Коллектор солнечный: Солнечные коллекторы для отопления и горячего водоснабжения

Солнечные коллекторы для отопления и горячего водоснабжения

Сортировать по позиции: низкие позиции выше

Горячее водоснабжение 200 литров

Скидка 10%

Объем 200 л
Бак Нерж. сталь
Кол-во трубок 30 шт
Тип коллектора Вакуумный
Производитель SILA
Вес 161 кг

Цена

140 401 руб

156 001 руб

Комплект солнечного отопления 320D/60R5

Скидка 10%

Объем 320 л
Бак Нерж. сталь
Кол-во трубок 60 шт
Тип коллектора Вакуумный
Производитель SILA
Вес

Цена

216 284 руб

240 316 руб

Комплект солнечного отопления 500D/90R5

Скидка 10%

Объем 500 л
Бак Нерж. сталь
Кол-во трубок 90 шт
Тип коллектора Вакуумный
Производитель SILA
Вес

Цена

296 438 руб

329 376 руб

Подогрев бассейна 18 м3

Скидка 10%

Площадь бассейна 12 м2
Объем бассейна 18 м3
Тип коллектора Плоский
Кол-во трубок Абсорбер
Производитель SILA
Вес 120 кг

Цена

103 609 руб

115 121 руб

Подогрев бассейна 12 м3

Скидка 10%

Площадь бассейна 8 м2
Объем бассейна 12 м3
Тип коллектора Вакуумный
Кол-во трубок 30 шт
Производитель SILA
Вес 95 кг

Цена

86 461 руб

96 068 руб

Подогрев бассейна 24 м3

Скидка 10%

Площадь бассейна 16 м2
Объем бассейна 24 м3
Тип коллектора Вакуумный
Кол-во трубок 60 шт
Производитель SILA
Вес 184 кг

Цена

145 591 руб

161 768 руб

Подогрев бассейна 36 м3

Скидка 10%

Площадь бассейна 24 м2
Объем бассейна 36 м3
Тип коллектора Вакуумный
Кол-во трубок 90 шт
Производитель SILA
Вес 273 кг

Цена

204 721 руб

227 468 руб

Вакуумный коллектор SILA 20R5

Кол-во трубок 20 шт
Конденсатор 14 мм
Пл-дь апертуры 1,87 м2
Объем теплоносител 1,2 л
Габариты 1610х1980х110 мм
Вес 71 кг

Цена

48 034 руб

Солнечный коллектор SILA 30R5

Кол-во трубок 30 шт
Конденсатор 14 мм
Пл-дь апертуры 2,79 м2
Объем теплоносител 1,7 л
Габариты 2390х1980х110 мм
Вес 105 кг

Цена

65 700 руб

Солнечный коллектор SILA 20R1

Кол-во трубок 20 шт
Конденсатор 24 мм
Пл-дь апертуры 1,87 м2
Объем теплоносител 1,4 л
Габариты 1825х2020х150 мм
Вес 73 кг

Цена

58 473 руб

Солнечный коллектор SILA 30R1

Кол-во трубок 30 шт
Конденсатор 24 мм
Пл-дь апертуры 2,79 м2
Объем теплоносител 2,3 л
Габариты 2655х2020х150 мм
Вес 106 кг

Цена

83 731 руб

Солнечные коллекторы.

Часто задаваемые вопросы.

 

1. Могут ли солнечные водонагреватели являться конкурентоспособной альтернативой газа или электричества?

Солнечная энергия не должна рассматриваться в качестве альтернативы газа или электричества, скорее в качестве дополнения к ним. Она не может полностью заменить потребность в газе или электрическом отоплении, поскольку есть дни с недостаточным уровнем солнечного освещения. Правильный расчёт системы, солнечного нагрева воды, может обеспечить 60% -70% от потребности горячей воды.

Можно точно утверждать что, гелиосистема будет выгодна в том случае, если на объекте отсутствует газ или нагрев воды происходит за счет электричества.

 

2. В течение какого срока солнечный коллектор сможет окупить мои инвестиции?

Для семи из 3-5 человек, стоимость гелиосистемы будет схожа со стоимостью газовой или электрической системой нагрева воды. Сроки окупаемости напрямую зависят от того, в каком колличестве будет потребляться вода, нагретая солнечным коллектором и размера системы.

Эсли на объекте нагрев воды осуществляется за счет электричества, то срок окупаемости будет от 1 года до 2 лет, причем необходимо учитывать, что и работоспособность электрокотлов, электробойлеров и другого отопительного оборудование имеет не такой уж большой срок службы, в отличие от гелиосистемы, которая может проработать не менее 20-25 лет без замены главных и дорогостоящих частей системы. Работая совместно с действующей системой нагрева воды, солнечные коллектора могут экономить до 75% топлива или электроэнергии в осенне-весенний период.

 

3. Могут ли солнечные коллекторы быть использованы в холодных условиях?

Да. Наши вакуумные трубчатые коллекторы могут использоваться при очень низких температурах, в солнечных системах водонагрева, установленных в регионах России, температура в которых достигает -45°C. Удивительно, но даже при этих температурах система может производить горячую воду с хорошей эффективностью за счет вакуума в трубках коллекторов, который является идеальным теплоизолятором. В яркий солнечный день, эффективность коллектора будет примерно одинаковой как в зимний период времени, так и в летний.

 

 

4. Что произойдет, если целостность одной из вакуумных трубок нарушится?

Вакуумные трубки достаточно прочные, и их нелегко разбить, но если это всё-таки произошло, это с лёгкостью решается заменой вакуумной трубки на новую. Хотя наши солнечные коллекторы обладают способностью работать с некоторым количеством повреждённых трубок, рекомендуется повреждённые трубки немедленно заменить, чтобы удерживать эффективность солнечного коллектора на должном уровне. Запасные трубки Вы всегда можете приобрести в нашем магазине.

 

5. Будет ли вода нагреваться в пасмурный день?

Да. Несмотря на то, что тепловая мощность солнечного коллектора снижается в пасмурные дни, поглощаемой энергии хватает для нагрева воды. Если это, по большей степени, туманный день или дождь, то может потребоваться больше ресурсов газового или электрического нагрева, чтобы сохранить температуру воды оптимальной для использования. Солнечная система нагрева воды является автоматизированной, так что вам не придется беспокоиться о нехватке горячей воды в дождливый день.

За своевременным включением котлов, ТЭНов и др нагревательных приборов следит контроллер гелиосистемы.

 

6. Могу ли я использовать солнечный коллектор с системой горячего водоснабжения, которая у меня уже есть?

ДА. Клапаны попросту модернизированы, и они зачастую могут быть использованы, чтобы позволить солнечной энергии подключаться к существующей подаче холодной воды. Если ваш бак не может принять солнечную энергию напрямую, вы можете установить дополнительный накопительный бак для предварительного нагрева холодной воды перед входом в уже существующий. Любая действующая система отопления и водоснабжения может быть доработана гелиосистемой без глобальной реконструкции котельной. Действующая котельная прекрасно будет работать совместно с гелиосистемой, причем экономия топлива и электроэнергии традиционной котельной будет значительной.

 

 

7. Могут ли солнечные коллекторы быть установлены на плоской поверхности?

Да. Они могут быть установлены на плоской крыше или на земле с помощью алюминиевых опорных подставок. Для оптимальной работы солнечного коллектора, его следует установить под углом 45 градусов, чтобы гарантировать оптимальную работу тепловых трубок.

 

8. Как я могу защитить свою солнечную систему при минусовых температурах?

Если ваша солнечная система нагрева воды работает в регионах с минусовыми температурами, то Вам следует принять меры по защите от замерзания. Самым простым способом предотвращения замерзания является использование солнечного контроллера с настройками низких температур. Таким образом, когда температура падает ниже определенной заранее установленной температуры (5°C), насос будет циркулировать и нагревать коллектор водой снизу из резервуара. Насос будет работать сессионно, частота сессий которого зависит от температуры наружного воздуха. В особо холодных регионах целесообразно использовать замкнутый контур с помощью пропиленгликоля, температура замерзания которого ниже 30 градусов.

 

9. Может ли солнечный коллектор стать причиной возникновения пожара во время жаркой и засушливой погоды?

Нет. Все компоненты наших тепловых солнечных коллекторов рассчитаны на воздействие высоких температур и не воспламеняются, так что даже при сильном солнечном свете система нагрева воды не загорится и не подожжёт сухой материал. Даже самым жарким летом к вакуумным трубкам можно прикоснуться и не обжечься, т. к. вся температура находится в самой трубке, за вакуумом.

 

 

10. Может ли солнечный коллектор нагревать воду до достаточно высокой температуры?

Да, в хорошую погоду коллектор может довести воду до кипения. Как правило, это не является необходимым, поэтому система должна быть разработана грамотно. Нелогично доводить воду до кипения в домашних условиях солнечным коллектором, т. к. из за температуры близкой к кипению может произойти деформация пластиковых и резиновых уплотнителей в системе, тем самым увеличивается риск протечек. Если горячая вода не используется в течение одного дня, то на следующий день система будет сбрасывать воду через предохранительный клапан. Это пустая трата энергии и воды! Пожалуйста, используйте разумно энергию, получаемую солнечным водонагревателем, для обеспечения оптимальной производительности и минимального расхода воды.

 

11. Что требуется для обслуживания солнечного коллектора?

При нормальных обстоятельствах обслуживание не требуется. Хотя солнечные коллекторы могут работать с несколькими сломанными трубами, тепловая эффективность будет снижена незначительно. Но разбитые трубки всё же следует заменить как можно скорее.

 

12. Могут ли солнечные коллекторы быть использованы для крупномасштабного производства горячей воды?

Да. Наши солнечные тепловые коллекторы могут быть соединены последовательно или параллельно, чтобы обеспечить крупномасштабное производство горячей воды для нужд коммерческих и муниципальных организаций, таких как школы, гостиницы или офисные здания.

 

 

13. Могу ли я нагреть воду в своём бассейне или спа, используя солнечный коллектор?

Да. Вакуумные трубчатые коллекторы могут быть использованы для нагрева спа или жилого плавательного бассейна. Для любого бассейна, который необходимо нагреть, должен быть использован изолирующий защитный слой, чтобы свести к минимуму потери тепла и испарение.

 

 

14. Вакуумные трубчатые коллекторы более эффективные, чем плоские?

 

Существует небольшая разница между вакуумным трубчатым коллектором и плоским коллектором при сравнении максимальной эффективности. На самом деле, эффективность плоской пластины коллектора может быть выше трубки вакуумного коллектора, но при условиях с минимальными потерями тепла. При средних же показателях за год, вакуумный трубчатый коллектор имеет явные преимущества. Ключевыми являются следующие моменты:

 

1) Солнечные вакуумные трубки могут пассивно отслеживать положение солнца в течение дня из-за цилиндрической формы трубок. Пластина плоского солнечного коллектора обеспечивает выходной импульсной энергии в полдень, когда солнце находится в зените

2) Вакуум в трубках значительно снижает потери конвективного тепла из внутренней части трубки. Таким образом, ветра и низкие температуры оказывают намного меньшее влияние на эффективность вакуумного коллектора.

3) Вакуумные трубки прочны и долговечны, так как сделаны из сверхпрочного боросиликатного стекла. По отдельности трубки стоят недорого и сломанную легко заменить.

4) Из-за различных преимуществ вакуумной трубки коллектора над плоской пластиной коллектора, понадобится меньшее количество коллекторов, чтобы обеспечить такую же производительность нагрева. Например, в семье из 4-5 человек, как правило, потребуется резервуар с 250-300 литров воды. В зависимости от вашего местоположения, летом все 30 вакуумных трубок коллектора будут обязаны предоставлять все потребности в горячей воде и большой процент в другие сезоны.

5) Плоские солнечные коллекторы могут производить подобный выход тепла в вакуумных трубчатых коллекторах, но, как правило, исключительно в солнечных условиях. При среднем в течение всего года, тепловая мощность вакуумной трубки коллектора на квадратный метр на 25%-40% больше, чем плоской пластины коллектора.

 

Солнечные тепловые коллекторы – Управление энергетической информации США (EIA)

Отопление солнечной энергией

Люди используют солнечную тепловую энергию для многих целей, включая нагрев воды, воздуха и внутренних помещений зданий и выработку электроэнергии. Существует два основных типа систем солнечного отопления: пассивные системы и активные системы .

Пассивное солнечное отопление помещений – это когда солнце светит через окна здания и согревает интерьер. Проекты зданий, которые оптимизируют пассивное солнечное отопление (в северном полушарии), обычно имеют окна, выходящие на юг, что позволяет солнцу светить на поглощающие солнечное тепло стены или полы в здании. Солнечная энергия поглощается строительными материалами и нагревает внутренние помещения зданий за счет естественного излучения и конвекции. Оконные навесы или шторы блокируют попадание солнечных лучей в окна летом, чтобы сохранить прохладу в здании.

Системы активного солнечного отопления перемещают нагретую жидкость (воздух или жидкость) внутрь здания или в систему хранения тепла, где тепло высвобождается при необходимости. Вентиляторы или насосы перемещают жидкость через коллекторы для нагрева, затем внутрь здания или в систему хранения тепла, а затем обратно в коллектор для повторного нагрева. Активные солнечные водонагревательные системы обычно имеют резервуар для хранения нагретой солнцем воды.

Неконцентрирующие и концентрирующие и солнечные коллекторы

Неконцентрирующие солнечные коллекторы

Системы солнечной энергии, которые нагревают воду или воздух в зданиях, обычно имеют неконцентрирующие коллекторы , в которых площадь коллектора — площадь, которая перехватывает солнечное излучение, такая же, как площадь поглотителя — площадь, поглощающая солнечная энергия. Плоские коллекторы являются наиболее распространенным типом неконцентрирующих коллекторов для воды и отопления помещений в зданиях и используются, когда достаточно температуры ниже 200°F.

  • Плоская металлическая пластина, улавливающая и поглощающая солнечную энергию
  • Прозрачное покрытие, пропускающее солнечную энергию через покрытие и снижающее потери тепла от поглотителя
  • Слой изоляции на задней стороне поглотителя для снижения потерь тепла

Солнечные водонагревательные коллекторы имеют металлические трубки, прикрепленные к абсорберу. Теплоноситель прокачивается через трубы абсорбера для отвода тепла от абсорбера и передачи тепла воде в накопительном баке. Солнечные системы для нагрева воды в бассейне обычно имеют плоские коллекторы, которые не имеют крышек или изоляции для поглотителя, а вода в бассейне циркулирует из бассейна через коллекторы обратно в бассейн.

Солнечные системы воздушного отопления используют вентиляторы для перемещения воздуха через плоские коллекторы внутрь зданий.

Солнечные концентраторы

Площадь перехвата солнечного излучения на концентрирующих коллекторах больше, иногда в сотни раз, чем площадь поглотителя. Коллектор с высокой отражающей способностью фокусирует или концентрирует солнечную энергию на поглотителе. Коллектор обычно перемещается в течение дня, чтобы поддерживать высокую степень концентрации на поглотителе. Солнечные тепловые электростанции используют концентрирующие системы солнечных коллекторов, потому что они могут производить высокотемпературное тепло, необходимое для выработки электроэнергии.

Последнее обновление: 27 декабря 2022 г.

Солнечный коллектор — Энергетическое образование

Энергетическое образование

Меню навигации

ИСТОЧНИКИ ЭНЕРГИИ

ИСПОЛЬЗОВАНИЕ ЭНЕРГИИ

ЭНЕРГЕТИЧЕСКОЕ ВОЗДЕЙСТВИЕ

ИНДЕКС

Поиск

Рис. 1. Солнечный коллектор. [1]

Солнечный коллектор — это устройство, собирающее и/или концентрирующее солнечное излучение. Эти устройства в основном используются для активного солнечного нагрева и позволяют нагревать воду для личного пользования. [2] Эти коллекторы обычно монтируются на крыше и должны быть очень прочными, поскольку они подвергаются воздействию различных погодных условий. [2]

Использование этих солнечных коллекторов представляет собой альтернативу традиционному нагреву воды для бытовых нужд с помощью водонагревателя, потенциально снижая затраты на электроэнергию с течением времени. Как и в бытовых условиях, большое количество этих коллекторов можно объединить в массив и использовать для выработки электроэнергии на солнечных тепловых электростанциях.

Типы солнечных коллекторов

Существует множество различных типов солнечных коллекторов, но все они сконструированы с учетом одной и той же основной предпосылки. В общем, есть некий материал, который используется для сбора и фокусировки энергии Солнца и ее использования для нагрева воды. В простейшем из этих устройств используется черный материал, окружающий трубы, по которым течет вода. Черный материал очень хорошо поглощает солнечную радиацию, а поскольку материал нагревает окружающую воду. Это очень простая конструкция, но у коллекционеров она может быть очень сложной. Пластины-поглотители можно использовать, если нет необходимости в высоком повышении температуры, но обычно устройства, в которых используются отражающие материалы для фокусировки солнечного света, приводят к большему повышению температуры.

Плоские коллекторы

Рис. 2. Схема плоского солнечного коллектора. [3]

Эти коллекторы представляют собой просто металлические ящики с прозрачным остеклением в качестве покрытия поверх темной поглощающей пластины. Стороны и дно коллектора обычно покрыты изоляцией, чтобы свести к минимуму потери тепла в другие части коллектора. Солнечное излучение проходит через прозрачный материал остекления и попадает на поглощающую пластину. [4] Эта пластина нагревается, передавая тепло либо воде, либо воздуху, который удерживается между остеклением и пластиной поглотителя. Иногда эти поглощающие пластины окрашиваются специальными покрытиями, предназначенными для поглощения и сохранения тепла лучше, чем традиционная черная краска. Эти пластины обычно изготавливаются из металла, который является хорошим проводником, обычно из меди или алюминия. [4]

Коллекторы с вакуумными трубками

Рис. 3. Схема солнечного коллектора с вакуумными трубками. [5]

В этом типе солнечного коллектора используется ряд вакуумных трубок для нагрева воды для использования. [2] В этих трубках используется вакуум или откачанное пространство, чтобы улавливать солнечную энергию и минимизировать потери тепла в окружающую среду. У них есть внутренняя металлическая трубка, действующая как поглотительная пластина, которая соединена с тепловой трубой для переноса тепла, собранного от Солнца, к воде. Эта тепловая трубка, по сути, представляет собой трубу, в которой жидкость находится под особым давлением. [6] При таком давлении в «горячем» конце трубы находится кипящая жидкость, а в «холодном» конце — конденсирующийся пар. Это позволяет тепловой энергии более эффективно перемещаться от одного конца трубы к другому. Как только тепло от Солнца перемещается от горячего конца тепловой трубы к конденсирующему концу, тепловая энергия передается в нагреваемую воду для использования. [2]

Коллекторы с линейным фокусом

Рис. 4. Схема солнечного коллектора с линейным фокусом. [7]

В этих коллекторах, иногда называемых параболическими желобами, используются материалы с высокой отражающей способностью для сбора и концентрации тепловой энергии солнечного излучения. [8] Эти коллекторы состоят из отражающих секций параболической формы, соединенных в длинный желоб. [2] Труба, по которой течет вода, помещается в центр этого желоба так, чтобы солнечный свет, собранный отражающим материалом, фокусировался на трубе, нагревая ее содержимое. Это коллекторы очень высокой мощности, поэтому они обычно используются для выработки пара для солнечных тепловых электростанций и не используются в жилых помещениях. Эти желоба могут быть чрезвычайно эффективными для получения тепла от Солнца, особенно те, которые могут вращаться, отслеживая Солнце в небе, чтобы обеспечить максимальный сбор солнечного света. [2]

Точечные коллекторы

Рисунок 5. Точечный солнечный коллектор. [9]

Эти коллекторы представляют собой большие параболические тарелки, состоящие из отражающего материала, которые фокусируют солнечную энергию в одной точке. Тепло от этих коллекторов обычно используется для привода двигателей Стирлинга. [2] Хотя они очень эффективны в сборе солнечного света, они должны активно отслеживать Солнце по небу, чтобы иметь хоть какую-то ценность. Эти тарелки могут работать по отдельности или объединяться в массив, чтобы собирать еще больше солнечной энергии. [10]

Коллекторы с точечным фокусом и аналогичные устройства также могут использоваться для концентрации солнечной энергии для использования с концентрированными фотоэлектрическими элементами. В этом случае вместо производства тепла энергия Солнца преобразуется непосредственно в электричество с помощью высокоэффективных фотоэлектрических элементов, разработанных специально для использования концентрированной солнечной энергии.

Для дополнительной информации

Для получения дополнительной информации см. соответствующие страницы ниже:

  • Солнечная энергия
  • Солнечный дымоход
  • Солнечная тепловая электростанция
  • Фотогальванический элемент
  • Или исследуйте случайную страницу!

Ссылки

  1. ↑ Wikimedia Commons [Online], доступно: https://commons.wikimedia.org/wiki/File:Flatplate.png
  2. Г. Бойль. Возобновляемые источники энергии: энергия для устойчивого будущего , 2-е изд. Оксфорд, Великобритания: Издательство Оксфордского университета, 2004.
  3. ↑ Викисклад. (10 августа 2015 г.). Плоский застекленный коллектор [Онлайн]. Доступно: https://upload.wikimedia.
    org/wikipedia/commons/4/40/Flat_plate_glazed_collector.gif
  4. 4.0 4.1 Фласолар. (10 августа 2015 г.). Плоские солнечные коллекторы [Онлайн]. Доступно: http://www.flasolar.com/active_dhw_flat_plate.htm
  5. ↑ Викисклад. (10 августа 2015 г.). Вакуумный трубчатый коллектор [Онлайн]. Доступно: https://upload.wikimedia.org/wikipedia/commons/4/47/Evacuated_tube_collector.gif
  6. ↑ RedSun. (10 августа 2015 г.). Вакуумный трубчатый коллектор [Онлайн]. Доступно: http://www.redsunin.com/products/evacuated-tube-collector-solar-water-heaters/
  7. ↑ >Викисклад. (10 августа 2015 г.). Line Focus Collector [Онлайн]. Доступно: https://upload.wikimedia.org/wikipedia/commons/thumb/a/ad/Solarpipe-scheme.svg/2000px-Solarpipe-scheme.svg.png
  8. ↑ Министерство энергетики США. (10 августа 2015 г.). Солнечный коллектор Line Focus [Онлайн]. Доступно: https://www.eeremultimedia.energy.gov/solar/photographs/line_focus_solar_collector
  9. ↑ Викисклад.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *