Подключение электродвигателя к сети 220В/380В/660В
Чтобы произвести пуск ротора асинхронного двигателя в движение и не спалить электродвигатель АИР при запуске – концы обмоток статора следует правильно подключить к сети переменного тока с рабочим напряжением: 220 вольт, 380 вольт и 660 вольт.
Общепромышленные асинхронные электродвигатели АИР можно подключить к трехфазной сети «Треугольником» либо «Звездой». В зависимости от мощности, производителем электродвигателей АИР рассчитана работа с двумя номинальными напряжениями 220В/380В или 380В/660В, отсюда и два способа поколения: схема звезда и схема треугольник.
Для снижения пусковых токов электромотора, при запуске двигателя необходимо соблюдать правильную последовательность схем присоединения обмотки: с начало производится подключение звезда на пониженных оборотах, после переключиться на треугольник.
Как правильно подключить провода электродвигателя?
При соединении трёхфазного электродвигателя по схеме подключения звездой — начало обмоток подключаются к фазам, а концы статарных обмоток трехфазного электродвигателя необходимо соединить вместе в одной точке, после чего на начало обмоток двигателя подать питание.
При присоединении трёхфазного электродвигателя по схеме подключения треугольником — обмотки статора электродвигателя соединяются последовательно, одна обмотка соединяется началом следующей и так поочередности до конца.
Схема «Зезда» | Напряжение при подключении |
220/380 380 В — «звездой» 220 В — «треугольником» |
Схема «Треугольник» | Напряжение при подключении |
380/660 380 В — «треугольником» 660 В — «звездой» |
Типы и виды подключения двигателя АИР. Фото клеммной коробки
Схема подключения «звезда»
При подключении обмоток по схеме звезда, трехфазный электродвигатель работает на полную мощность, что на 30% больше от мощности при соединении двигателя треугольник. При подключении звездой в работе электродвигателя наблюдаются очень большие значения пусковых токов.
Основными преимуществами способа подключения электродвигателя по схеме звезда считаются:
- Плавный пуск
- Повышенная надежность
- Устойчивость к недлительной перегрузки
При такой схеме подключения, фактическая мощность электродвигателя меньше заявленной.
Схема подключения «треугольник»
Электродвигатель имеющий соединение обмотки треугольником, работает более плавно и мягче, в отличии от электродвигателей с соединением обмотки звездой. При подключении обмоток треугольником электродвигатель не может развить заявленную мощность производителем.
- Максимальная мощность
- Повышенный вращающий момент
- Увеличенные тяговые способности
Недостатки способа подключения: электродвигатели присоединяющиеся треугольником больше нагреваются.
Комбинированное подключение электродвигателя
Подключение «звездой» обеспечит электродвигателю плавный запуск, но максимальная заявленная мощность электромотора не будет достигнута. При подключении «треугольником» электродвигатель работает на заявленной мощности, однако есть возможность, что пусковой ток повредит изоляцию обмотки.
В связи со снижением пусковых токов, для больших и мощных электродвигателей (от 5,5 кВт 3000 об/мин — АИР100L2) рекомендуется использовать подключение по схеме звезда — треугольник. Данный способ подключения обеспечит первоначальный запуск электродвигателя по схеме «звезда», после того как электродвигатель наберет обороты, будет выполнено автоматическое переключение по схеме «треугольник». Таким образом комбинированная схема подключения обезопасит электромотор, а на выходе получите максимальную мощность двигателя.
Ходовые модели трехфазных асинхронных электродвигателей в Украине:
- АИР 71А2, АИР 71В4, АИР 71В2
- АИР 80А2, АИР 80В4, АИР 80В2
- АИР 90L6, АИР 90L4, АИР 90L2
- АИР 100S4,АИР 100S2, АИР 100L4
- АИР 112МВ6, АИР 112М4, АИР 112М2
- АИР 132S4, АИР 132М4, АИР 132М2
- АИР 160S4, АИР 160М4, АИР 160М2
- АИР 180S4, АИР 180М4, АИР 180М2
- АИР 200М2, АИР 200М4, АИР 200L2
- АИР 200L4, АИР 225М4, АИР 225М2
- АИР 250S2, АИР 250S4, АИР 250М2
- АИР 280S2, АИР 280S4, АИР 280М2
- АИР 315S2, АИР 315S4, АИР 315М2
Проблемы при выборе подключения электродвигателя
При покупке электромотора, возникают ряд вопросов, таких как: как подключить трехфазный электрический двигатель, какую схему использовать при соединении (звезда или треугольник) для надежной работы, какая устойчивость к перегрузкам, стоить переплатить за качество и надежность или выбрать дешевый мотор. Специалисты «ЗЭМО» готовы дать ответы на все Ваши вопросы. Поможем купить трехфазный асинхронный электродвигатель мощностью от 0,12 до 315 кВт, понять как правильно подключить электродвигатель к сети питания и как самостоятельно определить нужную схему подключения на оборудование производства.
2492 29.10.2021
Подключение трехфазного двигателя к однофазной сети без потери мощности
Главная > Энергетика > Подключение трехфазного двигателя к однофазной сети без потери мощности
Как известно, при включении трёхфазного асинхронного двигателя в однофазную сеть, по распространенным конденсаторным схемам: «треугольник», или «звезда», мощность двигателя используется только наполовину (в зависимости от применяемого двигателя).
Кроме того, затруднён запуск двигателя под нагрузкой.
В предлагаемой статье описан метод подключения двигателя без потери мощности.
В различных любительских электромеханических станках и приспособлениях чаще всего используются трехфазные асинхронные двигатели с короткозамкнутым ротором. К сожалению, трехфазная сеть в быту — явление крайне редкое, поэтому для их питания от обычной электрической сети любители применяют фазосдвигающий конденсатор, что не позволяет в полном объеме реализовать мощность и пусковые характеристики двигателя. Существующие же тринисторные «фазосдвигающие» устройства еще в большей степени снижают мощность на валу двигателей.
Вариант схемы устройства запуска трехфазного электродвигателя без потери мощности приведен на рис. 1.
Обмотки двигателя 220/380 В соединены треугольником, а конденсатор С1 включен, как обычно, параллельно одной из них. Конденсатору «помогает» дроссель L1, включенный параллельно другой обмотке. При определенном соотношении емкости конденсатора С1, индуктивности дросселя L1 и мощности нагрузки можно получить сдвиг фаз между напряжениями на трех ветвях нагрузки, равный точно 120°.
На рис. 2 приведена векторная диаграмма напряжений для устройства, представленного на рис. 1, при чисто активной нагрузке R в каждой ветви. Линейный ток Iл в векторном виде равен разности токов Iз и Ia, а по абсолютному значению соответствует величине Iф√3, где Iф=I1=I2=I3=Uл/R — фазный ток нагрузки, Uл=U1=U2=U3=220 В — линейное напряжение сети.
К конденсатору С1 приложено напряжение Uc1=U2, ток через него равен Ic1 и по фазе опережает напряжение на 90°.
Аналогично к дросселю L1 приложено напряжение UL1=U3, ток через него IL1 отстает от напряжения на 90°.
При равенстве абсолютных величин токов Ic1 и IL1 их векторная разность при правильном выборе емкости и индуктивности может быть равной Iл.
Сдвиг фаз между токами Ic1 и IL1 составляет 60°, поэтому треугольник из векторов Iл, Iс1 и IL1 — равносторонний, а их абсолютная величина составляет Iс1=IL1=Iл=Iф√3. В свою очередь, фазный ток нагрузки Iф=Р/ЗUL, где Р — суммарная мощность нагрузки.
Иными словами, если емкость конденсатора С1 и индуктивность дросселя L1 выбрать такими, чтобы при поступлении на них напряжения 220 В ток через них был бы равен Ic1=IL1=P/(√3⋅Uл)=P/380, показанная на рис.
Таблица 1
P, Вт | IC1=IL1, A | C1, мкФ | L1, Гн |
---|---|---|---|
100 | 0.26 | 3.8 | 2.66 |
200 | 0.53 | 7.6 | 1.33 |
300 | 0.79 | 11.4 | 0.89 |
400 | 1.05 | 15.2 | 0.67 |
500 | 1.32 | 19.0 | 0.53 |
600 | 1.58 | 22.9 | 0.44 |
700 | 1.84 | 26.7 | 0.38 |
800 | 2.11 | 30.5 | 0.33 |
900 | 2.37 | 34.3 | 0.30 |
1000 | 2.63 | 38.1 | 0.27 |
1100 | 2.89 | 41. 9 | 0.24 |
1200 | 3.16 | 45.7 | 0.22 |
1300 | 3.42 | 49.5 | 0.20 |
1400 | 3.68 | 53.3 | 0.19 |
1500 | 3.95 | 57.1 | 0.18 |
В табл. 1 приведены значения тока Ic1=IL1. емкости конденсатора С1 и индуктивности дросселя L1 для различных величин полной мощности чисто активной нагрузки.
Реальная нагрузка в виде электродвигателя имеет значительную индуктивную составляющую. В результате линейный ток отстает по фазе от тока активной нагрузки на некоторый угол ф порядка 20…40°.
На шильдиках электродвигателей обычно указывают не угол, а его косинус — широко известный cosφ, равный отношению активной составляющей линейного тока к его полному значению.
Индуктивную составляющую тока, протекающего через нагрузку устройства, показанного на рис. 1, можно представить в виде токов, проходящих через некоторые катушки индуктивности Lн, подключенные параллельно активным сопротивлениям нагрузки (рис. 3,а), или, что эквивалентно, параллельно С1, L1 и сетевым проводам.
Из рис. 3,б видно, что поскольку ток через индуктивность противофазен току через емкость, катушки индуктивности LH уменьшают ток через емкостную ветвь фазосдвигающей цепи и увеличивают через индуктивную. Поэтому для сохранения фазы напряжения на выходе фазосдвигающей цепи ток через конденсатор С1 необходимо увеличить и через катушку уменьшить
Векторная диаграмма для нагрузки с индуктивной составляющей усложняется. Ее фрагмент, позволяющий произвести необходимые расчеты, приведен на рис. 4.
Полный линейный ток Iл разложен здесь на две составляющие: активную Iлcosφ и реактивную Iлsinφ.
В результате решения системы уравнений для определения необходимых значений токов через конденсатор С1 и катушку L1:
IC1sin30° + IL1sin30° = Iлcosφ, IC1cos30° — IL1cos30° = Iлsinφ,
получаем следующие значения этих токов:
IC1 = 2/√3⋅Iлsin(φ+60°), IL1 = 2/√3⋅Iлcos(φ+30°).
При чисто активной нагрузке (φ=0) формулы дают ранее полученный результат Ic1=IL1=Iл.
На рис. 5 приведены зависимости отношений токов Ic1 и IL1 к Iл от cosφ, рассчитанные по этим формулам Для (cosφ = √3/2 = 0,87) ток конденсатора С1 максимален и равен 2/√3Iл = 1.15Iл, а ток дросселя L1 вдвое меньше.
Этими же соотношениями с хорошей степенью точности можно пользоваться для типовых значений cosφ, равных 0,85…0,9.
Таблица 2
P, Вт | IC1, A | IL1, A | C1, мкФ | L1, Гн |
---|---|---|---|---|
100 | 0.35 | 0.18 | 5.1 | 3.99 |
200 | 0.70 | 0.35 | 10.2 | 2.00 |
300 | 1.05 | 0.53 | 15.2 | 1.33 |
400 | 1.40 | 0.70 | 20.3 | 1.00 |
500 | 1.75 | 0. 88 | 25.4 | 0.80 |
600 | 2.11 | 1.05 | 30.5 | 0.67 |
700 | 2.46 | 1.23 | 35.6 | 0.57 |
800 | 2.81 | 1.40 | 40.6 | 0.50 |
900 | 3.16 | 1.58 | 45.7 | 0.44 |
1000 | 3.51 | 1.75 | 50.8 | 0.40 |
1100 | 3.86 | 1.93 | 55.9 | 0.36 |
1200 | 4.21 | 2.11 | 61.0 | 0.33 |
1300 | 4.56 | 2.28 | 66.0 | 0.31 |
1400 | 4.91 | 2.46 | 71.1 | 0.29 |
1500 | 5.26 | 2.63 | 76.2 | 0.27 |
В табл. 2 приведены значения токов IC1, IL1, протекающих через конденсатор С1 и дроссель L1 при различных величинах полной мощности нагрузки, имеющей указанное выше значение cosφ = √3/2.
Для такой фазосдвигающей цепи используют конденсаторы МБГО, МБГП, МБГТ, К42-4 на рабочее напряжение не менее 600 В или МБГЧ, К42-19 на напряжение не менее 250 В.
Дроссель проще всего изготовить из трансформатора питания стержневой конструкции от старого лампового телевизора. Ток холостого хода первичной обмотки такого трансформатора при напряжении 220 В обычно не превышает 100 мА и имеет нелинейную зависимость от приложенного напряжения.
Если же в магнитопровод ввести зазор порядка 0,2…1 мм, ток существенно возрастет, а зависимость его от напряжения станет линейной.
Сетевые обмотки трансформаторов ТС могут быть соединены так, что номинальное напряжение на них составит 220 В (перемычка между выводами 2 и 2′), 237 В (перемычка между выводами 2 и 3′) или 254 В (перемычка между выводами 3 и 3′). Сетевое напряжение чаще всего подают на выводы 1 и 1′. В зависимости от вида соединения меняются индуктивность и ток обмотки.
В табл. 3 приведены значения тока в первичной обмотке трансформатора ТС-200-2 при подаче на нее напряжения 220 В при различных зазорах в магнитопроводе и разном включении секций обмоток.
Сопоставление данных табл. 3 и 2 позволяет сделать вывод, что указанный трансформатор можно установить в фазосдвигающую цепь двигателя с мощностью примерно от 300 до 800 Вт и, подбирая зазор и схему включения обмоток, получить необходимую величину тока.
Индуктивность изменяется также в зависимости от синфазного или противофазного соединения сетевой и низковольтных (например, накальных) обмоток трансформатора.
Максимальный ток может несколько превышать номинальный ток в рабочем режиме. В этом случае для облегчения теплового режима целесообразно снять с трансформатора все вторичные обмотки, часть низковольтных обмоток можно использовать для питания цепей автоматики устройства, в котором работает электродвигатель.
Таблица 3
Зазор в магнитопроводе, мм | Ток в сетевой обмотке, A, при соединении выводов на напряжение, В | ||
---|---|---|---|
220 | 237 | 254 | |
0.2 | 0.63 | 0.54 | 0.46 |
0.5 | 1.26 | 1.06 | 0.93 |
1 | — | 2.05 | 1.75 |
В табл. 4 приведены номинальные величины токов первичных обмоток трансформаторов различных телевизоров и ориентировочные значения мощности двигателя, с которыми их целесообразно использовать фазосдвигающую LC-цепь следует рассчитывать для максимально возможной нагрузки электродвигателя.
Таблица 4
Трансформатор | Номинальный ток, A | Мощность двигателя, Вт |
---|---|---|
ТС-360М | 1.8 | 600…1500 |
ТС-330К-1 | 1. 6 | 500…1350 |
СТ-320 | 1.6 | 500…1350 |
СТ-310 | 1.5 | 470…1250 |
ТСА-270-1, ТСА-270-2, ТСА-270-3 | 1.25 | 400…1250 |
ТС-250, ТС-250-1, ТС-250-2, ТС-250-2М, ТС-250-2П | 1.1 | 350…900 |
ТС-200К | 1 | 330…850 |
ТС-200-2 | 0.95 | 300…800 |
ТС-180, ТС-180-2, ТС-180-4, ТС-180-2В | 0.87 | 275…700 |
При меньшей нагрузке необходимый сдвиг фаз уже не будет выдерживаться, но пусковые характеристики по сравнению с использованием одного конденсатора улучшатся.
Экспериментальная проверка проводилась как с чисто активной нагрузкой, так и с электродвигателем.
Функции активной нагрузки выполняли по две параллельно соединенных лампы накаливания мощностью 60 и 75 Вт, включенные в каждую нагрузочную цепь устройства (см рис. 1), что соответствовало общей мощности 400 Вт В соответствии с табл. 1 емкость конденсатора С1 составляла 15 мкф Зазор в магнитопроводе трансформатора ТС-200-2 (0,5 мм) и схема соединения обмоток (на 237 В) были выбраны из соображений обеспечения необходимого тока 1,05 А.
Измеренные на нагрузочных цепях напряжения U1, U2, U3 отличались друг от друга на 2…3 В, что подтверждало высокую симметрию трехфазного напряжения.
Эксперименты проводились также с трехфазным асинхронным двигателем с короткозамкнутым ротором АОЛ22-43Ф мощностью 400 Вт. Он работал с конденсатором С1 емкостью 20 мкф (кстати, такой же, как и при работе двигателя только с одним фазосдвигающим конденсатором) и с трансформатором, зазор и соединение обмоток которого выбраны из условия получения тока 0,7 А.
В результате удалось быстро запустить двигатель без пускового конденсатора и заметно увеличить крутящий момент, ощущаемый при торможении шкива на валу двигателя.
К сожалению, провести более объективную проверку затруднительно, поскольку в любительских условиях практически невозможно обеспечить нормированную механическую нагрузку на двигатель.
Следует помнить, что фазосдвигающая цепь — это последовательный колебательный контур, настроенный на частоту 50 Гц (для варианта чисто активной нагрузки), и без нагрузки подключать к сети эту цепь нельзя.
Как запустить 3-х фазный асинхронный двигатель 220/380В методом звезда-треугольник от 3-х фазного источника питания 380В?
спросил
Изменено 3 года, 5 месяцев назад
Просмотрено 2к раз
\$\начало группы\$
Я хотел бы задать вопрос о том, как запустить 3-х фазный асинхронный двигатель 220/380В методом звезда-треугольник от 3-х фазного источника питания 380В. Практически я считаю, что без понижающего трансформатора не обойтись, преобразовав источник питания с 380В на 220В. Но мой босс сказал мне, что мне нужно сделать это без использования трансформатора. Итак, есть ли какие-либо предложения по решению этой проблемы? Я только начинаю работать, поэтому любая помощь будет оценена по достоинству. Спасибо
\$\конечная группа\$
\$\начало группы\$
Это просто. Сначала двигатель подключается звездой (Y), и напряжение распределяется по двум обмоткам. Каждая обмотка получает Vline/sqrt(3), если вы вычисляете из 380 В, вы получаете 220 В. Ток также уменьшается на коэффициент 1/sqrt(3), а мощность уменьшается на коэффициент 1/sqrt(3)*sqrt(3) = 1/3.
Как только двигатель достигает оборотов, он переключается на соединение треугольником, теперь вы получаете полное напряжение на обмотках, ток и номинальную мощность.
\$\конечная группа\$
\$\начало группы\$
Если двигатель предназначен для работы звездой от трехфазного источника питания 380 В, то его нельзя подключать треугольником к «тому же» источнику питания .
Это похоже на подачу 380 вольт на обмотки 220 вольт, поэтому очевидно, что двигатель выйдет из строя.
Решение состоит в том, чтобы получить 3-фазный понижающий трансформатор , чтобы получить 220 3-фазного напряжения, и вам необходимо рассчитать номинальные значения кВА трансформатора в зависимости от нагрузки.
ИЛИ получите инвертор , просто подключите к нему одну фазу 220 В (линия и нейтраль источника питания 380 В) и получите 3 фазы 220 В.
Надеюсь, ответ будет полезным и понятным
\$\конечная группа\$
\$\начало группы\$
Есть лучшие варианты, чем использование понижающего трансформатора. Вы можете использовать соединение двигателя 380 В с автотрансформаторным пускателем, который снижает напряжение при пуске, а затем переключается на полное напряжение. Вы также можете использовать электронный стартер, который делает то же самое. Найдите «пускатели двигателей пониженного напряжения».
\$\конечная группа\$
Зарегистрируйтесь или войдите в систему
Зарегистрируйтесь с помощью Google
Зарегистрироваться через Facebook
Зарегистрируйтесь, используя электронную почту и пароль
Опубликовать как гость
Электронная почта
Требуется, но никогда не отображается
Опубликовать как гость
Электронная почта
Требуется, но не отображается
Нажимая «Опубликовать свой ответ», вы соглашаетесь с нашими условиями обслуживания, политикой конфиденциальности и политикой использования файлов cookie
.Элементы управления электрическим двигателем, стартеры и детали
Select Equipment Co. складирует новые и восстановленные пускатели двигателей низкого напряжения до размера Nema 7. У нас есть электрические детали и все серии пускателей двигателей для продажи от основных OEM-производителей, таких как Westinghouse/Cutler Hammer/EATON, Square D, Siemens, и Аллен Брэдли. Мы специализируемся на перевозке устаревших и труднодоступных стартеров двигателей, чтобы поддерживать работу вашего предприятия! Мы также являемся OEM-поставщиком для ABB, поставляющим полный спектр пускателей двигателей IEC и реле перегрузки.
> Подробнее
Быстрый просмотр
8536SCO3, пускатель электродвигателя Square D Nema размера 1
8536SCO3, Square D, Class 8536, пускатель двигателя, тип SCG, 3P, 3PH, 27A, 600В с катушкой 24В 60Гц, NEMA размер 1, открытого типа
$130. 00
Выберите опции
Быстрый просмотр
8536SDO1V03, пускатель электродвигателя Square D Nema размера 2
8536SD01V03, Square D, Class 8536, пускатель двигателя, тип SDO, 3P, 3PH, 45A, 600В с катушкой 240В 60Гц / 220В 50Гц, NEMA размер 2, открытого типа
$575,00
Выберите опции
Быстрый просмотр
8536SDO1V01S, пускатель электродвигателя Square D Nema размера 2
8536SD01V01S, Square D, Class 8536, пускатель двигателя, тип SDO, 3P, 3PH, 45A, 600В с катушкой 24В 60Гц, NEMA размер 2, открытого типа с отдельным блоком управления
475,00 долларов США
Выберите опции
Быстрый просмотр
8536SDO1V02h40S, Пускатель электродвигателя Square D Nema Size 2
8536SD01V02h40S, Square D, Class 8536, пускатель двигателя, тип SDO, 3P, 3PH, 45A, 600В с катушкой 120В 60Гц / 110В 50Гц, NEMA размер 2, открытый тип с Motor Logic SSDR Class 10/20
$650. 00
Выберите опции
Быстрый просмотр
8536SCO3V08h40, Square D Nema Size 1 Пускатель двигателя
8536SCO3V08h40, Square D, Class 8536, пускатель двигателя, тип SCG, 3P, 3PH, 27A, 600В с катушкой 208В 60Гц, NEMA размер 1, открытый тип с Motor Logic SSDLR Class 10/20
$350.00
Выберите параметры
Быстрый просмотр
8536SCO3V07h20, Square D Nema, размер 1, пускатель электродвигателя
8536SCO3V07h20, квадрат D, класс 8536, пускатель двигателя, тип SCG, 3P, 3PH, 27A, 600 В с катушкой 600 В 60 Гц / 550 В 50 Гц, NEMA размер 1, открытый тип с Motor Logic SSDLR Class 10
$350.00
Выберите опции
Быстрый просмотр
8536-SCO3 Пускатель электродвигателя Square D Nema размера 1 FVNR
8536-SCO3, Square D, класс 8536, магнитный пускатель двигателя FVNR, тип SCO, NEMA размер 1, 3 фазы, 3 полюса, 27 А, 600 В, 10 л. с. при 200/230 В перем. для пуска и останова электродвигателей переменного тока при полном напряжении Деталь…
195,00 долларов США
Выберите опции
Быстрый просмотр
CR306G102 ~ GENERAL ELECTRIC NEMA РАЗМЕР 5 НЕРЕВЕРСИВНЫЙ СТАРТЕР ДВИГАТЕЛЯ
CR306G104, GENERAL ELECTRIC, NEMA РАЗМЕР 5, 3 ФАЗЫ, 3 КОНТАКТА, 300 ЛИНИЯ, 270 А, 600 В, 115–120 В 50/60 Гц КАТУШКА ПЕРЕМЕННОГО ТОКА, НЕКОМБИНИРОВАННЫЙ МАГНИТНЫЙ СТАРТЕР, NEMA TYPE 1, НАКЛАДНОЕ КРЕПЛЕНИЕ НА КРЫШКЕ , НЕРЕВЕРСИВНАЯ, ПОЛНАЯ…
Выберите параметры
Быстрый просмотр
A10CNOA, Пускатель электродвигателя Cutler Hammer Nema размера 1 FVNR, серия Citation
A10CN0A, МОЛОТОК ДЛЯ РЕЗКИ, NEMA РАЗМЕР 1, СЕРИЯ A1, 3 ФАЗЫ, 18 А, 600 В, 10 л. с. при 575 В, 120 В МАКС. КАТУШКА ПЕРЕМЕННОГО ТОКА, РЕЛЕ ПЕРЕГРУЗКИ ИЗ ПЛАВКОВОГО СПЛАВА, ПОЛНОЕ НАПРЯЖЕНИЕ, НЕРЕВЕРСИВНОЕ МОТОР-СТАРТЕР. ВСЕ СТАРТЕРЫ ДВИГАТЕЛЕЙ A10CN0A ПРОФЕССИОНАЛЬНО ВОССТАНАВЛИВАЮТСЯ НАШЕЙ…
185,00 долларов США
Выберите опции
Быстрый просмотр
14ФУ+32АА
14FU+32*, 14FU+32AA, нереверсивный пускатель полного напряжения Siemens, размер Nema 2, 600 В перем. тока, прод. Ампер: 52А; 3 фазы; Напряжение катушки — 240/120В переменного тока; 3-фазный 200В л.с. — 10 л.с.; 3 фазы 230В — 15 л.с.; 3-фазный 460В — 25 л.с.; 3-фазный 575В л.с. — 25 л.с.;…
$395.00
Выберите опции
Быстрый просмотр
14ДС+32А
14DST32A СТАРТЕРЫ ДВИГАТЕЛЕЙ SIEMENS — СТАРТЕР ДВИГАТЕЛЯ ПОЛНОГО НАПРЯЖЕНИЯ, НЕРЕВЕРСИВНЫЙ, NEMA РАЗМЕР 1, КАТУШКА 120 В.