Схема Подключения Электродвигателя Через Конденсатор
Затем мотор работает как асинхронный двигатель на основной обмотке. Расчет емкости должен производиться с учетом номинальной мощности ЭД.
Найти требуемую емкость опытным путем — самое правильное решение.
Для запуска электромашины этого типа, может быть использован пусковой резистор. Невозможно точно знать коэффициент мощности и мощность двигателя, а следовательно и силу тока.
Как просто подключить трехфазный двигатель треугольником и звездой в сеть 220, через конденсатор.
При необходимости иметь в процессе эксплуатации большую мощность и КПД применяют схему с рабочим конденсатором — обычно в однофазном конденсаторном двигателе для бытовых нужд небольшой мощности, в пределах 1 кВт.
В этом примере направление вращения, вы уже не измените, какое есть такое и будет.
Подключается все просто, на толстые провода подается в. Они играют роль шунтов, однако действую не мгновенно.
Эти соединения и будут выводами двигателя для подключения к электропитанию. Соответственно, первую схему используют в устройствах с тяжелым пуском, а с рабочим конденсором — если нужны хорошие рабочие характеристики.
Различные виды двигателей использовались для испытаний на пригодность выполнять функции генератора. В документации описаны способы подключения конденсаторов для реверсирования двигателя.
Подключение конденсатора. Как подключить конденсатор к электродвигателю. Схема.
Подключение
Но тогда параметры элементов цепи, которые зависят от мощности и схемы соединения обмоток будет необходимо менять, что не очень удобно в эксплуатации. Модель с мощностью 3 кВт будет стоить уже около 10 тыс. Подключение производится по этой схеме. Подключение трехфазного двигателя по схеме треугольник Распределительная коробка трехфазного двигателя с положением перемычек для подключения по схеме треугольник В распределительной коробке контакты обычно сдвинуты — напротив С1 не С4, а С6, напротив С2 — С4.
Для возможности работы электродвигателя в однофазной сети вольт необходимо для начала его обмотки переключить на схему треугольник.
Величина рабочей емкости конденсатора определяется конструктивным исполнением двигателя.
Называют их конденсаторными.
Нужно, чтобы номинальное напряжение конденсатора было равно или больше расчетного.
Тем не менее, бесконденсаторный пуск 3-х фазного мотора от однофазной сети возможен, благодаря применению двунаправленных ключей, срабатывающих на короткие промежутки времени.
Чтобы исключить межвитковое короткое замыкание, используют термореле, которое при достижении критической температуры отключает дополнительную обмотку. Не все трехфазные электродвигатели способны хорошо работать в однофазных сетях, однако большинство из них справляются с этой задачей вполне удовлетворительно — если не считать потери мощности.
Навигация по записям
Существуют и другие схемы для подключения двигателя через конденсатор, но эти вопросы рассмотрим в другой раз в другой статье.
Заключение Асинхронники на В широко применяются в быту. В качестве основы для статора и ротора используется электротехническая сталь
Все эти схемы успешно применяются при эксплуатации асинхронных однофазных двигателей.
Принцип схемы там очень прост — изменение направления тока в рабочей обмотке С1-С2. А они есть не у всех, даже у электриков. От однофазной сети трехфазные устройства работают с помощью емкостных или индуктивно-емкостных цепей, сдвигающих фазу. Последний предназначен для отключения дополнительной обмотки от источника питания после запуска.
Точные значения потери мощности зависят от схемы подключения, условий работы двигателя, величины емкости фазосдвигающего конденсатора. Применение этого типа однофазных двигателей, как правило, ограничивается прямым приводом таких нагрузок, как вентиляторы, воздуходувки или насосы, которые не требуют высокого пускового крутящего момента. Главную функцию берут на себя рабочие конденсаторы.
Принцип действия и схема запуска
Конденсаторы, которые находятся в цепи, могут быть заряжены. Требуемый момент вращения обеспечивается за счет смещения фазных токов в обмотках АД. И во многих случаях электрооборудование приводится в движение трехфазными двигателями.
Если посмотреть на табличку, где через дробь указываются два тока, то это будет меньший из них. Рабочий конденсатор подключен постоянно в цепи обмоток, пусковой через выключатель запуска замыкается кратковременно Установка и подбор компонентов Конденсаторы имеют немалые габариты, поэтому не всегда помещаются во внутреннюю часть борно распределительная коробка на корпусе электродвигателя. Сразу же заниматься расчетами схемы подключения не имеет смысла.
Емкость пускового конденсатора должна быть в 2,5 — 3 раза больше рабочего. Если двигатель легко запускается и мощности его достаточно для работы, то все подобрано правильно. Подключается все просто, на толстые провода подается в.
подключение двигателя 380 на 220 вольт
Для чего нужен конденсатор
Например, если ток равен 1. Подключение трехфазного двигателя к однофазной сети Частота вращения трехфазного двигателя, работающего от однофазной сети, остается почти такой же, как и при его включении в трехфазную сеть.
В качестве кнопки так же можно использовать обычный выключатель. Как правильно подобрать конденсаторы Теоретически предполагается осуществлять расчет необходимой емкости путем деления силы тока на напряжение и полученную величину умножить на коэффициент.
Если ротор движется в нужном направлении, каких-либо дополнительных манипуляций производить не нужно. Он включается параллельно рабочему на непродолжительное время пуска электродвигателя. На какой из них разницы нет, направление вращения от этого не зависит.
Мы не будем изменять направление тока в той или иной обмотке. Трехфазные агрегаты на практике получили большее распространение, чем однофазные. Но это напряжение переменного тока, а для выбора конденсаторов надо знать напряжение постоянного тока. Рабочая обмотка однофазного двигателя всегда имеет сечение провода большее, а следовательно ее сопротивление будет меньше.
Еще по теме: Составление сметы и плана электромонтажных работ
Это тоже одна из разновидностей обмоток. При подключении двигателя к однофазной сети, ток по обмоткам течет, но вращающегося магнитного поля нет, ротор не крутится. Она всегда работает короткое время и служит для запуска двигателя. Напряжение на них может достигать больших значений.
Первая задача решается «прозваниванием» всех проводов тестером замером сопротивления. Принцип действия используется в насосном оборудовании, холодильных установках, воздушных компрессорах и т. Чтобы исключить межвитковое короткое замыкание, используют термореле, которое при достижении критической температуры отключает дополнительную обмотку. Статор электродвигателя.
На этом все. Через щели в корпусе внутрь устройства втянуты сторонние вещества.
Коллекторный двигатель же двигатель от стиральной машины подключить очень просто. Тепловое реле отключает обе фазы обмотки, если они нагреваются выше допустимого. Знать устройство пусковой и рабочей обмоток однофазного двигателя надо обязательно. Были сделаны выводы, что скорость вращения ротора прибора, который используется в качестве генератора, не зависит от напряжения, которое подано на питающую однофазную сеть. Значит, вычислили мы ёмкость и следующим шагом нам надо знать напряжение на конденсаторе.
Конденсаторы для асинхронных двигателей | Насосы и принадлежности
Добрый день, уважаемые читатели блога nasos-pump.ru
Конденсаторы
В рубрике «Принадлежности» рассмотрим конденсаторы для однофазных асинхронных двигателей переменного тока. У трехфазных двигателей при подключении к сети питания возникает вращающееся магнитное поле, за счет которого и происходит запуск двигателя. В отличие от трехфазных двигателей, у однофазных в статоре имеется две обмотки рабочая и пусковая. Рабочая обмотка подключена к однофазной сети питания напрямую, а пусковая последовательно с конденсатором. Конденсатор необходим для создания сдвига фаз между токами рабочей и пусковой обмоток. Самый большой вращающий момент в двигателе возникает тогда, когда сдвиг фаз токов обмоток достигает 90°, а их амплитуды создают круговое вращающееся поле. Конденсатор является элементом электрической цепи и предназначен для использования его ёмкости. Он состоит из двух электродов или правильней обкладок, которые разделёны диэлектриком. Конденсаторы имеют возможность накапливать электрическую энергию. В Международной системе единиц СИ за единицу ёмкости принимается ёмкость конденсатора, у которого на один вольт возрастает разность потенциалов при сообщении ему заряда в один кулон (Кл). Емкость конденсаторов измеряется в фарадах (Ф). Емкость в одну фараду очень большая. На практике используются более мелкие единицы измерения микрофарады (мкФ) одна мкФ равняется 10
Основные электрические параметры и характеристики
К основным электрическим параметрам конденсаторов для асинхронных двигателей
относятся: номинальная емкость конденсатора и номинальное рабочее напряжение. Кроме этих параметров существует еще температурный коэффициент емкости (ТКЕ), тангенс угла потерь (tgd), электрическое сопротивление изоляции.Емкость конденсатора. Свойство конденсатора накапливать и удерживать электрический заряд характеризуется его емкостью. Емкость (С) определяется как отношение накопленного в конденсаторе заряда (q), к разности потенциалов на его электродах или приложенному напряжению (U). Емкость конденсаторов зависит от размеров и формы электродов, их расположения друг относительно друга, а также материала диэлектрика который разделяет электроды. Чем емкость конденсатора больше, тем и накопленный им заряд больше Удельная ёмкость конденсатора – выражает отношение его ёмкости к объёму. Номинальная ёмкость конденсатора – это ёмкость, которую имеет конденсатор согласно нормативной документации. Фактическая же ёмкость каждого отдельного конденсатора отличается от номинальной, но она должна быть в пределах допускаемых отклонений. Значения номинальной ёмкости и ее допустимое отклонение в различных типах конденсаторов постоянной ёмкости установлена стандартом.
Номинальное напряжение – это то значение напряжения обозначенное на конденсаторе, при котором он работает в заданных условиях длительное время и при этом сохраняет свои параметры в допустимых пределах. Значение номинального напряжения зависит от свойств используемых материалов и конструкции конденсаторов. В процессе эксплуатации рабочее напряжение на конденсаторе не должно превышать номинальное. У многих типов конденсаторов при увеличении температуры допустимое номинальное напряжение снижается.
Температурный коэффициент емкости (ТКЕ) – это параметр выражающий линейную зависимостью емкости конденсатора от температуры внешней среды. На практике ТКЕ определятся как относительное изменение емкости при изменении температуры на 1°С. Если эта зависимость нелинейная, то ТКЕ конденсатора характеризуется относительным изменением емкости при переходе от нормальной температуры (20±5°С) к допустимому значению рабочей температуры. Для конденсаторов используемых в однофазных двигателях этот параметр важный и должен быть как можно меньше. Ведь в процессе эксплуатации двигателя его температура повышается, а конденсатор находится непосредственно на двигателе в конденсаторной коробке.
Тангенс угла потерь (tgd). Потеря накопленной энергии в конденсаторе обусловлена потерями в диэлектрике и его обкладках. Когда через конденсатор протекает переменный ток, то векторы тока и напряжения сдвинуты относительно друг друга на угол (d). Этот угол (d) и называют углом диэлектрических потерь. Если потери отсутствуют, то d=0. Тангенс угла потерь это отношение активной мощности (Pа) к реактивной (Pр) при напряжении синусоидальной формы определённой частоты.
Электрическое сопротивление изоляции – электрическое сопротивление постоянному току, определяется как отношение приложенного к конденсатору напряжения (U) , к току утечки (Iут), или проводимости. Качество применяемого диэлектрика и характеризует сопротивление изоляции. Для конденсатора с большой емкостью сопротивление изоляции обратно пропорционально его площади обкладок, или его ёмкости.
На конденсаторы оказывает очень сильное воздействие влага. Асинхронные электродвигатели используемые в насосном оборудовании перекачивают воду, и высока вероятность попадания влаги на двигатель и в конденсаторную коробку. Воздействие влаги приводит к снижению сопротивления изоляции (возрастает вероятность пробоя), увеличению тангенса угла потерь, коррозии металлических элементов конденсатора.
Кроме всего при эксплуатации двигателя на конденсаторы воздействует различного вида механические нагрузки: вибрация, удары, ускорение и т.д. Как следствие могут появится обрыв выводов, трещины и уменьшение электрической прочности.
Рабочий и пусковой конденсаторы
В качестве рабочих и пусковых используются конденсаторы с оксидным диэлектриком (ранее они назвались электролитическими) Рабочие и пусковые конденсаторы для асинхронных двигателей включаются в сеть переменного тока, и они должны быть неполярными. Они имеют сравнительно большое 450 вольт для оксидных конденсаторов рабочее напряжение, которое в два раза превышает напряжение промышленной сети. На практике применяются конденсаторы с емкостью порядка десятков и сотен микрофарад. Как мы говорили выше, рабочий конденсатор используется для получения вращающего магнитного поля. Пусковая же емкость используется для получения магнитного поля, необходимого для повышения пускового момента электродвигателя. Пусковой конденсатор подключается параллельно рабочему через центробежный выключатель. Когда есть пусковая емкость вращающееся магнитное поле асинхронного двигателя в момент пуска приближается к круговому, а магнитный поток увеличивается. Это повышает пусковой момент и улучшает характеристики двигателя. При достижении асинхронным двигателем оборотов достаточных для отключения центробежного выключателя, пусковая емкость отключается и двигатель остается в работе только с рабочим конденсатором. Схема включения рабочего и пускового конденсаторов приведены на (Рис. 1).
Схема с рабочим и пусковым конденсаторами
В таблице приведены обособленные характеристики рабочих и пусковых конденсаторов для асинхронных двигателей.
| РАБОЧИЙ | ПУСКОВОЙ |
Назначение | Для асинхронных электродвигателей | Для асинхронных электродвигателей |
Схема подключения | Последовательно с пусковой обмоткой электродвигателя | Параллельно рабочему конденсатору |
В качестве | Фазосмещающего элемента | Фазосмещающего элемента |
Для чего | Для получения кругового вращающееся магнитного поля, необходимого для работы электродвигателя | Для получения магнитного поля, необходимого для повышения пускового момента электродвигателя |
Время включения | В процессе эксплуатации электродвигателя | В момент пуска электродвигателя |
Эксплуатация, обслуживание и ремонт
В процессе эксплуатации насосного оборудования с однофазным асинхронным двигателем особое внимание следует обращать на питающее напряжение электрической сети. В случае пониженного напряжения сети, как известно, снижается пусковой момент и частота вращения ротора, из-за увеличения скольжения. При низком напряжении увеличивается также нагрузка на рабочий конденсатор и возрастает время запуска двигателя. В случае значительного провала напряжения питания более 15% высока вероятность того, что асинхронный двигатель не запустится. Очень часто при низком напряжении выходит из строя рабочий конденсатор из-за повышенных токов и перегрева. Он расплавляется и из него вытекает электролит. Для ремонта необходимо приобрести и установить новый конденсатор соответствующей емкости. Очень часто случается, что нужного конденсатора под рукой нет. В этом случае можно подобрать требуемую емкость из двух или даже трех и четырех конденсаторов, подключив их параллельно. Здесь следует обратить внимание на рабочее напряжение, оно должно быть не ниже, чем напряжение на заводском конденсаторе. Общая емкость конденсатора(ов) должна отличаться от номинала не более чем 5%. Если установить емкость большего номинала, то двигатель запустится в работу и будет работать, но при этом начнет греться. Если с помощью клещей измерить номинальный ток двигателя, то ток будет завышен. Так как полное электрическое сопротивление цепи в обмотках двигателя состоит из активного сопротивления цепи и реактивного сопротивления обмоток двигателя и емкости, то с увеличением емкости общее сопротивление возрастает. Сдвиг фаз токов в обмотках из-за увеличения полного сопротивления электрической цепи обмоток после запуска двигателя сильно уменьшится, магнитное поле из синусоидального превратится в эллиптическое, и рабочие характеристики асинхронного двигателя очень сильно ухудшаются, снижается КПД и возрастают тепловые потери.
Иногда бывает, что вместе с конденсатором выходит из строя и пусковая обмотка однофазного двигателя. В такой ситуации стоимость ремонта резко возрастает, ибо надо не только заменить конденсатор, но еще и перемотать статор. Как известно, перемотка статора одна из самых дорогих операций при ремонте двигателя. Очень редко, но бывает и такая ситуация когда при низком напряжении выходит из строя только пусковая обмотка, а конденсатор при этом остается рабочим. Для ремонта двигателя нужно перематывать статор. Все эти ситуации с двигателем случаются при низком напряжении однофазной питающей сети. Для решения этой проблемы в идеальном случае необходим стабилизатор напряжения.
Спасибо за оказанное внимание
P.S. Понравился пост? Порекомендуйте его своим друзьям и знакомым в социальных сетях.
Еще похожие посты по данной теме:
Проверка и замена пускового конденсатора
Для чего нужен пусковой конденсатор?
Пусковой и рабочий конденсаторы служат для запуска и работы элетродвигателей работающих в однофазной сети 220 В.
Поэтому их ещё называют фазосдвигающими.
Место установки — между линией питания и пусковой обмоткой электродвигателя.
Условное обозначение конденсаторов на схемах
Графическое обозначение на схеме показано на рисунке, буквенное обозначение-С и порядковый номер по схеме.
Основные параметры конденсаторов
Ёмкость конденсатора-характеризует энергию,которую способен накопить конденсатор,а также ток который он способен пропустить через себя. Измеряется в Фарадах с множительной приставкой (нано, микро и т.д.).
Самые используемые номиналы для рабочих и пусковых конденсаторов от 1 мкФ (μF) до 100 мкФ (μF).
Номинальное напряжение конденсатора- напряжение, при котором конденсатор способен надёжно и долговременно работать, сохраняя свои параметры.
Известные производители конденсаторов указывают на его корпусе напряжение и соответствующую ему гарантированную наработку в часах,например:
- 400 В — 10000 часов
- 450 В — 5000 часов
- 500 В — 1000 часов
Проверка пускового и рабочего конденсаторов
Проверить конденсатор можно с помощью измерителя ёмкости конденсаторов, такие приборы выпускаются как отдельно, так и в составе мультиметра- универсального прибора, который может измерять много параметров. Рассмотрим проверку мультиметром.
- обесточиваем кондиционер
- разряжаем конденсатор, закоротив еговыводы
- снимаем одну из клемм (любую)
- выставляем прибор на измерение ёмкости конденсаторов
- прислоняем щупы к выводам конденсатора
- считываем с экрана значение ёмкости
У всех приборов разное обозначение режима измерения конденсаторов, основные типы ниже на картинках.
В этом мультиметре режим выбирается переключателем, его необходимо поставить в режим Fcх.Щупы включить в гнёзда с обозначением Сх.
Переключение предела измерения ёмкости ручное. Максимальное значение 100 мкФ.
У этого измерительного прибора автоматический режим, необходимо только его выбрать, как показано на картинке.
Измерительный пинцет от Mastech также автоматически измеряет ёмкость, необходимо только выбрать режим кнопкой FUNC, нажимая её, пока не появится индикация F.
Для проверки ёмкости, считываем на корпусе конденсатора её значение и ставим заведомо больший предел измерения на приборе. (Если он не автоматический)
К примеру, номинал 2,5 мкФ (μF), на приборе ставим 20 мкФ (μF).
После подсоединения щупов к выводам конденсатора ждём показаний на экране, к примеру время измерения ёмкости 40 мкФ первым прибором — менее одной секунды, вторым — более одной минуты, так что следует ждать.
Если номинал не соответствует указанному на корпусе конденсатора, то его необходимо заменить и если нужно подобрать аналог.
Замена и подбор пускового/рабочего конденсатора
Если имеется оригинальный конденсатор, то понятно, что просто-напросто необходимо поставить его на место старого и всё. Полярность не имеет значения, то есть выводы конденсатора не имеют обозначений плюс «+» и минус «-» и их можно подключить как угодно.
Категорически нельзя применять электролитические конденсаторы (узнать их можно по меньшим размерам, при той же ёмкости, и обозначению плюс и минус на корпусе). Как следствие применения — термическое разрушение. Для этих целей производители специально выпускают неполярные конденсаторы для работы в цепи переменного тока, которые имеют удобное крепление и плоские клеммы, для быстрой установки.
Если нужного номинала нет, то его можно получить параллельным соединением конденсаторов. Общая ёмкость будет равна сумме двух конденсаторов:
Собщ=С1+С2+…Сп
То есть, если соединить два конденсатора по 35 мкФ, получим общую ёмкость 70 мкФ, напряжение при котором они смогут работать будет соответствовать их номинальному напряжению.
Такая замена абсолютно равноценна одному конденсатору большей ёмкости.
Если во время замены перепутались провода, то правильное подключение можно посмотреть по схеме на корпусе или здесь: Схема подключения конденсатора к компрессору
Типы конденсаторов
Для запуска мощных двигателей компрессоров применяют маслонаполненные неполярные конденсаторы.
Корпус внутри заполнен маслом для хорошей передачи тепла на поверхность корпуса. Корпус обычно металлический, аллюминиевый.
Самые доступные конденсаторы такого типа CBB65.
Для запуска менее мощной нагрузки, например двигателей вентиляторов, используют сухие конденсаторы, корпус которых, обычно, пластмассовый.
Наиболее распространённые конденсаторы этого типа CBB60, CBB61.
Клеммы для удобства соединения сдвоенные или счетверённые.
1. Подключение асинхронного двигателя в однофазную сеть
Применение конденсаторов в асинхронных двигателях
рабочий | пусковой | |
применение | В схемах асинхронных электродвигателей | В схемах асинхронных электродвигателей |
тип подключения | Последовательно со вспомогательной обмоткой электродвигателя | Параллельно рабочему конденсатору |
в качестве | Является фазосмещающим элементом | Является фазосмещающим элементом |
назначение | Позволяет получить круговое вращающееся магнитное поле, необходимое для работы электродвигателя | Позволяет получить магнитное поле, необходимое для повышения пускового момента электродвигателя |
время включения | В процессе работы электродвигателя | В момент пуска электродвигателя |
Существуют две основные области применения конденсаторов для асинхронных электродвигателей.
1) Трёхфазный асинхронный электродвигатель, включаемый через конденсатор в однофазную сеть
В случае, когда трехфазный электродвигатель необходимо подключить к однофазной сети, существует два возможных варианта подключения: «звезда» или «треугольник», причем наиболее предпочтительным во многих случаях является вариант «треугольник».
Приблизительный расчет для данного типа соединения производится по следующей формуле:
Сраб.=k*Iф/Uсети
где:
k – коэффициент, зависящий от соединения обмоток.
Для схемы соединения «Звезда» — k=2800
Для схемы соединения «Треугольник» — k=4800
Iф – номинальный фазный ток электродвигателя, А.
Uсети – напряжение однофазной сети, В.
Для определения пусковой емкости Сп. исходят из пускового момента. В случае если пуск двигателя происходит без нагрузки, пусковая емкость не требуется.
Для получения пускового момента, близкого к номинальному, достаточно иметь пусковую емкость, определяемую соотношением Сп.=(2.5-3) Ср.
Рабочее напряжение конденсаторов должно быть в 1,5 раза выше напряжения сети.
Схема подключения
| Рис 1. Схема включения в однофазную сеть трехфазного асинхронного двигателя с обмотками статора, соединенными по схеме «звезда» (а) или «треугольник» (б):
|
2) Асинхронный электродвигатель, питаемый от однофазной сети и имеющий на статоре две обмотки, одна из которых включается в сеть непосредственно, а другая — последовательно с электрическим конденсатором для образования вращающегося магнитного поля. Конденсаторы создают сдвиг фаз между токами обмоток, оси которых сдвинуты в пространстве. Наибольший вращающий момент развивается, когда сдвиг фаз токов составляет 90°, а их амплитуды подобраны так, что вращающееся поле становится круговым. При пуске конденсаторного асинхронного двигателя оба конденсатора включены, а после его разгона один из конденсаторов отключают. Это обусловлено тем, что при номинальной частоте вращения требуется значительно меньшая емкость, чем при пуске.
Схема подключения
| Рис 2. Схема (а) и векторная диаграмма конденсаторного асинхронного двигателя:
|
Конденсаторный асинхронный электродвигатель по пусковым и рабочим характеристикам близок к трехфазному асинхронному двигателю.
Конденсаторы для насосов Kripsol | MarcoBravo
Конденсатор электродвигателя 12мкф (6601.А). Предназначен для электродвигателей насосов Kripsol. Емкость — 12 мкФ.
Конденсатор электродвигателя Kripsol. Предназначен для электродвигателей насосов Kripsol. Емкость — 20 мкФ.
Конденсатор электродвигателя Kripsol. Предназначен для электродвигателей насосов Kripsol. Емкость — 25 мкФ.
Конденсатор электродвигателя Kripsol. Предназначен для электродвигателей насосов Kripsol. Емкость — 30 мкФ.
Конденсатор электродвигателя Kripsol. Предназначен для электродвигателей насосов Kripsol. Емкость — 36 мкФ.
Конденсатор электродвигателя Kripsol. Предназначен для электродвигателей насосов Kripsol. Емкость — 40 мкФ.
В трёхфазной сети обычно есть 4 провода (3 фазы и ноль). Может быть ещё отдельный провод «земля». Но бывают и без нулевого провода. Как определить напряжение в вашей сети? В сетях 220/380 В напряжение между фазами (U1, U2 и U3) будет равно 380 В, а напряжение между нолём и фазой (U4, U5 и U6) будет равно 220 В. Возможные схемы подключения обмоток электродвигателейАсинхронные электродвигатели имеют три обмотки, каждая из которых имеет начало и конец и соответствует своей фазе. Системы обозначения обмоток могут быть разными. В современных электродвигателях принята система обозначения обмоток U, V и W, а их выводы обозначают цифрой 1 начало обмотки и цифрой 2 – её конец, то есть обмотка U имеет два вывода: U1 и U2, обмотка V – V1 и V2, а обмотка W – W1 и W2. Однако до сих пор ещё в эксплуатации находятся старые асинхронные двигатели, сделанные во времена СССР и имеющие старую советскую систему маркировки. В них начала обмоток обозначаются C1, C2, C3, а концы — C4, C5, C6. Значит, первая обмотка имеет выводы C1 и C4, вторая — C2 и C5, а третья — C3 и C6. Обмотки трёхфазных электродвигателей можно подключать по двум различным схемам: звездой (Y) или треугольником (Δ). Подключение электродвигателя по схеме звездаНазвание схемы подключения обусловлено тем, что при соединении обмоток по данной схеме (см. рисунок справа), визуально это напоминает трёхлучевую звезду. Как видно из схемы подключения электродвигателя, все три обмотки своим одним концом соединены вместе. При таком подключении (сеть 220/380 В), к каждой обмотке отдельно подходит напряжение 220 В, а к двум обмоткам, соединённым последовательно, – напряжение 380 В. Основным преимуществом подключения электродвигателя по схеме звезда являются небольшие пусковые токи, так как напряжение питания 380 В (межфазное) потребляют сразу 2 обмотки, в отличие от схемы «треугольник». Но при таком подключении мощность питаемого электродвигателя ограничена (главным образом из экономических соображений): обычно по звезде включают относительно слабые электродвигатели. Подключение электродвигателя по схеме треугольникНазвание этой схемы также идёт от графического изображения (см. правый рисунок): Как видно из схемы подключения электродвигателя – «треугольник», обмотки подключаются последовательно друг к другу: конец первой обмотки соединяется с началом второй и так далее. То есть к каждой обмотке будет приложено напряжение 380 В (при использовании сети 220/380 В). В этом случае по обмоткам течёт больший ток, по треугольнику обычно включают двигатели большей мощности, чем при соединении по звезде (от 7,5 кВт и выше). Подключение электродвигателя к трёхфазной сети на 380 ВПоследовательность действий такова: 1. Для начала выясняем, на какое напряжение рассчитана наша сеть. (~ 1, 220В)
(~ 3, Y, 380В) Двигатель для трехфазной сети 3. После идентификации параметров сети и параметров электрического подключения электродвигателя (звезда Y /треугольник Δ), переходим к физическому электрическому подключению электродвигателя. Эти устройства при включении подают напряжение сразу на все 3 фазы. Мы рекомендуем ставить именно автомат защиты электродвигателя серии MS, так как его можно настроить в точности на рабочий ток электродвигателя, и он будет чутко отслеживать его повышение в случае перегрузки. Это устройство в момент пуска даёт возможность некоторое время работать на повышенном (пусковом) токе, не отключая двигатель. Использование пускателя Устройство электромагнитного пускателя: Магнитный пускатель устроен достаточно просто и состоит из следующих частей: (1) Катушка электромагнита При подаче питания на катушку, рама (3) с контактами (4) опускается и замыкает свои контакты на соответствующие неподвижные контакты (5). Типовая схема подключения электродвигателя с использованием пускателя: При выборе пускателя следует обращать внимание на напряжение питания катушки магнитного пускателя и покупать его в соответствии с возможностью подключения к конкретной сети (например, если у вас есть только 3 провода и сеть на 380 В, то катушку нужно брать на 380 В, если у вас сеть 220/380 В, то катушка может быть и на 220 В). 5. Проконтролировать, в правильную ли сторону крутится вал. Как подключить поплавковый выключатель к трёхфазному насосуИз всего вышеописанного становится понятно, что для управления трёхфазным электродвигателем насоса в автоматическом режиме с использованием поплавкового выключателя НЕЛЬЗЯ просто разрывать одну фазу, как это делается с монофазными двигателями в однофазной сети. Самый простой способ – использовать для автоматизации магнитный пускатель. Подключение электродвигателя к однофазной сети 220 ВОбычно для подключения к однофазной сети 220В используются специальные двигатели, предназначенные для подключения именно к такой сети, и вопросов с их питанием не возникает, т.к. для этого просто требуется вставить вилку (большинство бытовых насосов оснащены стандартной вилкой Шуко) в розетку Иногда требуется подключение трехфазного электродвигателя к сети 220 В (если, например, нет возможности провести трехфазную сеть). Максимально возможная мощность электродвигателя, который можно включить в однофазную сеть 220 В, составляет 2,2 кВт. Самый простой способ – подключить электродвигатель через частотный преобразователь, рассчитанный на питание от сети 220 В. Следует помнить, что частотный преобразователь на 220 В, выдает на выходе 3 фазы по 220 В. То есть подключить к нему можно только электродвигатель, который имеет напряжение питания на 220 В трёхфазной сети (обычно это двигатели с шестью контактами в распаячной коробке, обмотки которых можно подключить как по звезде, так и по треугольнику). В данном случае требуется подключение обмоток по треугольнику. Возможно ещё более простое подключение трехфазного электродвигателя в сеть 220 В с использованием конденсатора, но такое подключение приведёт к потере мощности электродвигателя приблизительно на 30%. Третья обмотка запитывается через конденсатор от любой другой. Данный тип подключения мы рассматривать не будем, так как нормально с насосами такой способ не работает (либо при старте двигатель не запускается, либо электродвигатель перегревается из-за снижения мощности). Использование частотного преобразователяВ настоящее время достаточно активно все стали применять частотные преобразователи для управления частотой вращения (оборотами) электродвигателя. Это позволяет не только экономить электроэнергию (например, при использовании частотного регулирования насосов для подачи воды), но и управлять подачей насосов объёмного типа, превращая их в дозировочные (любые насосы объёмного принципа действия). Но очень часто при использовании частотных преобразователей не обращают внимания на некоторые нюансы их применения: Регулировка частоты, без доработки электродвигателя, возможна в пределах регулировки частоты +/- 30% от рабочей (50 Гц), Из-за того, что не обращают внимания при проектировании установок на такие «мелочи», очень часто электродвигатели выходят из строя. Для работы на низкой частоте ОБЯЗАТЕЛЬНО требуется установка дополнительного вентилятора принудительного охлаждения электродвигателя. Вместо крышки вентилятора устанавливается вентилятор принудительного охлаждения (см. фото). В этом случае, даже при снижении оборотов вала основного двигателя, Мы имеем большой опыт модернизации электродвигателей для работы на низкой частоте. Данные насосы используются в качестве дозирующих насосов на пищевом производстве. Надеемся, что данная статья поможет вам правильно подключить электродвигатель к сети самостоятельно (ну или хотя бы понять, что перед вами не электрик, а «специалист широкого профиля»). Технический директор |
Определение емкостей фазосдвигающих конденсаторов. Рабочий и пусковой конденсаторы
Самый простой способ включения трехфазного электродвигателя в однофазную сеть, это с помощью одного фазосдвигающего конденсатора. В качестве такого конденсатора нужно использовать только неполярные конденсаторы, а не полевые (электролитические).
Фазосдвигающий конденсатор.
При подключении трехфазного электродвигателя к трехфазной сети пуск обеспечивается за счет переменного магнитного поля. А при подключении двигателя к однофазной сети достаточный сдвиг магнитного поля не создается, поэтому нужно использовать фазосдвигающий конденсатор.
Емкость фазосдвигающего конденсатора нужно рассчитать так:
- для соединения «треугольником»: Сф=4800•I/U;
- для соединения «звездой»: Сф=2800•I/U.
Об этих типах соединения можно подробнее ознакомиться тут:
В этих формулах: Сф – емкость фазосдвигающего конденсатора, мкФ; I– номинальный ток, А; U– напряжение сети, В.
Номинальный ток, тоже можно высчитать, так: I=P/(1,73•U•n•cosф).
В этой формуле такие сокращения: P – мощность электродвигателя, обязательно в кВт; cosф – коэффициент мощности; n – КПД двигателя.
Коэффициент мощности или смещения тока к напряжению, а также КПД электродвигателя указывается в паспорте или в табличке (шильдике) на двигателе. Значения эти двух показателей часто бывают одинаковыми и чаще всего равны 0,8-0,9.
Грубо можно определить емкость фазосдвигающего конденсатора так: Сф=70•P. Получается так, что на каждые 100 Вт нужно по 7мкФ емкости конденсатора, но это не точно.
В конечном итоге правильность определения емкости конденсатора покажет работа электродвигателя. Если двигатель не будет запускаться, значит, емкости мало. В случае, когда двигатель при работе сильно нагревается, значит, емкости много.
Рабочий конденсатор.
Найденной по предложенным формулам емкости фазосдвигающего конденсатора достаточно только для пуска трехфазного электродвигателя, не нагруженного. То есть, когда на валу двигателя нет никаких механических передач.
Рассчитанный конденсатор будет обеспечивать работу электродвигателя и когда он выйдет на рабочие обороты, поэтому такой конденсатор еще называется рабочим.
Пусковой конденсатор.
Ранее было сказано, что ненагруженный электродвигатель, то есть небольшой вентилятор, шлифовальный станок можно запустить от одного фазосдвигающего конденсатора. А вот, запустить сверлильный станок, циркулярную пилу, водяной насос уже не получиться запустить от одного конденсатора.
Чтобы запустить нагруженный электродвигатель нужно к имеющемуся фазосдвигающему конденсатору кратковременно добавить емкости. А конкретно, нужно уже к подсоединенному рабочему конденсатору подключить параллельно еще один фазосдвигающий конденсатор. Но только на короткое время на 2 – 3 секунды. Потому что когда электродвигатель наберет высокие обороты, через обмотку, к торой подключены два фазосдвигающих конденсатора, будет протекать завышенный ток. Большой ток нагреет обмотку электродвигателя, и разрушит ее изоляцию.
Подключенный дополнительно и параллельно конденсатор к уже имеющемуся фазосдвигающему (рабочему) конденсатору называется пусковым.
Для слабонагруженных электродвигателей вентиляторов, циркулярных пил, сверлильных станков емкость пускового конденсатора выбирается равной емкости рабочего конденсатора.
Для нагруженных двигателей водяных насосов, циркулярных пил нужно выбирать емкость пускового конденсатора в два раза больше, чем у рабочего.
Очень удобно, для точного подбора нужных емкостей фазосдвигающих конденсаторов (рабочего и пускового) собрать батарею параллельно соединенных конденсаторов. Конденсаторы соединенные вместе нужно взять небольшими емкостями 2, 4, 10, 15 мкФ.
При выборе по напряжению любого конденсатора нужно пользоваться универсальным правилом. Напряжение, на которое конденсатор рассчитан должно быть в 1,5 раз выше того напряжения, куда он будет подключен.
Как заменить конденсатор насоса бассейна
Как заменить конденсатор насоса бассейна — INYOPools.com- Дом
- Как руководить
- Как заменить конденсатор насоса бассейна
Чтобы обеспечить максимальное удобство использования нашего веб-сайта, мы требуем, чтобы в вашем браузере был включен JavaScript.
Вот инструкции, как включить JavaScript в вашем веб-браузере.
После включения Javascript обновите эту страницу.
Или позвоните нам по телефону 407-834-2200, и мы будем рады принять ваш заказ по телефону.
Сэкономьте на стоимости нового мотора.Сначала проверьте конденсатор. Когда вы включаете помпу, и двигатель издает гудящий звук, это может означать, что двигатель замерз и не будет вращаться, или у вас может быть неисправный конденсатор. Проверить конденсатор. Его можно заменить за небольшую часть стоимости нового двигателя. Примечание. Некоторые двигатели имеют два конденсатора: рабочий конденсатор и пусковой конденсатор. Если да, проверьте оба.
Щелкните здесь, чтобы просмотреть детали двигателя насоса (включая рабочие и пусковые конденсаторы, подшипники и переключатели)
Видео
Copyright © 2021 INYOpools Все права защищены
Устранение неисправностей Погружные насосные системы для жилых помещений
Благодарим вас за посещение одной из наших самых популярных классических статей.Если вы хотите получить обновленную информацию по этой теме, ознакомьтесь с недавно опубликованной статьейИнтерпретация звуков шумного насоса . |
Почему неисправности системы погружных насосов для глубоких скважин в жилых домах так сложно диагностировать? Например, насос / двигатель в сборе, подвешенный на 10 футах от дна 300-футовой скважины, придает новое значение слову «недоступный». Симптомы также могут накладываться друг на друга, поэтому точный диагноз поначалу может быть труднодостижимым.Однако у квалифицированных электриков неизменно преобладают настойчивость и логика.
Фото 1. Этот тип блока управления погружным насосом содержит конденсатор, реле и соответствующую электронику.В этой статье мы рассмотрим трехпроводную однофазную погружную насосную систему на 240 В для систем питьевого водоснабжения, обычно устанавливаемую на глубине от 50 до 300 футов ниже уровня земли. Насос подается через стальную обсадную трубу скважины, которая проходит сквозь землю до тех пор, пока не встречается коренная порода, и в этот момент сама порода становится обсадной колонной.
Электропроводка
Трехпроводная система (на самом деле есть четвертый заземляющий провод оборудования, который не учитывается в количестве проводов) подразумевает, что внутри дома есть блок управления, содержащий большой электролитический конденсатор, микропроцессор и другую электронику ( Фото 1 ). В отличие от этого, в двухпроводной системе отсутствует внутренний контроллер, поэтому конденсатор находится внутри герметичного подводного двигателя. Несмотря на то, что такая компоновка удешевляет первоначальную установку, возможности ремонта ограничены.
Чтобы эффективно диагностировать одну из этих систем, необходимо четко понимать схему проводки, с которой вы имеете дело — по крайней мере, вне блока управления и двигателя. Ответвительная цепь 240 В от двухполюсного выключателя на входной панели подключается к стандартному двухполюсному реле давления, которое приводится в действие при низком давлении воды при включении и высоком давлении воды внутри напорного резервуара. Эта коммутируемая мощность поступает на входные клеммы блока управления.
Выход блока управления выходит из здания, погружается в одну траншею с водопроводной трубой и выходит из земли в металлическом или ПВХ канале, где он входит в заглушку колодца через проход, предназначенный для этой цели.Внутри крышки колодца он обычно соединяется с помощью винтовых соединителей, а затем спускается по водопроводной трубе к двигателю насоса, который поставляется с набором из трех проводов с косичками (плюс заземление оборудования). Они подключаются к кабелю насоса с помощью обжимных соединителей и термоусадочных трубок, что аналогично комплекту для подземного сращивания. Сращенные провода должны быть проложены внутри ограничителя крутящего момента — расширяемого резинового цилиндра, который удерживает узел насоса / двигателя по центру и сводит к минимуму встречное вращательное движение и натирание проволоки.
Кабель насоса, идущий от выходных клемм блока управления, состоит из красных, желтых и черных (плюс зеленый) скрученных проводов. Поскольку они не покрыты оболочкой, вы должны управлять внутренним сегментом по дорожке качения. Что касается наружной части, то ее можно прямо закопать, что касается NEC. Тем не менее, государственные и местные правила установки скважин могут требовать наличия серого RNMC, внесенного в список UL, или аналогичной защиты устья скважины.
Фото 2. Блок управления с реле давления и разъединителем регулирует подачу мощности на электродвигатель насоса на забое скважины.Многие люди предполагают, что кабель колодца состоит из двух горячих ножек с нейтралью; однако это не так. Красный — начало, черный — бег, желтый — обычный. Одна из функций блока управления — подавать питание на красный цвет на короткий период времени, чтобы двигатель насоса мог набрать скорость, после чего черный цвет переключается в оперативный режим.
Один крупный производитель предлагает двигатель и блок управления, которые используются многими производителями насосов. Насосы привинчены к двигателям (с подходящим шлицевым валом).Однако один крупный производитель выпускает собственные двигатель и блок управления, которые не взаимозаменяемы. Что касается других, двигатели и блоки управления можно менять местами, если мощность, фаза и напряжение совпадают.
Большим преимуществом универсального блока управления является то, что в крышке находятся электронные компоненты, поэтому вы можете заменить их, не выполняя никаких дополнительных подключений.
Пошаговая диагностика
При поиске и устранении неисправностей нефункционирующей системы погружных насосов вы должны стремиться диагностировать и устранять проблему, не вынимая насос из колодца без надобности или выкапывая подземный трубопровод.
Допустим, у домовладельца есть пробуренная скважина с погружным насосом, расположенная в 500 футах от дома на глубине 300 футов. Жалоба на то, что при включении крана нет воды. Домовладелец говорит, что система существует уже несколько лет, и никаких проблем не возникало. Поскольку все лето шел сильный дождь, можно исключить отсутствие воды в колодце. Существует большая вероятность того, что насос вышел из строя из-за песка, мешающего вращению рабочего колеса, или из-за заклинивания двигателя.Но поскольку вытащить насос, установленный на высоте 300 футов, — довольно сложная задача, сначала исследуются другие возможности.
Это 3-проводная система, и вся электроника смонтирована внутри крышки блока управления. После проверки с помощью вольтметра наличия питания на входных клеммах — что указывает на работоспособность домашней электропроводки и реле давления — приобретается новый кожух с правильной номинальной мощностью. Крышка содержит конденсатор, реле, микросхемы и другие электронные компоненты ( Фото 2, на странице C26).Когда он защелкивается, он подает питание на двигатель насоса по 3-проводному (плюс заземление оборудования) подземному кабелю насоса. К сожалению, эта процедура не заставила воду течь в резервуар высокого давления, поэтому необходимо искать другие способы.
На этом этапе настало время для устранения неисправностей, основанных на принципах «разделяй и властвуй». Идея состоит в том, что когда система состоит из ряда компонентов, соединенных последовательно, а конечная точка не получает питание, наиболее эффективная стратегия состоит в том, чтобы выполнить тест в средней точке, чтобы сузить фокус, не обязательно пространственно, но с точки зрения вероятных причин. .Плохая половина может быть протестирована, в свою очередь, в ее середине, что позволяет техническому специалисту методично сосредоточить внимание на проблемном месте. Этот метод особенно полезен при работе с большим сложным оборудованием или системами электропроводки.
В случае насосной системы измерения решено проводить на устье скважины. Крышка колодца снимается. Три провода в этой точке часто соединяются с помощью винтовых соединителей, которые можно снимать для доступа к контрольным точкам. В противном случае проводники можно перерезать, отключив питание, а затем повторно подключить их с помощью закрученных соединителей, заполненных силиконом.Хотя обнаружено, что напряжение присутствует, токоизмерительные клещи не показывают протекания тока при переподключении проводов. Таким образом устраняется неисправность линии метро. Перед тем, как тянуть насос, вернитесь к блоку управления и выполните дополнительные измерения сопротивления и тока, обращаясь к информации, напечатанной внутри блока управления.
С хорошим помощником и отключенной мощностью вы можете вытащить насос-двигатель в сборе примерно за час. Теперь самое время визуально проверить кабель на предмет истирания или других повреждений.Отсоедините двигатель от кабеля и проведите измерительные испытания кабеля, чтобы выявить проблему. Допустим, кабель оказался в хорошем состоянии. Если предыдущий тест с помощью клещей с помощью амперметра показал чрезмерное протекание тока — и нет повреждения линии — это похоже на то, что у двигателя одна или несколько закороченных обмоток, заклинило или насос не вращается. Прежде чем полностью отказаться от двигателя, рассмотрите возможность короткого замыкания в кабеле двигателя, возможно, из-за повреждения молнией.Этот жгут проводов имеет разъем прямо на двигателе и может быть отключен после удаления защитного металлического канала. Если проблема не в этом, отсоедините насос от двигателя и посмотрите, поворачивается ли вал двигателя вручную. В случае заклинивания необходимо заменить мотор. Это потому, что это запечатанный блок; следовательно, восстановить его невозможно. Если повернет, то можно провести краткий динамический тест.
Еще один совет — убедитесь, что у вас есть хорошее заземление оборудования.Прикрепите двигатель к большому сухому куску фанеры. Не прикасайтесь к металлическому корпусу, когда двигатель находится под напряжением. Подожгите его очень ненадолго, потому что он предназначен для работы в воде для охлаждения.
Если двигатель работает, существует вероятность того, что насос застрял в песке. Разобрать и очистить его, собрать устройство и повторно протестировать — это просто. Вы можете осмотреть рабочие колеса насоса и заменить их в случае износа или повреждения. Если он работает и показания счетчика хорошие, переустановите насос на несколько футов выше, чтобы проблема больше не повторялась.
Обычно вышеуказанные процедуры приводят к успешному ремонту. Если нет, вам придется повторить свои шаги и посмотреть, не сделали ли вы ложное предположение или неправильно прочитали данные где-то на линии. Также возможно, что есть частичное повреждение кабеля, которое не обнаружилось при визуальном осмотре. Это может ввести вас в заблуждение и заставить вас ходить по кругу. Еще один поворотный шар, который может быть брошен вам, — это когда есть две или более неисправностей. Обнаружение и исправление одного из них не восстановит нормальную работу.Ответ на обе эти проблемы требует терпения, настойчивости и восприятия. Вы должны пройти всю систему, изолировать этапы и применить логику к каждому из них.
Помимо основ
Одна ошибка, которую допускают многие начинающие электрики, — они думают, что найдут проблему за 5 минут. Если описанная выше процедура не указывает на проблему, вам необходимо обратиться к другим методам устранения неполадок.
Предположим, что показания на крышке скважины указывают на отсутствие неисправности в кабеле, идущем внутри обсадной трубы, и в исправном двигателе насоса.Показания в сопротивлении от устья скважины до блока управления — с отсоединенными проводами на устье и снятой крышкой блока управления — указывают на короткое замыкание между желтым и черным проводниками. Тогда вы знаете, что неисправность находится в подземной части цепи, которая, например, похоронена на глубине 4 фута. На этом этапе вы знаете, что требуется немного покопаться.
Поскольку рабочее время экскаватора требует больших затрат, необходимо тщательное планирование. Каков минимальный объем копания, необходимый для обнаружения неисправности? Можно ли избежать обрезки провода для снятия показаний в различных точках кабеля? Если вы снова воспользуетесь методом «разделяй и властвуй», можно выкопать середину подземной части линии и снять показания, чтобы определить, в какой ее половине содержится неисправность.Затем повторите этот процесс, копая в середине неисправной половины линии, еще больше сужая проблемный сегмент. Это ограничивает количество копаний, которые вам придется делать, чтобы определить точную точку отказа. Что касается отрезания проволоки для снятия мерок, в этом нет необходимости. Подайте напряжение последовательно с большой нагрузкой и используйте токоизмерительные клещи для проведения теста.
Вы также можете рассмотреть то, что некоторые считают даже лучшим методом — метод, который включает более сложный тест и меньшее количество копаний.Снимите показания сопротивления с обоих концов, чтобы найти короткое замыкание. Если показания в доме вдвое превышают показания на устье скважины, то вы знаете, что короткое замыкание составляет одну треть расстояния, или около 166 футов, от колодца.
Херрес — дипломированный мастер-электрик из Стюартстауна, штат Нью-Хэмпшир, с ним можно связаться по телефону [email protected].
Как подключить рабочий конденсатор к двигателю. Качественная проводка 101
На рисунке изображен двигатель Fasco, который я подключил вчера для клиента.Это говорит само за себя. Единственное, чего не хватает на этом рисунке, — это проводка вращения двигателя, представляющая собой желто-фиолетовый провод, который меняет направление двигателя в зависимости от того, какое направление необходимо.
Некоторые из них по часовой стрелке, а некоторые против часовой стрелки. Стандартные двигатели PSC, как правило, настраиваются на подключение в любом выбранном вами направлении. Наконец, это зависит от направления вращения двигателя.
Подключение рабочего конденсатора кондиционера воздуха по сравнению с рабочим конденсатором теплового насоса | Как подключить рабочий конденсатор к двигателю
Кроме того, кондиционеры и тепловые насосы в некоторых отношениях различаются.Конденсатор кондиционера обычно работает только летом. При этом конденсатор теплового насоса будет работать и летом, и зимой. Двигатели вентиляторов конденсатора в обоих по существу одинаковые, за исключением того, как они управляются.
Это означает, что они будут подключены к конденсатору по-другому. В проводке двигателя вентилятора конденсатора переменного тока черный провод (отмеченный на электрической схеме), скорее всего, будет идти непосредственно к контактору компрессора.
Кроме того, двигатель вентилятора конденсатора теплового насоса не работает.Электропроводка двигателя вентилятора конденсатора теплового насоса будет немного отличаться. Черный провод (отмеченный на схеме подключения), скорее всего, будет подключен к плате управления. Эта плата управления является платой управления оттаиванием. Он также управляет двигателем вентилятора конденсатора в тепловом насосе.
Когда тепловой насос переходит в цикл размораживания, двигатель вентилятора конденсатора теплового насоса отключается. Это улучшает и ускоряет цикл размораживания. Кроме того, убедитесь, что вы соблюдаете электрическую схему теплового насоса, чтобы правильно подключить двигатель нового вентилятора конденсатора.
Как подключить рабочий конденсатор к двигателю | Воздуходувки и конденсаторы — Заключение
Пожалуйста, прочтите инструкции для нового двигателя и как подключить рабочий конденсатор к двигателю. Кроме того, я отвечал на звонки, когда домовладелец ошибался, потому что не читал простых инструкций. Это обошлось мне дороже, чем если бы они позвонили мне с самого начала.
Конечно, я делаю это постоянно и, вероятно, могу подключить конденсатор к двигателю во сне. Однако, когда я сталкиваюсь с чем-то новым, с чем-то, с чем у меня нет опыта, я останавливаюсь, чтобы прочитать инструкции, поэтому у меня все получается правильно.Кроме того, это хороший совет при подключении конденсатора к двигателю вашей системы отопления, вентиляции и кондиционирования воздуха. Удачи!!!
Наконец, другие ресурсы, которые помогут вам с конденсаторами и двигателями HVAC:
Как подключить рабочий конденсатор к двигателю | Воздуходувки и конденсаторы
Конденсаторы
Замена пусковых конденсаторов и рабочих конденсаторов в блоке управления насосом
Обычно внутри блока управления насосом находятся 2 конденсатора, пусковой конденсатор и рабочий конденсатор.Пусковой конденсатор считается расходным материалом в системе водяного насоса и должен заменяться каждые 3 года. Почему? Подобно батарее телефона, после стольких раз зарядки или использования в течение многих лет срок службы конденсаторов заканчивается. В ситуациях с высокой температурой (блок управления под жарким летним солнцем) или частыми циклами включения-выключения (установлен резервуар высокого давления) вам может потребоваться заменить конденсатор даже раньше. Рабочие конденсаторы аналогичны, но имеют меньшую емкость и служат намного дольше пусковых конденсаторов.Мы рекомендуем заменить рабочий конденсатор, если мультиметром наблюдается снижение емкости на 10%. Мы сосредоточимся на пусковых конденсаторах, поскольку их замена — это большая проблема.
Снижение производительности пускового конденсатора и риски с течением времени и использования
Емкость пускового конденсатора обычно указывается в диапазоне, например, 105–126 мкФ (MFD) или 105 мкФ + 20%. Когда конденсатор в блоке управления используется в течение многих лет, емкость уменьшается ниже 10% диапазона ближе к концу срока службы.В это время вам следует заменить конденсатор.
Другой причиной замены пускового конденсатора каждые 3 года является предотвращение внутренней утечки конденсатора, которая может вызвать взрыв. Какой? Взрыв? Не волнуйтесь, большинство конденсаторов спроектированы так, чтобы допускать мягкий взрыв, такой взрыв не причинит вам вреда, но может вызвать проблемы для насоса.
Когда емкость ниже номинальной, конденсатор будет подавать меньший ток на двигатель при каждом запуске. Это может вызвать серьезные проблемы с двигателем из-за более длительного процесса запуска.Более длительные пуски могут привести к перегоранию или перегреву двигателя, а также к повреждению подшипников.
Емкость можно проверить с помощью мультиметра со встроенной функцией. Большинство мультиметров стоимостью 150 долларов и выше включают функцию проверки емкости.
Замена конденсатора
Замена конденсатора проста и может выполняться пользователем. Перед заменой конденсатора НЕОБХОДИМО отключить источник питания !! Это включает в себя отключение 2 автоматических выключателей (для 2 горячих линий) на силовой панели и любых выключателей питания вашей насосной системы.Большинство блоков управления предназначены для легкой замены конденсаторов. Просто отсоедините клеммы проводов, соединяющие старый конденсатор, и снова подключите их к новому, и вы готовы к работе. Пусковые конденсаторы имеют два вывода, но каждый вывод имеет два вывода. Будьте осторожны, чтобы повторно подключить провода таким же образом. Перед подключением к новому конденсатору следует использовать плоскогубцы для обжима клеммы провода (разъема), чтобы обеспечить плотную посадку и хорошее соединение.
Среди производителей конденсаторов в США Barker Microfarad Inc (BMI) является одной из ведущих компаний по качеству своей продукции.
Щелкните здесь, чтобы увидеть наш выбор конденсаторов!
Часто задаваемые вопросы о конденсаторах двигателя
Часто задаваемые вопросы о конденсаторах двигателяОбзор
Напряжение
Емкость
Частота (Гц)
Тип соединительной клеммы
Форма корпуса
Размер корпуса
Пусковые и рабочие конденсаторы
Пусковые конденсаторы
Приложения
Технические характеристики
Как узнать, неисправен ли мой пусковой конденсатор?
Мой мотор медленно заводится.Мой пусковой конденсатор плохой?
На моем пусковом конденсаторе есть резистор. Нужен ли мне конденсатор на замену?
Могу ли я использовать конденсатор с более высоким номинальным напряжением, чем оригинальный?
Рабочие конденсаторы
Как заменить пробку в кондиционере?
Приложения
Технические характеристики
Когда заменять
Почему вышел из строя рабочий конденсатор?
Как долго должен работать рабочий конденсатор?
Двойные рабочие конденсаторы
Если я не могу найти замену своему двойному рабочему конденсатору, могу ли я использовать две отдельные рабочие крышки?
Напряжение
Конденсатор будет иметь обозначенное напряжение, указывающее его допустимое пиковое напряжение, а не рабочее напряжение.Следовательно, вы можете выбрать конденсатор с номинальным напряжением, равным или выше исходного конденсатора. Если вы используете конденсатор на 370 вольт, подойдет конденсатор на 370 или 440 вольт, хотя на самом деле блок на 440 вольт прослужит дольше. Однако вы не можете заменить конденсатор на 440 В на конденсатор на 370 В без значительного сокращения срока его службы.
Емкость
Выберите конденсатор со значением емкости (указанным в MFD, мкФ или микрофарадах), равным исходному конденсатору. Не отклоняйтесь от исходного значения, так как оно задает рабочие характеристики мотора.
Частота (Гц)
Выберите конденсатор с номинальной частотой Гц оригинала. Почти все конденсаторы будут иметь маркировку 50/60.
Тип соединительной клеммы
Почти каждый конденсатор будет использовать вставной соединитель в виде флажка размером ¼ «. При замене конденсатора вам необходимо знать, сколько клемм на клеммную колодку требуется для вашего двигателя. Большинство пусковых конденсаторов имеют две клеммы на клемму, и большинство из них работают Конденсаторы будут иметь 3 или 4. Клеммы на каждую стойку.Убедитесь, что заменяемые клеммы имеют по крайней мере такое же количество клемм на каждую клемму, что и у оригинального конденсатора двигателя.
Форма корпуса (круглая или овальная)
Практически все пусковые конденсаторы имеют круглый корпус. Круглые корпуса являются наиболее распространенными, но многие двигатели по-прежнему имеют овальную конструкцию. С точки зрения электричества разницы нет. Если пространство в монтажной коробке не ограничено, стиль корпуса значения не имеет.
Размер корпуса
Как и форма корпуса, габаритные размеры не имеют электрического значения. Выберите конденсатор, который поместится в отведенном для этого месте.
Start vs.Рабочие конденсаторы
Пусковые конденсаторы дают большое значение емкости, необходимое для пуска двигателя в течение очень короткого периода времени (обычно секунд). Они предназначены только для прерывистого режима работы и катастрофически выйдут из строя, если будут находиться под напряжением слишком долго. Рабочие конденсаторы используются для непрерывного управления напряжением и током обмоток двигателя и поэтому работают в непрерывном режиме. Как правило, они имеют гораздо меньшее значение емкости.
В необычных обстоятельствах рабочий конденсатор может использоваться в качестве пускового конденсатора, но доступные значения намного ниже, чем значения, обычно доступные для специальных пусковых конденсаторов.Номинальные значения емкости и напряжения должны соответствовать оригинальной спецификации пускового конденсатора. Пусковой конденсатор нельзя использовать в качестве рабочего конденсатора, потому что он не может выдерживать ток непрерывно.
Просмотрите наш видеоурок ниже, чтобы узнать больше о различиях между пусковыми и рабочими конденсаторами.
Пусковые конденсаторы
Приложения
Пусковые конденсаторыиспользуются для кратковременного сдвига фазных пусковых обмоток в однофазных электродвигателях с целью увеличения крутящего момента.Они обладают очень большими значениями емкости для своего размера и номинального напряжения. В результате они предназначены только для периодического использования. По этой причине пусковые конденсаторы выйдут из строя после слишком долгого пребывания под напряжением из-за неисправной пусковой цепи двигателя.
Технические характеристики
Большинство пусковых конденсаторов рассчитаны на 50–1200 мкФ и 110/125, 165, 220/250 или 330 В переменного тока. Обычно они рассчитаны на 50/60 Гц. Корпуса обычно имеют круглую форму и отлиты из черного фенольного или бакелитового материалов.Концевые заделки обычно представляют собой нажимные клеммы ¼ «с двумя клеммами на соединительную клемму.
Как узнать, неисправен ли мой пусковой конденсатор?
Большинство отказов пускового конденсатора бывает одного из двух типов. Катастрофический отказ обычно вызывается пусковой цепью электродвигателя, которая задействована слишком долго для номинальной кратковременной работы пускового ограничения. Верхняя часть стартовой крышки буквально сорвана, а внутренности частично или полностью выброшены. Точно так же на стартовой крышке может быть только разорванный блистер сброса давления.В любом случае легко сказать, что стартовый колпачок нуждается в замене.
Мой мотор медленно заводится. Мой пусковой конденсатор плохой?
Возможно, ваш пусковой конденсатор потерял свою номинальную емкость из-за износа и старения, или у вас могут быть другие проблемы, не связанные с конденсатором, которые связаны с другими компонентами двигателя. Чтобы выяснить это, вам нужно измерить емкость пускового конденсатора.
На моем пусковом конденсаторе есть резистор. Нужен ли мне конденсатор на замену?
Большинство заменяемых пусковых крышек не содержат резистора. Вы можете проверить состояние старого, проверив значение сопротивления, или просто заменить его новым. Это должно быть где-то около 10-20 кОм и около 2 Вт. Резисторы обычно либо припаяны, либо обжаты на выводах. Назначение резистора — сбросить остаточное напряжение в конденсаторе после того, как он был отключен от цепи после запуска двигателя.Не все пусковые конденсаторы будут использовать один, поскольку есть другие способы сделать это. Важная часть заключается в том, что если в вашем оригинальном конденсаторе он был, вам необходимо заменить его на новый.
Могу ли я использовать конденсатор с более высоким номинальным напряжением, чем оригинальный?
Да. Щелкните здесь для получения более подробной информации.
Рабочие конденсаторы
Приложения
КонденсаторыRun используются для непрерывной регулировки тока или фазового сдвига обмоток двигателя с целью оптимизации крутящего момента двигателя и эффективности.Они предназначены для непрерывного режима работы и, как следствие, имеют гораздо меньшую частоту отказов, чем пусковые конденсаторы. Они обычно используются в установках HVAC.
Технические характеристики
Большинство рабочих конденсаторов рассчитаны на 2,5–100 мкФ (микрофарад) при номинальном напряжении 370 или 440 В переменного тока. Обычно они рассчитаны на 50/60 Гц. Корпуса имеют круглую или овальную форму, чаще всего используются стальной или алюминиевый корпус и крышка. Концевые заделки обычно представляют собой нажимные-дюймовые клеммы с 2–4 клеммами на каждую клемму подключения.
Когда заменять
Как правило, рабочий конденсатор намного дольше, чем пусковой конденсатор того же двигателя. Пробка также выйдет из строя или изнашивается иначе, чем стартовая, что немного усложняет поиск и устранение неисправностей.
Когда рабочий конденсатор начинает работать за пределами допустимого диапазона, это чаще всего обозначается падением номинального значения емкости (значение микрофарад уменьшилось). Для большинства стандартных двигателей рабочий конденсатор будет иметь «допуск», описывающий, насколько близко к номинальному значению емкости может быть фактическое значение.Обычно это от +/- 5 до 10%. Для большинства двигателей, пока фактическое значение находится в пределах 10% от номинального значения, вы в хорошей форме. Если он выходит за пределы этого диапазона, вам необходимо заменить его.
В некоторых случаях из-за дефекта в конструкции конденсатора или иногда из-за неисправности двигателя, не связанной с конденсатором, рабочий конденсатор выпирает из-за внутреннего давления. Для большинства современных конструкций рабочих конденсаторов это приведет к размыканию цепи и отключению внутренней спиральной мембраны в качестве защитной меры, чтобы предотвратить вскрытие конденсатора.
Если она вздулась, пора заменить. Если вы не измерили целостность клемм, пришло время заменить.
Почему вышел из строя рабочий конденсатор?
Ниже приведены некоторые распространенные причины выхода из строя рабочих конденсаторов, но в зависимости от того, насколько близок рабочий конденсатор к его расчетному сроку службы, может быть трудно определить причину по одному фактору.
Время — Все конденсаторы имеют расчетный срок службы. Несколько факторов можно поменять местами или объединить, чтобы увеличить или уменьшить срок службы рабочего конденсатора, но после того, как расчетный срок службы превышен, внутренние компоненты могут начать более быстро разрушаться и снижаться производительность.Проще говоря, отказ может быть отнесен на счет того, что он «просто старый».
Heat — Превышение расчетного предела рабочей температуры может иметь большое влияние на ожидаемый срок службы рабочего конденсатора. Как правило, у двигателей, которые работают в жарких условиях или с недостаточной вентиляцией, срок службы конденсаторов значительно сокращается. То же самое может быть вызвано излучением тепла от обычно горячего двигателя, которое приводит к перегреву конденсатора. В общем, если вы можете держать свой рабочий конденсатор холодным, он прослужит намного дольше.
Ток — Когда двигатель перегружен или имеет сбой в обмотках, это вызывает нарастание тока, что может привести к перегрузке конденсаторов. Этот сценарий встречается реже, поскольку обычно сопровождается частичным или полным отказом двигателя.
Напряжение — Напряжение может иметь экспоненциальный эффект, сокращая расчетный срок службы конденсатора. Рабочий конденсатор должен иметь указанное номинальное напряжение, которое нельзя превышать. Например, конденсатор рассчитан на 440 вольт.При 450 вольт срок службы может сократиться на 20%. При 460 вольт срок службы может сократиться на 50%. При 470 вольт срок службы сокращается на 75%. То же самое можно применить и в обратном порядке, чтобы увеличить расчетный срок службы за счет использования конденсатора с номинальным напряжением, значительно превышающим необходимое, хотя эффект будет менее драматичным.
Как долго должен работать рабочий конденсатор?
Срок службы послепродажного рабочего конденсатора хорошего качества (того, который не идет в комплекте с вашим двигателем), составляет от 30 000 до 60 000 часов работы.Установленные на заводе рабочие конденсаторы иногда имеют гораздо меньший расчетный срок службы. В отраслях с высокой конкуренцией, где каждая деталь может иметь значительное влияние на стоимость или где предполагаемое использование двигателя, вероятно, будет прерывистым и нечастым, можно выбрать рабочий конденсатор более низкого класса с расчетным сроком службы всего 1000 часов. Кроме того, все факторы из раздела выше («Почему мой рабочий конденсатор вышел из строя?») Могут резко изменить разумный ожидаемый срок службы рабочего конденсатора.
Конденсаторы двойного действия
Двойные рабочие конденсаторы — это два рабочих конденсатора в одном корпусе. У них нет ничего, что делало бы их электрически особенными. Обычно они имеют соединения, отмеченные буквой «C» для «общего», «H» или «Herm» для «герметичного компрессора» и «F» для «вентилятора». У них также будет два разных номинала конденсатора для двух разных частей. Вы можете увидеть 40/5 MFD, что означает, что одна сторона составляет 40 микрофарад (измерение емкости), а другая сторона — 5 микрофарад. Меньшее значение всегда будет подключено к вентилятору.Соединение большего размера всегда будет подключено к компрессору.
Если я не могу найти замену своему двойному рабочему конденсатору, могу ли я использовать две отдельные рабочие крышки?
Единственное преимущество конструкции двойного рабочего конденсатора заключается в том, что он поставляется в небольшом корпусе всего с 3 подключениями. Другой разницы нет. Если места для монтажа достаточно, использование двух отдельных рабочих конденсаторов вместо исходного двойного рабочего конденсатора является приемлемой практикой.
Более безопасные и интеллектуальные однофазные насосы
Новый контроллер запуска двигателя представляет собой единое решение.
Насосные системы бывают всех размеров, от крупных муниципальных предприятий до небольших жилых систем, использующих однофазные насосы мощностью три л.с. или меньше. Все системы требуют надежности, но из-за большого объема небольших систем постоянная надежность этих станций чрезвычайно важна. Одна из самых больших проблем, с которыми сталкивается обслуживающий персонал при обслуживании этих насосов и средств управления, — это традиционная цепь пуска. Без какой-либо реальной защиты пусковой обмотки и пусковой цепи пусковой конденсатор обычно выходит из строя.Это часто означает, что конденсатор взрывается, в результате чего горячее масло и обломки конденсатора попадают в панель управления — или, что еще хуже, опасно — на техника по обслуживанию.
Процесс внешнего запуска
Все однофазные насосы с внешними пусковыми компонентами используют пусковое реле вместе с пусковым конденсатором и рабочим конденсатором для пуска и работы насоса. Рабочий конденсатор остается в цепи двигателя постоянно, в то время как пусковой конденсатор предназначен для удаления из цепи, как только двигатель насоса наберет нужную скорость.Назначение пускового конденсатора — заставить напряжение, приложенное к пусковой обмотке, не совпадать по фазе с напряжением, поступающим от источника питания. Это изменение фазы увеличивает крутящий момент двигателя при запуске. Задача пускового реле — удалить пусковой конденсатор из цепи, когда двигатель набирает обороты. Традиционно это достигается за счет использования реле потенциала в качестве пускового реле. По мере увеличения скорости двигателя потенциал напряжения на пусковой обмотке увеличивается. Как только потенциал напряжения достигает заданного значения, пусковое реле срабатывает, размыкая цепь пускового конденсатора.При нормальной работе пусковой конденсатор удаляется из цепи менее чем через секунду после подачи питания на двигатель.
Пусковой конденсатор имеет более низкое номинальное напряжение, чем напряжение, которое будет приложено к нему от пусковой обмотки. В большинстве случаев это связано с тем, что конденсатор должен находиться в цепи в течение короткого периода времени, а конденсатор, рассчитанный на полное напряжение, будет стоить больше денег и потребовать больше места.Если пусковой конденсатор не будет удален из цепи, конденсатор выйдет из строя из-за более низкого номинального напряжения. Часто это приводит к тому, что верхняя часть конденсатора взрывается, разбрызгивая горячее масло (300 ° F и выше) и снаряды и подвергая воздействию опасного электрического напряжения. Несколько ситуаций могут привести к тому, что пусковая цепь не разомкнется. Одна из самых распространенных — это заблокированный ротор на насосе. В этом случае насос забит или забит мусором, и двигатель не сможет вращаться. Если насос не может вращаться, он не будет повышать напряжение на пусковой обмотке, необходимое для выпадения пускового конденсатора, что создаст условия, которые позволят конденсатору выйти из строя.
Отказ конденсатора стартера
Модуль двигателя заменяет стартер и пусковое реле
Вскоре появится модуль питания двигателя (MPM), который заменит пускатель двигателя (контактор и реле защиты от перегрузки) и пусковое реле, все в одном компактном блоке. Одной из наиболее важных особенностей MPM является то, что он защищает пусковой конденсатор, контролируя его использование. Если его использование чрезмерно, MPM отключит конденсатор на некоторое время, давая время на охлаждение.Охлаждение обычно занимает несколько минут, после чего конденсатор снова доступен для использования по мере необходимости.
Модуль питания двигателя
В приложениях, где используются однофазные насосы измельчителя, MPM улучшает производительность насоса другим способом. Во время нормальной работы насос часто всасывает мусор через резцы насоса, создавая дополнительную нагрузку на двигатель насоса. В зависимости от типа мусора и состояния резцов на насосе эта нагрузка может быть значительной и замедлять работу насоса.Традиционный пусковой контур с потенциальным реле позволяет скорости насоса и потоку упасть ниже 40 процентов от его нормальной рабочей скорости / потока перед включением пускового контура, чтобы обеспечить дополнительный
Крутящий моментнеобходим для предотвращения остановки насоса во время измельчения. Это снижение скорости усугубляет проблему измельчения и удаления мусора, поскольку поток воды через насос значительно уменьшается. MPM начинает «нагнетать» насос путем включения пускового контура, когда скорость и расход насоса достигают 85 процентов от нормы.MPM контролирует, насколько сильно повышается пусковой контур, обеспечивая только то количество наддува, которое необходимо для поддержания скорости, максимизируя объем использования пускового конденсатора.
Еще одно преимущество использования MPM состоит в том, что он снижает сложность согласования правильных пусковых компонентов с двигателями. В традиционных системах каждый двигатель насоса, представленный на рынке, имеет свою собственную комбинацию пускового реле, пускового конденсатора и рабочего конденсатора. Применение неправильной комбинации компонентов может привести к выходу из строя пускового конденсатора.MPM контролирует характеристики двигателя при его запуске и удаляет пусковой конденсатор в нужное время на основе этих характеристик. Один MPM можно использовать для любого насоса в пределах номинального диапазона тока MPM. Даже если выбран неправильный пусковой конденсатор, MPM предназначен для защиты от отказа. На крутящий момент двигателя будет влиять неправильная емкость, но относительно нормальная работа насоса все еще возможна в зависимости от двигателя насоса и значения емкости.
Все в одном
MPM сочетает в себе функции контактора двигателя, реле перегрузки и пускового реле в одном компактном блоке, который примерно равен размеру сопоставимого стандартного контактора двигателя.Этот комбинированный блок экономит не менее 60 процентов площади панели, занимаемой традиционной пусковой схемой. Один из способов, которым MPM может обеспечить такое сокращение пространства, — это использование запатентованной технологии нулевого пересечения. Эта технология контролирует точное время размыкания и замыкания контактов, подающих питание на двигатель. Без технологии пересечения нуля контакты открывались бы случайным образом по сравнению с формой волны переменного напряжения, часто вызывая искрение на контактах. Обычно для этого требуются более крупные контакты и более крупный контактор для управления мощностью двигателя.Благодаря технологии перехода через ноль искрение практически исключается, что увеличивает срок службы и надежность реле, позволяя использовать контактор меньшего размера для управления насосом.
В дополнение к технологии перехода через ноль, MPM включает в себя расширенную защиту и мониторинг двигателя, а также реализует электронную защиту от перегрузки класса 10 при одновременном контроле пониженного тока для защиты насоса от ситуации «сухого хода». MPM контролирует входящее напряжение и может быть настроен для защиты от ситуации с низким напряжением либо от линии питания, либо из-за того, что для подачи питания на насос использовался слишком маленький калибр провода (что приводило к слишком сильному падению напряжения в питающих проводах источника. ).
Этот подход, использующий новую технологию управления насосами, будет продолжать повышать безопасность, надежность и удобство обслуживания. MPM снизит частоту отказов компонентов запуска до того, что редко учитывается. Это сокращение не только повышает безопасность, но и сокращает время простоя за счет повышения надежности насосной установки.
Насосы и системы , октябрь 2010 г.
Что делает конденсатор в водяном насосе?
В однофазном канале насоса пусковой конденсатор на короткое время увеличивает пусковой крутящий момент, а затем увеличивает вращение двигателя до скорости, приближающейся к скорости, с которой он будет постоянно работать с насосом .Конденсатор начала канала ствола затем выпадает, и конденсатор запуска занимает место для энергоэффективной работы насоса .
Нажмите, чтобы увидеть полный ответ
Учитывая это, какая польза от конденсатора в водяном насосе?
Конденсатор предназначен для создания второй фазы, помогающей запускать однофазные асинхронные двигатели переменного тока (вместо пульсации вы получаете вращающееся магнитное поле). Как только двигатель начал вращаться, конденсатор больше не требуется, поскольку эти двигатели могут работать и работают от одной фазы.
Кроме того, что вызывает выход из строя пусковых конденсаторов? Для многих однофазных компрессоров требуется пусковой конденсатор для помощи при запуске двигателя. Эти конденсаторы , будут иногда отказывать , , , вызывая отказ компрессора , , — запуск , . Перегрев является первичной причиной неисправного пускового конденсатора . Если пусковой конденсатор остается в цепи слишком долго, он перегревается и выходит из строя .
В связи с этим для чего нужен конденсатор в двигателе?
Из Википедии, бесплатной энциклопедии. Конденсатор двигателя , такой как пусковой конденсатор или рабочий конденсатор (включая двойной конденсатор ) представляет собой электрический конденсатор , который изменяет ток одной или нескольких обмоток однофазного асинхронного двигателя переменного тока для создания вращающегося магнитного поля.