, прежде чем преобразовывать электроэнергию в вашем доме!

Следующим является Метод подключения : 3-фазное питание состоит из двух фаз — трансформатор с фазной обмоткой будет иметь три провода — по одному на каждую фазу — подключенных к клеммам ввода питания на вашей электрической панели или распределительной коробке. Далее определяют количество фаз, присутствующих в электрической цепи. Это делается путем деления количества фаз на два — в результате получается количество проводов в каждой фазе.

Затем найдите, какой провод куда идет на трансформаторе, и подсоедините его к входной клемме питания на электрической панели или блоке выключателя. Наконец, выключите все другие цепи в вашем доме, прежде чем подключать новый бытовой прибор (или свет) к только что преобразованной однофазной цепи!

Второй способ заключается в использовании переключателя для преобразования, то есть в использовании каждой из трех фаз для получения однофазной проводки.

Пример преобразования трехфазного источника питания в однофазный

При преобразовании трехфазного источника питания в однофазный важно сначала определить количество проводных соединений на источнике питания. Это можно узнать, посчитав количество проводов в каждой розетке или вилке на блоке питания.

Затем определите, какое соединение проводов соответствует каждой розетке или вилке в электрической цепи вашего дома. Наконец, используйте амперметр и вольтметр, чтобы проверить, какой провод подключен к какой клемме на блоке питания. Если у вас все еще есть проблемы, не стесняйтесь обращаться к электрику за помощью. Когда у вас есть вся необходимая информация, пора начинать!

Часто задаваемые вопросы

Каковы преимущества использования однофазного 220В вместо трехфазного 220В?

Использование однофазной сети 220 В вместо трехфазной сети 220 В для дома или бизнеса дает много преимуществ. Вот некоторые из преимуществ: – Одно из самых больших преимуществ заключается в том, что одна фаза позволяет сэкономить на счетах за электроэнергию. Поскольку одна фаза потребляет меньше энергии, она может снизить общий счет за электроэнергию на 50%. – Еще одним преимуществом является то, что однофазный источник работает тише, чем трехфазный. Поскольку в однофазном распределении электроэнергии не используются трехфазные трансформаторы, вы, скорее всего, будете испытывать меньше шума дома или в офисе. – Наконец, преобразовав вашу текущую трехфазную систему в однофазную, вы также получите преимущества в плане безопасности, поскольку при таком типе распределения питания отсутствует опасность споткнуться.

В чем разница между однофазным и трехфазным электричеством?

В чем разница между однофазным и трехфазным электричеством? Однофазное электричество создается, когда ток течет по одному проводу за раз, а трехфазное электричество создается переменным током по трем проводам.

Основное различие между однофазным и трехфазным электричеством заключается в том, что однофазное электричество имеет более высокое напряжение и меньшую длину, чем трехфазное. Кроме того, однофазный сигнал имеет меньший уровень шума, но может быть нестабильным, в то время как трехфазный обеспечивает большую стабильность при меньшем уровне шума.

Как я могу преобразовать 3 фазы в одну фазу 220 В для моего электроинструмента?

Чтобы преобразовать 3 фазы в однофазные 220 В для вашего электроинструмента, вам понадобится инвертор мощности. Мощность, необходимая для этого преобразования, рассчитывается по следующей формуле: W = (p*F) / (I*R).

где W — мощность в ваттах, p — номинальное напряжение вашего инструмента, F — частота генератора (генераторов) вашего инструмента, а I и R — номинальные значения входного и выходного тока инвертора мощности соответственно.

Как лучше всего преобразовать 3 фазы 220 В в одну фазу 220 В?

На этот вопрос нет универсального ответа, так как лучший способ преобразовать 3-фазное напряжение 220 В в однофазное напряжение 220 В может варьироваться в зависимости от ваших конкретных потребностей и обстоятельств.

Однако один из вариантов, который может вам подойти, — использование преобразователя переменного/постоянного тока. Чтобы убедиться, что ваш преобразователь имеет рейтинг эффективности не менее 85%, важно приобрести его из авторитетного и надежного источника. Кроме того, не забудьте приобрести шнур питания, вилки и инвертор, необходимые для вашей конкретной установки.

Заключение

Если вы хотите преобразовать трехфазное питание в однофазное, то этот блог для вас! В этом посте мы описали шаги, необходимые для преобразования трехфазной мощности в однофазную с использованием формулы преобразования.

Мы также включили пример преобразования и объяснили, что такое однофазное питание. Наконец, мы ответили на вопрос, что такое трехфазное питание и как его преобразовать в однофазное. Итак, если вы хотите преобразовать свой трехфазный источник питания в однофазный, обязательно ознакомьтесь с этим блогом!

Полезные темы:

Как правильно использовать инвертор мощности в 2023 году?

Насколько большая ветряная турбина вам нужна для питания дома?

Сколько стоит ветряная турбина?

Преимущества и недостатки энергии ветра

Могу ли я использовать энергию ветра и солнца вместе?

Могу ли я подключить солнечную панель ветряной турбины к тому же контроллеру заряда?

Могу ли я подключить ветряную турбину к моему солнечному инвертору?

Схема подключения контроллера заряда ветровой турбины

Как выбрать контроллер заряда для ветряной турбины

Как работает ветряная турбина?

Контроллер заряда ветровой турбины против солнечного контроллера заряда

Что такое зарядное устройство постоянного тока в постоянный?

Лучший контроллер заряда ветряных турбин в 2023 году

Как подключить контроллеры заряда ветряных турбин

Руководство по поиску и устранению неисправностей ветряных турбин

Может ли частотно-регулируемый привод преобразовать однофазную мощность в трехфазную?

Тайлер Симмонс, 4 января 2021 г.

  • #Мотор
  • #ЧРП

Один из самых частых звонков, которые мы получаем на VFDs.com, касается преобразования фазы: может ли частотно-регулируемый привод (VFD) преобразовать мой однофазный источник питания для работы трехфазного двигателя? Многие из тех, кто звонит нам, рассматривают возможность объединения фазового преобразования и управления скоростью в одном устройстве, и им нравится возможность сэкономить деньги, хлопоты и пространство. Однако, как и в большинстве случаев, на этот вопрос нет простого ответа.

Однофазное питание переменного тока распространено во многих жилых и сельскохозяйственных районах, хотя его также можно увидеть в некоторых промышленных районах. Обычно он имеет только две фазы (L1 и L2) и, возможно, нейтраль. Обычно однофазное питание используется для систем на 120, 240 и иногда 480 В переменного тока. Трехфазные источники питания имеют три фазы (L1, L2 и L3). Трехфазное питание в США обычно составляет 240 и 480 В переменного тока. В некоторых случаях также используются системы до 600 В переменного тока.

Многие люди сталкиваются с проблемами преобразования фаз, когда приобретают новый или подержанный двигатель и обнаруживают, что трехфазный двигатель плохо работает с их однофазной мощностью.

Да, частотно-регулируемый привод может питать трехфазный двигатель от однофазного входного источника питания, но преобразование фаз требует многих соображений, которые обычно не учитываются при покупке частотно-регулируемого привода. В этой статье мы рассмотрим частотно-регулируемый привод, предназначенный для преобразования однофазного в трехфазный, как использовать обычный частотно-регулируемый привод, когда нестандартный частотно-регулируемый привод невозможен, и другие варианты фазового преобразования, когда частотно-регулируемый привод не является лучшим выбором.

Многие производители выпускают линейки частотно-регулируемых приводов, предназначенных для ввода однофазной мощности и вывода трехфазной мощности. Например, серии Galt G200 и серии Mitsubishi D700 и E700 имеют частотно-регулируемые приводы, которые поставляются с завода готовыми к работе от однофазной входной мощности и создают трехфазную выходную мощность для запуска асинхронного двигателя.

На самом деле частотно-регулируемые приводы, спроектированные таким образом, вообще не могут подавать трехфазное питание. Это связано с тем, что вход питания переменного тока имеет только две доступные клеммы для горячих проводов и, следовательно, не может принять дополнительный провод, необходимый для трехфазного входа.

(сверху) Однофазный частотно-регулируемый привод Galt Electric серии G200 без 3-й входной клеммы. (Вверху) Однофазный привод Mitsubishi серии D700. Обратите внимание, что третья клемма (слева) заблокирована.

Если вам нужен частотно-регулируемый привод, готовый к использованию для преобразования однофазной сети в трехфазную, этот вариант часто является для вас отличным вариантом. Эти частотно-регулируемые приводы рассчитаны на основе номинального выходного трехфазного тока вашего двигателя, что упрощает их правильный выбор и установку.

Одним из недостатков ЧРП, настроенных таким образом, является то, что они обычно управляют двигателями меньшего размера. Упомянутые выше линии Galt и Mitsubishi достигают мощности только до 3 лошадиных сил при настройке на однофазный вход, что ограничивает приложения, в которых они могут использоваться.

Еще одна проблема заключается в том, что сайт когда-либо перейдет на трехфазное питание. Хотя стоимость переключения всей системы на трехфазное питание делает это маловероятным, если это произойдет, то эти ЧРП не смогут работать в трехфазной системе. Эти частотно-регулируемые приводы, как правило, дешевле большинства, но все же жалко выбрасывать их, если они устареют.

Использование стандартных частотно-регулируемых приводов для преобразования фаз

Если ваш двигатель слишком велик для частотно-регулируемых приводов, предназначенных для преобразования фаз, можно использовать стандартный частотно-регулируемый привод для однофазного источника питания. Это делается путем подключения двух горячих проводов для одной фазы к входу переменного тока для частотно-регулируемого привода и оставления одной входной клеммы открытой и неиспользуемой. Это действительно вызывает несколько проблем, которые вы должны учитывать.

Поскольку теперь вы концентрируете одинаковую силу тока на двух фазах вместо трех, вероятно, произойдет отказ входных диодов вашего частотно-регулируемого привода. Чтобы решить эту проблему, вы должны увеличить размер частотно-регулируемого привода, чтобы учесть большую мощность. Консервативное эмпирическое правило заключается в том, чтобы удвоить размер необходимого ЧРП.

Например, если ток полной нагрузки вашего двигателя (FLA) указан как 15, удвойте это значение и определите размер частотно-регулируемого привода, как если бы вам требовалось питание двигателя на 30 ампер. Если вы столкнулись с такой ситуацией, мы рекомендуем вам позвонить одному из наших экспертов, который поможет вам пройти через процесс определения размера и подобрать для вас подходящий частотно-регулируемый привод.

(Вверху) Паспортная табличка двигателя Baldor Reliance . (Вверху) Паспортная табличка двигателя Lincoln . (Вверху) Motor Drives Международная паспортная табличка двигателя .

Этот процесс снижения номинальных характеристик стандартного частотно-регулируемого привода имеет некоторые недостатки. По сравнению с питанием трехфазного двигателя с трехфазным входом вы покупаете гораздо больший привод, что означает больше денег и места. Мы всегда рекомендуем попробовать использовать трехфазный источник питания для питания ваших двигателей, если это возможно, но иногда это не вариант.

Еще один вопрос, который следует учитывать, — как такое использование влияет на гарантию. Существует много брендов частотно-регулируемых приводов, и какой бы из них вы ни выбрали, у него, скорее всего, будет своя собственная гарантийная политика. Если использование частотно-регулируемого привода таким образом аннулирует вашу гарантию, вы можете рассмотреть другие варианты.

Другие варианты преобразования фазы

В некоторых случаях частотно-регулируемый привод не является лучшим вариантом для преобразования фазы. Одна из наиболее распространенных проблем, с которыми мы сталкиваемся при преобразовании фаз ЧРП, заключается в том, что кто-то пытается преобразовать однофазное в трехфазное не только для двигателя. В то время как частотно-регулируемый привод хорошо справляется с преобразованием фазы для двигателя переменного тока, он не будет работать должным образом при преобразовании мощности для периферийных устройств, которые вы также пытаетесь запустить, часто включая такие вещи, как реле, лампы, управляющие силовые трансформаторы и другие электронные устройства. устройства.

Если вы также не хотите контролировать скорость двигателя, вам придется заплатить за множество функций ЧРП, которые вы не будете использовать. Преобразователи частоты в основном используются для управления скоростью двигателя, поэтому, если вы хотите, чтобы двигатель постоянно работал на полной скорости, возможно, вы слишком усложняете свою систему.

В подобных случаях следует обратить внимание на фазовращатели. Есть несколько типов, каждый со своими положительными и отрицательными сторонами. Статические преобразователи фазы — очень экономичный вариант, но, как правило, они не обеспечивают работу двигателя на полную мощность. Вращающиеся фазовращатели отлично справляются с преобразованием мощности, но имеют движущиеся части и создают много шума. Цифровые преобразователи фазы, как правило, лучше всего подходят для получения полной мощности двигателя при преобразовании фазы, но являются более дорогим вариантом.

Что теперь?

Каждая электрическая система имеет множество факторов, на которые следует обращать внимание, когда вы начинаете заниматься фазовым преобразованием. Самое главное, чтобы вы определили, что вам нужно и что для вас важно, а затем построили вокруг этого систему. Если вам нужна помощь в этом, наши специалисты помогут вам пройти через этот процесс по телефону (800) 800-2261 или , отправьте нам сообщение здесь .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *