Онлайн калькулятор свайного фундамента — рассчитать стоимость фундамента на винтовых сваях
Минимальное количество свай для оформления заказа с монтажом 10 штук
Воспользуйтесь нашим онлайн-калькулятором для расчета свайного фундамента любого строения. Калькулятор поможет рассчитать необходимое количество свай и стоимость монтажных работ.
Обращаем ваше внимание, что данный расчет фундамента является упрощенным и не может учесть все индивидуальные особенности вашего проекта. Для их уточнения наш специалист свяжется с вами в ближайшее время.
Калькулятор не учитывает внутреннюю несущую стенку строения.
Наш сервис позволяет предварительно рассчитать винтовой фундамент, чтобы заранее прикинуть его стоимость. Если вам требуются монтажные работы, то на объект будет отправлена бригада опытных строителей, которые полностью укомплектованы необходимым оснащением, включающим, в том числе генераторы и баки с водой. После того как вы укажете место для вашего будущего свайного фундамента, строители приступят к монтажным работам. У вас есть возможность принять работу в конце дня и обсудить с бригадиром интересующие вас вопросы, касающиеся свайного фундамента. Монтаж фундамента до 25 свай длится всего 1 день. На произведенный нашими специалистами фундамент мы даем гарантию сроком на 10 лет.
Точный расчет, в процессе которого определяется стоимость винтовых свай для фундаментов домов и других конструкций, выполняется в режиме онлайн на базе введенных заказчиком параметров. Для этого предусмотрен удобный и наглядный сервис.
Чтобы рассчитать стоимость фундамента, введите необходимые данные о грунте, размерах, типе строения и его параметрах в калькулятор. Если у вас возникнут дополнительные вопросы, задайте их нашим специалистам. Они помогут вам разобраться и правильно рассчитать винтовой фундамент. Контактные телефоны указаны в верхней части страницы нашего сайта.
Прежде всего, следует рассчитать стоимость винтовых свай для фундамента. Для этого необходимо учесть ряд важных параметров:
Количество свай. Обычно расчет ведется из предположения, что расстояние между сваями не может превышать 3 метров. Таким образом, для фундамента небольшого одноэтажного дома 6х6 метров достаточно девяти свай. Однако для двухэтажного здания лучше располагать их на расстоянии 2-2,5 метра друг от друга.
Диаметр сваи. Здесь все зависит от потенциальной нагрузки фундамента. Для беседки подойдут винтовые сваи диаметром 89 мм, а для дома нужно выбирать классические 108-миллиметровые.
Тип наконечника. Наконечник сваи может быть сварным или литым. Конкретный вариант выбирается, исходя из особенностей грунта. Опорные элементы с литым наконечником обойдутся несколько дороже, но их стоимость компенсируется высокими антикоррозийными характеристиками.
Длина. На стоимости винтовых свай, разумеется, напрямую сказывается их длина. В большинстве случаев она составляет 2,5 метра, однако специалист в обязательном порядке должен провести пробное бурение, чтобы определить точные значения длин свай для конкретного фундамента.
Наличие и размер оголовков. Оголовки привариваются поверх свай и служат опорой для плиты или балки ростверка.
На следующем этапе определяется стоимость обвязки. Обвязка свай может понадобиться в случае необходимости обеспечения дополнительной их стабильности в горизонтальной плоскости. К примеру, обвязка желательна, если высота свай над уровнем земли превышает 50 см или в случае нестабильных торфяных грунтов. Однако даже в общем случае обвязка свай никогда не бывает лишней, поскольку данная операция значительно повышает конструктивную прочность фундамента.
При финальном определении стоимости работ учитываются дополнительные факторы: необходимость предоставления монтажных услуг, расстояние до объекта (расходы на горючее), наличие на объекте электричества (необходима компенсация затрат на доставку и эксплуатацию портативного дизельного генератора).
Расчет свайного фундамента
Для расчета веса строения достаточно знать удельный вес материалов, которые будут использованы при его строительстве и их предполагаемые объемы. Это не требует каких-то специальных знаний и навыков. Можно попробовать запросить нужные данные у поставщика стройматериалов.
Мы при выполнении расчетов будем использовать справочные данные с усредненными значениями удельного веса конструкций дома (стен, перекрытий, кровли), приведенные в таблице 1.Таблица 1 — Справочные данные с усредненными значениями удельного веса конструкций дома: стен, перекрытий, кровли.
Удельный вес 1 м2 стены |
|
Каркасные стены толщиной 200 мм с утеплителем |
40-70 кг/м2 |
Стены из бревен и бруса |
70-100 кг/м2 |
Кирпичные стены толщиной 150 мм |
200-270 кг/м2 |
Железобетон толщиной 150 мм |
300-350 кг/м2 |
Удельный вес 1 м2 перекрытий |
|
Чердачное по деревянным балкам с утеплителем, плотностью до 200 кг/м3 |
70-100 кг/м2 |
Чердачное по деревянным балкам с утеплителем плотностью до 500 кг/м3 |
150-200 кг/м2 |
Цокольное по деревянным балкам с утеплителем, плотностью до 200 кг/м3 |
100-150 кг/м2 |
Цокольное по деревянным балкам с утеплителем, плотностью до 500 кг/м3 |
200-300 кг/м2 |
|
500 кг/м2 |
Удельный вес 1 м2 кровли |
|
Кровля из листовой стали |
20-30 кг/м2 |
Рубероидное покрытие |
30-50 кг/м2 |
Кровля из шифера |
40-50 кг/м2 |
Кровля из гончарной черепицы |
60-80 кг/м2 |
При самостоятельном выполнении расчетов стоит учитывать, что согласно п. 7.1 СП 20.13330.2016 «Нагрузки и воздействия» расчетное значение нагрузки следует определять, как произведение ее нормативного значения на коэффициент надежности по нагрузке (γf) для веса строительных конструкций, соответствующий рассматриваемому предельному состоянию:
Таблица 2 — Таб. 8.2. СП 20.13330.2016 «Нагрузки и воздействия»
Конструкции сооружений и вид грунтов |
Коэффициент надежности, γf |
Конструкции Металлические Бетонные (со средней плотностью свыше 1600 кг/м), железобетонные, каменные, армокаменные, деревянные Бетонные (со средней плотностью 1600 кг/м, изоляционные, выравнивающие и отделочные слои (плиты, материалы в рулонах, засыпки, стяжки и т.п.), выполняемые: в заводских условиях на строительной площадке Грунты: В природном залегании На строительной площадке |
1,05 1,1
1,2 1,3
1,1 1,15 |
Выполним необходимые расчеты на примере каркасно-щитового дома с мансардой с размерами в плане 6х9 м.
Чтобы посчитать вес от стен дома необходимо вычислить их периметр. Периметр наружных стен + внутренние стены: Р=47 м, среднюю высоту стен примем h=4,5 м. Тогда вес от конструкции стен будет равен: Р х h х удельный вес материала стен.
47 м х 4,5 м х 70 кг/м2 = 14 805 кг = 14,8 т.
Далее посчитаем вес крыши. Принимаем, что вес крыши (деревянная стропильная система с покрытием из металлочерепицы) равен 40 кг/ м
92 м2 х 40 кг/м2 = 3 680 кг = 3,7 т.
Также необходимо посчитать вес от перекрытий. Принимаем, что вес деревянного пола вместе с утеплителем будет равен 100 кг/м2. Тогда вес от перекрытий будет равен: S перекрытия*удельный вес*количество.
54 м2 х 0,1 т/м2 х 2 = 10,8 т.
После того как выполнены все необходимые расчеты, полученный вес сооружения умножаем на коэффициент надежности, о котором мы говорили ранее (в расчете для каркасно-щитового дома коэффициент принимаем равным 1,1 – для деревянных конструкций):
29,3 т х 1,1 = 32,2 т
Таким образом, нагрузка от самого здания составит 32,2 т. Этот вес принят условно, без вычета дверных и оконных проемов.
Расчет нагрузки свайного фундамента: пример расчета
Методика расчёта необходимого количества свай для фундамента с исходными данными и конкретными примерами. Провести точный и правильный расчёт нагрузки свайного фундамента с учётом всех параметров, требований, норм и правил может каждый человек, знающий сопромат и разбирающийся в математике. На практике это сложно и не нужно неспециалисту, а возможные просчёты могут привести не только к убыткам. Но понять принцип расчёта поможет краткая упрощённая методика:
- Подсчитывается общий вес сооружения.
- Определяются снеговая и ветровая нагрузки исходя из средних обобщённых данных.
- Подсчитывается полезная или бытовая нагрузка.
- Подсчитывается общий вес ( сбор весов).
- Ориентируясь на полную площадь строения и минимально допустимый шаг свай .определяется их общее максимальное количество
- Подсчитывается суммарная площадь оснований свай.
- Подбирается типоразмер и реальное количество свай.
- На основе максимальных значений расстояний между сваями с учётом равного распределения нагрузок формируется план свайного поля.
- С учётом распределения нагрузок от строения проектируется и рассчитывается ростверк .
Конкретные цифры для расчётов
В случае, когда сложно либо невозможно определить несущую способность грунта, принимается значение 2,5 кг\см2, это усреднённый показатель для грунтов российской средней полосы.
Исходные данные для расчёта свайных фундаментов
Максимальный шаг винтовых свай для малоэтажного и хозяйственного индивидуального строительства:
- строения из бревна или бруса 3 м;
- сооружения каркасного либо сборно-щитового типа 3 м;
- здания с несущими стенами из облегчённых блоков 2,5 м;
- дома из кирпича и полнотелых бетонных блоков 2 м;
- монолитные сооружения 1,7 м.
Для кустов свай под печи, колонны и подобные сооружения с сосредоточенной нагрузкой допустимое минимальное расстояние между сваями 1,5 м, для веранд и аналогичных построек 1,2 м.
Вес конструкций и частей зданий
Для сбора весов допустим приблизительный подсчёт. Ошибка в большую сторону приведёт к небольшому увеличению стоимости работ. Если же реальные нагрузки окажутся больше расчётных, то возможно разрушение фундамента и здания в целом.
Предпочтительный ориентир при отсутствии точной информации максимальное значение.
Стены :
- кирпичные 600-1200кг\м2;
- бревенчатые 600 кг\м2;
- газо- и пенобетонные 400-900 кг\м2;
- каркасные и панельные 20-30 кг\м2.
Крыши с учётом стропильной системы:
- листовая сталь, в т.ч. металлопрофиль и металлочерепица 20-30 кг\м2;
- листы асбоцементные 60-80 кг\м2;
- рубероид и другие мягкие покрытия 30-50 кг\м2.
Перекрытия:
- деревянные с утеплителем 70-100 кг\м2;
- цокольные с утеплителем 100-150 кг\м2;
- монолитные армированные 500 кг\м2;
- плитные пустотелые 350 кг\м2.
Снеговая и ветровая нагрузки подсчитываются с учётом средних региональных показателей с поправочными коэффициентами. Средняя эксплуатационная (полезная) нагрузка с учётом веса людей, оборудования, техники, мебели, домашней утвари — 100 кг\м2. После сведения веса необходимо применить к результату коэффициент запаса 1,2.
Пример подсчёта потребности в сваях
Для примера расчёта возьмём одноэтажный дачный дом:
- с крышей из металлочерепицы;
- стены бревенчатые;
- перекрытия деревянные;
- размер 6 Х 6 м;
- без фундаментальной печи;
- высота стен 2,4 м.
Расчет:
- вес стен из бревна: 2,4 (высота) Х 24 (периметр) Х 600 = 34560;
- вес перекрытий: 36 (площадь) Х2 Х 100 = 7200;
- вес крыши: 54 (площадь) * 20 = 1080;
- полезная нагрузка: 100 Х 36 = 3600.
Сборный вес дома: 34560+7200+1080+3600=46440 кг.
Снеговую нагрузку определяем для севера нашей страны по номинальной массе снежного покрова 190 кг\м2. Отсюда расчет равен: 6х6х190=6840 кг.
Итоговый сборный вес: (46440+6840) Х 1,2 (запас) = 63936 кг.
Выбираем сваю самого популярного размера 89*300мм при её погружении на 2,5 м с несущей способностью 3,6 т, а сводный вес также переводим в тонны. 63,9 : 3,6 = 17,75 шт. — понадобится 18 штук винтовых свай.
Далее сваи распределяются по свайному полю с учётом первоочередной установки в углах, примыканиях и пересечениях. Количество буронабивных свай будет соответствовать расчёту количества свай винтовых при соблюдении аналогичных параметров.
Для расчёта нагрузок, подбора оптимальных параметров свай и их количества, а также расчёта ростверка, разработаны специальные компьютерные программы, например, StatPile и GeoPile, облегчающие и упрощающие задачу по устройству фундаментов.
Расчёт ростверка
Назначение ростверка равномерное распределение нагрузок на свайную конструкцию. Расчёты параметров ростверка учитывают силы продавливания основания в целом, по каждому углу и воздействия на изгиб.
Довольно сложные подсчёты застройщикам могут заменить стандартные решения, применение которых возможно только небольших индивидуальных строений:
- Материал исполнения ростверка: металлический швеллер, двутавр, монолитный бетон с армированием, брус или бревно сечением не менее материала стен.
- Голова сваи должна входить в ростверк не меньше, чем на 10 см для монолитного исполнения
- По ширине ростверк не может быть меньше толщины стены.
- Высота должна быть не меньше 30 см для бетона.
- Ростверк должен располагаться как минимум на 20 см над уровнем почвы.
- Соединение опор с ростверком может быть жёстким либо свободным.
Расчет свайных фундаментов
Навигация:
Главная → Все категории → Фундаменты
Общие положения. Расчет свайных фундаментов и их оснований выполняют по двум группам предельных состояний.
По первой группе предельных состояний расчет производят из условия обеспечения несущей способности ростверка, свай и грунта свайных фундаментов. Несущую способность грунта свайного фундамента проверяют по формуле (10.2). Если в фундаменте имеется несколько свай, то учитывают их количество.
По второй группе предельных состояний расчет выполняют только для фундаментов из висячих свай и свай-оболочек по условию (4.6), ограничивающему развитие значительных деформаций. Свайные фундаменты, состоящие из свай-стоек, одиночные висячие сваи, доспринимающие вне кустов вдавливающие или выдергивающие нагрузки, а также свайные кусты, работающие на выдергивающие нагрузки, рассчитывать по деформациям не требуется.
Рис. 10.5. Схемы передачи давления на грунт основания за счет сопротивления грунта по боковой поверхности и под нижним концом сваи
Последовательно суммируясь по высоте висячей сваи, силы трения вместе с усилием, возникающим под нижним концом сваи, передаются на грунты основания, находящиеся ниже плоскости, проходящей через ее острие. В расчетной схеме принимается, что вокруг сваи образуется напряженный массив грунта, ограниченный по боковой поверхности усеченным конусом или пирамидой в зависимости от формы поперечного сечения сваи, а под нижним концом сваи — выпуклой криволинейной поверхностью (рис. Ю.5, с).
При расположении свай трения в кусте эпюры реактивных давлений в плоскости нижних концов свай пересекаются (рис. 10.5, б) и вследствие большего загружения грунта происходит большая осадка свайного куста по сравнению с осадкой одиночной сваи.
Если деформативность сваи в кусте возрастает по сравнению с Деформативностью одиночной сваи, что отрицательно сказывается на работе свайного фундамента, то несущая способность сваи в кусте будет выше, чем несущая способность одиночной сваи, Что оказывает положительное влияние на эксплуатацию свайного фундамента. Последний факт объясняется увеличением сил трения по боковой поверхности свай, происходящим за счет уплотнения грунта вследствие забивки соседних свай, а также ограничения значительного развития зон пластических деформаций под нижним острием свай вследствие возникновения напряженного состояния от загружения соседних свай.
Проектирование свайных фундаментов включает в себя решение следующих вопросов: выбор глубины заложения ростверка, типа; и конструкции свай; определение несущей способности свай, назначение требуемого количества свай в фундаменте; конструирование фундамента; расчет ростверка; определение усилий, действующих на наиболее нагруженные сваи, и их сравнение с предельно до-1 пустимыми по грунту и материалу; расчет деформаций фундаментов и их сравнение с предельно допустимыми.
При проработке этих вопросов, исходя из наиболее экономичного и рационального решения, которое может быть получено на основе вариантного и оптимального проектирования с применением ЭВМ.
Глубину заложения подошвы ростверка назначают в соответствии с конструктивными и эксплуатационными особенностями зданий и сооружений и климатическими условиями района строительства. Как правило, подошву ростверка закладывают на глубине большей, чем глубина подвалов, приямков и коммуникаций, а также ниже глубины сезонного промерзания в пучинистоопасных грунтах. В некоторых случаях ростверк располагают в пределах зоны пучения, при этом между ростверком и грунтом создают воздушный зазор, исключая тем самым воздействие нормальных сил морозного пучения на подошву ростверка. Однако в данном случае следует учитывать касательные силы морозного пучения, действующие на ростверк и сваи. Для получения наиболее экономичного решения подошву ростверка необходимо располагать как можно выше, сводя к минимуму объем земляных работ.
Тип и конструкцию свай назначают, исходя из особенностей инженерно-геологических данных грунтов основания на строительной площадке, а также применяемого оборудования при устройстве фундаментов. В условиях современного строительства наиболее целесообразное решение удается получить при использовании забивных свай. Однако в некоторых случаях при необходимости применения свай повышенной несущей способности устраивают фундаменты из набивных свай, в том числе и с уширенной пятой.
Требуемое количество свай в фундаменте определяют на основании результатов расчета на центральное или внецентренное действие внешней нагрузки после предварительной оценки несущей способности одиночной сваи.
Определив необходимое количество свай в фундаменте, назначают его конструкцию, размещая сваи рядами или в шахматном порядке, при этом расстояние между сваями принимают равным d, где d — диаметр круглой или сторона квадратной сваи, разместив сваи, конструируют ростверк, который обычно выполняют из монолитного или сборного железобетона. Ростверк рассчитывают на продавливание сваями и опирающимися конструкциями здания (колоннами, стенками и т. д.) в соответствии с требованиями норм проектирования железобетонных конструкций, а также производят расчет ростверка на изгиб.
Высоту ростверка и его армирование назначают на основании результатов расчета, при этом по конструктивным соображениям его высота должна быть равна Ао+0,25 м, но не менее 0,3 м (Л0 — высота заделки сваи в ростверке).
Соединение свай с ростверком может быть свободным или жестким. Свободное закрепление сваи применяют, если сваи работают в основном на сжатие, когда же они воспринимают значительные горизонтальные или выдергивающие нагрузки, используют жесткое закрепление головы сваи в ростверке. При свободном соединении сваи заделывают в ростверк на высоту 5… 10 см, при жестком — верхняя часть головы сваи разбивается и обнаженная арматура замоноличивается в ростверк, при этом целая часть головы сваи заделывается в ростверк также на глубину 5…10 см. Жесткое соединение иногда получают за счет замоноличивания целой головы сваи в ростверк на необходимую глубину.
Расстояние от оси крайнего ряда свай до края ростверка чаще всего принимают равным размеру поперечного сечения сваи. При жестком соединении это расстояние дополнительно уточняется по результатам расчета заделки свай.
По завершении конструирования производят расчет свайного фундамента, в частности уточняют усилия, действующие на сваи, и рассчитывают деформации. При необходимости в конструкцию фундамента вносят необходимые корректировки относительно количества свай, изменения конструкции ростверка и расчет повторяют.
Расчет центрально нагруженных свайных фундаментов. После назначения глубины заложения подошвы ростверка свайного фундамента, в котором равнодействующая внешних нагрузок проходит через его центр тяжести, расчет начинают с выбора типа свай, для которой с помощью формул (10.1), (10.3) и (10.6) определяют несущую способность по грунту или материалу в зависимости от особенностей напластования грунтов на строительной площадке, материала и конструкции сваи. В качестве расчетного принимают наименьшее значение несущей способности.
Число свай в фундаменте определяют, исходя из предположения, что ростверк обеспечивает равномерную передачу нагрузки на все сваи, расположенные в кусте или свайном ряду.
Фундамент считается правильно рассчитанным, если удовлетворяется условие (10.2), характеризующее несущую способность из основного условия первой группы предельных состояний. Если это условие не выполняется, то необходимо выбрать другой тип сваи, имеющий более высокую несущую способность, и повторить расчет.
Для свайных фундаментов из висячих сваи необходимо еще и выполнение основного требования расчета по второй группе предельных состояний (по деформациям), для фундаментов из свай стоек этот вид расчета не требуется.
Расчет осадки свайного фундамента из висячих свай производят как для условного фундамента на естественном основании, контур которого ограничен размерами ростверка, свай и некоторым объемом грунта в межсвайном пространстве (рис. 10.6, а).
В расчетной схеме принимается, что нагрузка на грунт передается по подошве условного фундамента и воспринимается слоем грунта, расположенным ниже плоскости острия свай. Реактивные напряжения по подошве условного фундамента считаются равномерно распределенными.
Размеры условного фундамента определяют следующим образом.
Рис. 10.6. Схемы условных фундаментов для расчета по второй группе предельных состояний
Расчетное сопротивление грунта основания, входящее в выражение (10.38), определяют по формуле (4.10) в соответствии с требованиями второй группы предельных состояний для условного фундамента, показанного на рис. 10.6.
Расчет выецентреыно нагруженных свайных фундаментов. Внецен-тренно нагруженным считают свайный фундамент, в котором точка приложения равнодействующей внешних нагрузок не совпадает с Центром тяжести поперечных сечений свай в кусте.
При небольших эксцентриситетах, когда краевые напряжения в уровне подошвы ростверка подчиняются соотношению «r^^ Количество свай во внецентренно нагруженном фундаменте находят по формуле (10.36) с увеличением его приблизительно на 20…25% для воспринятая момента от внешних нагрузок.
Усилие, найденное по формуле (10.39), должно удовлетворять условию (10.2), если оно не удовлетворяется, расчет повторяют несколько раз с помощью метода последовательных приближений.
Расчет внецентренно нагруженного фундамента по второй группе предельных состояний выполняют для условного фундамента, показанного на рис. 10.6, г.
Расчет свайных фундаментов с помощью ЭВМ можно выполнить с помощью следующего алгоритма, блок-схема которого показана на рис. 10.7.
1. Ввод исходных данных об инженерно-геологических условиях строительной площадки, внешних нагрузках, глубине расположения ростверка и типе применяемых свай.
2. Выбор конструкции сваи.
3. Проверка условия, залегает ли в основании слой плотного грунта: если да, то переход к п. 4; если нет, то переход к п. 6.
4. Проверка условия, работает ли данная свая по схеме сваи стойки:
если да, то переход к п. 5;
если нет, то переход к п. 6.
Рис. 10.7. Блок-схема расчета свайного фундамента
5. Определение несущей способности свай по грунту по формуле (10.3) и переход к п. 7.
6. Определение несущей способности свай по грунту из выражения (10.6).
7. Вычисление несущей способности свай по материалу по формуле (10.1).
8. Выбор наименьшей несущей способности.
9. Определение требуемого количества свай в фундаменте по формуле (10.36).
10. Размещение свай в плане и назначение конструкции ростверка.
11. Проверка условия, является ли данный фундамент центрально нагруженным
если да, то переход к п. 14;
если нет, то переход к п. 12.
12. Увеличение количества свай на 20%.
13. Изменение размеров ростверка.
14. Вызов из библиотеки программ подпрограммы расчета конструкции ростверка в соответствии с требованиями норм проектирования железобетонных конструкций.
15. Вычисление нагрузки, приходящейся на каждую сваю, по формуле (10.39).
16. Проверка условия (10.2):
если да, то переход к п. 17;
если нет, то увеличение количества свай в фундаменте и переход к п. 13.
17. Проверка условия, работают ли в данном фундаменте сваи по схеме свай-
стоек:
если да, то переход к п. 32; если нет, то переход к п. 18.
18. Определение осредненного угла внутреннего трения грунтов, прорезываемых сваей, по формуле (10.35).
19. Вычисление основных размеров условного фундамента АБВГ.
20. Проверка условия, является ли данный фундамент центрально сжатым:
если да, то переход к п. 21;
если нет, то переход к п. 26.
21. Вычисление реактивных напряжений под подошвой условного фундамента по формуле (10.38).
22. Определение расчетного сопротивления грунта основания под подошвой условного фундамента по формуле (4.10).
23. Проверка условия:
если условие выполняется, то переход к п. 24;
если нет, то увеличение количества свай и переход к п. 13.
24. Выбор метода расчета осадок по схеме линейно деформируемого полупространства или линейно деформируемого слоя в зависимости от грунтовых условий строительной площадки.su с помощью обращения к массиву информации,
содержащему данные о предельных осадках su:
если условие выполняется, то переход к п. 32;
если нет, то увеличение количества свай и переход к п. 13.
32. Печать результатов об основных размерах фундамента, типе выбранных свай и значениях деформаций.
33. Конец расчета.
Пример 10.1. Рассчитать ленточный свайный фундамент под наружную стену жилого дома с несущими стенами из крупных блоков. Здание имеет подвал на отметке 1,600 м и жесткую конструктивную схему. Отношение длины здания к высоте Ь/Я»4,35. В уровне спланированной отметки земли действует центрально приложенное усилие: от нормативной нагрузки интенсивностью АГоП«0,36 МН, от расчетной нагрузки #01=0,4 МН на 1 м длины. Грунтовые условия строительной площадки приведены на рис. 10.8, а.
Похожие статьи:
Фундаменты глубокого заложения
Навигация:
Главная → Все категории → Фундаменты
Статьи по теме:
Главная → Справочник → Статьи → Блог → Форум
Расчёт свайного фундамента — Блог Бауфундамент
Время чтения: 3 минуты
Окончательный расчет стоимости свайно-винтового фундамента зависит от массы факторов. Но чтобы понимать примерную стоимость работ и оборудования, вы можете воспользоваться формой обратной связи, чтобы наши консультанты сориентировали вас по стоимости бауфундаментов.
Также мы предлагаем вашему вниманию статью, в которой разберем на какие факторы важно обращать внимание при самостоятельном расчете стоимости свайного фундамента.
При самостоятельном расчете стоимости свайного фундамента, клиенты часто не учитывают следующее:
-
неправильный расчет объема нагрузок будущей постройки;
-
игнорирование особенностей грунта на участке постройки;
- игнорирование коррозионной агрессивности грунта на участке постройки;
Есть еще некоторые факторы – например, заказчик не учитывает общее влияние климатических условий на постройку и фундамент, что приводит к неправильному расчет количества винтовых свай и, как следствие, к дополнительным финансовым тратам. Намного выгоднее заранее доверить всю работу профессионалам, чтобы все работы и расчеты были выполнены точно и в срок.
Какие нагрузки должна выдерживать будущая постройка?
Нагрузки на здание во время и после стройки можно условно разделить на 4 вида:
- перманентные нагрузки. Это вес сооружения, несущих конструкций и так далее;
- продолжительные нагрузки. Это временные нагрузки в виде перегородок, оборудования, и прочих объектов;
-
непродолжительные нагрузки. Это нагрузки от людей, животных, от транспорта, а также климатические нагрузки в виде снега, дождя и так далее;
- особые нагрузки. Это как правило внештатные ситуации: пожар, ураган, взрыв, деформация фундамента, и так далее.
Грунт на участке постройки
Прежде всего, важно определить тип грунта, какова его несущая способность, и какова его коррозионная активность. Самый «правильный» способ получения достоверной информации о грунте – полевые испытания натурной сваей. Но по причине довольно высокой стоимости данная процедура не пользуется большим спросом.
Также можно воспользоваться услугами инженерно-геологических изысканий (ИГИ). В таких отчетах обычно содержится весьма детальная информация о свойствах грунта, о глубине его промерзания, и так далее. Но такое исследование тоже стоит недешево, и поэтому используется очень редко.
Альтернативными способами определить тип и характеристики грунта являются:
- пробное завинчивание винтовой сваи. Данная процедура не является на 100% исследованием грунта, так как зависит от времени года, от количества влаги в грунте, таким образом данные полученные весной, будут по понятным причинам отличаться от данных о грунте, полученных летом в сухой сезон. Но зато данный метод доступен в цене, и в целом способен дать заказчику общее представление о грунте на участке постройки;
- экспресс-геология, позволяющая выявить потенциально опасные геологические объекты или процессы, а также определить уровень сложности грунта и потенциальный объем будущих работ.
Очень важно обладать хотя бы базовой информацией о грунте на участке постройки, это даст возможность выбрать оптимальный вид винтовых свай и составить представление о стоимости будущих работ.
Для вашего удобства на нашем сайте имеется калькулятор расчета стоимости, а также возможность заказать обратный звонок, чтобы наши специалисты могли оперативно вам перезвонить и ответить на все интересующие вопросы.
как рассчитать сваи, столбы, ростверк – на онлайн калькуляторе и вручную
Расчет свайного фундамента
На странице представлена технология расчетов фундаментов на железобетонных сваях. Вы узнаете, какие нормативы СНиП регулируют расчет свайного фундамента с ростверком и как реализуется этот процесс на практике.
Для того чтобы свайный фундамент был надежен и долговечен, необходимо профессионально производить его расчет. Результаты расчета свайного фундамента (ростверка) отражаются в проекте и являются обязательными для исполнения строителями. Наша компания осуществляет забивку свай для свайных фундаментов в строгом соответствии со строительными нормами и на основании проекта.Расчет свайного фундамента с ростверком
Расчетом свайно-ростверковых фундаментов занимаются профильные специалисты — инженеры-проектировщики. Выполнению расчетов предшествуют геодезические изыскания на строительной площадке, которые дают проектировщикам необходимую исходную информацию о характеристиках грунтов на объекте. Важно: без реализации геодезического анализа почвы на объекте проектирование ростверкового фундамента не может быть выполнено правильно, поскольку ключевой параметр фундамента — его несущую способность, можно рассчитать только на основании силы сопротивления грунта.Рис: Схема свайно-ростверкового фундамента
Процесс геодезии участка начинается с бурения пробных скважин, из которых забирается керн (проба) почвы для дальнейшего анализа в лабораторных условиях. На основе полученных данных производится расчет следующих параметров фундамента.
Свайная часть:
- Требуемая глубина заложения опор;
- Диаметр опор;
- Общее количество опор в фундаменте;
- Схема размещения свай.
- Конфигурация ростверка — низкий, повышенный, высокий;
- Сечение ростверка;
- Устойчивость конструкции к нагрузкам на изгиб, продавливание;
- Способ армирования обвязки.
Рис: Схема положения ростверка фундамента
Важно: высота размещения ростверка выбирается исходя из степени пучинистости почвы на объекте и веса возводимого здания — легкие дома на склонном к пучению грунте строятся на высоких (поднятых на 20-30 см. над уровнем почвы) ростверках, в нормальных грунтах обвязка укладывается на поверхность почвы, при необходимости обустройства технического подпола либо цокольного этажа, ростверк размещается ниже глубины промерзания почвы.
Как производится расчет свайного фундамента
Производство расчетов свайных фундаментов и оснований выполняется по предельным состояниям 1-й и 2-й группы.
К первой группе предельных состояний относятся:
- прочность материалов, из которых изготовлены сваи и свайные ростверки
- несущая способность грунта
- несущая способность оснований, в случаях наличия значительных горизонтальных нагрузок
Ко второй группе предельных состояний относятся:
- осадки свайных оснований от вертикальных нагрузок
- перемещения (или горизонтальные повороты) свай вместе с окружающим грунтом при наличии горизонтальных нагрузок и моментов
- образование или раскрытие трещин в железобетонных конструкциях свайных фундаментов.
Устойчивость к продавливанию угловой сваей: , где:
- Fаi — нормативная нагрузка на угловую свайную опору;
- h01 — высота обвязки в месте стыковки с угловой сваей;
- Uі — сила нагрузки, образуемой давлением сваи на ростверк;
- Ві — расчетный коэффициент, который определяется на основании формулы Ві = К(Hоі/Соі).
Устойчивость к нагрузкам на изгиб: и , где:
- Мхі, Муі — действующие на ростверк изгибающие моменты;
- Fі — нормативна нагрузка на свайные опоры;
- Хі, Уі — расстояние между нижней гранью ростверка и осями свайных опор;
- Мfx, Мfy — действующие на ростверк изгибающие моменты местного типа;
- Q — нормативная устойчивость свайных опор, размещенных вне части ростверка, испытующей наибольшие поперечные нагрузки;
- b — ширина обвязки;
- Rbt — сопротивление обвязки к нагрузкам на растяжение по материалу;
- Ho — высота обвязки;
- С — расстояние от нижнего контура ростверка до оси свайной опоры.
Расчет свайного фундамента СНиП
Проектирование свайного фундамента ведется на основании двух нормативных актов:- Ростверк рассчитывается согласно рекомендаций СНиП №2.03.01 «Конструкции из бетона и железобетона»;
- Сваи рассчитываются по СНиП №2.17.77 «Свайные фундаменты».
Важно: соблюдение положений вышеуказанных строительных документов при проектировании свайно-ростверковых фундаментов обязательно.
Что учитывается при расчете свайных фундаментов
Итак, рассмотрим, какие аспекты при расчете свайных фундаментов принимаются в учет:
- Все возможные нагрузки и воздействия на свайный фундамент рассчитываются на основании СНиП, при этом указанные значения умножаются на так называемый коэффициент надежности, определенный в «Правилах учета степени ответственности зданий и сооружений при проектировании конструкций».
- Несущая способность сваи и свайного фундамента рассчитывается как на основные сочетания нагрузок, так и особые. Расчет по деформациям производится на основные сочетания.
- В расчетах используются расчетные значения характеристик применяемых материалов и грунтов на строительной площадке (на основании исследований грунтов и проведенных статических или динамических испытаний свай), исходя из значений, указанных в СНиП.
- Кроме того в обязательном порядке учитываются тип используемых свай (сваи-стойки или висячие сваи), их собственный вес и показатели ветровых (креновых) нагрузок.
- При расчетах фундамент с ростверком на сваях рассматривается, как единая рамная конструкция, воспринимающая как вертикальные, так и горизонтальные нагрузки, и изгибающие силы.
- При значительных проектных нагрузках и в условиях сложных грунтов, в том числе с высоким уровнем грунтовых вод, в расчетах учитываются и отрицательные силы трения при осадке здания.
- Есть и другие аспекты, связанные с различными грунтами и их состоянием, которые также учитываются в расчетах.
Пример расчета свайного фундамента
Пример расчета свайного фундамента можно легко найти в интернете, однако он изобилует специфическими формулами и символами, в которых неподготовленному человеку разобраться весьма проблематично, да и ни к чему – это дело специалистов.В качестве примера приводим алгоритм расчета свайно-ростверкового фундамента:
- Расчет массы строения;
Рис: Вес конструктивных элементов здания
- Расчет полезных нагрузок;
Важно: нагрузка высчитывается посредством умножения совокупной площади перекрытий дома (с учетом всех этажей) на 100 кг.
- Расчет снеговых нагрузок;
Рис: Карта снеговых нагрузок РФ
- Определение совокупных нагрузок на фундамент;
- Определение грузонесущей способности сваи;
- Определение количества свай в фундаменте и требуемой длинны опор.
Длина свай определяется исходя из типа грунтов на объекте. Опорная подошва опоры должна вскрывать неустойчивые верхние пласты грунта и углубляться не менее чем на 1 метр в высокотвердые песчаные либо глинистые породы.
Рис: Схема заглубления ЖБ свай
К требуемой длине добавляются 40 см., необходимые для сопряжения свай с железобетонным ростверком. В фундаменте сваи размещаются с шагом в 2-2.5 метров, по одной опоре устанавливается на углах дома и в точках пересечения его стен.
- Расчет ростверка
Наиболее часто используемое сечение ростверка — 40*30 см. Тело обвязки формируется из бетона марок М200 и М300, конструкция дополнительно армируется продольно-поперечным каркасом из прутьев арматуры А2 и А1 (10-15 мм. в диаметре).
Наша компания производит свайные работы, в том числе испытания свай, в строгом соответствии с расчетными данными и СНиП. Тем самым обеспечивается высокое качество результатов и надежность построенного свайного фундамента.
Получить детальную консультацию по погружению свай вы можете у наших специалистов, предварительно заполнив форму:
Так же рекомендуем посмотреть:
Наша компания занимается свайными работами — обращайтесь, поможем!
ustanovkasvai.ru
4 способа расчетов свайного фундамента: как рассчитать сваи, столбы, ростверк – на онлайн калькуляторе и вручную
При возведении любого здания или сооружения, от небоскреба, до забора или хозблока, первым по порядку и важности следует устройство фундамента. Для строительства на сложных грунтах хорошо себя зарекомендовали свайные фундаменты. Произвести правильный расчет свайного фундамента могут только специалисты, так как приходится учитывать все нюансы основания для конкретного здания и типа грунтов. Все остальные способы дадут только приблизительный результат.
Есть определенные правила расчета свайных фундаментов и все их надо учитыватьТипы свайных фундаментов
Свайные фундаменты имеют несколько преимуществ перед обычными ленточными или плитными, такие как:
-
Снижение расхода материалов.
-
Возможность устройства на сильнопучинистых грунтах.
-
Возможность монтажа на участках с большим уклоном.
-
Высокая скорость монтажа в случае применения винтовых свай. Фундамент под обычный загородный дом монтируется за 1-2 дня, нет необходимости ждать полного набора прочности бетоном в течение 28 суток.
Сваи применяются 3 видов:
-
Забивные.
-
Буронабивные. Как один из вариантов буронабивных свай монтируют так называемые сваи ТИСЭ, с уширением внизу. Такая конструктивная особенность снижает нагрузку на грунт и позволяет фундаменту эффективно противостоять силам выталкивания, возникающим при морозном пучении грунтов.
-
Винтовые.
Забивные элементы в частном строительстве применяются крайне редко, т.к. требуют привлечения тяжелой строительной техники.
Разновидности свайных фундаментовРасчет фундамента
Расчет любого типа основания начинается с определения типа грунта и уровня грунтовых вод. Для этого лучше всего обратиться в специализированную организацию. Вариант «как у соседа» в данном случае неприменим, т.к. эти параметры могут различаться даже в пятне застройки. Исходя из рекомендаций специалистов, выбирается тип основания.
Приведенные методики расчета примерны и не учитывают некоторые факторы, которые могут оказать влияние на сооружаемый фундамент.
Это может быть интересно! В статье по следующей ссылке читайте про панели для фундамента.Расчет свайного фундамента
Для расчета свайного фундамента, как и любого другого следует вычислить нагрузки на основание F. Для этого складывают вес стен, перекрытий, кровли, снеговую нагрузку и нагрузку на пол. Первые 3 параметра можно вычислить самостоятельно, либо с помощью специальных строительных калькуляторов. Снеговая нагрузка зависит от региона, в котором расположено строение и определяется по СНиП 2.01.07-85 «Нагрузки и воздействия», нагрузка на пол принимается равной 180кг/м2 общей площади сооружения.
Распределение снеговых нагрузок в зависимости от климатических зонЗатем определяется несущая способность сваи по формуле
P= ϒcr*R0*S+u ϒcf*fi*hi , где
-
R0 – нормативное сопротивление грунта под основанием сваи
-
S – площадь основания
-
ϒcr – коэффициент условий работы грунтов под основанием
-
u – периметр сечения
-
ϒcf – коэффициент условий работы грунта на боковой поверхности
-
fi – сопротивление грунта на боковой поверхности
-
hi – глубина погружения сваи ниже уровня земли.
Площадь основание S круглых свай вычисляется путем перемножения квадрата радиуса сваи на 3,14, периметр – умножением диаметра сечения на 3,14. Диаметр сваи выбирают, исходя из предполагаемого материала опалубки и параметров оборудования, обычно для частного строительства — 200-300 мм.
Глубина погружения выбирается произвольная, но не менее глубины промерзания грунта +0,5м, либо по глубине залегания несущего слоя грунта, так же следует учесть уровень грунтовых вод.
Нормативное сопротивление грунта R0, коэффициенты условий работы ϒcr и ϒcf определяется по таблицам из СНиП 2.02.03-85.
По таким таблицам специалисты определяют нормативное сопротивление грунта, но сначала нужно узнать тип грунта, для чего проводится анализ почвыПосле вычисления несущей способности опорного элемента вычисляется их количество, для чего нагрузка на основание F умножается на коэффициент надежности, равный 1,2, и делится на несущую способность P. Если получилось нецелое число – значение округляется до целого в большую сторону.
В некоторых случаях может потребоваться установка дополнительных опор, например при сооружении в здании печи или монтаже тяжелого оборудования.
Далее сумму длин несущих стен делят на количество свай. Таким образом вычисляется шаг свайного поля. Для определения необходимого количества бетонного раствора складывается объем свай, который вычисляется перемножением площади сечения на высоту сваи. Высота сваи учитывается не до уровня земли, а до заданной верхней точки.
Для этих вычислений также можно воспользоваться калькулятором свайного фундамента, указав форму основания, подставив необходимые переменные и выбрав в специальных полях формы табличные значения из нормативных документов.
Интерфейс онлайн калькулятора свайных фундаментовРасчет столбчатого фундамента
Столбчатым называют свайный фундамент, в котором сваи расположены на поверхности земли или заглублены не более чем на 0,5 м. Такой тип оснований может использовать только для строительства небольших легких сооружений, например гаража, хозяйственного блока маленькой бани или дачного домика по каркасной технологии или из бруса.
Расчет столбчатого фундамента производится также, так и свайного, однако при вычислении несущей способности столба не учитываются боковые нагрузки, таким образом, формула для расчетов получается следующая:
P= ϒcr*R0*S
Столбы могут изготавливаться монолитным способом, как и сваи либо изготавливаться из кирпича, шлакоблока или бетонных блоков. Во втором случае сечение получается квадратное или прямоугольное, и площадь вычисляется перемножением длин сторон. Это нужно учитывать при расчетах с помощью калькулятора столбчатого фундамента.
Интерфейс калькулятора столбчатого фундамента Это может быть интересно! В статье по следующей ссылке читайте про виды фундаментов.Расчет фундамента на винтовых сваях
Для вычисления основания на винтовых сваях применяется та же методика, что и для буронабивных свай, однако расчеты упрощаются, т.к. винтовые сваи – типовое изделие, и несущую способность сваи не нужно вычислять самостоятельно, достаточно посмотреть значение в таблице и разделить нагрузку от сооружения на этот параметр. При расчетах за площадь основания сваи принимается площадь лопасти.
Чтобы определить, какую нагрузку должен выдерживать элемент фундамента, нужно рассчитать примерное количество свай. Для этого длина несущих стен делится на предполагаемый шаг монтажа опор, обычно 2-3 м. Затем, делением суммарной нагрузки сооружения на фундамент на количество опор, вычисляют нагрузку на 1 сваю. Необходимая площадь опоры определяется по формуле
S=F=1,2/R0
где F – нагрузка на сваю, 1,2 – коэффициент надежности, R0 – нормативное сопротивление грунта. Зная площадь лопасти, вычисляют ее диаметр по формуле D=2√S/π, и по получившемуся значению выбирают из сортамента ближайший в большую сторону типоразмер.
Такие данные нужно ввести для расчетов в онлайн калькулятор фундамента на винтовых сваяхПрименив для расчета количества свай для фундамента калькулятор, можно выбрать наиболее подходящий для заданных условий и выгодный экономически размер свай путем подстановки различных параметров. Глубина погружения свай определяется на основании глубины залегания несущего слоя грунта и уровня грунтовых вод.
Расчет свайно-ростверкого фундамента
При строительстве на сложных грунтах, на участках с большим уклоном, либо при строительстве из кирпича, газобетонных или других блоков по верхней поверхности свай изготавливают ленту, которая называется ростверк. Выполнен он может быть монолитным из железобетона или сборным (сварным) из металлопроката. При расчете свайно-ростверкого фундамента к нагрузкам от сооружения добавляется еще и вес самого ростверка. При изготовлении ростверка из металлопроката, двутавра или швеллера, вес вычисляется умножением длины ленты на удельный вес профиля, который указывается в сортаменте. Для железобетонной конструкции – вычисляется объем бетона (площадь сечения ленты на длину) на плотность материала, равную 2400 кг/м3.
Наглядный пример проведения расчета на онлайн калькуляторе смотрите в следующем видеоролике:
На нашем сайте Вы можете найти контакты строительных компаний, которые предлагают услугу проектирования и ремонта фундаментов под ключ. Напрямую пообщаться с представителями можно посетив выставку домов «Малоэтажная Страна».
Заключение
Расчеты любого типа фундамента гораздо удобнее производить при помощи строительных калькуляторов, ведь отпадает потребность в поисках нужных параметров в различных справочниках. После ввода необходимых данных, таких как габаритные размеры и форма фундаменты, нагрузка на фундамент, тип грунтов, глубина промерзания и уровень грунтовых вод автоматически вычисляются конструкционные размеры и количество необходимого материала. Однако не следует забывать, что фундамент – важнейший элемент здания, определяющий прочность всей конструкции, поэтому все самостоятельные расчеты, не важно, по формулам или с применением калькуляторов – скорее, справочный материал, для примерного подсчета материалов и трудозатрат, а, следовательно, стоимости сооружения. Точные вычисления и составление рабочих чертежей лучше поручить специалистам.
m-strana.ru
Пример расчёта свайного фундамента
Содержание статьи:
С чего начинать расчет
Основу фундамента, сделанных из винтовых свай, составляют винтовые сваи из металла. Они в свою очередь имеют различные длины и диаметры. Чтобы расчёт свайного фундамента пример, которого будет в статье ниже, был чётким, можно обойтись без сложных расчетов.
Мы рассмотрим метод расчета материалов для данного фундамента, он получил распространение в практике (но у него есть нюансы, читайте про недостатки свайно-винтового фундамента).
Важно! Нужно определиться с подходящим диаметром свай, который будет соответствовать фундаменту. При подборе соответствующего диаметра свай нужно учитывать, под именно какое сооружение, вы будете их использовать.
Если это будет фундамент, предназначенный под строительство жилого здания либо хоз.построек, тогда подойдут сваи диаметром 57,76,89 и 108 миллиметров. С диаметром 76 миллиметров подойдут под закладку фундамента с легкими хоз.постройками. Для нетяжёлых одноэтажных домов подойдут сваи в диаметре 108 миллиметров.
Как правильно рассчитать свайный фундамент на примере
Для правильного расчёта свайного фундамента, пример которого важен, главным является точный подсчёт их длины. Если произошла ошибка в расчетах и неправильно рассчитана длина, может просесть здание под тяжестью веса. Это существенно сократит срок эксплуатации, и поможет установить свайный фундамент своими руками.
На выбор правильной длины свай влияет пара моментов: плотность почвы, а также перепад высоты некоторых областей почвы.
Чтобы точно знать показатели плотности почвы на вашей земле, нужно взять во внимание результаты проведенных изучений по геологии. В том случае, если таковые не проводились, применяйте простой метод для установки плотности почвы. Возьмите инструмент для вскапывания и выкопайте шурф до одного метра на участке, расположенном в самом низу площади, отведенной под постройку.
Винтовые сваи, правила выбора
Если вы обнаружили, что под слоем почвы находятся глина или песок, тогда разумно будет остановить выбор на винтовых сваях, длина которых 2,5 метра. В том случае, если подпочвенный слой состоит из торфа, плывуна и грунтовых вод, для подсчёта длины свай нужно применить специальный бур.
С его помощью вы делаете углубление до слоя плотных пород, и на основании этих замеров, рассчитываете длину свай, на фото это будет выглядеть так.
Правильным будет выбор длины свай, если в расчетах вы обязательно учтете неравномерность высоты грунта на участке. Если выбраны сваи с учетом плотности грунта и их длина достигает 2,5 метра, они будут пригодными для установки в верхней точке. Для нижнего участка нужно брать сваи, которые будут длиннее на разницу между самой высокой и самой низкой точкой участка.
Длина свай
Когда будете производить расчет длины свай, к полученному при измерениях перепаду высот добавляйте полметра. Это для подстраховки. Бывает, что для установки свай в низких местах участка, не хватает длины на 10-20 сантиметров. Сколько всего свай нам нужно для фундамента?
Необходимые расчеты производим, исходя из следующих показателей. Расстояние между сваями для каждого вида построек определяется своими показателями. При постройке фундамента для деревянных домов, расстояние составляет не более трех метров, для домов, построенных из пенобетона или газобетона не более двух метров.
План фундамента
Составьте план или схему фундамента, который вы собрались закладывать. На схеме начертите расположение свай по углам здания, обозначьте места несущих перегородок, которые образуются на стыке стен. Теперь определите под уже намеченным расположением, места для свай, которые будут располагаться под наружной и внутренней частью дома. При разметке учитывайте рассчитанные раньше расстояния.
Если в доме планируется камин или печь, при расчете это следует учесть и предусмотреть две сваи. При наличии в доме пристройки, веранды, терассы обязательно обозначайте места, где будут установлены сваи. Когда на плане будут сделаны необходимые отметки, вы можете сосчитать, какое количество свай вам нужно приобрести.
На нашем сайте Вы можете найти контакты строительных компаний, которые предлагают услугу проектирования и ремонта фундаментов под ключ. Напрямую пообщаться с представителями можно посетив выставку домов «Малоэтажная Страна».Заключение
Расчеты любого типа фундамента гораздо удобнее производить при помощи строительных калькуляторов, ведь отпадает потребность в поисках нужных параметров в различных справочниках. После ввода необходимых данных, таких как габаритные размеры и форма фундаменты, нагрузка на фундамент, тип грунтов, глубина промерзания и уровень грунтовых вод автоматически вычисляются конструкционные размеры и количество необходимого материала. Однако не следует забывать, что фундамент – важнейший элемент здания, определяющий прочность всей конструкции, поэтому все самостоятельные расчеты, не важно, по формулам или с применением калькуляторов – скорее, справочный материал, для примерного подсчета материалов и трудозатрат, а, следовательно, стоимости сооружения. Точные вычисления и составление рабочих чертежей лучше поручить специалистам.
m-strana.ru
Пример расчёта свайного фундамента
Содержание статьи:
С чего начинать расчет
Основу фундамента, сделанных из винтовых свай, составляют винтовые сваи из металла. Они в свою очередь имеют различные длины и диаметры. Чтобы расчёт свайного фундамента пример, которого будет в статье ниже, был чётким, можно обойтись без сложных расчетов.
Мы рассмотрим метод расчета материалов для данного фундамента, он получил распространение в практике (но у него есть нюансы, читайте про недостатки свайно-винтового фундамента).
Важно! Нужно определиться с подходящим диаметром свай, который будет соответствовать фундаменту. При подборе соответствующего диаметра свай нужно учитывать, под именно какое сооружение, вы будете их использовать.
Если это будет фундамент, предназначенный под строительство жилого здания либо хоз.построек, тогда подойдут сваи диаметром 57,76,89 и 108 миллиметров. С диаметром 76 миллиметров подойдут под закладку фундамента с легкими хоз.постройками. Для нетяжёлых одноэтажных домов подойдут сваи в диаметре 108 миллиметров.
Как правильно рассчитать свайный фундамент на примере
Для правильного расчёта свайного фундамента, пример которого важен, главным является точный подсчёт их длины. Если произошла ошибка в расчетах и неправильно рассчитана длина, может просесть здание под тяжестью веса. Это существенно сократит срок эксплуатации, и поможет установить свайный фундамент своими руками.
На выбор правильной длины свай влияет пара моментов: плотность почвы, а также перепад высоты некоторых областей почвы.
Чтобы точно знать показатели плотности почвы на вашей земле, нужно взять во внимание результаты проведенных изучений по геологии. В том случае, если таковые не проводились, применяйте простой метод для установки плотности почвы. Возьмите инструмент для вскапывания и выкопайте шурф до одного метра на участке, расположенном в самом низу площади, отведенной под постройку.
Винтовые сваи, правила выбора
Если вы обнаружили, что под слоем почвы находятся глина или песок, тогда разумно будет остановить выбор на винтовых сваях, длина которых 2,5 метра. В том случае, если подпочвенный слой состоит из торфа, плывуна и грунтовых вод, для подсчёта длины свай нужно применить специальный бур.
С его помощью вы делаете углубление до слоя плотных пород, и на основании этих замеров, рассчитываете длину свай, на фото это будет выглядеть так.
Правильным будет выбор длины свай, если в расчетах вы обязательно учтете неравномерность высоты грунта на участке. Если выбраны сваи с учетом плотности грунта и их длина достигает 2,5 метра, они будут пригодными для установки в верхней точке. Для нижнего участка нужно брать сваи, которые будут длиннее на разницу между самой высокой и самой низкой точкой участка.
Длина свай
Когда будете производить расчет длины свай, к полученному при измерениях перепаду высот добавляйте полметра. Это для подстраховки. Бывает, что для установки свай в низких местах участка, не хватает длины на 10-20 сантиметров. Сколько всего свай нам нужно для фундамента?
Необходимые расчеты производим, исходя из следующих показателей. Расстояние между сваями для каждого вида построек определяется своими показателями. При постройке фундамента для деревянных домов, расстояние составляет не более трех метров, для домов, построенных из пенобетона или газобетона не более двух метров.
План фундамента
Составьте план или схему фундамента, который вы собрались закладывать. На схеме начертите расположение свай по углам здания, обозначьте места несущих перегородок, которые образуются на стыке стен. Теперь определите под уже намеченным расположением, места для свай, которые будут располагаться под наружной и внутренней частью дома. При разметке учитывайте рассчитанные раньше расстояния.
Если в доме планируется камин или печь, при расчете это следует учесть и предусмотреть две сваи. При наличии в доме пристройки, веранды, терассы обязательно обозначайте места, где будут установлены сваи. Когда на плане будут сделаны необходимые отметки, вы можете сосчитать, какое количество свай вам нужно приобрести.
dom-fundament.ru
пример для здания весом 100 т
Необходимость применения свайного фундамента не всегда обусловлена экономическими соображениями или меньшими трудозатратами, например в сравнении с ленточным или плитным. Причиной может стать малая несущая способность грунта, когда даже при небольшой нагрузке на него нельзя использовать мелкозаглубленный ленточный фундамент.
Свайно-ростверковый фундамент.
На таких участках можно, не роя глубоких траншей для заглубленного основания, с помощью, например, винтовых свай выйти на слой грунта с большей несущей способностью. При этом усложняется расчет свайного фундамента.
При расчете ленточного фундамента учитывают только вертикально действующие нагрузки, для определения которых достаточно общий вес будущего строения разделить на площадь основания, опирающегося на грунт. Результат умножить на 1,4 (запас прочности) и сравнить с несущей способностью грунта, которая обычно указывается в кг/см2.
О винтовых сваях и их особенностях
Свайный фундамент состоит из отдельных элементов — свай.
Рисунок 1. Винтовая свая.
Сверху их объединяют ростверком. Ростверк можно выполнить из деревянных или железобетонных балок либо в виде сплошной железобетонной плиты.
Сваи изготавливают на производстве или самостоятельно. Если они изготовлены на месте строительства, то их основание делают плоским. Для расчета нагрузки, передаваемой от нее на грунт, знать только площадь опоры недостаточно. Необходимо учитывать и силы трения, которые возникают между боковой поверхностью стержня и грунтом и создают дополнительное сопротивление нагрузке, действующей на грунт.
На рис. 1 представлена винтовая свая. Такой тип в России в гражданском строительстве стали применять сравнительно недавно, хотя их широко применяли военные инженеры при строительстве мостов и переправ.
Ствол сваи — это стальная труба (диаметр от 80 до 130 мм, сталь марки ст10), конец которой делают в форме прямого конуса. Перед переходом цилиндра в конус приварена винтовая конструкция (лопасть), за счет которой и происходит вворачивание в грунт. На рис. 1 представлена винтовая свая с уже готовым оголовком. Однако есть элементы без оголовка, с отверстиями в конце ствола. В отверстие заводят рычаг для ее вращения. Такое исполнение позволяет при необходимости удлинить ствол.
Преимущества винтовых свай:
- несложная и безопасная технология установки;
- применение возможно практически на любых грунтах, кроме скальных, на которых можно строить дом и без специального основания;
- при вворачивании винтовых свай отсутствует ударная нагрузка, что позволяет применять их в местах плотной застройки;
- после установки на винтовые элементы можно сразу же монтировать ростверки, то есть переходить к следующему этапу строительства;
- холмистая местность или неровные участки не являются препятствием для применения этого вида;
- винтовые сваи можно устанавливать практически в любых погодных условиях, в том числе и зимой в мороз;
- при необходимости их можно извлечь для повторного вворачивания.
Вернуться к оглавлению
Закладка фундамента на основе винтовых свай
Схема монолитно-литого ростверка: 1 – буронабивная свая из монолитного бетона и каркас из арматуры; 2-ростверк из монолитного бетона и каркаса из арматуры;3 – горизонтальная гидроизоляция; 4 – продух.
В первую очередь необходимо непосредственно на территории строительства обследовать структуру грунта и определить под слабыми грунтами нижний слой, который может выдержать вес дома. Длина сваи должна обеспечить заглубление в несущий слой на глубину 0,5-1 м.
Такое обследование выполняют путем предварительного бурения. Определяют уровень грунтовых вод и учитывают глубину промерзания грунта в районе строительства. Далее обозначим основные этапы строительства:
- Разметка и выравнивание периметра. В процессе разметки первыми определяют места установки угловых свай. При этом место следует определить так, чтобы элемент впоследствии оказался посредине ростверка.
- Размечают места установки остальных свай. Оптимальное расстояние между ними — 2 м, максимальное — 3 м. Они должны быть под всеми стенами дома, независимо от того, несущая это стена или внутренняя перегородка.
- Завинчивание начинают с угловых элементов. В отверстия ее верхней части пропускают лом, а для удлинения рычага на лом надевают металлические трубы. Отклонение от вертикали окончательно ввинченной детали не должно превышать 2 градусов. Угол наклона с помощью магнитного уровня следует контролировать непрерывно в процессе вворачивания.
- На угловых сваях с помощью шлангового уровня наносят метки, определяющие горизонтальную плоскость и нижнюю кромку ростверка. Элементы пока не обрезают.
- Вворачивают остальные сваи. Глубину вворачивания делают такой, чтобы от верха трубы до горизонтальной плоскости, обозначенной на угловых деталях (определяют с помощью шлангового уровня), было не более 15-20 см.
- По обозначенным уровням обрезают не несущую поверхность.
- Делают водный раствор цемента и песка в соотношении 1:4 и заполняют им сваи.
Примечание. Если элемент имеет оголовок, как показано на рис. 1, то горизонтальная плоскость по угловым сваям устанавливается по самому высокому углу фундамента, а затем с помощью шлангового уровня определяют, насколько необходимо заглубить деталь.
Вернуться к оглавлению
Закладка фундамента на буровых железобетонных сваях
Опалубка для сваи.
Для такого фундамента необходимо выполнить расчет свайного основания, а затем буровые железобетонные сваи изготовить самостоятельно. Без ручного бензинового или электрического бура не обойтись, потому как неизвестно, какой глубины придется бурить скважину. С помощью этих механизмов можно пробурить скважину до 5 м глубиной и диаметром до 30 см.
Бурить скважину необходимо, как минимум, на 20 см ниже глубины промерзания. Но даже в северных районах европейской части России она не превышает 2 м. Если же ниже этого уровня окажется слой грунта с небольшой несущей способностью или грунтовые воды (верховодка), то придется углубляться, чтобы достичь слоя с большей несущей способностью.
С помощью специальных головок в конце скважины можно сделать расширение. Возможно, такое расширение потребуется, чтобы увеличить для свайного фундамента площадь опоры на грунт и тем самым уменьшить на него давление.
В качестве опалубки используют рубероид в 2-3 слоя или асбестовую трубу подходящего диаметра. В сыпучих грунтах опалубку необходимо делать обязательно. Это исключит попадание грунта в бетон, что уменьшит долговечность сваи, ибо ее шероховатая поверхность будет удерживать больше влаги и разрушение бетона от замерзания и размораживание будет происходить интенсивнее. В плотных грунтах, где ее длина будет зависеть только от глубины промерзания, можно обойтись без опалубки,
Схема свайно-ростверкового фундамента.
Сваю обязательно необходимо армировать. Без армирования они могут хорошо выдерживать сжимающие нагрузки, а вот от действия боковых сил одного бетона может оказаться недостаточно. Армирование сделает деталь устойчивой против растягивающих сил, которые могут возникнуть в результате замерзания грунта.
Для армирования используют металлические стержни диаметром 6-8 мм. По длине можно устанавливать 3-4 стержня, которые связывают между собой проволокой или закрепляют сваркой с шагом 500-600 мм. Армирование можно выполнить отдельными блоками, которые затем вставляют в скважину на всю глубину. Над скважиной арматура должна выступать примерно на 2-3 см ниже уровня ростверка.
Бетон в скважину заливаем слоями и так, чтобы предыдущий слой не успел застыть. Для этого на сваю диаметром 30 см и глубиной 5 м потребуется примерно 0,35 м3 раствора.
Вернуться к оглавлению
О ростверке свайного фундамента
Схема металлического и железобетонного ростверка свайного фундамента.
Ростверк не менее важная часть фундамента, чем сваи. Он может быть заглубленным или незаглубленным. В первом варианте его необходимо защищать от сил пучения, возникающих при замерзании грунта.
Создавая ростверк из бетона, необходимо иметь в виду, что на изгиб и растяжение бетон работает примерно в 30 раз хуже, чем на сжатие. Поэтому армирование такой конструкции имеет определяющее значение. Между сваями необходимо обеспечить по возможности минимальный прогиб, поэтому и армировать усиленно необходимо нижнюю часть, которая будет растягиваться. Над ними необходимо усиливать верхнюю часть, так как именно над ней будут действовать максимальные растягивающие силы.
Заглубленный ростверк делаем в неглубокой траншее, проложенной между сваями по периметру и под внутренними несущими стенами. Создаем песчаную подушку, хорошо утрамбовываем и укладываем слой щебенки. Все это не должно выступать выше уровня сваи. Сверх щебня укладываем рубероид.
Опалубку делаем прочной с надежными подпорками. Металлический каркас изготавливаем из стержней толщиной 10-12 мм. Усиление в указанных выше местах можно выполнять, прокладывая дополнительно пару стержней.
С незаглубленным ростверком проще. Песок укладываем непосредственно на грунт, на него щебень и рубероид. Опалубка такая же.
Для того чтобы под здание не попадал ветер, к ростверку с внешней стороны делаем отмостку.
Вернуться к оглавлению
Пример расчета буронабивной сваи
Схема укрепления буронабивной сваи арматурой.
Расчет прочности одной буронабивной сваи позволяет определить, какое количество деталей потребуется для фундамента здания с известным весом. При этом учтем, что минимальное расстояние между сваями равно 2 м, а все опоры должны иметь общий ростверк.
Пусть буронабивной элемент имеет диаметр d=30 см, а вес всего сооружения составляет 100 т = 100000 кг. Несущая способность грунта R=4 кг/см2. По условию, нагрузка на грунт не должна превышать его несущей способности. Следовательно, на одну сваю не должна действовать сила Fсв более, чем:
Fсв=(πd2/4)·R =707,7·4=2826 кг.
Чтобы выдержать общий вес в 100 т, потребуется:
N= 100000/2826=35,4, или 36 штук.
Теперь выполним расчет сваи, если увеличить площадь ее опоры. Пусть сделано расширение основания до диаметра d=50 см. Тогда:
Fсв=(πd2/4)·R =1962,5·4=7850 кг
Следовательно, потребуется:
N= 100000/7860=12,7, или 13 штук.
Подводя итог, необходимо отметить, что предварительный расчет свайного основания дома позволит существенно сэкономить средства. Пример выполненного расчета этому подтверждение: вместо 36 можно обойтись 13 шт.
moifundament.ru
Расчет свайного фундамента, пример, фото, видео
Применение винтовых свай при создании оснований становиться все более популярным. Но для обеспечения максимальной эффективности такого фундамента нужно точно провести расчет количества несущих элементов, их диаметра, длины, основываясь на массе будущего сооружения и уровне осадки грунта. Чтобы получить точные данные специалисты проводят множество исчислений, но можно пойти более простым путем. Дальше пойдет речь о том, как по упрощенной схеме провести расчет необходимого количества свай и ростверка, а также будет приведен пример.
Какая длина элементов оптимальна для свайного фундамента?
От длинны свай будет зависеть несущая способность свайно-винтового основания. Если выбрать опорные элементы недостаточной длинны возможно проседание (неправильный расчет глубины осадки) фундамента под воздействием большой нагрузки. Выбор длины осуществляется с учетом таких факторов, как разница высоты между точками на месте строительства и плотности земли.
Плотность земли
Максимально точно определить свойства грунтов на предполагаемом месте строительства помогают геологические изыскания. Без получения информации таким способом легко допустить ошибку при проведении расчета необходимой длинны свай и предполагаемого уровня осадки. Но, если исследования не проводились – можно воспользоваться легким методом определения плотности структуры земли.
Для этого нужна обычная лопата. Выкапывается шурф в наиболее низкой точке участка. Оптимальная длинна шурфа: 0.5-1 м. После окончания работы стоит посмотреть на грунты, залегающие под почвой. Если они относятся к плотным достаточно установки опор длиною около 2.5 м. В случае залегания пород с низкой плотности придется вооружиться буром и с его помощью добраться до уровня залегания плотных пород и уже на основании этих данных определить оптимальное значение длины опор.
Таблица плотности грунтов
Перепад уровня высот на участке
При создании свайного фундамента длинна свай определяется не только исходя из показателей плотности грунта, но и разницы высот участка. Допустим, что после исчисления плотности грунта выбрана длина элементов 2.5 м. Такой длины будет достаточно для опоры самого верхнего ряда. Следующие сваи должны иметь большую длину на значение, равное разнице перепада высоты между верхним рядом и тем местом, где будет установлен опорный элемент. Измерять разницу высоты можно с помощью рулетки, уровня или отвеса.
Если будет наблюдаться перепад высоты в полметра и более – добавьте к длине сваи запасных полметра – это поможет избежать осадки (информация основана на реальной практике сооружения свайно-винтового фундамента).
Пример основания на участке с перепадом
Какой выбрать диаметр несущих элементов?
Этот показатель напрямую зависит от назначения сооружения и его веса. Свайные опоры бывают следующих диаметров (в мм):
- 57. Используются при сооружении оснований для конструкций небольшого веса. Как пример, легкие заборы и т. д.
- 76. Такие элементы выдерживают до 3Т. Подходят для построек небольшой массы хозяйственного назначения или заборов средней тяжести.
- 89. Выдерживают 3-5Т. Используются для основания под жилые здания из легких материалов, пристройки, тяжелые заборы или хозяйственные строения.
- 108. Выдерживают 5-7Т. Можно применять при строительстве домов с одним и двумя этажами (при условии использования для строительства материалов небольшой массы).
Также существуют опорные столбы больших диаметров.
Расчет свай простым способом
Количество опорных составляющих исчисляется исходя из предполагаемого веса будущего сооружения и его площади. Если брать средние данные, то можно устанавливать опоры на таком расстоянии:
- До 2м. При возведении домов из шлако-, пеноблока, пено-, газобетона.
- До 3м. Для зданий из дерева или других легких материалов.
- До 3-3.5м. Для ограждений небольшой массы.
Для проведения подсчета количества свайных элементов нужно:
- Нарисовать план основания (можно взять план 1 этажа).
- Разместить опоры по углам сооружения.
- Разместить опоры под несущими перегородками (места, где сходятся внутренние и внешние стены).
- Теперь нужно разместить несущие элементы (между уже установленными) на расстоянии, вычисленному исходя из веса сооружения (пока размещаются опоры только под стенами).
- После успешного размещения опорных составляющих под стенами, остальное пространство основания сооружения также стоит заполнить свайными столбами так, чтобы расстояние между ними не превышало расчетное.
- Если будет устанавливаться котел или печка – это место лучше усилить, установив дополнительные опоры.
- Где будут пристройки, крыльцо и терраса проводится расчет по аналогичному принципу.
После окончания расстановки столбов просто подсчитайте их.
Пример расположения свайных опор под стенами
Расчет ростверка для свайного фундамента
В некоторых случаях свайное основание нерационально устанавливать без ростверка – балки/плиты из железобетона, горизонтально устанавливаемой на концы свайных столбов. Использование ростверка позволяет снизить уровень осадки основания в определенной его части (нагрузка распределяется по всему периметру основания равномерно). Например, если фундамент состоит только из опор и устанавливается на грунтах небольшой плотности – возможно образование значительной осадки одной из частей или всего здания.
Чтобы точно рассчитать размеры ростверка для свайного основания нужно провести специальные расчеты. Они выполняются специалистами, поэтому их описывать не будем. Что касается ростверка ленточного типа, то используйте его с минимальными показателями высоты и ширины в 30 и 40 см соответственно.
При расчете свай и ростверка можете взять за пример приведенные данные, но, чтобы добиться максимальной прочности свайного основания и правильно просчитать уровень осадки необходимо обращаться к специалистам.
С помощью данного калькулятора можно произвести расчеты буронабивных свайно-ростверковых и столбчатых фундаментов. Расчет нагрузки на свайный фундамент.
Выберите тип ростверка:
Параметры ростверка:
Параметры столбов и свай:
Расчет арматуры:
Расчет опалубки ростверк:
Рассчитать
Результаты расчетов
Фундамент:
Общая длина ростверка: 0 м.
Площадь подошвы ростверка: 0 м2.
Площадь внешней боковой поверхности ростверка: 0 м2.
Общий объем бетона для ростверка и столбов (с 10% запасом): 0 м3.
Вес бетона: 0 кг.
Нагрузка на почву от фундамента в местах основания столбов: 0 кг/см2.
Расчет арматуры ростверка:
Расчет арматуры для столбов и свай:
Минимальный диаметр поперечной арматуры (хомутов): 0 мм.
Максимальный шаг поперечной арматуры (хомутов) для ростверка: 0 мм.
Общий вес хомутов: 0 кг.
Опалубка:
Минимальная толщина доски при опорах через каждый 1 метр: 0 мм.
Максимальное расстояние между опорами: 0 м.
Количество досок для опалубки: 0 шт.
Периметр опалубки: 0 м.
Объем досок для опалубки: 0 м3.
Примерный вес досок для опалубки: 0 кг.
rfund.ru
Расчёт свайного ростверка для свайного фундамента, примеры, формулы
Долговечность и надежность свайного ростверка зависит не только от соблюдения технологии его монтажа, но и от правильных расчетов. Все полученные результаты проверки переносятся на проект, который передается строителям.
Основные правила расчёта свайного ростверка, формулы и СНИП нормативы, полная информация далее на странице.
Расчет свайного фундамента с ростверком
Для проведения расчетов такого плана следует обращаться к специалистам, специализирующихся в этом профиле. Перед этим проводятся геологические изыскания, позволяющие разработать проект, соответствующий почве на стройплощадке.
Совет эксперта! Если работы по геодезическому изысканию проведены не будут, то произвести точные расчеты основания с ростверком будет невозможно. Объясняется это тем, что несущая способность определяется только на основании силы сопротивления почвы. |
Рис: Схема свайно-ростверкового фундамента
Для проведения изысканий на участке бурится отверстие в почве для ее пробы и анализа. Только потом можно проводить важные расчеты.
При разработке проекта учитываются такие параметры по сваям:
- Глубина погружения.
- Диаметр сваи.
- Количество свай.
- Схема их расположения.
По ростверку:
- Форма ростверка (3 вида: высокий, повышенный, низкий).
- Диаметр.
- Устойчивость на изгиб и продавливание.
- Метод армирования.
Рис: Схематическое положения ростверка свайного фундамента
Совет эксперта! Определить высоту ростверка следует исходя из веса будущего сооружения и уровня пучинистости грунта. |
Как делается расчет
Существует 2 группы, благодаря которым происходит расчет свайного фундамента.
- Прочность используемых материалов, несущая способность почвы и оснований.
- Осадка вследствие трещин, нагрузки вертикальной и движения свай.
Процесс проектирования по указанным предельным выполняется при помощи следующих формул.
Устойчивость к продавливанию:
Устойчивость на изгиб:
Устойчивость к поперечным нагрузкам:
СНиП для проведения полного расчета свайного ростверка
За основу берется два СНиПа:
- Для ростверка СНиП №2.03.01.
- Для свай СНиП №2.17.77.
Совет эксперта! Соблюдение всех рекомендаций в СНиПе является обязательным условием. |
Что учитывается при расчетах
Крайне важно учитывать такие аспекты:
- Все предполагаемы нагрузки и воздействия по СНиПу.
- Несущая способность опор и основания на основе особых и сочетаемых нагрузок.
- Сочетание всех используемых материалов с почвой на стройплощадке. В этом случае берутся во внимание геодезические изыскания на предмет исследования почвы и динамических/статических испытаний ЖБИ свай. Опять же, в расчет берутся показания в СНиП.
- Обращается внимание на тип свай, они могут быть висячими или стойки. Обязательно учитывается общий вес. Не менее важны и нагрузка воздушных масс.
- В процессе расчетов, основание с ростверком представляет собой единой рамной конструкцией. Она должна воспринимать нагрузку по вертикали и горизонтали. Также изгибающая сила.
- Если почва сложная (грунтовые воды очень высоко и тому подобное), а проектная нагрузка высокая, то учитывается негативная сила трения в процессе осадки строения.
- Учитываются и другие немаловажные факторы при проектировании. Особенно те, которые непосредственно связаны с разными грунтами.
Пример расчета
Предлагаем рассмотреть пример расчета ростверкового фундамента на основе свай. Хотя в интернете есть множество подобных расчетов, если вы не имеете достаточного опыта в этом вопросе, то будет крайне сложно со всем разобраться. Хотя и так, лучше обращаться к профильным специалистам, но для общего понимания стоит узнать важные детали.
Так, учитываются при расчетах следующие данные:
- Масса постройки. Чтобы получить конкретную и точную сумму массы, то необходимо сложить массу каждого элемента строения, а, в частности: стены, стяжка пола, стропильная система, кровля, перекрытия и прочее. Для определения этой суммы необходимо использовать средний показатель конкретного строительного материала.
Рис: Вес конструктивных элементов здания
- Полезная нагрузка. В этом случае учитывается вся создаваемая нагрузка от мебели, отделки стен, бытовых приспособлений, количество проживающих человек и тому подобное. Согласно установленным нормам, на 1 м2 приходится нагрузки до 100 кг на перекрытие.
Совет эксперта! Определение полезной нагрузки происходит путем умножения площади перекрытия на 100 кг. |
- Снеговая нагрузка. Для этого используются данные и нормативы для конкретного региона страны. Полученную сумму необходимо умножить на площадь всей крыши.
Рис: Карта снеговых нагрузок РФ
- Вся нагрузка на фундамент строения. В этом случае следует сложить всю массу будущего строения, нагрузку от снега в вашем регионе и полезную нагрузку. Полученный результат умножается на коэффициент надежности 1,2 (для жилого дома).
- Грузонесущая способность ЖБИ свай. Подобные расчеты выполняются согласно следующей формуле на основании геологических изысканий:
- Сколько будет опор и какая их длина. Для этого необходима информация обо всей предполагаемой нагрузке на будущее основание. Что касается длины, то она вычисляется, отталкиваясь от характера почвы. Всегда к полученному результату следует добавить 400 мм по длине.
- Это позволит выполнить сопряжение ростверка со сваями. Что касается шага между опорами, то преимущественно шаг колеблется от 2 до 2,5 метров. Свая всегда устанавливается по углам и в местах соединения стен.
Рис: Схема заглубления ЖБ свай
- Расчет ростверка. Итак, все расчеты выполняются согласно предоставленным формулам.
Совет эксперта! Помните, самостоятельно делать такие расчеты не рекомендуется, необходимо обращаться исключительно к профильным специалистам, которые имеют опыт в этом вопросе. |
В большинстве случаев ростверк имеет сечение 400×300 мм. Для изготовления бетона используется цемент М200 и 300. Для армирования применяются прутья А2 и 1 Ø10-15 мм.
В нашей компании работает команда высококвалифицированных специалистов, которые обладают достаточным опытом по разработке свайного фундамента с ростверком. При этом учитываются все ГОСТы и СНиПы. За счет этого достигается высочайшее качество и надежность построенного строения.
Поможем с расчётами и работами по свайному фундаменту
Мы опытная компания по погружению железобетонных свай и шпунтов, с большим парком техники и большим количеством сданных объектов. Поможем Вам с возведением свайного фундамента любой сложности, примеры наших работ на фото. Видео наших работ. Ждём Вашего обращения по заявке:
Полезные материалы
Расчёт нагрузки на фундамент
Ознакомьтесь с материалом о том зачем это делается, а также как грамотно и верно выполнять расчёт нагрузки на фундамент.
Виды ростверков
Ростверк — это верхня часть фундамента соеденяющая сваиили столбы, распределяющая нагрузку равномерно..
kommtex.ru
Рассчитать сваи для фундамента
Чтобы избежать ошибок во время строительства и сделать основание более надежным, следует заранее произвести точный расчет свай для фундамента. Это поможет избежать лишних трат и предотвратить разрушение строения.
Способы расчета
Длина и диаметр винтовых свай для фундамента может отличаться. Выбор зависит от технологических требований и нагрузки на основание. При желании можно заказать расчет фундамента в специализированной компании. Профессионалы учитывают несущую способность почвы на участке и все особенности создаваемой конструкции.
Но при желании можно рассчитать количество свай самостоятельно. Это можно сделать с опорой на практический опыт создания винтового фундамента.
Простой расчет количества свай
Количество элементов фундамента зависит от размеров строения и его веса. Расстояния между элементами фундамента могут быть следующими:
- если дом создается из дерева, расстояние между сваями должно составлять не больше 3 м;
- при создании дома из газобетонных блоков расстояние должно быть не более 2 метров;
- если дом установлен в регионе, где наблюдается высокая ветровая нагрузка, расстояние не стоит увеличивать больше 2,5 метра.
Чтобы точно подсчитать необходимое число элементов основания, нужно выполнить несколько действий:
- Сначала необходимо составить схему расположения основания, учитывая расположение стен и тяжелых приборов, которые будут установлены в доме
- При размещении фундамента сначала стоит устанавливать только те элементы, которые располагаются по углам строения.
- После этого нужно расположить сваи, которые находятся на стыках несущих стен строения.
- На следующем этапе происходит установка остальных элементов фундамента под стенами и перегородками. При этом необходимо соблюдать определенное ранее расстояние.
- Затем происходит заполнение остального пространств под домом.
- В месте, над которым будет устанавливаться печь или камин, на чертежах необходимо расположить минимум 2 сваи. Их количество зависит от размеров и веса отопительного прибора.
- При установке крыльца или террасы распределение свай происходит по ранее описанному принципу
- После этого происходит общий подсчет количества свай, необходимых для определенного дома.
Таким образом, рассчитать сваи для описываемого типа фундамента можно самостоятельно достаточно легко.
Определение диаметра свай для фундамента
Винтовые сваи, которые используются для создания фундамента жилого дома, могут иметь различный диаметр. Чтобы правильно определить эту характеристику, нужно знать, какой вес будет иметь готовое строение:
- Для создания легких простых конструкций применяются сваи, диаметр которых равен 57 мм. В пример можно привести заборы из сетки.
- Хозяйственные постройки сооружаются на основании, созданном из свай диаметром 76 мм. Также такие изделия используются в качестве опор для заборов из дерева или профнастила. Они предназначены для нагрузки, не превышающей 3000 кг.
- Если же нагрузка составляет более 3, но менее 5 тысяч кг, приобретаются сваи диаметром 89 мм. Они часто применяются для строительства бань, летних кухонь и каркасных домов. Также их используют и при создании щитовых строений.
- Если же дом создается из пеноблоков, необходимо устанавливать элементы фундамента, имеющие диаметр 108 мм. Они используются и при создании домов из бруса. При этом площадку под строительство дома фундаментируют. Несущая способность подобных свай составляет 7000 кг.
Зная только количество свай для фундамента и их диаметр, не стоит начинать строительство, так как сначала нужно определить их длину.
Факторы, влияющие на выбор длины свай
Надежность создаваемой конструкции напрямую зависит от правильно подобранной длины описываемых элементов. В случае, если сваи будут короткими, дом может просесть после того, как начнет эксплуатироваться. Во время анализа грунта учитываются следующие параметры:
- плотность почвы на участке, где будет создаваться строение;
- перепад высоты между нижней и верхней точками участка.
Анализ грунта перед постройкой дома стоит осуществлять на основании проводимых на участке геологических исследований. Если исследования не проводились, можно самостоятельно определить плотность. Для этого нужно выкопать канаву до 1 метра в месте, где участок располагается ниже. Если на данной глубине будет расположен песок или глинистая масса, стоит выбирать сваи, длина которых составляет 2,5 м. Если же будут обнаружены породы, отличающиеся низкой плотностью, нужно продолжить копать канаву до точки, в которой будет твердый грунт. В таком случае выбирается длина свай, равная длине бура. Также подобные мероприятия проводятся и в случае, если на указанной глубине будут обнаружены грунтовые воды.
Расчет несущей способности буронабивных свай
Часто при создании жилого дома используются буронабивные сваи. Такие элементы фундамента создаются путем бетонирования скважин. Чтобы определить глубину установки таких элементов конструкции, необходимо знать об особенностях грунта на участке и глубине промерзания.
Сначала следует определить несущую способность основания и предположительный вес готового дома. Расстояние между ними должно быть равно примерно двум метрам. Также стоит помнить и о правильном соединении свай между собой. Для соединения всех элементов создается ростверк. Он необходим в случае, если строение создается из дерева, газобетона и пеноблоков. Стоит помнить, что для создания надежного ростверка необходимо использовать только высококачественный бетон.
Расчет ростверка
Свайное основание может выполняться с ростверком и без него. Часто строение устанавливается на сваи нижней обвязкой. Ростверком называется горизонтальная железобетонная балка, которая необходима для распределения нагрузки между всеми элементами основания. Он может быть как сборным, так и в виде монолитной ленты. Марка бетона, используемая для их изготовления, не должна быть ниже 150.
Перед началом создания ростверка необходимо точно рассчитать его размеры. Чаще всего ширина составляет 40 см, а высота – 30. Чтобы конструкция была достаточно жесткой, она армируется стальными прутьями, диаметр которых составляет от 10 до 12 мм. Они соединяются между собой при помощи вязальной проволоки. Между элементами арматуры должно оставаться не меньше 2,5 см.
Пример расчета для каркасного дома
Чтобы понять, как нужно рассчитывать свайный фундамент для дома, стоит узнать о том, как это происходит на конкретном примере. Если для дома создается металлическая вальмовая кровля, все наружные стены будут одинаковой высоты. Толщина перегородок такого строения будет составлять 80 см, без утеплителя и 150 мм с утеплением. Перекрытия в таком доме деревянные по балкам. Высота этажа составляет 3 метра, а высота помещения – 2,7 м. Размеры дома составляют 6х6 м. Общая длина перегородок такого дома будет составлять 25 метров.
Глинистый грунт на участке, где будет создаваться строение, располагается на глубине около 3 м. Нормативная снеговая нагрузка в регионе, где располагается участок, составляет 180 кг на квадратный метр.
Во время проектирования можно вычислить нагрузку на фундамент:
- наружные стены длиной по 6 метров будут вместе весить около 6500 кг;
- нагрузка от внутренних стен будет составлять 2000 кг;
- перегородки – 2000 кг;
- кровля 4000 кг;
- снеговая нагрузка – 9000 кг;
- полезная нагрузка будет составлять около 12000 кг;
- перекрытия – 12000
Таким образом, общая нагрузка будет составлять 47500 кг. Рассчитанный параметр можно разделить на количество опор, которые устанавливаются под дом. Благодаря такому расчету можно определить, выдержит ли определенное количество свай нагрузку.
Перед тем как рассчитать нагрузку на сваи, стоит убедиться в том, что вес вех материалов, которые будут использованы для создания дома, определен правильно. Если нагрузка будет больше, чем смогут выдержать опоры, дом постепенно начнет оседать. Это может привести к появлению перекосов стен и разрушению всей конструкции.
bouw.ru
онлайн калькулятор, какое количество свай нужно, необходимая несущая способностьи подробный монтаж
Фундамент выполняет важную и ответственную функцию, не допускающую никаких сомнений в возможностях или надежности основания.
В этом отношении свайные опорные конструкции позволяют получить полноценный вариант решения проблемы без опасности просадок или деформаций, которые возможны у традиционных видов фундамента.
Особенно ярко эта способность проявляется в сложных условиях, на слабонесущих или обводненных грунтах, торфяниках.
Если традиционные основания базируются на верхних, неустойчивых слоях грунта, то сваи опираются на плотные горизонты, расположенные на значительном расстоянии от поверхности.
Единственной задачей, встающей перед проектировщиком, является грамотный и корректный расчет опорной конструкции.
Содержание статьи
Какие параметры нужно рассчитать для правильного выбора свайного фундамента
Параметры, необходимые для обоснованного выбора свайного фундамента, можно разделить на две группы:
- Измеряемые.
- Расчетные.
К измеряемым могут быть причислены все свойства грунта на данном участке:
- Состав слоев.
- Уровень залегания грунтовых вод.
- Особенности гидрогеологии, возможность сезонного подтопления, подъемы и понижения водоносных горизонтов.
- Глубина залегания и состав плотных слоев.
К расчетным параметрам относятся:
- Величина нагрузки на основание.
- Несущая способность опоры.
- Схема расположения стволов.
- Параметры свай и ростверка.
Указаны только самые общие параметры, в ходе создания проекта нередко приходится рассчитывать большое количество дополнительных позиций.
ВАЖНО!
Расчет фундамента — ответственная и очень сложная задача. Ее решение можно поручить только грамотному и опытному специалисту, имеющему соответствующую профессиональную подготовку и квалификацию. Кроме того, заказ на выполнение расчета должен быть оформлен официальным порядком, чтобы проектировщик нес полную ответственность за результат своих действий. Проект, составленный неформальным порядком, может стать приговором как самой постройке, так и людям, проживающим в ней.
Расчет с помощью онлайн-калькулятора
Тип грунта определяется по результатам бурения пробной скважины. Она имеет глубину до появления контакта с плотными слоями, или до момента погружения на достаточную глубину для установки висячих свай.
Некоторую информацию можно получить в местном геологоразведочном управлении, но она будет усредненной и не сможет дать максимально полные данные о качестве и параметрах грунта на данном участке.
Участок способен иметь специфические инженерно-геологические условия, не свойственные данному региону в целом, поэтому всегда следует производить специализированный геологический анализ.
Глубина промерзания грунта — табличное значение, которое находят в приложениях СНиП.
Существует специальная карта, на которой все регионы России разделены на специальные зоны, обладающие соответствующей глубиной промерзания.
Тем не менее, в действующем ныне СП 22.13330.2011 «Основания зданий и сооружений» имеется методика специализированного расчета глубины промерзания, производимого по теплотехническим показателям грунта и самого здания.
Как найти нагрузку на основание
Нагрузка на фундамент определяется как суммарный вес постройки и всех дополнительных элементов:
- Стены дома.
- Перекрытия.
- Стропильная система и кровля.
- Наружная обшивка, утеплитель.
- Эксплуатационная нагрузка (вес мебели, бытовой техники, прочего имущества).
- Вес людей и животных.
- Снеговая и ветровая нагрузка.
Производится последовательный подсчет всех слагаемых, после чего вычисляется общая сумма. Затем необходимо увеличить ее на величину коэффициента прочности.
Необходимо решить, возможны ли какие-либо дополнительные пристройки или дополнения, увеличивающие вес дома и изменяющие величину нагрузки на основание. Если подобные изменения входят в планы, лучше сразу заложить их в несущую способность фундамента, чтобы упростить себе задачу в будущем.
От каких факторов зависит шаг?
Минимальным расстоянием между двумя соседними винтовыми сваями является двойной диаметр лопасти.
Максимум ограничивается несущей способностью опор и жесткостью ростверка, испытывающего нагрузку от веса дома.
Каждый пролет между опорами можно рассматривать как балку, жестко закрепленную с двух концов.
Тогда величину нагрузки необходимо рассчитать таким образом, чтобы балка не была деформирована или разрушена, а прогиб в центральной точке не превышал допустимых значений.
На практике обычно поступают проще — на основании многочисленных расчетов и эксплуатационных наблюдений выведено максимальное расстояние между соседними сваями, равное 3 (иногда — 3,5) м.
Эту величину считают критической, если по несущей способности опор получаются пролеты больше 3 м, то добавляют 1 или несколько свай для уменьшения шага.
Пример вычисления необходимого количества опор
Для простоты примем общий вес дома со всеми нагрузками равным 30 т. Это приблизительно соответствует весу одноэтажного брусового дома 6 : 4 м, расположенного в средней полосе со снеговой нагрузкой до 180 кг/м2.
Определяется несущая способность одной сваи. Площадь опоры (лопасти) при диаметре 0,3 м составит 0,7 м2. (700 см2). Несущая способность грунта обычно принимается равной среднему арифметическому от значений всех слоев, встречающихся на участке. Допустим, она выражается в 3-4 кг/см2. Тогда каждая свая сможет нести 2,1-2,8 т.
Получается, что для дома в 30 т надо использовать 11-15 свай. Помня о необходимости иметь запас прочности, принимаем максимальное значение. Схему размещения можно принять как свайное поле из 3 рядов по 5 свай в каждом.
Глубину погружения и, соответственно, длину свай принимаем равной глубине залегания плотных грунтовых слоев.
Она определяется практически, методом пробного погружения сваи или бурением скважины.
Пример расчета буронабивной основы
Прежде всего следует вычислить несущую способность одной сваи. Для примера возьмем наиболее распространенный вариант — диаметр скважины 30 см, несущая способность грунта составляет 4 кг/см2. По таблицам СНиП определяем, что несущая способность на песках средней плотности составит около 2,5 т.
Затем производится подсчет общего веса дома. Он делается по обычной методике, но к нему понадобится прибавить вес ростверка, для чего следует вычислить объем ленты и умножить его на удельный вес бетона.
После этого нагрузку на сваи делят на несущую способность единицы и округляют до большего целого значения. Это — количество буронабивных свай, необходимое для дома заданного веса, выстроенного в заданных условиях.
Даже состав грунта редко соответствует лабораторным показателям из-за различных примесей, включений или прочих напластований, изменяющих все параметры.
Поэтому в любом случае надо делать запас прочности, превышающий обычные коэффициенты, заложенные в формулы. Рекомендуется увеличивать его на 10-15%.
ОБРАТИТЕ ВНИМАНИЕ!
Необходимо помнить, что все расчеты производятся по формулам, не учитывающим реальной обстановки на участке.
Основные схемы размещения
Существует несколько разновидностей схем расположения свай:
- Свайное поле.
- Свайный куст.
- Свайная полоса.
Свайное поле представляет собой участок с равномерно распределенными по всей площади опорами.
Используется для жилых или вспомогательных построек, обладающих подходящим весом, этажностью и материалом для использования винтовых свай. Свайные кусты применяются для создания опорной конструкции под точечные объекты — вышки электропередач или мобильной связи, колонны, трубы котельных и т.п.
Свайные полосы служат фундаментом для линейных сооружений — ограждений, заборов, набережных и т.п.
При проектировании схемы расстановки опор учитывается конфигурация, геометрические и функциональные особенности всех элементов сооружения. Нередко используются смешанные, или комбинированные схемы расположения свай, когда совместно со свайным полем наблюдаются участки с кустами и полосами.
Необходимо учитывать, что минимальное расстояние между соседними сваями не должно превышать 2 диаметра, а между соседними рядами — 3 диаметра режущих лопастей. Это важно, так как при погружении грунт теряет свою плотность, на восстановление которой уходит большое количество времени.
Как правильно рассчитать шаг
Расчет шага производится в зависимости от схемы размещения свай и от конфигурации постройки.
Если известно общее количество, опоры расставляются по выбранной схеме — сначала по углам, затем заполняются наиболее нагруженные линии, расположенные под несущими стенами, после чего расставляют оставшиеся сваи по площади комнат для поддержки лаг перекрытий.
Задаче проектировщика является обеспечение максимальной жесткости ростверка, установка опор в точках максимальных нагрузок и равномерное распределение веса дома между остальными стволами.
Для построек обычного типа распределение свай проблемы не вызывает, намного сложнее расстановка опор на сооружениях сложной конфигурации с неравномерным распределением массы элементов.
В таких ситуациях сначала размещают кусты свай под наиболее нагруженными точками, после чего размещают остальные опоры.
ВАЖНО!
В любом случае, необходимо соблюдать минимальные расстояния между соседними опорами, чтобы не снизить удельное сопротивление грунта. В противном случае несущая способность фундамента в данных точках окажется значительно ниже расчетной, что приведет к деформациям или разрушению ростверка и стен постройки.
Оптимальное расстояние
Оптимальное расстояние между сваями — это абстрактное понятие, не имеющее реального числового выражения.
Некоторые источники приводят вполне конкретные значения, но они вызывают больше сомнений, чем полезной информации.
Прежде всего, необходимо учесть нагрузку на каждую опору, которая должна быть меньше предельно допустимых величин.
Кроме этого, необходимо обеспечить такую длину пролетов между сваями, чтобы балки ростверка сохраняли неподвижность и не прогибались.
В этом отношении оптимальное расстояние определяется материалом и размерами ростверка, величиной нагрузки и прочими факторами воздействия.
Поэтому общего оптимального значения расстояния между сваями нет и не может быть. Это величина расчетная, зависит от многих факторов и в каждом конкретном случае имеет собственное значение.
Пример нахождения размеров ростверка
Рассмотрим порядок расчета железобетонного ростверка. Ширина ленты должна быть равна толщине стен.
Если стены дома в 1,5 кирпича, то ширина стен составит 38 см. Такой же будет и ширина ростверка.
Высота ленты при такой ширине должна составить 50 см — это обеспечит необходимую жесткость на прогиб.
Арматурный каркас Будет состоять из двух горизонтальных решеток по 2 стержня 12 мм.
Общий объем бетона, необходимого для отливки, составит 0,5 · 0,38 · 30 м (общая длина ростверка) = 5,7 м3.
Учитывая возможность непроизводительных потерь, лучше заказывать 6 м3 готового бетона марки М200 и выше, или изготовить его самостоятельно прямо на площадке.
Полезное видео
В данном разделе вы сможете ознакомиться с пособием по расчету свайно-ростверкового, плитно-свайного, а также свайно-ленточного фундамента:
Заключение
Большинство пользователей не производит расчет фундамента, так как это слишком сложная и ответственная задача.
Чаще всего для этого привлекают опытных специалистов.
Как минимум, используются онлайн-калькуляторы, позволяющие получить нужные данные быстро и совершенно бесплатно.
Кроме того, такие ресурсы позволяют найти необходимое количество всех материалов и нередко даже рассчитывают их стоимость для монтажа.
Следует учитывать, что всецело полагаться на качество подсчета при помощи неизвестного алгоритма опасно, надо хотя бы продублировать расчет на другом, подобном ресурсе.
В целом, самостоятельный расчет можно производить только для вспомогательных или хозяйственных построек, чтобы не слишком рисковать своим имуществом, здоровьем и жизнью людей.
Вконтакте
Google+
Одноклассники
Проектирование свай [разработать подробное руководство]
В статье рассмотрено устройство свай (монобурно-буронабивные одинарные сваи). Буронабивные сваи чаще используются в мире в качестве глубокого фундамента, когда осевая нагрузка не может быть достигнута за счет фундаментов мелкого заложения.
Существуют различные методы проектирования свай. Во всех методах расчет поверхностного трения и концевых опор выполняется при расчете свай. Если мы сможем рассчитать вышеуказанные параметры, мы легко сможем оценить вместимость сваи.
Расчет отрицательного поверхностного трения и нормального поверхностного трения грунта в этой статье не рассматривается.
Однако эффект поверхностного трения грунта можно учесть при оценке несущей способности сваи.
Особенно, когда есть отрицательное поверхностное трение, которое снижает несущую способность сваи, это следует учитывать в расчетах. Влияние трения кожи о землю о кожу будет рассказано в другой статье на этом сайте.
Как правило, допустимые значения торцевого подшипника и поверхностного трения определяются в результате геотехнических исследований.
В отчете приведены допустимые значения допустимого концевого подшипника и допустимого поверхностного трения.
Если в отчете о инженерно-геологических исследованиях указаны предельная нагрузка на концевую опору и предельное поверхностное трение, они должны быть преобразованы в допустимые нагрузки, поскольку мы сравниваем их с рабочими нагрузками (эксплуатационными нагрузками) конструкции.
Уравнения для оценки концевого подшипника и трения обшивки
Допустимая нагрузка на концевую часть = (допустимая конечная опора) x (площадь поперечного сечения основания сваи)
Способность к трению обшивки = (допустимое трение обшивки) x (площадь поверхности сваи в длине раструба)
Площадь поверхности сваи в длине раструба рассчитывается путем умножения длины раструба (длины сваи в свежей породе) на длину периметра сваи.Обычно сваи имеют глубину забивки вокруг диаметра сваи, если это не указано в геотехническом отчете.
Геотехническая способность сваи = Концевая несущая способность + Допустимая нагрузка на трение обшивки
Геотехническая способность сваи сравнивается со структурной способностью сваи для получения несущей способности сваи.
Структурная способность сваи может быть оценена с помощью структурного анализа.
Сваю можно спроектировать как колонну, несущую осевую нагрузку в почве и скале.
Когда сваи выполняются на очень мягких грунтах, таких как торф, рекомендуется провести структурную проверку сваи с учетом эффекта продольного изгиба в очень мягкой среде.
Как правило, инженеры использовали следующее уравнение для оценки несущей способности свай.
Структурная способность сваи = 0,25 fcu Ac
Где fcu = характеристическая кубическая прочность бетона
Ac = площадь поперечного сечения сваи
Расчетная способность сваи = меньшая структурная способность и геотехническая нагрузка
Для ознакомления с конструкцией свайной заглушки можно обратиться к статье «Конструкция свайной заглушки ».
Глубокий (свайный) фундамент — расчеты, методы проектирования и строительства
Сваи — это относительно длинные и тонкие элементы, используемые для передачи нагрузок на фундамент через слои грунта с низкой несущей способностью на более глубокий грунт или скалу с более высокой несущей способностью. Метод, которым это происходит, лежит в основе простейшей классификации типов свай. У нас есть два основных типа свай (типы свай):
1.Сваи концевые
2. Сваи фрикционные (или плавающие)
Для обоих типов свай требуется дополнительное различие в зависимости от способа установки.
- Забивные (или вытесняющие) сваи: Эти сваи обычно предварительно формуются перед забиванием, подъемом, привинчиванием или забиванием в землю.
- Буронабивные сваи: Для этих свай сначала просверливается отверстие в земле, а затем обычно в нем формируется свая.
Эти категории можно подразделить на:
Большой рабочий объем
- Предварительно отформованная — вбивается в землю и остается на месте
- — массив — древесина / бетон
- — Пустотелый с закрытым концом — Стальные или бетонные трубы
- Формируется на месте — закрытые трубы забиваются, затем извлекаются, заполняя пустоты бетоном
Малый рабочий объем
- Винтовые сваи
- Стальная труба и H-образные профили — (Секции трубы могут закупориваться и стать большим смещением)
Нет смещения
- Пустота, образованная бурением или выемкой грунта, затем заполненная бетоном.Во время строительства может потребоваться поддержка отверстия, для чего существует два основных варианта.
- Стальной кожух
- Буровой раствор
Нагрузки, приложенные к сваям
На поверхность почвы со стороны вышележащей конструкции могут применяться комбинации вертикальной, горизонтальной и моментной нагрузки. Для большинства фундаментов нагрузки, прикладываемые к сваям, в основном вертикальные. Горизонтальные нагрузки, возникающие из-за ветровых нагрузок на конструкции, обычно относительно невелики, и ими пренебрегают.Однако для свай на пристанях, фундаментов опор мостов, высоких дымовых труб и морских свайных фундаментов важно учитывать поперечное сопротивление.
Здесь рассматривается только расчет свай, подверженных вертикальным нагрузкам. Анализ свай, подверженных боковым и моментным нагрузкам, более сложен из-за характера взаимодействия грунт-конструкция. Помимо их способности передавать нагрузки от фундамента на нижележащие пласты, сваи также широко используются в качестве средства контроля осадки и дифференциальной осадки.В этих примечаниях учитывается только предельная осевая нагрузка.
Сваи с вертикальной нагрузкой
Предельная вместимость одинарных свай
Общее сопротивление свае можно разделить на составляющие от основания и вала. Рассмотрение статического равновесия дает окончательную производительность как:
P u = P su + P bu — W
P u Предельная несущая способность сваи
P bu = Предельное сопротивление в основании сваи (Базовое сопротивление)
P su = Предельное сопротивление боковому сдвигу на стволе сваи (Сопротивление вала)
Вт = собственный вес сваи
Базовое сопротивление
При анализе поведения сваи предельное сопротивление основания принято выражать как
.P bu = A b (f b + p o )
A b = Площадь на плане свайного основания
f b = Чистое предельное сопротивление на единицу площади основания
p o = давление вскрыши на уровне основания
Если свая не выступает над поверхностью почвы, выясняется, что вес сваи обычно аналогичен силе, создаваемой давлением покрывающих пород.Таким образом,
W ≈ A b p o
и P u = P su + A b f b
Боковое сопротивление
As = Площадь контакта ствола сваи с почвой
= Среднее конечное сопротивление стороны на единицу площади
В общем, боковое сопротивление будет функцией глубины под поверхностью, потому что как недренированная прочность su (краткосрочный недренированный анализ), так и эффективные напряжения (долгосрочный анализ) увеличиваются с глубиной.Среднее напряжение сдвига можно математически выразить как
где L — длина сваи
Анализ общего напряжения (глинистые почвы)
Для этих почв предельная емкость часто определяется краткосрочным (недренированным) состоянием.
Базовое сопротивление
Это простая проблема несущей способности, то есть
где qf — предельная несущая способность.Для грунта с fu = 0 предельную несущую способность можно записать как
q f = N c s u + g D = N c s u + p o
Чистое предельное сопротивление просто
f b = N c s u
и предельное базовое сопротивление примерно
P bu = A b (N c s u + p o )
Условно принимать c u = c ub
, где переводник — сопротивление недренированному грунту на сдвиг у основания сваи, при условии, что fu равно нулю.Затем значение Nc можно получить из диаграммы Скемптона (p28 Data Sheets), которая применима для Φu = 0.
При использовании этой таблицы важно проверить отношение длины к диаметру L / D (D / B на диаграмме). Обычно предполагается, что свайные основания можно рассматривать как глубокие фундаменты и что N c = 9. Однако, если L / D меньше 4, N c будет меньше 9, как показано в таблице ниже, и максимальная емкость будет также уменьшена.
Боковое сопротивление
Для оценки бокового сопротивления насыщенных глин используются методы анализа как полного, так и эффективного напряжения.Здесь мы рассматриваем только метод полного напряжения или α-метод.
su (z) = недренированная прочность грунта на глубине z
α = эмпирический коэффициент уменьшения, который зависит от:
- Тип почвы
- Тип сваи
- Прочность почвы (см. Таблицу ниже, лист данных p105)
- Способ установки
- Время с момента установки
При отсутствии дополнительной информации для оценки α можно использовать приведенную ниже таблицу.
Сообщите нам в комментариях, что вы думаете о концепциях в этой статье!
Краткое руководство по проектированию свайного фундамента
Глубокий фундамент, такой как сваи, представляет собой конструктивный элемент, передающий нагрузки от надстройки на коренную породу или более прочный слой почвы. Сваи могут быть стальными, бетонными или деревянными. По стоимости свайный фундамент стоит дороже, чем фундамент мелкого заложения. Несмотря на свою стоимость, сваи часто необходимы для обеспечения безопасности конструкций.
Рисунок 1: Свайный фундамент Когда можно использовать сваи?Слабые почвы
Если верхние слои почвы слишком слабые или сильно сжимаемые, чтобы выдерживать нагрузки, передаваемые надстройкой, используются сваи для передачи этих нагрузок на более прочный слой почвы или на коренную породу. Сваи, которые передают нагрузки в основание, называются сваями с торцевыми опорами. Этот тип сваи зависит исключительно от несущей способности нижележащего материала на вершине сваи.С другой стороны, когда коренная порода слишком глубокая, сваи могут постепенно передавать нагрузки через окружающую почву за счет трения. Этот тип сваи называется сваей трения.
Горизонтальные силы
Сваи — более подходящий фундамент для конструкций, подверженных горизонтальным нагрузкам. Сваи могут противостоять горизонтальным воздействиям за счет изгиба, передавая вертикальные силы от надстройки. Это типичная ситуация для проектирования земляных подпорных сооружений и высоких сооружений, подверженных сильному ветру или сейсмическим силам.
Грунты расширяющиеся или просадочные
Набухание или усадка грунта может оказать значительное давление на фундамент. Возникает на расширяющихся или просадочных почвах из-за увеличения или уменьшения влажности. Это также может привести к большему ущербу для фундаментов мелкого заложения; в этом случае сваи могут использоваться для расширения фундамента за пределы активной зоны или там, где может произойти набухание и усадка.
Подъемные силы
Подъемные силы возникают в результате гидростатического давления, сейсмической активности, опрокидывающих моментов или любых сил, которые могут вызвать отрыв фундамента от земли.Это обычное явление для таких конструкций, как опоры электропередачи, морские платформы и подвалы. В этой ситуации считается, что свайный фундамент выдерживает эти подъемные силы.
Эрозия почвы
Эрозия почвы на поверхности земли может вызвать потерю несущей способности почвы, что может серьезно повредить конструкции с неглубоким фундаментом.
Как определить длину ворса?Исследование почвы играет важную роль в выборе типа сваи и оценке необходимой длины сваи.Оценка длины сваи требует хорошей технической оценки геотехнических данных площадки. В зависимости от механизма передачи нагрузки от конструкции к грунту его можно классифицировать: а) торцевые сваи. (б) фрикционные сваи и (в) уплотняющие сваи.
Сваи концевые
Предел несущей способности концевой сваи зависит от несущей способности нижележащего материала на вершине сваи. Необходимую длину сваи этого типа можно легко оценить, определив расположение коренной породы или прочного слоя почвы, если он находится на разумной глубине.В случаях, когда присутствует твердый пласт, а не коренная порода, длина сваи может быть увеличена еще на несколько метров в слой почвы, как показано на Рисунке 2b.
Сваи фрикционные
Фрикционные сваи (рис. 2c) используются, когда слой коренной породы или твердый пласт не существует или находится на необоснованной глубине. В этом случае использование торцевых свай становится очень долгим и неэкономичным. Предельная несущая способность фрикционных свай определяется поверхностным трением, возникающим по длине сваи и окружающей почвы.Длина фрикционных свай зависит от прочности грунта на сдвиг, приложенной нагрузки и размера сваи.
Сваи уплотнительные
Уплотняющие сваи — это тип свай, которые забиваются в сыпучий грунт для обеспечения надлежащего уплотнения грунта у поверхности земли. Длина уплотняющих свай в основном зависит от относительной плотности до и после уплотнения, а также от необходимой глубины уплотнения. Сваи уплотнения обычно короче других типов свай.
Рисунок 2: (a) и (b) Концевые опорные сваи, (c) Фрикционные сваи Механизм передачи нагрузки для свайРассмотрим нагруженную сваю длиной L и диаметром D, как показано на рисунке 2.Нагрузке Q на сваю должен противостоять в основном грунт на дне сваи Q p . И частично поверхностное трение, развиваемое вдоль вала Q s . Как правило, предельная несущая способность (Qu) сваи может быть представлена суммой нагрузки, оказываемой на вершину сваи, и нагрузки, оказываемой за счет поверхностного трения, или как показано в уравнении 1.
Q u = Q p + Q s (1)
Q u = Максимальная грузоподъемность
Q p = Допустимая нагрузка на концевую опору
Q с = Сопротивление поверхностному трению
Однако для свай с торцевыми опорами нагрузке Q в основном противостоит грунт под верхушкой сваи, и сопротивление поверхностному трению минимально.С другой стороны, нагрузке Q на фрикционные сваи в основном противостоит только поверхностное трение, а не несущая способность конца Q p . Пределы допустимой нагрузки для концевых опор и фрикционных свай находятся в уравнениях 2 и 3 соответственно.
Q u ≈ Q p (2)
Q u ≈ Q s (3)
Как проектировать сваи?Проектирование и анализ глубоких фундаментов, таких как сваи, в некотором роде является искусством из-за всех неопределенностей, связанных с интерпретацией геотехнических данных.Несмотря на многочисленные теоретические и экспериментальные подходы к анализу поведения и оценке несущей способности свай в различных типах грунтов, тем не менее, нам еще предстоит многое понять в механизме свайного фундамента. К счастью, с развитием структурной инженерии появилось различное программное обеспечение, которое мы можем использовать, чтобы минимизировать эти неопределенности и сократить время расчета.
Ниже приведены некоторые процессы, которым мы можем следовать при проектировании свайного фундамента:
Данные геотехнического отчета
Как обсуждалось ранее, проектные данные перед фундаментом, такие как тип, длина и размер сваи, предварительно определяются на основе данных геотехнического отчета.Некоторые из критических параметров, которые необходимы для дальнейшего проектирования и анализа свайного фундамента, — это типы грунта, удельный вес, прочность на сдвиг, модуль реакции земляного полотна и данные о грунтовых водах
Расчет конструкций
Последние разработки в области проектирования конструкций включают программное обеспечение для проектирования конструкций, которое направлено на повышение наших навыков как инженеров-строителей и создание безопасных проектов, особенно со сложными конструкциями. Существует различное программное обеспечение FEA, которое мы можем использовать для моделирования наших конструкций и создания реакций, поперечных сил и изгибающих моментов опор надстройки.Полученные данные затем следует использовать для проектирования и анализа фундамента.
Проект фундамента
Подобно программному обеспечению FEA, которое мы использовали для анализа и создания опорных реакций надстройки, существует также множество программ для проектирования фундаментов, которые мы можем использовать для проектирования свайных фундаментов в соответствии с различными проектными нормами. (примечание: для упрощения калькулятора попробуйте наш бесплатный калькулятор бетонного основания).
Программное обеспечение для проектирования фундаментов свай требует различных входных данных для выполнения проверок проекта.Он включает в себя геометрические данные, профили грунта, свойства материалов для бетона и стальной арматуры, схемы армирования, параметры проектирования, указанные в кодах проектирования, и данные реакции, экспортированные из программного обеспечения для расчета конструкций.
Рисунок 3: Программное обеспечение для проектирования фундамента Программное обеспечение FoundationНекоторые стандартные проверки проекта, которые выполняются при проектировании свайного фундамента:
Проверка геотехнической способности завершается, когда конечная несущая способность грунта определяется путем деления приложенных вертикальных нагрузок на несущую способность грунта.Коэффициент не должен превышать 1,0. Поперечно нагруженные сваи также проверяются путем оценки значений предельных и допустимых поперечных нагрузок.
Проверка несущей способности конструкции выполняется путем определения осевой прочности, прочности на сдвиг и изгиб в соответствии с выбранными правилами проектирования. Хотя для свайного фундамента вероятность возникновения геотехнического разрушения выше, чем разрушения конструкции, все же необходимо выполнить эту проверку для принятия мер безопасности.
Оптимизация
Инженер-строитель всегда должен отдавать приоритет безопасности при проектировании любых типов конструкций.Однако инженеры также могут оптимизировать свою конструкцию, экспериментируя с различными размерами свай и схемами армирования, что приводит к уменьшению общего количества материалов и общей стоимости конструкции без ущерба для безопасности и при сохранении минимальных стандартов, требуемых кодексом.
СводкаПроцесс проектирования свайного фундамента обычно включает в себя хорошую интерпретацию геотехнических данных площадки, моделирование и анализ надстройки с помощью программного обеспечения FEA, создание опорных реакций, проверки конструкции фундамента и оптимизацию для разработки безопасного и экономичного проекта.
Расчет несущей способности сваи для одиночных и групповых свай
🕑 Время считывания: 1 минута
Расчет несущей способности сваи определит предельную нагрузку, которую свайный фундамент может принять в условиях эксплуатационной нагрузки. Эта способность также называется несущей способностью свай. Устанавливаемые сваи могут быть как одиночными, так и групповыми. Следовательно, расчет нагрузки для одиночной и групповой свай будет другим. Это делается для заданных условий нагрузки или размера фундамента.Здесь расчет несущей способности как для одиночных, так и для групповых свай. Расчет несущей способности одиночной сваи Здесь необходимо определить вертикальную нагрузку и горизонтальную нагрузку, действующую на сваю. Расчет вертикальной нагрузкиРис.1: Вертикальная нагрузка на сваю
Допустимое сопротивление сжатию R ac одиночной сваи обеспечивается концевым подшипником F eb и поверхностным трением для каждого слоя F sf .Таким образом,
Rac = Feb + Total (Fsf) Уравнение 1
Таким образом, максимальная сжимающая рабочая нагрузка, которую может выдержать одиночная свая, равна ее общему сопротивлению R ac, за вычетом собственного веса сваи W. Таким образом, Nser
Крыса = Всего (Fsf) + W Уравнение 3
Детали исследования почвы предоставят подробную информацию о концевом подшипнике и величине поверхностного трения.Эти значения получены с помощью испытательных нагрузок и энергетических процедур забивания свай. Эти конечные значения делятся на частный коэффициент безопасности от 2 до 3, чтобы получить допустимые значения F eb и F sf . Расчет горизонтальной нагрузкиРис.2: Горизонтальная нагрузка на сваи
Двумя основными факторами, ограничивающими горизонтальную вместимость сваи, являются:- Максимальный прогиб конструкции
- Конструктивная способность сваи
Рис.3.Групповая вместимость сваи
Неповрежденная несущая способность и требуемые условия забивки достигаются за счет обеспечения минимального свободного расстояния между сваями. Это расстояние будет равно удвоенному диаметру сваи.Рис.4. Минимальное расстояние между сваями
Общая вертикальная эксплуатационная нагрузка на группу свай не должна превышать грузоподъемность группы, которая определяется по формуле: Групповая нагрузка = групповая фрикционная способность + несущая способность на конце группы= 2D (L + K) k1 + BLk2 Уравнение 4
Где k1 и k2 — коэффициенты почвы. Нагрузки на отдельные сваи внутри группы ограничиваются несущей способностью одной сваи.(PDF) АСПЕКТЫ РАСЧЕТА ФУНДАМЕНТА СВАЙКИ В ЕВРОКОДЕ 7
Примеры, представленные в этом документе, см. Таблицу 3, столбец 10, для нескольких выбранных методов расчета
.Для буронабивной сваи большого диаметра надежные значения были получены с помощью метода
, рекомендованного EN 1997-2: 2007, а также Gwizdała and Stęczniewski, 2007,
Schmertmann, 1978, De Ruiter & Beringen, 1978, а также Bustamante & Gianeselli, 1982.
Следует также отметить, что рекомендация надежного метода расчета
должна быть сделана на основе подробного технико-экономического анализа с учетом элементов
статистики и результатов испытаний свайной нагрузки.
Ссылки
1. Аоки, Н. и Веллосо, Д. А. (1975). Примерный метод оценки несущей способности
свай. Труды 5-й Панамериканской конференции по механике грунтов и основам
Engineering, Bueno Aires, Vol. 1, 367–376.
2. Бустаманте, М. Джанеселли Л. (1982). Прогноз несущей способности сваи методом статического проникновения
CPT. Материалы 2-го Европейского симпозиума по тестированию на проникновение, Амстердам,
Vol.2, 493–500.
3. Койл Н. М. и Кастелло Р. Р. (1981). Новые расчетные соотношения для свай в песке. Журнал отдела геотехнической инженерии
, ASCE, 107 (GT7), 965 — 986.
4. ДеРуйтер, Дж. И Беринген, Ф. Л. (1979). Свайные фундаменты для крупных сооружений в Северном море. Марин
Геотехнология, 3 (3), 267 — 314.
5. Феллениус Б. (1975). Пробная загрузка свай и новая процедура контрольных испытаний. Журнал отдела геотехнической инженерии
, ASCE, 101 (GT9), 855 — 869.
6. Fellenius, B.H. (1980). Анализ результатов типовых испытаний на свайную нагрузку. Ground
Engineering, сентябрь 19 — 31.
7. Гвиздала К. (1997). Польские методы проектирования одинарных осевых свай. Расчет аксиально нагруженных свай
— Европейская практика, Брюссель, 291–306.
8. Гвиздала К., Стенчневски К. (2007). Определение несущей способности свайных фундаментов
по результатам испытаний CPT. Материалы 3-го Международного семинара по дизайну почвы
Параметры, полученные на месте и в лабораторных условиях, Познань, сентябрь 2006 г.
9. Мейерхоф Г. Г. (1956). Испытания на проникновение и несущую способность несвязных грунтов. Журнал
геотехнической инженерии, ASCE, 82 (1), 1 — 19.
10. Мейерхоф, Г. Г. (1976). Несущая способность и осадка свайных фундаментов. Журнал
Геотехническая инженерия, ASCE, 102 (3), 197 — 228.
11. Мейерхоф, Г. Г. (1983). Масштабный эффект предельной вместимости сваи. Геотехнический журнал
Engineering, ASCE, 109 (6), 797-806.
12. Риз, Л. К. и О’нейл, М. В. (1988). Буровые валы; Строительные процедуры и проектирование
Методы, отчет № FHWA-HI-88-42, Департамент транспорта США, Вашингтон, округ Колумбия,
13. Риз. Л. К. и О’Нил, М. В. (1989). Новый метод расчета пробуренного вала из обычного грунта
и испытания горных пород. Труды Конгресса Foundation Engineering: текущие принципы и практика
, ASCE, Vol. 2, 1026 — 1039.
14. Schmertmann, J.Х. (1970). Статический конус для расчета статической осадки на песке. Journal of Soil
Отдел механики и фундаментостроения, ASCE, 96 (SM3), 1011–1042.
15. Шмертманн, Дж. Х. (1978). Руководство по испытаниям на проникновение конуса, характеристикам и дизайну. США
Министерство транспорта, FHWA-TS-78-209.
16. Шмертманн Дж. Х., Хартман Дж. П. и Браун П. Р. (1978). Улучшенный коэффициент влияния деформации
Диаграммы. Журнал инженерно-геологического отдела, ASCE, 104 (GT8), 1131 — 1135.
17. Симпсон, Б. (2007) Предлагаемые изменения коэффициентов корреляции.
РАСЧЕТ ФУНДАМЕНТОВ В НАУЧАЮЩЕЙСЯ ГЛИНЕ / НА РУССКОМ ЯЗЫКЕ /
ОПИСЫВАЕТСЯ ПОЛНОМАСШТАБНОЕ ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ПОВЕДЕНИЯ ГЛУБОКОВЫХ ФУНДАМЕНТОВ, ВЗАНЫВАЕМЫХ В НАУЧАЮЩЕЙСЯ ГЛИНЕ. СЕМЬДЕСЯТ ПРЕДВАРИТЕЛЬНЫХ СВАЙ (20 Х 20 СМ И 30 Х 30 СМ, ОТ 4 ДО 7 М ДЛИННОЙ) БЫЛИ ИСПЫТАНЫ СТАТИЧЕСКИМ НАГРУЗОЧНЫМ ИСПЫТАНИЯМ. ПОДШИПНИК СЛОЙ СОСТОИТ ИЗ ЧАСТОТЫ НАБЫВАЮЩЕЙСЯ ГЛИНЫ И НЕ НАБЫВАЮЩИХСЯ СЛОЕВ. ПРЕДВАРИТЕЛЬНЫЕ ЛАБОРАТОРНЫЕ ИСПЫТАНИЯ (ИДЕНТИФИКАЦИЯ, ГРАФИКА И ЭКОНОМИЧЕСКИЕ ИСПЫТАНИЯ) И ИСПЫТАНИЯ НА МЕСТЕ (ИСПЫТАНИЯ ПОДШИПНИКОВ) ПОЗВОЛИЛИ ОПРЕДЕЛИТЬ МЕХАНИЧЕСКИЕ СВОЙСТВА НАБЫВАЮЩЕЙСЯ ГЛИНЫ.Для определения соответствующих ролей бокового трения и сопротивления концевым точкам были изучены семь свай, забитых в слой, состоящий исключительно из набухающей глины. ВАЛ И ТОЧКА. НА ОСНОВЕ РЕЗУЛЬТАТОВ ИСПЫТАНИЙ ПРЕДЛАГАЕТСЯ ФОРМУЛА ДЛЯ РАСЧЕТА НЕСУЩЕЙ СПОСОБНОСТИ ГЛУБОКОГО ФУНДАМЕНТА В НАБЫВАЮЩЕЙСЯ ГЛИНЕ. ИССЛЕДОВАНИЕ ТАКЖЕ ПОКАЗАЛО, что ПРИ ПРИНЯТИИ ОПРЕДЕЛЕННЫХ МЕР ПРЕДОСТОРОЖНОСТИ МОЖНО СНИЗИТЬ ДИФФЕРЕНЦИАЛЬНЫЕ РАСЧЕТЫ ДО МИНИМАЛЬНОГО./ LCPC / RRL /
- Дополнительные примечания:
- Корпоративных авторов:
Издательство Транспорт
Басманный тупик 6а
Москва Б-174, СССР - Авторов:
- Дороскевица, N M
- Boim, V P
- Дата публикации: 0
Предмет / указатель терминов
Информация для подачи
- Регистрационный номер: 00232169
- Тип записи: Публикация
- Агентство-источник: Дорожная исследовательская лаборатория / Великобритания
- Файлы: TRIS
- Дата создания: 29 июня 1971 г., 00:00
Калькулятор свай (трубчатый анкер и фундамент)
Рис 1.Сопротивление установки свай
Сваи используются; в качестве анкеров для поднятия конструкций над землей или предотвращения смещения (оседания) структурных оснований. Они могут быть из твердого бетона или стальных труб в зависимости от области применения.
Бетонные сваи обычно выдерживают очень большие вертикальные сжимающие нагрузки и устанавливаются / изготавливаются путем выкапывания ямы в земле, в которую опускают сборную сваю и затем закапывают ее или в которую заливают неотвержденный бетон. Эти сваи не покрываются калькулятором свай CalQlata.
Пустотелые стальные трубчатые сваи, которые используются в калькуляторе свай CalQlata, обычно используются в качестве анкеров или для предотвращения смещения небольших и средних структурных оснований в подозрительных грунтовых условиях на суше или на морском дне.
Почва
До 450 миллионов лет назад земная поверхность была каменистой; нигде не было почвы. С тех пор почва на большей части своей поверхности скопилась из разложившихся растительных и животных материалов и эродированных горных пород. Почвы сильно различаются по составу и характеру в зависимости от множества переменных, таких как; состав, температура и влажность.
Источники свойств почвы сильно различаются не потому, что они неверны, а просто потому, что все они разные. Поэтому всегда рекомендуется проверять грунт в месте укладки с помощью штыря небольшого диаметра, проникая на глубину, подходящую для желаемого уровня уверенности. Это относительно недорогой и надежный метод подготовки к прокладке сваи перед установкой. К стержню можно применить те же методы расчета, что и для сваи.
Указанные значения несущей способности грунта действительны только при определенных условиях; глубина, пустоты, увлеченная вода, частицы породы (камни), состав, температура и т. д.все они вносят свой вклад в изменение прочности при очень малых объемах. Кроме того, прочность подшипника обычно изменяется в зависимости от величины и направления нагрузки, то есть она значительно снижается при нагрузке на растяжение или сжатие вблизи поверхности.
Поскольку прочность грунта увеличивается с глубиной, CalQlata консервативно считает, что поперечное давление грунта на стенку сваи равно давлению на глубине, умноженному на коэффициент Пуассона грунта (в отличие от его угла сдвига, который также может варьироваться с глубиной).
Сопротивление сжимающей силе в основании или вершине сваи (рис. 1), которая вызывает постепенное проникновение (δd), обычно должно быть равно комбинированному напряжению в грунте на глубине. Однако, поскольку условия на вершине сваи изменчивы и в значительной степени неизвестны во время установки, вычислитель сваи консервативно использует только несущую способность при расчете ударной прочности вершины сваи.
Свайная установка
Рис. 2. Момент перекоса сваи
На рис. 1 показаны силы сопротивления для типичной стальной трубчатой сваи во время установки.
Сваи обычно забиваются в землю путем падения на них тяжелого груза с определенной высоты. Сила удара создается за счет потенциальной энергии массы. Если молот падает в плотную среду, такую как вода, его эффективная масса (м²) должна использоваться в расчетах энергии удара (см. Входные данные ниже).
Сопротивление трению между грунтом и внутренней и внешней вертикальными поверхностями сваи увеличивается с увеличением глубины. Инкрементное проникновение достигается за счет преодоления несущего напряжения в грунте на поверхности вершины стены сваи.Сила, создаваемая энергией удара, которая изменяется с каждым постепенным изменением глубины проникновения в грунт, должна быть достаточной для преодоления обеих этих нагрузок.
По мере увеличения глубины сваи большая часть силы удара теряется на преодоление повышенного сопротивления трения, уменьшая силу, доступную для проникновения. Таким образом, постепенное проникновение уменьшается с установленной глубиной, что увеличивает силу, действующую на сваю при каждом ударе.
Маловероятно, что грунт будет иметь одинаковую несущую способность, сопротивление сдвигу, коэффициент трения и коэффициент Пуассона на всем протяжении до установленной глубины, поэтому маловероятно, что каждый удар будет вызывать ожидаемое проникновение на соответствующей глубине.
Хотя разумно продолжать укладку свай до тех пор, пока сила удара (F) не станет достаточной для ваших нужд (Ŵ
Прочность сваи
Стена сваи должна выдерживать монтажные и эксплуатационные нагрузки, и требуются отдельные расчеты для определения целостности сваи в соответствии с вашими конкретными проектными условиями.Однако наиболее вероятной причиной разрушения сваи является разрыв стены во время установки.
Разрушение или обрушение стенки сваи происходит из-за чрезмерного напряжения мембраны из-за смещения молотка / сваи (рис. 2), достаточно консервативная оценка которого может быть получена с использованием следующей формулы плоской пластины: σỵ = 6 м / т
Существует множество формул для определения прочности сваи при сжатии, некоторые из которых включают классические или сложные формулы, все из которых можно надежно спрогнозировать с помощью расчета продольного изгиба колонны Эйлера-Ренкина, в котором вы добавляете модуль Юнга материала сваи к модулю упругости грунта. (Eᵖ + Eˢ) при создании композитной жесткости (EI) для колонны.
Расчетная нагрузка сваи
Рис. 3. Боковая нагрузка
Весу противостоит комбинация сопротивления трения и прочности грунта. Горизонтальным нагрузкам должно противостоять поперечное сжатие почвы, которое меняется в зависимости от глубины, состава и плотности. Растягивающим нагрузкам от анкеров противостоит масса сваи плюс грунтовая пробка, если она остается внутри, а также любое остаточное трение между грунтом и стенкой сваи.
Как и все теоретические интерпретации практических задач, в конечном результате есть определенная степень оценки.
Например:
Горизонтальная сила : Сопротивление горизонтальным нагрузкам создает пару моментов (M) на высоте «hᴹ» (рис. 3), величина которой обусловлена сочетанием несущей способности грунта и давления на глубине. Несущая способность при горизонтальной нагрузке не такая же, как при сжатии из-за подъема к поверхности, более того, давление создает большее сопротивление горизонтальным силам, чем несущая способность на значительной глубине (т.е. когда плотность x глубина> несущая способность).Поэтому CalQlata проигнорировала влияние несущей способности для горизонтальных нагрузок в вычислителе свай и предположила, что поперечное сопротивление основано на давлении x глубина⁽⁴⁾. Вам нужно будет убедиться, что ваша свая не расплющивается чуть ниже поверхности почвы из-за горизонтальной силы.
Сила сжатия : Если свая не проникает в подстилающую породу, ее несущая способность (рис. 4; W) будет зависеть от сопротивления трения и несущей способности грунта, которые могут соответствовать или не соответствовать условиям поверхности.В этом случае вы можете основывать несущую способность установленной сваи на конечной силе удара. Однако было бы разумно применить подходящий запас прочности для учета потенциальной ползучести. Эмпирическое правило CalQlata — предполагать полную несущую способность и ⅔ сопротивления трения (R̂ᵛ). Калькулятор сваи предоставляет как теоретические (W̌), так и практические () значения в своих выходных данных.
Комбинированное усилие : Когда сваи подвергаются комбинированным вертикальным и горизонтальным нагрузкам (рис. 5; W), сопротивление трения от вертикального компонента будет уменьшено, если горизонтальный компонент достаточен для преодоления деформации в грунте.Если земля и свая теряют контакт более чем на 50% от ее внешней поверхности, сопротивление трению следует игнорировать. Сопротивление вертикальному направлению вверх будет зависеть только от веса (сваи и грунтовой пробки, если она сохраняется), а сопротивление сжатию будет зависеть только от напряжения опоры (σ) на вершине сваи.
Осторожно
Несмотря на то, что сопротивление трения в свае может быть включено в несущую способность сваи, следует принять меры, чтобы в течение ее расчетного срока службы учитывались следующие факторы:
1) С течением времени может возникнуть мера ползучести из-за несоответствий в грунте из-за изменения пластов и вибрационных нагрузок
2) Оседание может привести к сползанию сваи в пласт низкой прочности
3) Подземная вода снижает сопротивление трения и несущую способность
4) Скала, частично поддерживающая сваю, со временем может вызвать наклон
5) Деформация свайной стены при установке может привести к обрушению во время эксплуатации
Все вышеперечисленное может быть выполнено с помощью подходящих испытаний грунта на глубину, превышающую предполагаемую глубину сваи.
Рис. 4. Осевая нагрузка
Калькулятор свай — Техническая помощь
Вы можете использовать любые единицы измерения в калькуляторе свай при условии, что вы последовательны. Однако все силы рассчитываются для получения единиц массы-силы (кгс, фунт-сила и т. Д.), Поэтому важно, чтобы значения, вводимые для напряжения (σ и τ), были в простых единицах: например, кгс / м², фунт-сила / дюйм² и т. д.
Входное значение ускорения свободного падения (g) используется только для преобразования энергии удара в массовую силу.
Установка
Калькулятор сваи применяет горизонтальное давление (которое изменяется линейно с глубиной) на внутреннюю и внешнюю стенку сваи из-за коэффициента Пуассона грунта. Сопротивление постепенному проникновению рассчитывается только с использованием напряжения опоры (σ) грунта, напряжение сдвига (τ) используется для расчета угла сдвига для горизонтальной силы (F̌ʰ).
Проектная мощность
Вычислитель свай обеспечивает множество расчетных нагрузок, только минимальные значения которых (R̂ᵛ, F̂ᵛ, Ŵ) могут использоваться с высокой степенью уверенности и без контрольных испытаний.Если вы хотите рассчитывать на более высокие расчетные мощности, чем указанные, рекомендуется провести соответствующие испытания под нагрузкой, зависящие от времени.
Различные слои
Если вы не хотите проводить подробные расчеты для каждого переменного слоя (рис. 6), вы можете консервативно предположить, что ваша свая имеет толщину только суммы толщин высокопрочных слоев, полностью игнорируя влияние низкопрочных слоев. . Это также более точный подход, чем предположение о средних свойствах почвы по фактической глубине.
Входные данные
Рис. 5. Объединенные силы.
D = максимальная необходимая глубина сваи
Øᵢ = внутренний диаметр сваи
Øₒ = внешний диаметр сваи
ρᵐ = средняя плотность ³⁾
ρʰ = плотность молотка ³⁾
ρᵖ = плотность сваи
ρˢ = плотность грунта
м = масса молотка ³⁾
hᵈ = высота падения
σ = нагрузка на грунт
τ = напряжение сдвига грунта
μᵢ = коэффициент трения при установке ²⁾
μₒ = коэффициент трения во время эксплуатации ²⁾
ν = коэффициент Пуассона (грунт)
Выходные данные
мₑ = эффективная масса молота ³⁾
E = энергия удара
A = площадь поперечного сечения стенки сваи (вершина)
Ď = общая максимальная глубина (d + δd после окончательного удара)
n = количество ударов (для достижения Ď )
R̂ᵛ = минимальное сопротивление вертикальному трению при установке (из-за μᵢ)
Řᵛ = максимальное сопротивление вертикальному трению после осадки⁽⁵⁾ (из-за μₒ)
F̌ʰ = максимальная горизонтальная сила (на поверхности почвы)
F̂ᵛ = минимальная подъемная сила сваи (только масса сваи)
F̌ᵛ = максимальная подъемная сила сваи (включая массу заглушки и Řᵛ)
Ŵ = минимальная грузоподъемность (от; μₒ + σ)
W̌ = максимальная грузоподъемность (от; μₒ + σ )
hᴹ = высота от конца сваи до точки опоры
r₁ = плечо момента над точкой опоры (только для информации)
r₂ = плечо момента под точкой опоры (только для информации)
M₁ = момент над точкой опоры⁽⁶⁾ (только для информации)
M₂ = Момент ниже точки опоры⁽⁶⁾ (только для информации)
Рис 6.Изменчивые слои почвы
Результаты последовательности ударов:
N ° = число ударов
δd = глубина удара
d = общая глубина после удара
F = сила удара
См. Свойства материала ниже для получения информации о некоторых характерных свойствах материала.
Свойства материала
Монтажная среда: если ваша свая устанавливается с помощью молотка, брошенного под воду, вы должны ввести среднюю плотность (ρᵐ) для воды, в противном случае вы должны ввести значение для воздуха или установить это значение на ноль.
Материал молота: Плотность материала молота (ρʰ) уменьшается на плотность среды в расчете (ρᵐ) для расчета энергии удара (E). Поэтому важно, чтобы обе плотности были репрезентативными
.Материал сваи: плотность материала сваи используется только в расчетах силы, необходимой для вытягивания сваи из земли (Fᵛ)
Материал почвы: Свойства почвы должны быть основаны на значениях испытаний на месте, если это вообще возможно.Это можно установить, вставив штифт в землю в месте установки сваи, а затем ретроспективно установив характеристики грунтовых условий с помощью калькулятора свай и изменив свойства грунта (σ, μᵢ и μₒ), гарантируя, что:
а) ретроспективные расчеты отражают фактические условия во время установки;
б) Нагрузки при извлечении измеряются не менее чем через 30 дней после осадки. В качестве альтернативы для оценки могут использоваться следующие данные:
Плотности | Вещество | кг / м³ | фунтов / дюйм³ |
---|---|---|---|
ρᵐ | воздух | 1.256 | 4.54E-5 |
вода | 1000 | 0,0361 | |
морская вода | 1023 | 0,037 | |
ρʰ | сталь | 7850 | 0,2836 |
бетон | 2400 | 0,0867 | |
гранитная порода | 2750 | 0.09935 | |
ρᵖ | сталь | 7850 | 0,2836 |
алюминий | 2685 | 0,097 | |
титан (HT) | 4456 | 0,161 | |
нержавеющая 316 | 7941 | 0,2869 | |
ρˢ | Глина сухая | 1590 | 0.0574 |
глина средняя | 1625 | 0,0587 | |
мокрая глина | 1750 | 0,0632 | |
суглинок | 1275 | 0,0461 | |
илово-сухой | 1920 | 120 | |
илово-мокрый | 2163 | 135 | |
песчано-сухое | 1600 | 0.0578 | |
мокрый песок | 1900 | 0,0686 |
Напряжение | Вещество | кг / м² | фунтов / дюйм² | ν |
---|---|---|---|---|
σˢ | глина плотная | от 35 до 55 | от 0,05 до 0,08 | 0,45 |
глина средняя | от 20 до 35 | 0.03 до 0,05 | 0,35 | |
глина рыхлая | от 10 до 20 | от 0,014 до 0,03 | 0,3 | |
суглинок | 7,5 к 15 | от 0,01 до 0,02 | 0,3 | |
ил | от 4,5 до 7,5 | от 0,0064 до 0,01 | 0,35 | |
ил рыхлый | с 1 по 4.5 | от 0,001 до 0,0064 | 0,3 | |
песчано-сухое | от 10 до 30 | от 0,014 до 0,04 | 0,4 | |
мокрый песок | 5-10 | от 0,007 до 0,014 | 0,3 | |
τˢ | глина плотная | от 29,4 до 46,2 | от 0,0418 до 0.0656 | |
глина средняя | от 11,5 до 20,2 | от 0,0164 до 0,0287 | ||
глина рыхлая | от 3,6 до 7,3 | от 0,0052 до 0,0104 | ||
суглинок | от 4,3 до 8,7 | от 0,0062 до 0,0123 | ||
ил | 0.8 к 1,3 | от 0,0011 до 0,0019 | ||
ил рыхлый | от 0,1 до 0,4 | от 0,0001 до 0,0006 | ||
песчано-сухое | от 8,4 до 25,2 | от 0,0119 до 0,0358 | ||
мокрый песок | от 2,9 до 5,8 | от 0,0041 до 0,0082 |
Вещество | мкᵢ | мкₒ |
---|---|---|
глина плотная | 0.225 | 0,45 |
глина средняя | 0,2 | 0,4 |
глина рыхлая | 0,15 | 0,3 |
суглинок | 0,175 | 0,35 |
ил | 0,15 | 0,3 |
ил рыхлый | 0.125 | 0,25 |
песчано-сухое | 0,1 | 0,2 |
мокрый песок | 0,175 | 0,35 |
Применимость
Расчет сваи применяется только к трубчатым сваям, заделанным в поверхностный грунт
Точность
Точность вычислений в калькуляторе свай зависит от введенной информации.Выходные данные в значительной степени основаны на линейном изменении давления с глубиной и постоянной плотности почвы на этой глубине. В этом случае ожидается, что результаты будут в пределах ± 10% от фактических значений.
Если изменение грунта происходит по глубине сваи, для свойств грунта следует использовать средние значения; в этом случае; Ожидается, что результаты будут в пределах ± 20% от фактических значений.
Маловероятно, что какой-либо расчет свай позволит достичь значительно большей точности, чем ожидалось выше.
Банкноты
- Ударная вибрация, смещение грунта и переменные условия с глубиной — все это неконтролируемо изменяет конечную нагрузку на сваю во время установки
- Сопротивление трению при установке меньше, чем при эксплуатации из-за осадки (через ≈30 дней). CalQlata рекомендует, если не известны точные значения, коэффициент трения для связных грунтов при установке должен быть вдвое меньше, чем при эксплуатации, который обычно составляет ≈0,35.