сравнили 6 наполнителей и нашли лучший!
Какое значение имеет теплопроводность штукатурки.
Теплопроводность – способность стройматериала передавать через свою массу тепло из более разогретых областей в более охлажденные. Чем она выше, тем быстрее остывает помещение.
Применительно к штукатурке — это свойство не столь принципиально, как убеждают производители. Дело в толщине – теплоизоляционная штукатурка занимает небольшой объем, основная нагрузка по теплосбережению возлагается на материал несущей конструкции и утеплителя.
Однако свою толику вносит и штукатурка, поэтому иногда ее используют для дополнительного утепления стен и потолков.
Теплоизоляционная штукатурка не является самостоятельным утеплением, а может служить только как дополнительная мера энергосбережения.
Теплопроводность зависит от плотности вещества.
От чего зависит теплопроводность штукатурки.
Штукатурный раствор приготовляется из вяжущего (клейкого вещества, способного твердеть при высыхании) и наполнителя. Тепловые характеристики смеси зависят от плотности примененных в ней компонентов.
Вяжущее наружных отделок – цемент. Остальные растворы применяются в фасадных работах значительно реже из-за малой водостойкости. Для внутренних поверхностей наоборот, чаще применяют растворы с незначительной теплоемкостью (способностью накапливать тепло). К таким относят глину, известь, гипс.
В качестве армирующих и утепляющих наполнителей применяется песок, мраморная и стеклянная крошка, шлак, опилки, керамзит, всевозможные экструзии, перлит, вермикулит, вспененное стекло. Их возможности по теплопередаче ниже, что и делает обычную смесь теплоизолирующей.
Коэффициент теплопроводности штукатурки.
- Цементно-песчаная смесь. Обладает высочайшей способностью пропускать через себя тепло. Теплопроводность цементно-песчаной штукатурки – 0.93 Вт/(м•°С).
- Известково-цементно-песчаный — 87 Вт.
- Известково-песчаный — 81.
- Обмазка глиняно-песчаная — 69.
- Гипсовая штукатурка считается самой «теплой». Но это не совсем так: теплопроводность гипсовой штукатурки — 35.
- Цементно-перлитовая смесь — 3.
- Обмазка глиняно-опилочная — 29.
- Гипсо-перлитовая — 23.
Так, гипсо-перлитовая теплоизоляционная штукатурка толщ. 2.5 см будет защищать стену с той же эффективностью, что и цементно-песчаная толщиной 10 см.
Однако в массе это не значительно. Например, теплоизоляционная штукатурка стены «в кирпич» (толщ. 51см и теплопроводн. 0.9). Ее вклад в экономию тепла составит всего 3.3%.
Перед тем, как купить смесь, стоит обратить внимание на коэффициент теплопроводности материала. Но и рассчитывать на «сверхутепление» штукатурками не стоит – их объем в общей массе конструкции не значителен.
Теплоемкость строительных материалов.
Важная характеристика для теплоизоляционной штукатурки стен. Штукатурка может быть не очень «теплой», обладая высокой энергоемкостью. Такие стены долго нагреваются, поглощая тепловую энергию. Но когда воздух комнаты остывает, накопленная теплота возвращается в помещение.
Коэффициент теплоусвоения.
Количество тепла, необходимое на обогрев материала. Чем выше коэффициент усвоения тепловой энергии, тем больше ее нужно. И наоборот, материалы с низким теплоусвоением быстро становятся теплыми, хотя и не аккумулируют энергию (например, пенопласт).
Теплоизоляционная штукатурка для наружных работ.
Внешнее утепление стены более эффективно, чем внутреннее. По первой схеме тепло сохраняется и накапливается внутри стенного массива. Во втором стена не защищена, тепловая энергия выветривается.
Штукатурка теплоизоляционная внешняя, фасадная должна обладать не только низкой теплопроводностью, но и достаточной влагостойкостью. Т дело не только в сохранности и долговечности слоя. Намокающий утеплитель лучше проводит тепло. Когда же вода в толще слоя превращается в лед, утеплитель сам становится источником холода.
Мокрый утеплитель, включая внешние штукатурные отделки, гораздо хуже защищает дом. Замерзая, он сам охлаждает стены, затрудняет движение пара и быстро разрушается.
Неводостойкие штукатурные покрытия, применяемые для наружной теплоизоляционной штукатурки, должны защищаться навесными фасадами. Наиболее рациональны вентилируемые навесные конструкции.
Теплоизоляционная штукатурка для внутренних работ.
Внутреннее утепление малоэффективно, поскольку штукатурка не способна защитить дом от холода. А стены без дополнительного утепления быстро остывают.
Чтобы включить их в конструкт термосопротивления, утепляющий слой рациональнее вынести наружу.
Однако теплосберегающая штукатурка для внутренних работ не будет лишней. Здесь целесообразно рассматривать ее в качестве «отталкивателя» тепла. Так, чтобы тепловая энергия не поглощалась внутренней отделкой.
Для подобных слоев используются смеси в минимальным показателем теплоусвоения. Чтобы, прислоняясь к стене, жильцы не ощущали неприятного холода. Так бывает, например, при оштукатуривании цементными составами.
Но величина усвоения теряет значимость при последующей отделке стен виниловыми обоями, вагонкой или пластиком. Нет смысла во внутреннем утеплении стены, отделанной кафелем (кроме случаев их прогрева электрическими ИК пленками).
Наполнители для теплоизоляционной штукатурки.
Стандартные смеси состоят из вяжущего и наполнителя. В качестве последнего обыкновенно применяется песок. Его армировочных способностей достаточно для получения прочных штукатурок на любом связующем.
Но для «мокрого» утепления стен применяются наполнители с низким коэффициентом теплопроводности.
Солома.
Используется только при формировании глинобитных стен, для утепляющей штукатурной отдели глино- и землебитных, оштукатуриваемых деревянных и саманных строений.
Основные преимущества – низкая цена и значительные армирующие характеристики (в глиняных растворах).
К недостаткам можно отнести крайнее неудобство в работе, требующее большой физической силы. Соломенно-глиняная стена без дополнительной отделки не приемлема из эстетических соображений и в силу недостаточной водостойкости смеси.
Используется очень редко в условиях крайнего материального стеснения.
Опилки.
Современными строителями брезгливо отвергнуты как неэффективный утеплитель. Причиной тому низкий уровень профессионального образования. На деле теплопроводность опилок 0.093 Вт/(м•°С), как и у плотного вспененного перлита.
К другому достоинству можно отнести низкую стоимость. Опилки можно «достать» и бесплатно.
Недостаток – низкая влагостойкость. Опилочные растворы применяются только внутри, отделывать ими внешние стены не целесообразно. Впрочем, практика показывает, что для их защиты достаточно нанести верхний слой отделки с высоким уровнем водостойкости.
Керамзит.
Искусственно получаемые гранулы, производимые путем обжига глиноземов. Обладают высокой пористостью.
В качестве наполнителя используют фракции минимального диаметра – керамзитовый песок. Плотность от 200 до 800кг на куб. Проводимость тепла от 0.12 до 0.23 соответственно.
Перлит.
Вулканическое стекло. Вспененный перлит получают при соединении обсидиана с водой в условиях высоких температур. Впоследствии вода испаряется, а перлит получает тонкую пористую структуру.
К недостаткам материала можно отнести его огромную влагоемкость. Он способен впитать количество воды в 4 раза превышающее его массу. Нуждается в защите. Для внешней отделки не пригоден.
Неудобство в работе связано и с невероятной легкостью камня, который разносится порывом ветра, сквозняком.
Теплопроводность перлита зависит от его плотности: плотный (600 кг/м куб.) имеет показатель в 0.12Вт, средний (400 кг/м куб.) 0.9Вт, наиболее пористый (200 кг на куб.) – 0. 8Вт/(м•°С).
Вермикулит.
Получают путем обжига слюдосодержащих пород. Свойствами вермикулит схож с перлитом. Также «боится» воды, поскольку много ее впитывает.
Плотные сорта (200кг/м.куб) обладают тепловодн. 0.11, более легкие (100кг/куб) – 0.08.
Экструзии полистирола.
Гранулы, из которых производится пенопласт, полистирол.
Не водостойки, нуждаются в доп. защите. Главный недостаток – низкие экологические характеристики. В интернете даже распространено заблуждение, что полистирол радиоактивен.
Но достоверно лишь то, что при сгорании он способен выделять ядовитый дым, что резко ограничивает возможности по его применению в строительстве.
При сгорании полистирола выделяется едких, опасный дым. Это важно, поскольку при пожарах большинство пострадавших находятся на грани гибели не ввиду высокой температуры или огня, а по причине удушливости газа.
Вспененное стекло.
Вспененное стекло представляет собой стеклянные гранулы с множеством замкнутых пор. Материал не впитывает воду, поры ею тоже не заполняются вследствие своей недоступности.
Стекло отличный наполнитель для фасадных теплоизоляционных штукатурок, не боится воды и достаточно эффективен как утеплитель. При плотн. 140кг/м.куб. 0.85Вт, при 100кг – 0.67.
Теплоизоляционная полимерная штукатурка.
Синтетические вяжущие необратимы. То есть, теряя воду при высыхании, они переходят в иное химическое состояние, при которым их взаимодействие с водой ограничено. Поэтому, хотя они и разбавляются водой, после высыхания становятся водостойкими.
Другой значимый фактор – паропроницаемость. Акриловые штукатурки «дышат», то есть не являются парозащитой, пропускают пары, не задерживая их под собой. Это позволяет предотвратить накопление влаги в предыдущем слое.
В качестве теплоизоляторов применяются распространенные наполнители.
Полимерные растворы наиболее влагостойки и водостойки. Поэтому их применяют для фасадной теплоизоляционной штукатурки, создания покрытий в ванных, предбанниках, тамбурах, лоджиях, коридорах, кухнях и санузлах.
Экономичная штукатурная теплоизоляция.
Полимерные штукатурки можно только купить, их не изготовить самостоятельно. Но растворы на минеральных вяжущих экономичнее смешивать своими руками.
Заказать работу наемным рабочим дорого. Но, если смесь изготовить самостоятельно, общая цена несколько упадет. Многие застройщики экономят таким образом: нанимают штукатуров, а сами выполняют для них «черную» работу. С учетом того, что помощь подсобника оплачивается не за м2, а по дням, экономия может быть не значительной. Приблизительно 800-1200 руб/день.
Еще дешевле самостоятельная подготовка стены, выставление маяков и грубое оштукатуривание. «Спецам» останется только выровнять покрытие и нанести декоративный раствор.
Теплоизоляционная дешевая штукатурка для наружных работ.
Изолирующие смеси дороже обычных, поскольку сложнее. Своими руками, к тому же, можно сделать далеко не все.
Однако изготовление раствора на основе цемента под силам любому начинающему строителю и способно ощутимо снизить расход средств. В качестве наполнителя можно использовать как влагостойкие насыпные материалы (вспененное стекло, керамзитовые пески), так и не влагостойкое (опилки, перлит, вермикулит). Последние лишь защищают слоем плотного бетона.
Для внешней теплоизоляционной штукатурки возможно применение полистирольных наполнителей. Самый экономичный наполнитель – измельченный пенополистирол. Его стоимость нулевая, он бесплатен. Если использовать для измельчения пенопластовую упаковку.
Такой бетон широко применяется в России и за ее пределами. Он не плотен и не применим в конструкциях, требующих высокой прочности. Но для внешних утепляющих штукатурок вполне подходит.
Теплоизоляционная штукатурка своими руками для внутренних работ.
За квадратный метр отделки без наполнителя застройщики отдают меньше, чем за смесь с наполнителем. Поэтому некоторые, особенно «предприимчивые» строители, пытаются добавлять утепляющие подсыпки в готовые смеси. Это запрещено: такие манипуляции сильно ослабляют раствор, снижают его прочность и долговечность.
Чтобы снизить стоимость за кв. м. проще сделать замес самому, используя недорогие наполнители и вяжущее. Так глиняно-опилочный раствор практически бесплатен, хотя и не уступает по прочности гипсовому.
Теплопроводность штукатурки и коэффициент: гипсовой, декоративной, цементной
Отделочный материал, применяемый при наружных и внутренних работах, при капитальном строительстве и в косметическом ремонте – это штукатурка. Ее особенности зависят от вида, а их достаточно много, так как в смесь добавляются различные элементы, которые могут повышать ее основные качества либо добавлять эстетики покрытию. Посмотрим на некоторые виды, а также определимся, что такое теплопроводность штукатурки и какой показатель у различных типов материала.
Декоративная штукатурка
Определение
Теплопроводностью материала называют перенос внутренней энергии от более нагретых частей к менее нагретым. Механизм переноса тепла отличается в зависимости от агрегатного состояния вещества, а также распределения температур по поверхности материала. Иными словами, способность тела проводить тепло — и есть теплопроводность. Определяется она количеством теплоты, которое способно проходить через определенную толщину материала, на определенном участке за обозначенное время (естественно, для удобства расчетов все показатели равны единице). Но штукатурки отличаются слоем нанесения — значит и показатель будет другим
Виды и теплопроводность
Естественно, теплопроводность цементно-песчаной штукатурки для внешних работ будет отличной, чем теплопроводность декоративной штукатурки. Поэтому более подробно посмотрим на общие особенности некоторых видов.
Цементно-песчаная
В зависимости от прочности покрытия, выбирается пропорции песка к цементу – 1:4 или 1:3. Это также зависит от марки цемента и фракции песка. Данный раствор практически не эластичный, поэтому его используют для минеральных поверхностей в качестве основного покрытия, а не заделывании щелей и трещин. При плотности слоя 1800 кг/м3 коэффициент теплопроводности штукатурки будет равен 1,2.
Гипсовая
Это материал для отделки внутренних поверхностей помещения. Его применение подходит, если температура окружающей среды колеблется от +5 до +25 градусов. Теплопроводность гипсовой штукатурки также зависит от плотности ее нанесения и возможных добавок. Обычно коэффициент теплопроводности гипсовой штукатурки при плотности материала 800кг/м3 – 0.3.
Декоративная
Это исключительно отделочный материал для финишных работ. В его состав могут входить полимерные и синтетические смолы, различные примеси, дающие ей необходимые эстетические свойства. Декоративная штукатурка может применяться для отделки фасадов и внутренних частей здания. Фасадный состав с полимерными добавками при плотности в 1800 кг/м3 имеет коэффициент теплопроводности 1.
Утепляющая
Это состав, в который входят различные добавки, предающие такие особенности, как:
- морозостойкость;
- прочность вне зависимости от количества осадков и окружающего климатического воздействия;
- звукопоглощение;
- высокая степень адгезии;
- хорошая эластичность.
В зависимости от добавок, коэффициент эластичности утепляющей штукатурки при плотности 500 кг/м3 составляет 0,2.
Перлитовая
Это одна из разновидностей декоративных штукатурок, которая состоит из вулканических пород. В состав штукатурки входят особые кислые стекла, которые придают покрытию эстетичный внешний вид и добавляют различные практичные качества. Уникальная способность, которой обладает материал, – вспенивание и увеличение в размерах при нагревании. Надо сказать, что перлитовая штукатурка способна увеличиться в объеме в 10 раз. Благодаря этому получается внешне плотный, но достаточно легкий слой для основной поверхности. Плотность слоя может колебаться в пределах 350…800 кг/м3, за счет чего колеблется и теплопроводность штукатурки – 0,13…0,9.
Сухая
Есть такое понятие «сухая штукатурка». Для незнающих в строительной терминологии это означает обыкновенный гипсокартон. По сути, листы состоят из тех же элементов, что и обычная гипсовая штукатурка (жидкая), за исключением того, что они высушены, спрессованы, сформованы и укреплены на картонных листах. Теплопроводность сухой штукатурки также будет зависеть от плотности материала. Средний коэффициент теплопроводности равен 0.21.
Известковая
Наиболее распространенный вид штукатурки для внутренних работ. Одним из главных ее качеств можно назвать чистую белизну, что отлично подходит под дальнейшие финишные работы, в особенности окрашивание или нанесение декоративных жидких обоев. Состоит смесь из гашеной извести, речного песка. Пропорции могут быть разными. Теплопроводность при плотности 1500 кг/м3 будет равна 0.7.
Для каждой из смесей предусмотрены свои показатели, которые обозначаются на упаковке. Надо сказать, что бумажный мешок сухой смеси – инструкция не только по эксплуатации, но и составу. Там можно найти основные свойства каждого из составов.
Тепловые свойства неметаллов
Связанные ресурсы: теплопередача
Тепловые свойства неметаллов
Проектирование и проектирование теплопередачи
Инженерные металлы и материалы
Теплопроводность Теплопроводность, теплопроводность,
Тепловые свойства неметаллов
Проводимость: теплопередача происходит с меньшей скоростью через материалы с низкой теплопроводностью, чем через материалы с высокой теплопроводностью. Соответственно, материалы с высокой теплопроводностью широко используются в радиаторах, а материалы с низкой теплопроводностью используются в качестве теплоизоляции. Теплопроводность материала может зависеть от температуры. Величина, обратная теплопроводности, называется термическим сопротивлением.
Плотность: Плотность или, точнее, объемная массовая плотность вещества – это его масса на единицу объема.
Удельная теплоемкость: теплота, необходимая для повышения температуры единицы массы данного вещества на заданную величину (обычно на один градус).
Материал | Проводимость | Плотность | Удельная теплоемкость |
АБС-пластик | 0,25 | 1,014 x 10 3 | 1,26 x 10 3 |
Ацетали | 0,3 | 1,42 x 10 3 | 1,5 x 10 3 |
Акрил | 0,06 | 1,19 x 10 3 | 1,5 x 10 3 |
Алкиды | 0,85 | 2,0 x 10 3 | 1,3 x 10 3 |
Глинозем, 96% | 21,0 | 3,8 x 10 3 | 880,0 |
Глинозем, чистый | 37,0 | 3,9 x 10 3 | 880,0 |
Асбест, асбестовые листы | 0,166 | — | — |
Асбест, цемент | 2,08 | — | — |
Асбест, цементные плиты | 0,74 | — | — |
Асбест, рифленый, 4 слоя/дюйм | 0,087 | — | — |
Асбест, войлок, 20 лм/дюйм | 0,078 | — | — |
Асбест, войлок, 40 лм/дюйм | 0,057 | — | — |
Асбест, неплотно упакованный | 0,154 | 520,0 | — |
Асфальт | 0,75 | — | — |
Бакелит | 0,19 | — | — |
Шерсть бальзамическая 2,2 фунта/фут 3 | 0,04 | 35,0 | — |
Бериллия, 99,5% | 197,3 | — | — |
Кирпич, Строительный кирпич | 0,69 | 1,6 x 10 3 | — |
Кирпич, карборундовый кирпич | 18,5 | — | — |
Кирпич, Хромовый кирпич | 2,32 | 3,0 x 10 3 | — |
Кирпич, Диатомит | 0,24 | — | — |
Кирпич, лицевой кирпич | 1,32 | 2,0 x 10 3 | — |
Кирпич шамотный | 1,04 | 2,0 x 10 3 | — |
Кирпич, магнезит | 3,81 | — | — |
Углерод | 6,92 | — | — |
Картон, Целотекс | 0,048 | — | — |
Гофрированный картон | 0,064 | — | — |
Цемент, Раствор | 1,16 | — | — |
Цемент, портленд | 0,29 | 1,5 x 10 3 | — |
Бетон, пепел | 0,76 | — | — |
Бетон, камень 1-2-4 смесь | 1,37 | 2,1 x 10 3 | — |
Пробка, пробковый картон, 10 фунтов/фут 3 | 0,043 | 160,0 | — |
Пробка, молотая | 0,043 | 150,0 | — |
Пробка регранулированная | 80,0 | — | |
Алмаз, пленка | 700,0 | 3,5 x 10 3 | 2,0 x 10 3 |
Алмаз, тип IIA | 2,0 x 10 3 | — | — |
Алмаз, тип IIB | 1,3 x 10 3 | — | — |
Диатомит | 0,061 | 320,0 | — |
E-стекловолокно | 0,89 | 2,54 x 10 3 | 820,0 |
Эпоксидная смола High Fill | 2,163 | — | — |
Эпоксидная смола, без наполнителя | 0,207 | — | — |
Войлок, волосы | 0,036 | 265,0 | — |
Войлок, шерсть | 0,052 | 330,0 | — |
Изоляционная плита из волокна | 0,048 | 240,0 | — |
FR4 Эпоксидное стекло, 1 унция меди | 9. | — | — |
FR4 Эпоксидное стекло, 2 унции меди | 17,71 | — | — |
FR4 Эпоксидное стекло, 4 унции меди | 35,15 | — | — |
FR4 Эпоксидное стекло, без меди | 0,294 | 1,9 x 10 3 | 1,15 x 10 3 |
Стекло боросиликатное | 1,09 | 2,2 x 10 3 | — |
Стекло, пирекс | 1,02 | 2,23 x 10 3 | 837,0 |
Стекло, окно | 0,78 | 2,7 x 10 3 | — |
Стекло, шерсть, 1,5 фунта/фут 3 | 0,038 | 24,0 | — |
Инсулекс, сухой | 0,064 | — | — |
Капок | 0,035 | — | — |
Каптон | 0,156 | — | 1,09 x 10 3 |
Магнезия, 85% | 0,067 | 270,0 | — |
Слюда | 0,71 | — | — |
Майлар | 0,19 | — | — |
Нейлон | 0,242 | 1,1 x 10 3 | 1,7 x 10 3 |
Фенопласт на бумажной основе | 0,277 | — | — |
Фенопласт, обычный | 0,519 | — | — |
Гипс, гипс | 0,48 | 1,44 x 10 3 | — |
Штукатурка, металлическая рейка | 0,47 | — | — |
Штукатурка, деревянная рейка | 0,28 | — | — |
Оргстекло | 0,19 | — | — |
Поликарбонат | 0,19 | 1,2 х 10 3 | 1,3 x 10 3 |
Полиэтилен высокой плотности | 0,5 | 950,0 | 2,3 x 10 3 |
Полиэтилен низкой плотности | 0,35 | 920,0 | 2,3 x 10 3 |
Полиэтилен средней плотности | 0,4 | 930,0 | 2,3 x 10 3 |
Полистирол | 0,106 | — | — |
Поливинилхлорид | 0,16 | — | — |
Пирекс | 1,26 | — | — |
Минеральная вата, 10 фунтов/фут 3 | 0,04 | 160,0 | — |
Минеральная вата, неплотно упакованная | 0,067 | 64,0 | — |
Каучук, бутил | 0,26 | — | — |
Резина, твердая | 0,19 | — | — |
Резина, силикон | 0,19 | — | — |
Резина, мягкая | 0,14 | — | — |
Опилки | 0,059 | — | — |
S-стекловолокно | 0,9 | 2,49 x 10 3 | 835,0 |
Силикатный аэрогель | 0,024 | 140,0 | — |
Кремний, 99,9% | 150,0 | 2,33 x 10 3 | 710,0 |
Силиконовая смазка | 0,21 | — | — |
Камень, гранит | 2,8 | 2,64 x 10 3 | — |
Камень, Известняк | 1,3 | 2,5 x 10 3 | — |
Камень, мрамор | 2,5 | 2,6 x 10 3 | — |
Камень, песчаник | 1,83 | 2,2 x 10 3 | — |
Пенополистирол | 0,035 | — | — |
Тефлон | 0,22 | — | 1,04 x 10 3 |
Древесная стружка | 0,059 | — | — |
Древесина, поперечное зерно, бальза, 8,8 фунта/фут 3 | 0,055 | 140,0 | — |
Дерево, поперечное зерно, кипарис | 0,097 | 460,0 | — |
Древесина, поперечное зерно, пихта | 0,11 | 420,0 | — |
Дерево, поперечное зерно, клен | 0,166 | 540,0 | — |
Дерево, поперечное зерно, дуб | 0,166 | 540,0 | — |
Древесина, поперечное зерно, белая сосна | 0,112 | 430,0 | — |
Древесина, поперечное зерно, сосна желтая | 0,147 | 640,0 | — |
Оксид алюминия, Al 2 O 3 , 99,5% | 32,0 | — | — |
Оксид алюминия, Al 2 O 3 , 96% | 21,5 | — | — |
Оксид алюминия, Al 2 O 3 , 90% | 12,0 | — | — |
Преобразование теплопроводности:
1 кал/см 2 /см/сек/°C = 10,63 Вт/дюйм — °C
117 БТЕ/(ч-фут F) x (0,293 Вт-ч/БТЕ) x (1,8F/C) x (фут/12 дюймов) = 5,14 Вт/дюйм — °C
или
117 БТЕ/(час-фут-F) x 0,04395 ватт-ч-F-фут/(Btu=°C — дюйм) = 5,14 ватт/дюйм-°C
Теплопроводность — Проектирование зданий
Мы используем файлы cookie, чтобы обеспечить вам максимальное удобство на нашем веб-сайте. Вы можете узнать о наших файлах cookie и о том, как отключить файлы cookie, в нашей Политике конфиденциальности. Если вы продолжите использовать этот веб-сайт без отключения файлов cookie, мы будем считать, что вы довольны их получением. Закрывать.
Редактировать эту статью
Последнее редактирование 09 ноя 2022
См. полная история
Теплопроводность (иногда называемая значением k или лямбда-значением (λ)) — это мера скорости, с которой разность температур передается через материал. Чем ниже теплопроводность материала, тем медленнее скорость, с которой передаются через него температурные различия, и, следовательно, тем эффективнее он как изолятор. В широком смысле, чем ниже теплопроводность ткани здания, тем меньше энергии требуется для поддержания комфортных условий внутри.
Теплопроводность является основным свойством материала, не зависящим от толщины. Измеряется в ваттах на метр-кельвин (Вт/мК).
Термическое сопротивление слоев ткани здания (R измеряется в м²K/Вт) можно рассчитать исходя из толщины каждого слоя / теплопроводности этого слоя.
Значение U элемента здания может быть рассчитано как сумма термических сопротивлений (значения R) слоев, из которых состоит элемент, плюс сопротивление его внутренней и внешней поверхности (Ri и Ro).
Значение U = 1 / (ΣR + Ri + Ro)
Значения U (иногда называемые коэффициентами теплопередачи или коэффициентами теплопередачи) используются для измерения того, насколько эффективно элементы строительной ткани являются изоляционными материалами.
Стандартами для измерения теплопроводности являются BS EN 12664, BS EN 12667 и BS EN 12939. При отсутствии значений, предоставленных производителями продуктов после испытаний теплопроводности , теплопроводность данные получены из BS EN 12524 Строительные материалы и изделия. Гигротермические свойства.
Значения теплопроводности типичных строительных материалов показаны ниже.
Материал | Вт/мК |
Блоки (светлые) | 0,38 |
Блоки (средние) | 0,51 |
Блоки (плотные) | 1,63 |
Кирпич (открытый) | 0,84 |
Кирпич (защищенный) | 0,62 |
ДСП | 0,15 |
Бетон (пористый) | 0,16 |
Бетон (ячеистый 400 кг/м3) | 0,1 |
Бетон (ячеистый 1200 кг/м3) | 0,4 |
Бетон (плотный) | 1,4 |
одеяло из стекловолокна | 0,033 |
стекло | 1,05 |
пеностеклянный заполнитель (сухой) | 0,08 |
плиты пеньки | 0,40 |
пенобетон | 0,25 |
минеральная вата | 0,038 |
раствор | 0,80 |
фенольная пена (PIR) | 0,020 |
гипс (гипс) | 0,46 |
гипсокартон (гипс) | 0,16 |
пенополистирол | 0,032 |
пенополиуретан (PUR) | 0,025 |
штукатурка (песок/цемент) | 0,50 |
стяжка (цемент/песок) | 0,41 |
сталь | 16 — 80 |
камень (известняк) | 1,30 |
камень (песчаник) | 1,50 |
камень (гранит) | 1,7 — 4,0 |
каменная крошка | 0,96 |
тюк соломы | 0,09 |
древесина (хвойная древесина) | 0,14 |
древесина (лиственная древесина — обычно используется) | 0,14 — 0,17 |
древесноволокнистая плита | 0,11 |
- Условные обозначения для расчета линейного коэффициента теплопередачи и температурных коэффициентов.