Теплопроводность штукатурки и коэффициент: гипсовой, декоративной, цементной
Отделочный материал, применяемый при наружных и внутренних работах, при капитальном строительстве и в косметическом ремонте – это штукатурка. Ее особенности зависят от вида, а их достаточно много, так как в смесь добавляются различные элементы, которые могут повышать ее основные качества либо добавлять эстетики покрытию. Посмотрим на некоторые виды, а также определимся, что такое теплопроводность штукатурки и какой показатель у различных типов материала.
Декоративная штукатурка
Определение
Теплопроводностью материала называют перенос внутренней энергии от более нагретых частей к менее нагретым. Механизм переноса тепла отличается в зависимости от агрегатного состояния вещества, а также распределения температур по поверхности материала. Иными словами, способность тела проводить тепло — и есть теплопроводность. Определяется она количеством теплоты, которое способно проходить через определенную толщину материала, на определенном участке за обозначенное время (естественно, для удобства расчетов все показатели равны единице). Но штукатурки отличаются слоем нанесения — значит и показатель будет другим
Виды и теплопроводность
Естественно, теплопроводность цементно-песчаной штукатурки для внешних работ будет отличной, чем теплопроводность декоративной штукатурки. Поэтому более подробно посмотрим на общие особенности некоторых видов.
Цементно-песчаная
В зависимости от прочности покрытия, выбирается пропорции песка к цементу – 1:4 или 1:3. Это также зависит от марки цемента и фракции песка. Данный раствор практически не эластичный, поэтому его используют для минеральных поверхностей в качестве основного покрытия, а не заделывании щелей и трещин. При плотности слоя 1800 кг/м3 коэффициент теплопроводности штукатурки будет равен 1,2.
Гипсовая
Это материал для отделки внутренних поверхностей помещения. Его применение подходит, если температура окружающей среды колеблется от +5 до +25 градусов. Теплопроводность гипсовой штукатурки также зависит от плотности ее нанесения и возможных добавок. Обычно коэффициент теплопроводности гипсовой штукатурки при плотности материала 800кг/м3 – 0.3.
Декоративная
Это исключительно отделочный материал для финишных работ. В его состав могут входить полимерные и синтетические смолы, различные примеси, дающие ей необходимые эстетические свойства. Декоративная штукатурка может применяться для отделки фасадов и внутренних частей здания. Фасадный состав с полимерными добавками при плотности в 1800 кг/м3 имеет коэффициент теплопроводности 1.
Утепляющая
Это состав, в который входят различные добавки, предающие такие особенности, как:
- морозостойкость;
- прочность вне зависимости от количества осадков и окружающего климатического воздействия;
- звукопоглощение;
- высокая степень адгезии;
- хорошая эластичность.
В зависимости от добавок, коэффициент эластичности утепляющей штукатурки при плотности 500 кг/м3 составляет 0,2.
Перлитовая
Это одна из разновидностей декоративных штукатурок, которая состоит из вулканических пород. В состав штукатурки входят особые кислые стекла, которые придают покрытию эстетичный внешний вид и добавляют различные практичные качества. Уникальная способность, которой обладает материал, – вспенивание и увеличение в размерах при нагревании. Надо сказать, что перлитовая штукатурка способна увеличиться в объеме в 10 раз. Благодаря этому получается внешне плотный, но достаточно легкий слой для основной поверхности. Плотность слоя может колебаться в пределах 350…800 кг/м3, за счет чего колеблется и теплопроводность штукатурки – 0,13…0,9.
Сухая
Есть такое понятие «сухая штукатурка». Для незнающих в строительной терминологии это означает обыкновенный гипсокартон. По сути, листы состоят из тех же элементов, что и обычная гипсовая штукатурка (жидкая), за исключением того, что они высушены, спрессованы, сформованы и укреплены на картонных листах. Теплопроводность сухой штукатурки также будет зависеть от плотности материала. Средний коэффициент теплопроводности равен 0. 21.
Известковая
Наиболее распространенный вид штукатурки для внутренних работ. Одним из главных ее качеств можно назвать чистую белизну, что отлично подходит под дальнейшие финишные работы, в особенности окрашивание или нанесение декоративных жидких обоев. Состоит смесь из гашеной извести, речного песка. Пропорции могут быть разными. Теплопроводность при плотности 1500 кг/м3 будет равна 0.7.
Для каждой из смесей предусмотрены свои показатели, которые обозначаются на упаковке. Надо сказать, что бумажный мешок сухой смеси – инструкция не только по эксплуатации, но и составу. Там можно найти основные свойства каждого из составов.
теплопроводность штукатурки — Строительство и ремонт
Содержание
Какова теплопроводность штукатурки разных типов
Отделочный материал, применяемый при наружных и внутренних работах, при капитальном строительстве и в косметическом ремонте – это штукатурка. Ее особенности зависят от вида, а их достаточно много, так как в смесь добавляются различные элементы, которые могут повышать ее основные качества либо добавлять эстетики покрытию. Посмотрим на некоторые виды, а также определимся, что такое теплопроводность штукатурки и какой показатель у различных типов материала.
Определение
Теплопроводностью материала называют перенос внутренней энергии от более нагретых частей к менее нагретым. Механизм переноса тепла отличается в зависимости от агрегатного состояния вещества, а также распределения температур по поверхности материала. Иными словами, способность тела проводить тепло — и есть теплопроводность. Определяется она количеством теплоты, которое способно проходить через определенную толщину материала, на определенном участке за обозначенное время (естественно, для удобства расчетов все показатели равны единице). Но штукатурки отличаются слоем нанесения — значит и показатель будет другим
Виды и теплопроводность
Естественно, теплопроводность цементно-песчаной штукатурки для внешних работ будет отличной, чем теплопроводность декоративной штукатурки. Поэтому более подробно посмотрим на общие особенности некоторых видов.
Цементно-песчаная
В зависимости от прочности покрытия, выбирается пропорции песка к цементу – 1:4 или 1:3. Это также зависит от марки цемента и фракции песка. Данный раствор практически не эластичный, поэтому его используют для минеральных поверхностей в качестве основного покрытия, а не заделывании щелей и трещин. При плотности слоя 1800 кг/м 3 коэффициент теплопроводности штукатурки будет равен 1,2.
Это материал для отделки внутренних поверхностей помещения. Его применение подходит, если температура окружающей среды колеблется от +5 до +25 градусов. Теплопроводность гипсовой штукатурки также зависит от плотности ее нанесения и возможных добавок. Обычно коэффициент теплопроводности гипсовой штукатурки при плотности материала 800кг/м 3 – 0.3.
Декоративная
Это исключительно отделочный материал для финишных работ. В его состав могут входить полимерные и синтетические смолы, различные примеси, дающие ей необходимые эстетические свойства. Декоративная штукатурка может применяться для отделки фасадов и внутренних частей здания. Фасадный состав с полимерными добавками при плотности в 1800 кг/м 3 имеет коэффициент теплопроводности 1.
Утепляющая
Это состав, в который входят различные добавки, предающие такие особенности, как:
- морозостойкость;
- прочность вне зависимости от количества осадков и окружающего климатического воздействия;
- звукопоглощение;
- высокая степень адгезии;
- хорошая эластичность.
В зависимости от добавок, коэффициент эластичности утепляющей штукатурки при плотности 500 кг/м 3 составляет 0,2.
Перлитовая
Это одна из разновидностей декоративных штукатурок, которая состоит из вулканических пород. В состав штукатурки входят особые кислые стекла, которые придают покрытию эстетичный внешний вид и добавляют различные практичные качества. Уникальная способность, которой обладает материал, – вспенивание и увеличение в размерах при нагревании. Надо сказать, что перлитовая штукатурка способна увеличиться в объеме в 10 раз. Благодаря этому получается внешне плотный, но достаточно легкий слой для основной поверхности. Плотность слоя может колебаться в пределах 350…800 кг/м 3 , за счет чего колеблется и теплопроводность штукатурки – 0,13…0,9.
Есть такое понятие «сухая штукатурка». Для незнающих в строительной терминологии это означает обыкновенный гипсокартон. По сути, листы состоят из тех же элементов, что и обычная гипсовая штукатурка (жидкая), за исключением того, что они высушены, спрессованы, сформованы и укреплены на картонных листах. Теплопроводность сухой штукатурки также будет зависеть от плотности материала. Средний коэффициент теплопроводности равен 0.21.
Известковая
Наиболее распространенный вид штукатурки для внутренних работ. Одним из главных ее качеств можно назвать чистую белизну, что отлично подходит под дальнейшие финишные работы, в особенности окрашивание или нанесение декоративных жидких обоев. Состоит смесь из гашеной извести, речного песка. Пропорции могут быть разными. Теплопроводность при плотности 1500 кг/м 3 будет равна 0.7.
Для каждой из смесей предусмотрены свои показатели, которые обозначаются на упаковке. Надо сказать, что бумажный мешок сухой смеси – инструкция не только по эксплуатации, но и составу. Там можно найти основные свойства каждого из составов.
Теплопроводность штукатурки
Теплопроводность — это процесс переноса энергии от теплой части материала к холодной частицами этого материала (т.е. молекулами). Надо помнить, что это только один из «источников» потерь тепла: хотя, например, вакуум имеет нулевую теплопроводность, энергия может передаваться излучением.
Основные значения коэффициентов теплопроводности я взял из СНиП II-3-79* (приложение 2) и из СП 50.13330.2012 СНиП 23-02-2003. Таблицу я дополнил значениями теплопроводности, которые взял с сайтов производителей строительных материалов (например, для ККБ, пеностекла и других).
Теплопроводность некоторых (но не всех) строительных материалов может значительно меняться в зависимости от их влажности. Первое значение в таблице — это значение для сухого состояния. Второе и третье значения — это значения теплопроводности для условий эксплуатации А и Б согласно приложению С СП 50.13330.2012. Условия эксплуатации зависят от климата региона и влажности в помещении. Проще говоря А — это обычная «средняя» эксплуатация, а Б — это влажные условия.
Теплопроводность строительных материалов, их плотность и теплоемкость
Приведена обширная таблица теплопроводности строительных материалов, а также плотность и удельная теплоемкость материалов в сухом состоянии при атмосферном давлении и температуре 20…50°С (если не указана другая температура). Значения даны для более 400 материалов!
Следует обратить внимание на величину теплопроводности строительных материалов в таблице, поскольку эта характеристика, наряду с их плотностью, является наиболее важной. Особенно теплопроводность важна для строительных материалов, применяемых в качестве теплоизоляции при утеплении строительных конструкций.
Теплопроводность строительных материалов существенно зависит от их пористости и плотности. Чем меньше плотность, тем ниже теплопроводность материала, поэтому низкая теплопроводность свойственна пористым и легким материалам (значения плотности строительных материалов, металлов и сплавов, продуктов и других веществ вы также сможете найти в подробной таблице плотности).
Например, в нашей таблице теплопроводности материалов и утеплителей можно выделить следующие строительные материалы с низким показателем коэффициента теплопроводности — это аэрогель (от 0,014 Вт/(м·град)), стекловата, пенополистирол пеноплэкс и вспененный каучук (от 0,03 Вт/(м·град)), теплоизоляция МБОР (от 0,038 Вт/(м·град)), газобетон и пенобетон (от 0,08 Вт/(м·град)).
Таблица теплопроводности строительных материалов: коэффициенты
Любое строительство независимо от его размера всегда начинается с разработки проекта. Его цель – спроектировать не только внешний вид будущего строения, еще и просчитать основные теплотехнические характеристики. Ведь основной задачей строительства считается сооружение прочных, долговечных зданий, способных поддерживать здоровый и комфортный микроклимат, без лишних затрат на отопление. Несомненную помощь при выборе сырья, используемого для возведения постройки, окажет таблица теплопроводности строительных материалов: коэффициенты.
Тепло в доме напярямую зависит от коэффициента теплопроводности строительных материалов
Что такое теплопроводность?
Теплопроводность – это процесс передачи энергии тепла от нагретых частей помещения к менее теплым. Такой обмен энергией будет происходить, пока температура не уравновесится. Применяя это правило к ограждающим системам дома, можно понять, что процесс теплопередачи определяется промежутком времени, за который происходит выравнивание температуры в комнатах с окружающей средой. Чем это время больше, тем теплопроводность материала, применяемого при строительстве, ниже.
Отсутствие теплоизоляции дома скажется на температуре воздуха внутри помещения
Для характеристики проводимости тепла материалами используют такое понятие, как коэффициент теплопроводности. Он показывает, какое количество тепла за одну единицу временного промежутка пройдет через одну единицу площади поверхности. Чем выше подобный показатель, тем сильнее теплообмен, значит, постройка будет остывать значительно быстрее. То есть при сооружении зданий, домов и прочих помещений необходимо использовать материалы, проводимость тепла которых минимальна.
Сравнительные характеристики теплопроводности и термического сопротивления стен, возведенных из кирпича и газобетонных блоков
Что влияет на величину теплопроводности?
Тепловая проводимость любого материала зависит от множества параметров:
- Пористая структура. Присутствие пор предполагает неоднородность сырья. При прохождении тепла через подобные структуры, где большая часть объема занята порами, охлаждение будет минимальным.
- Плотность. Высокая плотность способствует более тесному взаимодействию частиц друг с другом. В результате теплообмен и последующее полное уравновешивание температур происходит быстрее.
- Влажность. При высокой влажности окружающего воздуха или намокании стен постройки, сухой воздух вытесняется капельками жидкости из пор. Теплопроводность в подобном случае значительно увеличивается.
Теплопроводность, плотность и водопоглощение некоторых строительных материалов
Применение показателя теплопроводности на практике
В строительстве все материалы условно подразделяются на теплоизоляционные и конструкционные. Конструкционное сырье отличается наибольшими показателями теплопроводности, но именно его применяют для постройки стен, перекрытий, прочих ограждений. Согласно таблице теплопроводности строительных материалов, при возведении стен из железобетона, для низкого теплообмена с окружающей средой толщина конструкции должна быть около 6 метров. В таком случае строение получится огромным, громоздким и потребует немалых затрат.
Наглядный пример — при какой толщине различных материалов их коэффициент теплопроводности будет одинаковым
Поэтому при возведении постройки следует отдельное внимание уделять дополнительным теплоизолирующим материалам. Слой теплоизоляции может не понадобиться только для построек из дерева или пенобетона, но даже при использовании подобного низкопроводного сырья толщина конструкции должна быть не менее 50 см.
Нужно знать! У теплоизоляционных материалов значения показателя теплопроводности минимальны.
Теплопроводность готового здания. Варианты утепления конструкций
При разработке проекта постройки необходимо учесть все возможные варианты и пути потери тепла. Большое его количество может уходить через:
- стены – 30%;
- крышу – 30%;
- двери и окна – 20%;
- полы – 10%.
Теплопотери неутепленного частного дома
При неверном расчете теплопроводности на этапе проектирования, жильцам остается довольствоваться только 10% тепла, получаемого от энергоносителей. Именно поэтому дома, возведенные из стандартного сырья: кирпича, бетона, камня рекомендуют дополнительно утеплять. Идеальная постройка согласно таблице теплопроводности строительных материалов должна быть выполнена полностью из теплоизолирующих элементов. Однако малая прочность и минимальная устойчивость к нагрузкам ограничивает возможности их применения.
Нужно знать! При обустройстве правильной гидроизоляции любого утеплителя высокая влажность не повлияет на качество теплоизоляции и сопротивление постройки теплообмену будет значительно выше.
Сравнительный график коэффициентов теплопроводности некоторых строительных материалов и утеплителей
Самым распространенным вариантом сочетание несущей конструкции из высокопрочных материалов с дополнительным слоем теплоизоляции. Сюда можно отнести:
- Каркасный дом. При его постройке каркасом из древесины обеспечивается жесткость всей конструкции, а укладка утеплителя производится в пространство между стойками. При незначительном уменьшении теплообмена в некоторых случая может потребоваться утепление еще и снаружи основного каркаса.
- Дом из стандартных материалов. При выполнении стен из кирпича, шлакоблоков, утепление должно проводиться по наружной поверхности конструкции.
Необходимая тепло- и гидроизоляция для сохранения тепла в частном доме
Таблица теплопроводности строительных материалов: коэффициенты
В этой таблице собраны показатели теплопроводности самых распространенных строительных материалов. Пользуясь подобными справочниками, можно без проблем рассчитать необходимую толщину стен и применяемого утеплителя.
Таблица коэффициента теплопроводности строительных материалов:
Таблица теплопроводности строительных материалов: коэффициенты
Паропроницаемость и теплопроводность гипсовой штукатурки
Стоимость штукатурной смеси на основе гипса не намного отличается от обычной. Но у гипсовой штукатурки намного больше преимуществ, чем у цементной, она намного легче и прочнее. Также она очень удобна в использовании, так как на приготовление и нанесение раствора не уходит много времени. При хороших условиях в помещении она высыхает за двенадцать часов полностью.
Теплопроводность гипсовой штукатурки
Паропроницаемость гипсовой штукатурки нанесенной на поверхность зависит от замешивания. Но если сравнить ее с обычной, то проницаемость гипсовой штукатурки составляет 0,23 Вт/м×°С, а цементной достигает 0,6÷0,9 Вт/м×°С. Такие расчеты позволяю говорить о том что паропроницаемость гипсовой штукатурки намного ниже.
Благодаря низкой проницаемости снижется коэффициент теплопроводности гипсовой штукатурки, что позволяет увеличить тепло в помещении. Гипсовая штукатурка отлично удерживает тепло в отличии от :
- известково-песчаной;
- бетонной штукатурки.
Благодаря низкой теплопроводности гипсовой штукатурки стены остаются теплыми даже в сильный мороз снаружи помещения.
Коэффициент теплопроводности материалов
Последние годы при строительстве дома или его ремонте большое внимание уделяется энергоэффективности. При уже существующих ценах на топливо это очень актуально. Причем похоже что дальше экономия будет приобретать все большую важность. Чтобы правильно подобрать состав и толщин материалов в пироге ограждающих конструкций (стены, пол, потолок, кровля) необходимо знать теплопроводность строительных материалов. Эта характеристика указывается на упаковках с материалами, а необходима она еще на стадии проектирования. Ведь надо решить из какого материала строить стены, чем их утеплять, какой толщины должен быть каждый слой.
Что такое теплопроводность и термическое сопротивление
При выборе строительных материалов для строительства необходимо обращать внимание на характеристики материалов. Одна из ключевых позиций — теплопроводность. Она отображается коэффициентом теплопроводности. Это количество тепла, которое может провести тот или иной материал за единицу времени. То есть, чем меньше этот коэффициент, тем хуже материал проводит тепло. И наоборот, чем выше цифра, тем тепло отводится лучше.
Диаграмма, которая иллюстрирует разницу в теплопроводности материалов
Материалы с низкой теплопроводностью используются для утепления, с высокой — для переноса или отвода тепла. Например, радиаторы делают из алюминия, меди или стали, так как они хорошо передают тепло, то есть имеют высокий коэффициент теплопроводности. Для утепления используются материалы с низким коэффициентом теплопроводности — они лучше сохраняют тепло. В случае если объект состоит из нескольких слоев материала, его теплопроводность определяется как сумма коэффициентов всех материалов. При расчетах, рассчитывается теплопроводность каждой из составляющих «пирога», найденные величины суммируются. В общем получаем теплоизоляцонную способность ограждающей конструкции (стен, пола, потолка).
Теплопроводность строительных материалов показывает количество тепла, которое он пропускает за единицу времени
Есть еще такое понятие как тепловое сопротивление. Оно отображает способность материала препятствовать прохождению по нему тепла. То есть, это обратная величина по отношению к теплопроводности. И, если вы видите материал с высоким тепловым сопротивлением, его можно использовать для теплоизоляции. Примером теплоизоляционных материалов может случить популярная минеральная или базальтовая вата, пенопласт и т.д. Материалы с низким тепловых сопротивлением нужны для отведения или переноса тепла. Например, алюминиевые или стальные радиаторы используют для отопления, так как они хорошо отдают тепло.
Таблица теплопроводности теплоизоляционных материалов
Чтобы в доме было проще сохранять тепло зимой и прохладу летом, теплопроводность стен, пола и кровли должна быть не менее определенной цифры, которая рассчитывается для каждого региона. Состав «пирога» стен, пола и потолка, толщина материалов берутся с таким учетом чтобы суммарная цифра была не меньше (а лучше — хоть немного больше) рекомендованной для вашего региона.
Коэффициент теплопередачи материалов современных строительных материалов для ограждающих конструкций
При выборе материалов надо учесть, что некоторые из них (не все) в условиях повышенной влажности проводят тепло гораздо лучше. Если при эксплуатации возможно возникновение такой ситуации на продолжительный срок, в расчетах используют теплопроводность для этого состояния. Коэффициенты теплопроводности основных материалов, которые используются для утепления, приведены в таблице.
Часть информации взята нормативов, которые прописывают характеристики определенных материалов (СНиП 23-02-2003, СП 50.13330.2012, СНиП II-3-79* (приложение 2)). Те материал, которые не прописаны в стандартах, найдены на сайтах производителей. Так как стандартов нет, у разных производителей они могут значительно отличаться, потому при покупке обращайте внимание на характеристики каждого покупаемого материала.
Таблица теплопроводности строительных материалов
Стены, перекрытия, пол, делать можно из разных материалов, но так повелось, что теплопроводность строительных материалов обычно сравнивают с кирпичной кладкой. Этот материал знаю все, с ним проще проводить ассоциации. Наиболее популярны диаграммы, на которых наглядно продемонстрирована разница между различными материалами. Одна такая картинка есть в предыдущем пункте, вторая — сравнение кирпичной стены и стены из бревен — приведена ниже. Именно потому для стен из кирпича и другого материала с высокой теплопроводностью выбирают теплоизоляционные материалы. Чтобы было проще подбирать, теплопроводность основных строительных материалов сведена в таблицу.
Сравнивают самые разные материалы
Древесина — один из строительных материалов с относительно невысокой теплопроводностью. В таблице даны ориентировочные данные по разным породам. При покупке обязательно смотрите плотность и коэффициент теплопроводности. Далеко не у всех они такие, как прописаны в нормативных документах.
Металлы очень хорошо проводят тепло. Именно они часто являются мостиком холода в конструкции. И это тоже надо учитывать, исключать прямой контакт используя теплоизолирующие прослойки и прокладки, которые называются термическим разрывом. Теплопроводность металлов сведена в другую таблицу.
Как рассчитать толщину стен
Для того чтобы зимой в доме было тепло, а летом прохладно, необходимо чтобы ограждающие конструкции (стены, пол, потолок/кровля) должны иметь определенное тепловое сопротивление. Для каждого региона эта величина своя. Зависит она от средних температур и влажности в конкретной области.
Термическое сопротивление ограждающих
конструкций для регионов России
Для того чтобы счета за отопление не были слишком большими, подбирать строительные материалы и их толщину надо так, чтобы их суммарное тепловое сопротивление было не меньше указанного в таблице.
Расчет толщины стены, толщины утеплителя, отделочных слоев
Для современного строительства характерна ситуация, когда стена имеет несколько слоев. Кроме несущей конструкции есть утепление, отделочные материалы. Каждый из слоев имеет свою толщину. Как определить толщину утеплителя? Расчет несложен. Исходят из формулы:
Формула расчета теплового сопротивления
R — термическое сопротивление;
p — толщина слоя в метрах;
k — коэффициент теплопроводности.
Предварительно надо определиться с материалами, которые вы будете использовать при строительстве. Причем, надо знать точно, какого вида будет материал стен, утепление, отделка и т. д. Ведь каждый из них вносит свою лепту в теплоизоляцию, и теплопроводность строительных материалов учитывается в расчете.
Сначала считается термическое сопротивление конструкционного материала (из которого будет строится стена, перекрытие и т.д.), затем «по остаточному» принципу подбирается толщина выбранного утеплителя. Можно еще принять в расчет теплоизоляционных характеристики отделочных материалов, но обычно они идут «плюсом» к основным. Так закладывается определенный запас «на всякий случай». Этот запас позволяет экономить на отоплении, что впоследствии положительно сказывается на бюджете.
Пример расчета толщины утеплителя
Разберем на примере. Собираемся строить стену из кирпича — в полтора кирпича, утеплять будем минеральной ватой. По таблице тепловое сопротивление стен для региона должно быть не меньше 3,5. Расчет для этой ситуации приведен ниже.
- Для начала просчитаем тепловое сопротивление стены из кирпича. Полтора кирпича это 38 см или 0,38 метра, коэффициент теплопроводности кладки из кирпича 0,56. Считаем по приведенной выше формуле: 0,38/0,56 = 0,68. Такое тепловое сопротивление имеет стена в 1,5 кирпича.
- Эту величину отнимаем от общего теплового сопротивления для региона: 3,5-0,68 = 2,82. Эту величину необходимо «добрать» теплоизоляцией и отделочными материалами.
Рассчитывать придется все ограждающие конструкции
Если бюджет ограничен, минеральной ваты можно взять 10 см, а недостающее покроется отделочными материалами. Они ведь будут изнутри и снаружи. Но, если хотите, чтобы счета за отопление были минимальными, лучше отделку пускать «плюсом» к расчетной величине. Это ваш запас на время самых низких температур, так как нормы теплового сопротивления для ограждающих конструкций считаются по средней температуре за несколько лет, а зимы бывают аномально холодными. Потому теплопроводность строительных материалов, используемых для отделки просто не принимают во внимание.
Коэффициенты теплопроводности строительных материалов в таблицах
Сегодня очень остро стоит вопрос рационального использования ТЭР. Непрерывно прорабатываются пути экономии тепла и энергии с целью обеспечения энергетической безопасности развития экономики как страны, так и каждой отдельной семьи.
Создание эффективных энергоустановок и систем теплоизоляции (оборудования, обеспечивающего наибольший теплообмен (например, паровых котлов) и, наоборот, от которого он нежелателен (плавильные печи)) невозможно без знания принципов теплопередачи.
Изменились подходы к тепловой защите зданий, возросли требования к строительным материалам. Любой дом нуждается в утеплении и системе отопления. Поэтому при теплотехническом расчёте ограждающих конструкций важен расчёт показателя теплопроводности.
Понятие теплопроводности
Теплопроводность – это такое физическое свойство материала, при которой тепловая энергия внутри тела переходит от самой горячей его части к более холодной. Значение показателя теплопроводности показывает степень потери тепла жилыми помещениями. Зависит от следующих факторов:
- плотности предмета: возрастает с её увеличением;
- структуры: к примеру, дерево с поперечными волокнами отличается большим термическим сопротивлением, чем с продольными;
- пористости: чем выше значение, тем меньше средняя плотность;
- характера пустот и пор: материалы с сообщающимися порами имеют большую теплопроводность, с закрытыми мелкозернистыми порами – меньшую;
- влажности: сухие предметы менее теплопроводны;
- температуры – теплообмен уменьшается с её увеличением;
- давления – показатель увеличивается с ростом давления.
Количественно оценить свойство предметов пропускать тепловую энергию можно посредством коэффициента теплопроводности. Очень важно сделать грамотный выбор строительных материалов, утеплителя для достижения наибольшего сопротивления теплопередачи. Просчёты или неразумная экономия в будущем могут привести к ухудшению микроклимата в помещении, сырости в здании, мокрым стенам, душным комнатам. А главное – к большим расходам на отопление.
Для сравнения ниже представлена таблица теплопроводностей материалов и веществ.
Коэффициенты теплопроводности различных материалов, таблица
Таблица теплопроводности строительных материалов
Часть информации взята нормативов, которые прописывают характеристики определенных материалов (СНиП 23-02-2003, СП 50.13330.2012, СНиП II-3-79* (приложение 2)). Те материал, которые не прописаны в стандартах, найдены на сайтах производителей. Так как стандартов нет, у разных производителей они могут значительно отличаться, потому при покупке обращайте внимание на характеристики каждого покупаемого материала.
Таблица теплопроводности строительных материалов
Стены, перекрытия, пол, делать можно из разных материалов, но так повелось, что теплопроводность строительных материалов обычно сравнивают с кирпичной кладкой. Этот материал знаю все, с ним проще проводить ассоциации. Наиболее популярны диаграммы, на которых наглядно продемонстрирована разница между различными материалами. Одна такая картинка есть в предыдущем пункте, вторая — сравнение кирпичной стены и стены из бревен — приведена ниже. Именно потому для стен из кирпича и другого материала с высокой теплопроводностью выбирают теплоизоляционные материалы. Чтобы было проще подбирать, теплопроводность основных строительных материалов сведена в таблицу.
Помогла ли вам статья?
Теплопроводность — Проектирование зданий
Мы используем файлы cookie, чтобы обеспечить вам максимально удобные условия пользования нашим веб-сайтом. Вы можете узнать о наших файлах cookie и о том, как отключить файлы cookie, в нашей Политике конфиденциальности. Если вы продолжите использовать этот веб-сайт без отключения файлов cookie, мы будем считать, что вы довольны их получением. Закрывать.
Редактировать эту статью
Последняя редакция 25 Сен 2020
См. вся история
Теплопроводность (иногда называемая значением k или лямбда-значением (λ)) — это мера скорости, с которой разница температур передается через материал. Чем ниже теплопроводность материала, тем медленнее скорость, с которой разница температур передается через него, и, следовательно, тем эффективнее он как изолятор. В широком смысле, чем ниже теплопроводность ткани здания, тем меньше энергии требуется для поддержания комфортных условий внутри.
Теплопроводность является основным свойством материала, не зависящим от толщины. Измеряется в ваттах на метр-кельвин (Вт/мК).
Термическое сопротивление слоев ткани здания (R измеряется в м²K/Вт) можно рассчитать исходя из толщины каждого слоя / теплопроводность этого слоя.
Значение U элемента здания может быть рассчитано как сумма термических сопротивлений (значения R) слоев, из которых состоит элемент, плюс сопротивление его внутренней и внешней поверхности (Ri и Ro).
Значение U = 1 / (ΣR + Ri + Ro)
Значения U (иногда называемые коэффициентами теплопередачи или коэффициентами теплопередачи) используются для измерения того, насколько эффективно элементы строительной ткани являются изоляторами.
Стандартами для измерения теплопроводности являются BS EN 12664, BS EN 12667 и BS EN 12939. В отсутствие значений, предоставленных производителями продуктов после испытаний теплопроводности , данные теплопроводности получены из BS EN 12524 Строительные материалы и изделия. Гигротермические свойства.
Значения теплопроводности типичных строительных материалов показаны ниже.
Материал | Вт/мК |
Блоки (светлые) | 0,38 |
Блоки (средние) | 0,51 |
Блоки (плотные) | 1,63 |
Кирпич (открытый) | 0,84 |
Кирпич (защищенный) | 0,62 |
ДСП | 0,15 |
Бетон (пористый) | 0,16 |
Бетон (плотный) | 1,4 |
одеяло из стекловолокна | 0,033 |
стекло | 1,05 |
пеностеклянный заполнитель (сухой) | 0,08 |
пеньковые плиты | 0,40 |
конопляный бетон | 0,25 |
минеральная вата | 0,038 |
раствор | 0,80 |
фенольная пена (PIR) | 0,020 |
гипс (гипс) | 0,46 |
гипсокартон (гипс) | 0,16 |
пенополистирол | 0,032 |
пенополиуретан (PUR) | 0,025 |
штукатурка (песок/цемент) | 0,50 |
стяжка (цемент/песок) | 0,41 |
сталь | 16 — 80 |
камень (известняк) | 1,30 |
камень (песчаник) | 1,50 |
камень (гранит) | 1,7 — 4,0 |
каменная крошка | 0,96 |
тюк соломы | 0,09 |
лесоматериалы (хвойные породы) | 0,14 |
древесина (лиственная древесина — обычно используется) | 0,14 — 0,17 |
древесноволокнистая плита | 0,11 |
- Условные обозначения для расчета коэффициентов линейной теплопередачи и температурных коэффициентов.
- г-значение.
- Теплопередача.
- Изоляция.
- k-значение.
- Ограничение параметров ткани.
- Значение R.
- Термический допуск.
- Термическая масса.
- Значение U.
- Условные обозначения U-значения на практике: рабочие примеры с использованием BR 443.
- Поделиться
- Добавить комментарий
- Отправьте нам отзыв
- Посмотреть история комментариев
Тепловые свойства неметаллов
Связанные ресурсы: теплопередача
Тепловые свойства неметаллов
Проектирование и проектирование теплопередачи
Инженерные металлы и материалы, Теплопроводность 900 Обзор
Термические свойства неметаллов
Проводимость: теплопередача происходит с меньшей скоростью через материалы с низкой теплопроводностью, чем через материалы с высокой теплопроводностью.
Соответственно, материалы с высокой теплопроводностью широко используются в радиаторах, а материалы с низкой теплопроводностью используются в качестве теплоизоляции. Теплопроводность материала может зависеть от температуры. Величина, обратная теплопроводности, называется термическим сопротивлением.Плотность: Плотность или, точнее, объемная массовая плотность вещества – это его масса на единицу объема.
Удельная теплоемкость: Теплота, необходимая для повышения температуры единицы массы данного вещества на заданную величину (обычно на один градус).
Материал | Проводимость | Плотность | Удельная теплоемкость |
АБС-пластик | 0,25 | 1,014 x 10 3 | 1,26 x 10 3 |
Ацетали | 0,3 | 1,42 x 10 3 | 1,5 x 10 3 |
Акрил | 0,06 | 1,19 x 10 3 | 1,5 x 10 3 |
Алкиды | 0,85 | 2,0 x 10 3 | 1,3 x 10 3 |
Глинозем, 96% | 21,0 | 3,8 x 10 3 | 880,0 |
Глинозем, чистый | 37,0 | 3,9 x 10 3 | 880,0 |
Асбест, асбестовые листы | 0,166 | — | — |
Асбест, цемент | 2,08 | — | — |
Асбест, цементные плиты | 0,74 | — | — |
Асбест, рифленый, 4 слоя/дюйм | 0,087 | — | — |
Асбест, войлок, 20 лм/дюйм | 0,078 | — | — |
Асбест, войлок, 40 лм/дюйм | 0,057 | — | — |
Асбест, неплотно упакованный | 0,154 | 520,0 | — |
Асфальт | 0,75 | — | — |
Бакелит | 0,19 | — | — |
Бальзамовая шерсть 2,2 фунта/фут 3 | 0,04 | 35,0 | — |
Бериллия, 99,5% | 197,3 | — | — |
Кирпич, Строительный кирпич | 0,69 | 1,6 x 10 3 | — |
Кирпич, карборундовый кирпич | 18,5 | — | — |
Кирпич, Хромовый кирпич | 2,32 | 3,0 x 10 3 | — |
Кирпич, Диатомит | 0,24 | — | — |
Кирпич, лицевой кирпич | 1,32 | 2,0 x 10 3 | — |
Кирпич шамотный | 1,04 | 2,0 x 10 3 | — |
Кирпич, магнезит | 3,81 | — | — |
Углерод | 6,92 | — | — |
Картон, Целотекс | 0,048 | — | — |
Картон, гофрированный | 0,064 | — | — |
Цемент, Раствор | 1,16 | — | — |
Цемент, портланд | 0,29 | 1,5 x 10 3 | — |
Бетон, пепел | 0,76 | — | — |
Бетон, камень 1-2-4 смесь | 1,37 | 2,1 x 10 3 | — |
Пробка, пробковый картон, 10 фунтов/фут 3 | 0,043 | 160,0 | — |
Пробка молотая | 0,043 | 150,0 | — |
Пробка регранулированная | 0,045 | 80,0 | — |
Алмаз, пленка | 700,0 | 3,5 x 10 3 | 2,0 x 10 3 |
Алмаз, тип IIA | 2,0 x 10 3 | — | — |
Алмаз, тип IIB | 1,3 x 10 3 | — | — |
Диатомит | 0,061 | 320,0 | — |
E-стекловолокно | 0,89 | 2,54 x 10 3 | 820,0 |
Эпоксидная смола, высоконаполненная | 2,163 | — | — |
Эпоксидная смола, без наполнителя | 0,207 | — | — |
Войлок, волосы | 0,036 | 265,0 | — |
Войлок, шерсть | 0,052 | 330,0 | — |
Изоляционная плита из волокна | 0,048 | 240,0 | — |
FR4 Эпоксидное стекло, 1 унция меди | 9. |