Балласт электронный – Электронный балласт для люминесцентных ламп

Содержание

Схема ЭПРА для ЛБ-40

на главную

Лампы дневного света (ЛДС) в виде длинной трубки давно применяются как в быту, так и в офисах. Главное их преимущество, по сравнению с лампами накаливания, – большая светоотдача, долговечность и экономия электроэнергии.

В старых светильниках применяли тяжелые дроссели и стартеры, они долго и с миганием зажигали лампы, работали ненадежно, гудели, а лампы мигали. На смену им пришли электронные балласты. Они легче по весу, мгновенно зажигают лампу, не гудят, работают в широком диапазоне питающих напряжений, не мигают, так как работают на больших частотах, и по стоимости приблизились к светильникам с тяжелыми дросселями.

Фото. Внешний вид светильника

Внешний вид такого светильника китайского производства типа DL-3011 для ЛДС мощностью 36 Вт показан на фото. Его номинальное питающее напряжение 220…240 В/50 Гц, но при испытаниях показал работоспособность и в диапазоне напряжений 100…240 B. Сам электронный блок питания (балласт) помещается внутри светильника в пластмассовой коробке. Он смонтирован на монтажной плате размерами 107х27 мм (

рис.1).

Рис 1. Электронный ПРА

Принципиальная схема ЭПРА нарисована по монтажной плате и показана на рис.2 Все элементы на ней обозначены так же, как и на монтажной плате.

Рис 2. Принципиальная схема ЭПРА

Вначале вспомним принцип зажигания люминесцентных ламп, в том числе и при применении электронных балластов. Для этого необходимо выполнить два условия: первое – разогреть обе ее нити накала, второе – приложить большое (около 600 В) напряжение. Величина напряжения зажигания прямо пропорциональна длине стеклянной люминесцентной лампы, т.е. для коротких (18 Вт) ламп оно меньше, а для длинных (36…40 Вт) ламп – больше.

Работа электронного балласта

Вначале сетевое напряжение выпрямляется до постоянного напряжения 260…270 В (измерено на работающем преобразователе при напряжении сети ~220 В) и сглаживается электролитическим конденсатором С1 (15 мкФ/400 В).

Далее двухтактный полумостовой преобразователь, активными элементами которого являются два биполярных высоковольтных транзистора структуры n-p-n (MJE13005), называемыми ключами (рис.2), преобразует постоянное напряжение 260…270 В в высокочастотное напряжение частотой 38 кГц, что позволяет значительно уменьшить габариты и вес балласта. Нагрузкой и одновременно управляющим элементом преобразователя является трансформатор (обозначен на схеме как TU38Q2) со своими тремя обмотками, из них две – управляющие обмотки (каждая по 4 витка) и одна – рабочая, состоящая из двух витков (

рис.2 см. прикрепленные данные). Цепь с рабочей обмоткой создает нагрузку на преобразователь.

Первоначальный запуск преобразователя обеспечивает симметричный динистор, обозначенный в схеме DB3. Он открывается, когда после включения электросети напряжение в точках его подключения превысит порог срабатывания. При открытии динистор подает импульс на базу транзистора, после чего преобразователь запускается.

Транзисторные ключи открываются противофазно от импульсов с управляющих обмоток. Для этого обмотки включены в базы транзисторов противофазно (на рис.2 начало обмоток обозначены точками). Открытие каждого ключа вызывает наводку импульсов в двух противоположных обмотках, в том числе и в рабочей обмотке (2 витка). Переменное напряжение с рабочей обмотки L1 подается на люминесцентную лампу через последовательную цепь, состоящую из обмотки L1, первой нити накала лампы, С5 (4700 пФ/1200 В), второй нити накала лампы, С4 (100 нФ/400 В). Величины индуктивностей и емкостей в этой цепи подобраны так, что в ней возникает резонанс напряжений при неизменной частоте преобразователя.

На конденсаторе С5 (470 пФ/1200 В), включенном в резонансную цепь (к лампе), происходит самое большее падение напряжение (так как у С5 самое большое реактивное сопротивление из всех элементов контура), оно зажигает лампу.

Следовательно, максимальный ток в резонансной цепи разогревает обе ее нити накала, а большое резонансное напряжение на конденсаторе С5 зажигает лампу.

Зажженная лампа хотя и уменьшает свое сопротивление, но, как показали измерения, переменное напряжение на ней (и на конденсаторе С5) составляет около 295 В, а на дросселе L1 – около 325 В. Т.е. резонанс напряжений в цепи продолжается, из-за чего уже зажженная лампа и продолжает гореть. Дроссель L1 своей индуктивностью ограничивает ток в зажженной лампе, так как ее сопротивление после зажигания уменьшается. После зажигания лампы преобразователь продолжает работать в автоматическом режиме, не меняя свою частоту с момента запуска. Весь этот процесс зажигания длится менее 1 с.

При испытаниях светильник сохранял работоспособность в диапазоне питающего напряжения переменного тока от 220 В до 100 B, при этом частота преобразования увеличивалась с 38 кГц до 56 кГц, но яркость свечения лампы при напряжении 100 B заметно уменьшилась.

Следует отметить, что на люминесцентную лампу все время подается переменное напряжение, так как это обеспечивает равномерный износ эмиссионных способностей нитей накаливания и этим увеличивает срок службы лампы. При питании лампы постоянным током срок ее службы уменьшается на 50%.

Детали электронного балласта

Типы радиоэлементов указаны в принципиальной схеме (

рис.2 см. прикрепленные данные). В состав устройства входят:

  1. Т1, Т2 – транзисторные ключи MJE13005 китайского производства (аналог КТ8164А), структуры n-p-n, в корпусе TO-220 (400 В/4 A, в импульсе 8 А). Их можно заменить КТ872А (1500 В/8 A, корпус Т26а). Цоколевка MJE13005 показана на рис.2 (см. прикрепленные данные). При установке новых транзисторов всегда определяйте правильность выводов БКЭ, так как в аналогах она может не совпадать.
  2. Трансформатор TU38Q2 с ферритовым кольцом, размер которого 11х6х4,5, его вероятная магнитная проницаемость около 2000. Трансформатор имеет 3 обмотки, две из них (управляющие) содержат по 4 витка и одна (рабочая) – 2 витка.
  3. Диоды D1–D7 типа 1N4007 (1000 В/1 А). D1–D4 – выпрямительный мост, D6, D7 – демпферные диоды, а диод D5 разделяет источники питания.
  4. Цепочка R1C2 обеспечивает задержку пуска преобразователя с целью его «мягкого» пуска и не допущения большого пускового тока.
  5. Симметричный динистор типа DВ3 (Uзс.max=32 B; Uос=5 В; Uнеотп.и.max=5 B) обеспечивает первоначальный запуск преобразователя.
  6. R3, R4 – ограничивающие резисторы в цепи эмиттера транзисторов. При экстремальных условиях сгорают, защищая более дорогие транзисторы.
  7. R5, R6 – гасящие резисторы в цепи базы транзисторов.
  8. D6, С3, R2 – демпферная цепочка, препятствующая выбросам напряжения на ключе в момент его запирания, демпферную функцию выполняет и диод D7, но на втором ключе. Кроме того, С3 уменьшает частоту преобразования.
  9. Дроссель L1 состоит из двух склеенных между собой Ш-образных ферритовых половинок. L1 участвует в резонансе напряжений (совместно с С5 и С4) для обеспечения зажигания лампы и поддержки ее в рабочем состоянии, а также ограничивает ток в светящейся лампе.
  10. С5 (4700 пФ/1200 B), С4 (100 нФ/400 B) – конденсаторы в цепи люминесцентной лампы, участвующие в ее зажигании (через резонанс напряжений), а после зажигания поддерживают ее в рабочем (светящемся) режиме. Максимально допустимое напряжения конденсатора С5=1200 В, такая величина подобрана неслучайно. При зажигании напряжение на С5 может превышать 600…700 В, и конденсатор должен выдержать его.
  11. Конденсаторы 22 нФ/100 В (на схеме производители их не обозначили) предназначены для уменьшения частоты работы преобразователя. Напомним, что она равна 38 кГц при номинальном питающем напряжении.
  12. С1 (15 мкФ/400 В) – единственный оксидный конденсатор в балласте, выполняющий функцию сглаживания выпрямленного напряжения питающей электросети.
  13. F1 – мини-предохранитель в стеклянном корпусе номиналом 1 А.

Ремонт

При ремонте платы под напряжением будьте осторожны, так как ее радиоэлементы находятся под фазным напряжением.

Перегорание (обрыв) накальных спиралей люминесцентной лампы, при этом блок питания остается исправным. Это типичная неисправность. Устраняется она простой заменой стеклянной лампы, которая продается в любом магазине электротоваров и стоит около 1,5 USD. Применять можно лампы мощностью 36 и 40 Вт.

Трещины в пайке монтажной платы

Причины их появления: периодическое нагревание и последующее, после выключения, остывание места пайки, а также низкокачественная пайка платы изготовителем. Нагреваются места пайки от элементов, которые греются, – это транзисторные ключи. Такие трещины могут проявиться после нескольких лет эксплуатации, т.е. после многократного нагревания и остывания места пайки. Устраняется неисправность повторной пайкой трещины. Иногда необходимо предварительно зачистить место пайки.

Повреждение отдельных радиоэлементов

Отдельные радиоэлементы могут повредиться от скачков напряжения в электросети. В первую очередь, это транзисторы MJE13005. Производители не предусмотрели защиты схемы от всплесков напряжений, например, варисторами. Скачки напряжений часто имеют место в сельских электросетях во время сильных ветров и молний, поэтому во время таких атмосферных явлений светильник лучше не включать. Имеющийся в схеме предохранитель (1А) не защитит радиоэлементы от скачков напряжений, а лишь при пробое радиоэлементов.


на главную
.

www.ascerdfg2.narod.ru

Электронный балласт для люминесцентных ламп

Содержание:

  1. Основные функции балласта
  2. Разновидности пускорегулирующих устройств
  3. Принцип работы электронного балласта
  4. Как подключить
  5. Преимущества электронной пускорегулирующей аппаратуры

Любые конструкции и типы ламп дневного света оборудуются пускорегулирующими устройствами, основной функцией которых является ограничение тока. Они необходимы в тех случаях, когда собственная электрическая нагрузка не способна в полной мере ограничивать потребляемый ток. Существует несколько типов подобных схем, куда входит и электронный балласт для люминесцентных ламп, применяемый в современных моделях светильников.

По сравнению с электромагнитными схемами, этот вариант считается наиболее эффективным, обеспечивающим длительные сроки эксплуатации источников света с люминофором. Для того чтобы понять, как работает балласт, необходимо рассматривать его как единое целое с конструкцией люминесцентной лампы.

Основные функции балласта

Основным конструктивным элементом люминесцентной лампы служит стеклянная трубка, заполненная внутри одним из инертных газов – аргоном, неоном или криптоном. К газовому наполнителю добавляется небольшое количество ртути. Концы трубки оборудованы металлическими электродами, через которые подается напряжение. Под действием электрического поля возникает пробой газовой среды, появляется тлеющий разряд и далее – электрический ток в цепи устройства. Газовый разряд начинает излучать свет бледно-голубых тонов, слабо видимый в обычном диапазоне.

Однако, действующий электрический разряд переводит значительную часть энергии в диапазон ультрафиолетового света, невидимого человеческим глазом. Попадая на люминофорное покрытие, нанесенное на стенки колбы, ультрафиолет превращается в видимое свечение, которое и является основным источником света.

Путем изменения химического состава покрытия можно получить различную цветовую гамму свечения. В большинстве ламп используются оттенки белого цвета, а для оформления декора или дизайна интерьера применяются любые другие цвета. Данное свойство дает несомненное преимущество перед обычными лампами накаливания.

После появления в газовой среде тока, происходит его дальнейший лавинообразный рост, в результате чего внутреннее сопротивление резко падает. В этот момент может наступить перегрев, и лампа выйдет из строя. Чтобы не допустить этого, осуществляется последовательное включение дополнительной нагрузки, ограничивающей величину тока. Именно она служит балластом, известным также под названием дросселя.

В люминесцентных схемах используется балласт электромагнитного и электронного типа. В первом случае используется классическая трансформаторная схема, состоящая из металлических пластин, медных проводов и других компонентов. Первоначальный запуск или поджиг выполняется пусковым устройством – стартером.

Второй вариант – электронный балласт для люминесцентной лампы, создан на базе электроники с использованием диодов, транзисторов, динисторов и микросхем. Данная схема выполняет и функцию пуска, в результате которого возникает тлеющий разряд. Таким образом, электронные устройства – ЭПРА получаются легкими и компактными, что во многом упрощает и всю конструкцию люминесцентной лампы.

Разновидности пускорегулирующих устройств

В настоящее время в лампах дневного света используются электромагнитные пускорегулирую-щие устройства – ЭмПРА и более современные – электронные (ЭПРА). Каждый из них выполняет одну и ту же функцию и отличаются лишь конструкцией. Поэтому действие приборов происходит по-разному.

Схема ЭмПРА состоит из дросселя, поддерживающего лампу в рабочем режиме, стартера, производящего пуск и конденсатора, снижающего реактивные потери. Основные детали и дополнительные компоненты соединяются в общий блок, представляющий собой довольно громоздкую конструкцию, оказывающую заметное влияние на массу светильника в целом.

Электромагнитное пускорегулирующее устройство подключается очень просто. Каждая люминесцентная лампа оборудована с торцов четырьмя электродами. Первая пара имеет контакты 1 и 2, а вторая пара – 3 и 4. Подключение стартера выполняется к контактам 1 и 3, обмотка дросселя соединяется с контактом 2, к 4-му контакту подключается один из проводов питания. Другой провод соединяется со второй обмоткой дросселя.

В отличие от электромагнитной аппаратуры, электронная схема является достаточно сложным устройством, с множеством рабочих элементов. Принцип действия ЭПРА остался точно таким же, поскольку конструкция самих ламп не изменилась. Просто сам рабочий процесс выполняется совершенно по-другому. Благодаря легким и компактным деталям, заметно снизился общий вес и размеры прибора.

Подключение устройства осуществляется с помощью специальных контактных колодок, разделенных между собой. К первой группе колодок подключается внешнее питание, а ко второй – сама лампа. Все компоненты ЭПРА располагаются на специальной плате и включают в себя:

  • Выпрямитель. Выполняет преобразование постоянного тока в переменный.
  • Фильтр, ограничивающий электромагнитные помехи.
  • Сглаживающий фильтр, защищающий от скачков и перепадов напряжения.
  • Дроссель.
  • Корректор коэффициента мощности.
  • Инвертор, выполненный по полумостовой схеме.

Принцип работы электронного балласта

Действие электронных пускорегулирующих баластников напрямую связано с принципом работы самой люминесцентной лампы. Основным этапом считается ее пуск, при котором должны соблюдаться определенные условия. В первую очередь, осуществляется разогрев обеих нитей накала, после чего на них поступает высокое напряжение, порядка 600 вольт. Значение зажигающего напряжения находится в прямой зависимости с длиной стеклянной трубки. Чем короче лампа и ниже ее мощность, тем меньше будет требуемое пусковое напряжение.

На начальном этапе происходит выпрямление входного сетевого напряжения до постоянного значения в пределах 260-270 В и его последующее сглаживание при помощи электролитического конденсатора С1. Это хорошо видно на представленной схеме.

Затем начинается работа двухтактного полумостового преобразователя, состоящего из двух высоковольтных биполярных транзисторов со структурой п-р-п. Данные транзисторы выполняют функцию ключей, а вся схема осуществляет преобразование постоянного напряжения 260-270 В, в напряжение с высокой частотой до 38 кГц. За счет этот как раз и снижаются размеры и вес устройства.

Схема электронного балласта включает в себя трансформатор, выполняющий одновременно функции нагрузки и управления. Из его трех обмоток, две четырехвитковые являются управляющими, а одна двухвитковая – рабочей. Рабочая обмотка, включенная в цепь, создает необходимую нагрузку для преобразователя.

Изначально преобразователь запускается с помощью симметричного динистора, открывающегося в случае превышения напряжением порога срабатывания в местах подключения. Находясь в открытом состоянии, он посылает импульс на транзисторную базу, что приводит к запуску преобразователя. Конденсатор, находящийся в резонансной цепи и подключенный непосредственно к лампе, обеспечивает падение напряжения до уровня, при котором зажигается лампа.

Таким образом, с помощью максимального тока происходит разогрев обеих нитей накаливания, а непосредственное зажигание лампы происходит за счет высокого резонансного напряжения на конденсаторе. В зажженной лампе сопротивление уменьшается, однако сохраняющийся резонанс напряжений обеспечивает ее дальнейшее горение. Ограничение тока происходит за счет индуктивности дросселя. Несмотря на столь подробное описание, на зажигание люминесцентной лампы фактически требуется менее 1 секунды.

Как подключить

Внешний вид электронной пускорегулирующей аппаратуры напоминает блок с наружными клеммами, внутри которого установлена печатная плата. В зависимости от типа этой платы, подключается и определенное количество ламп дневного света.

Сам процесс подключения достаточно простой и не требует каких-либо специальных знаний. Он состоит из нескольких этапов:

  • Первый и второй выходные коннекторы прибора подключаются к соответствующей контактной паре на приборе освещения.
  • Далее на вход подается питающее напряжение.

Если же требуется выполнить соединение по отдельной схеме, следует помнить, что дроссель должен быть включен в разрыв питающего провода. Параллельно с ним, к электродам подключается стартер. Электронный балластник, коннекторы стартера и нити накаливания в обязательном порядке соединяются последовательно.

Зная, как подключить люминесцентный светильник, значительно легче провести проверку его схемы в случае какой-либо неисправности. Если нити накаливания едва заметно светятся в темноте, то вполне вероятна неисправность электронного балласта, в том числе и пробой конденсатора.

Для проверки нужно демонтировать стеклянную трубку и соединить нити накаливания с обычной лампочкой на 220 вольт малой мощности. При исправной аппаратуре она должна загореться, в противном случае придется последовательно выявлять детали, вышедшие из строя.

Преимущества электронной пускорегулирующей аппаратуры

Рассмотрев работу электронного балласта для люминесцентных ламп, и сравнив его с электромагнитными устройствами, можно с уверенностью отметить явные преимущества данных схем:

  • Более продолжительные сроки эксплуатации ламп дневного света, достигающие 35 тысяч часов за счет так называемого мягкого пуска. Тут отсутствует эффект выпрямления, импульсы перенапряжения, а сама лампа не перезагружается при повышенном сетевом напряжении. Нагрузка на лампу никогда не превышает ее номинальной мощности, независимо от сроков эксплуатации и износа.
  • Стабильный световой поток в течение всего периода работы.
  • Возможность работы в широком диапазоне входных напряжений, в пределах 160-264 В. При этом величина суммарного потребляемого тока на линии не превысит установленного значения даже при самом низком рабочем напряжении.
  • Энергопотребление снижается до 30%. Это происходит за счет более высокого КПД, достигающего 98% в зависимости от мощности того или иного устройства. Кроме того, существует возможность ограничения номинальной мощности ламп до 20% с сохранением нормативного уровня освещенности.
  • Полностью отсутствует пусковой реактивный ток за счет особенностей конструкции ЭПРА. В лампах дневного света используется только активная мощность тока, поступающего из сети.
  • Сохранение работоспособности светильника в случае неисправности или отсутствии одной из ламп в течение неограниченного времени. Это стало возможным благодаря зажигающему устройству, интегрированному в схему.
  • Улучшенное качество света, без мерцаний и колебаний яркости вследствие перепадов сетевого напряжения.

electric-220.ru

Электронный балласт для светодиодной лампы

Статья в стадии написания…

См. также:  Эффективное использование светодиодов. Советы конструктору.

Статья-обзор комплектующих и схемотехнических решений светодиодных электронных балластов — устройств для питания светодиодных ламп от сети переменного тока.

В последние годы, в связи с небывалым прогрессом в области технологии белых светодиодов, значительно усилился интерес потребителей к источникам светодиодного освещения как наиболее экономичному решению в области бытового и общественного освещения. Производители светодиодов предлагают на рынок всё более совершенные, с высоким качеством передачи цвета, мощные и экономичные твердотельные излучатели. Однако, почти никто не использует светодиоды отдельно, светодиодный источник света содержит оптику (отражатели, защитные стекла) и систему питания, от качества которых в значительной мере зависит качество и экономичность готового светильника, осветительного устройства. В этой статье рассмотрим существующие предложения производителей комплектующих по светодиодным драйверам — микросхем для устройств питания светодиодных ламп.

Единичный светодиод в большинстве случаев, является маломощным и низковольтным устройством. Хотя некоторые производители предлагают готовые светодиодные модули, рассчитанные на высокое напряжение (например, ParagonLED, различные CoB модули), основное количество светодиодных решений основано на светодиодах мощностью 1-3 Вт часто 0,5 Вт и менее. В общем то все модули высокого напряжения состоят из отдельных маломощных светодиодов или светодиодных чипов, расположенных в корпусе того или иного типа. Некоторые светильники содержат лишь один светодиод, другие имеют цепочку светодиодов, соединённых последовательно, либо содержат несколько таких цепочек в параллельном включении. Соответственно, устройства питания таких устройств должны удовлетворять этому разнообразию по току и напряжению.

Ограничение задачи

Светодиодные устройства имеют отчетливую тенденцию к удешевлению. Следовательно перспективное устройство питания должно иметь невысокую стоимость, при этом хорошо справляться с основной задачей — обеспечивать стабильный ток питания и обладать максимально высокой эффективностью. В последнее время, начали широко использоваться импульсные стабилизаторы тока без гальванической развязки с питанием непосредственно от сети переменного тока. Такие устройства обладают высокой эффективностью, малыми размерами и малым количеством компонентов на плате, хорошо выполняют основные функции и, в случае использования в закрытых конструкциях светильников, вполне безопасны. Основное применение — источники питания, встроенные в сменные лампы, в потолочные светильники, в уличные системы освещения.

Полностью универсальное устройство питания, если и можно создать, то оно будет недешёвым и, возможно немаленьким. В нашем случае, при питании от сети переменного тока, входное напряжение питания определяется уровнем выпрямленного сетевого напряжения. Поскольку, мостовая схема выпрямления, плюс сглаживающий конденсатор, дают существенный уровень пульсаций, для обеспечения непрерывного питания светодиодов и отсутствия мерцания, необходимо ограничить максимальное напряжение на светодиодной цепочке. Так, при использовании недорогого фильтрующего конденсатора в 10-20 мкФ и уровне потребления до 30 Вт, входное напряжение может проваливаться до 120-150 Вольт. Следовательно, цепочка светодиодов должна иметь общее напряжение не более 110 Вольт. Для обеспечения хорошей эффективности устройства, в схемах без использования трансформатора, выходное напряжение не должно отличаться от входного более, чем в 5-10 раз. Снижение выходного напряжения увеличивает потери в ключевом элементе. При мощности светильника в 5 и более Ватт, ток выходного ключа не должен превышать 1-2 ампера, иначе существенно увеличивается стоимость изделия.

Итак, рассмотрим устройство питания светодиодного светильника, который удовлетворяет следующим условиям:

  • Входное напряжение 220 Вольт переменного тока, мостовая схема выпрямления.
  • Выходное напряжение от 30 до 110 Вольт, одна или несколько цепочек светодиодов, CoB модуль.
  • Выходной ток до 500 мА.
  • Отсутствие гальванической развязки, трансформатора, для питания светильника в электрически безопасном корпусе.
  • Отсутствие систем теплоотвода, радиаторов, вентиляторов. Рассеяние тепла за счет платы и компонентов.
  • Минимальное количество и стоимость компонентов.

Обзор существующей комплектации

Если внимательно посмотреть существующие схематические решения, наиболее простое устройство питания имеет мостовой выпрямитель на входе, ключевой элемент с реактором — дросселем и цепочку измерения тока. Для такого типа устройств промышленность выпускает управляющие микросхемы и микросхемы с встроенным ключом. Вот что нашлось.

International Rectifier LEDrivIR:

  • IRS25411 — Синхронный импульсный стабилизатор с внешним ключом (не рекомендован для новых разработок).
  • IRS2980 — Инвертирующий гистерезисный импульсный стабилизатор с внешним ключом (не рекомендован для новых разработок).

Эти две микросхемы имеют корпус SOIC-8 и, в комплекте с внешним ключом, позволяют создать компактную и недорогую схему драйвера. Наиболее простая схема получается при использовании IRS2980. Для питания микросхемы используется встроенный линейный стабилизатор с максимальным напряжением до 400 Вольт, имеется встроенная схема диммирования. Драйвер работает на частоте 60 кГц, что позволяет использовать небольшой по размерам дроссель. Для работы требуется всего несколько внешних компонентов, максимальный выходной ток не превышает 350 мА. Эффективность готового устройства достигает 85%.

Производитель выпускает демо-плату и предоставляет референс дизайн. Это удобно при разработке нового устройства. Однако, опыт применения микросхемы показал её высокую чувствительность к помехам, в результате чего, микросхема выключается и повторное включение возможно только при перезапуске питания. Кроме того, отсутствие выходного фильтра даёт существенный уровень электромагнитного излучения, что ограничивает применение компактными экранированными устройствами. Видимо, всё это заставило производителя отказаться от дальнейшего выпуска этих микросхем.

Power Integrations:

  • LYTSwitch0 — импульсный стабилизатор с встроенным ключом.

LYTSwitch0 — это интегральный модуль с встроенным ключом в корпусе SOIC-8. Микросхема специально сконструирована для максимального снижения количества внешних компонентов, получает питание от проходящего через неё тока, содержит схему автоматического перезапуска, имеет ограничение выходной мощности и защиты от короткого замыкания, обрыва нагрузки и перегрева. Выходная мощность ограничена 7 Ваттами, выпускается несколько модификаций с различным выходным током. Эффективность устройства 91 — 92 %.

Taiwan Semiconductor предлагает несколько микросхем для реализации драйвера:

  • TS19451CY — импульсный стабилизатор с встроенным ключом в корпусе SOT89.
  • TS19450CS, TS19460CS — импульсный стабилизатор с внешним ключом в корпусе SOIC8
  • TS19452CS, TS19453CS — импульсный стабилизатор с встроенным ключом в корпусе SOIC8
  • TS19720CX6, TS19702CX6 — импульсный стабилизатор с внешним ключом и активным корректором мощности в корпусе SOT-26

Производитель предлагает целый набор микросхем для реализации устройств питания светодиодов различной мощности. Заслуживают внимания драйверы с встроенным ключом, а также стабилизаторы с внешним ключом и активным корректором мощности TS19720CX6 и TS19702CX6 в компактных корпусах SOT-26. Микросхема TS19702CX6 имеет также функцию диммирования. Устройства на базе этих микросхем, судя по анализу демо-плат, имеют эффективность более 90% и коэффициент мощности более 95% при выходной мощности до 20 Ватт.

Fairchild Semiconductor:

  • FL7701 — импульсный стабилизатор с внешним ключом и активным корректором мощности в корпусе SOIC8.
  • FLS0116 — импульсный стабилизатор с встроенным ключом и активным корректором мощности в корпусе SOIC8.

Особое внимание следует уделить микросхеме FLS0116, которая позволяет создать достаточно простое устройство с электронным корректором мощности. Эффективность готового сетевого драйвера составляет не более 80% при выходной мощности не более 3 Ватт. Блок питания на микросхеме FL7701 может достигать лучших параметров, но устройство получается посложнее — эффективность до 90%, коэффициент мощности более 90%, выходная мощность — более 30 Ватт.

Microchip Technology (Supertex Inc.):

  • HV9801A, HV9910, HV9861A — импульсный стабилизатор с внешним ключом в корпусе SOIC8.
  • HV9921, HV9922, HV9923 — импульсный стабилизатор с встроенным ключом в корпусе SOT89, TO92 с фиксированным выходным током.
  • HV9930 — импульсный гистерезисный стабилизатор с внешним ключом в корпусе SOIC8.
  • HV9925 — импульсный стабилизатор с встроенным ключом в корпусе SOIC8.
  • HV9931 — импульсный стабилизатор с внешним ключом и электронным корректором мощности в корпусе SOIC8.

Интегральные стабилизаторы с встроенным ключом HV9921, HV9922, HV9923, позволяют создать простое устройство с выходной мощностью до 1 Ватта, с фиксированным выходным током 20mA для HV9921, 50mA для HV9922 и 30mA для HV9923. Микросхемы выпускаются в экономичном корпусе (SOT89, TO92) и имеют минимальное количество внешних компонентов. Эффективность устройства на базе этой микросхемы не превышает 80 %.

Заслуживает внимания микросхема HV9931, которая позволяет создать устройство с высоким коэффициентом мощности до 98 % и эффективностью до 83%. Выходная мощность определяется используемым внешним ключом и, согласно примерам использования, не превышает 15 Ватт.

В новой модификации микросхемы HV9910C добавлена защита от перегрева, что важно в высоковольтных приложениях, поскольку даже небольшой ток собственного потребления приводит к значительному тепловыделению встроенного линейного стабилизатора питания.

On Semiconductor:

  • NCL30100 — импульсный стабилизатор с внешним ключом в миниатюрном корпусе SOT-23.
  • NCL30105, NCL30002 — импульсный стабилизатор с внешним ключом в корпусе SOIC8.
  • LV5026MC — импульсный стабилизатор с внешним ключом в корпусе SOIC10.
  • LV5011MD — импульсный стабилизатор с встроенным ключом в корпусе SOIC10.
  • Серия линейных стабилизаторов NSIxxx — линейные стабилизаторы на различный ток.

Компания выпускает большую номенклатуру микросхем — драйверов, но в основном для низковольтного питания. Для прямой работы от сети, производитель предлагает и другие микросхемы, но все они на мой взгляд, даже указанные в этом списке имеют существенно бóльшее количество внешних компонентов, чем заслуживают. При анализе предложений и референс-дизайнов возникло ощущение, что компания позиционирует себя в зоне низковольтных или более мощных и сложных решений и пока не предлагает хорошего решения для питания микросхем от проходящего тока или напрямую от сети.

Несмотря на то, что в этой статье не рассматриваются линейные и пассивные балласты, добавил линейный стабилизатор серии NSIxxx, например NSIC2020B, поскольку именно такое устройство больше всего подходит для определения простейшего электронного балласта — деталь имеет всего два вывода и для её работы ничего дополнительного не надо, достаточно включить её последовательно с цепочкой светодиодов.

NXP Semiconductor:

  • SSL5301T, SSL5231T — импульсный стабилизатор с внешним ключом в корпусе SOIC8 с диммированием.

Широко известный поставщик комплектующих, для источников питания в том числе, также не предлагает простых решений для светодиодных сетевых стабилизаторов тока. Указанные микросхемы выбраны как наиболее простые решения, которые однако всё равно требуют достаточно большого количества внешних компонентов. Анализ демо-плат устройств без использования трансформатора, показывает эффективность не более 85% при выходной мощности 5 Ватт и более с коэффициентом мощности более 85% и возможностью диммирования.

Texas Instruments:

  • TPS54200 — миниатюрный LED драйвер на 1.5A со встроенными синхронными ключами в корпусе SOT23-6
  • TPS92074 — импульсный стабилизатор с внешним ключом в корпусе SOIC8, SOT23-6.
  • LM3444 — импульсный стабилизатор с внешним ключом в корпусе SOIC10.
  • TPS92075 — импульсный стабилизатор с внешним ключом в корпусе SOIC8, SOT23-6 диммируемый, работающий с традиционными тиристорными диммерами.
  • LM3445 — импульсный стабилизатор с внешним клю

led-displays.ru

способы реализации электронного балласта для люминесцентных ламп, схемы устройства

Основным фактором нормальной работы люминесцентных ламп является вид электрического тока. Так как эти осветительные устройства работают от постоянного электротока, в их схему приходится устанавливать пускорегулирующий аппарат (ПРА) или балласт. Наиболее популярным является electronic ballast, обладающий рядом преимуществ перед электромагнитным агрегатом.

Основные разновидности

Сегодня существует два типа балласта – электромагнитный и электронный. Они отличаются принципом работы, поэтому стоит познакомиться с каждым из них.

Электромагнитный балласт

Этот вид реализации предполагает последовательное подключение дросселя к лампе. Также для работы электромагнитного ПРА требуется стартер, с помощью которого регулируется процесс зажигания светильника. Эта деталь представляет собой газоразрядную лампу, внутри колбы которой находятся биметаллические электроды.

Работает устройство следующим образом:

  1. Когда на стартер поступает напряжение, биметаллические электроды замыкаются от нагрева. Это приводит к увеличению силы тока, так как ограничивать его может лишь внутреннее сопротивление обмоток дросселя.
  2. С ростом показателя электротока начинают разогреваться электроды люминесцентной лампы.
  3. При остывании стартера размыкаются биметаллические электроды.
  4. В момент разрыва цепи стартером в катушке дросселя возникает импульс высокого напряжения, что и приводит к зажиганию осветительного прибора.

Когда люминесцентное устройство переходит в штатный режим работы, напряжение на нем и стартере оказывается на 50% меньше сетевого, а этого недостаточно для срабатывания второго элемента. В результате стартер переходит в отключенное состояние и перестает влиять на работу осветительного прибора.

Электромагнитный балласт отличается низкой стоимостью и простой конструкцией. Длительное время эти устройства активно использовались при изготовлении светильников, однако они имеют ряд недостатков:

  1. Для перехода люминесцентного устройства в рабочий режим требуется около 3 секунд.
  2. Осветительные приборы с электромагнитным балластом во время работы мерцают, что негативно влияет на органы зрения.
  3. Расход энергии у этих устройств значительно выше по сравнению с электронным балластом.
  4. Дроссель шумит во время работы.

Из-за этих недостатков сегодня электромагнитный балласт для ламп используется крайне редко.

Электронная реализация

Электронные устройства представляют собой преобразователи напряжения, с помощью которых обеспечивается питание люминесцентных ламп. Хотя создано много вариантов электронного балласта, в большинстве случаев используется единая блок-схема. При этом производители могут вносить в нее определенные изменения, например, добавить схему управления яркостью осветительного прибора.

Перевод люминесцентного светильника лампы в штатный режим работы с помощью электронного ПРА чаще всего осуществляется одним из двух способов:

  1. До момента подачи на катоды лампы зажигающего напряжения они предварительно нагреваются. Это позволяет избавиться от мерцания, а также увеличить КПД осветительного прибора.
  2. В конструкцию светильника установлен колебательный контур, который входит в резонанс до того, как в колбе лампы появится разряд.

При использовании второго способа схема электронного балласта реализована так, что нить накала лампочки является частью контура. Как только в газовой среде появляется разряд, изменяются параметры колебательного контура, после чего он выходит из резонанса. В результате напряжение снижается до рабочего.

Схема пускорегулирующего аппарата для ламп 36w.

Сегодня большое распространение получили компактные люминесцентные устройства с цоколем Е14 и Е27. В них балласт устанавливается непосредственно в конструкцию прибора. Пример схемы электронного балласта для люминесцентных ламп 18w приведен ниже.

Поиск неисправностей и ремонт

Если возникли проблемы с работой газоразрядных ламп, часто ремонт может быть проведен самостоятельно. Основной задачей в такой ситуации является определение источника проблемы – осветительный прибор либо балласт. Для проверки электронной схемы необходимо предварительно удалить линейную лампочку, замкнуть электроды и подключить обыкновенную лампу. Если она начала светиться, то проблема не в балласте.

Для поиска неисправности в люминесцентных осветительных устройствах сначала требуется поочередно прозвонить все элементы начиная с предохранителя. Если эта деталь оказалась рабочей, необходимо переходить к проверке конденсатора и диодов. Если все элементы пускорегулирующего аппарата оказались исправными, стоит проверить дроссель. Своевременный ремонт осветительного устройства позволит увеличить срок его эксплуатации.

220v.guru

Как проверить балласт люминесцентной лампы?

Продолжая тему ремонта светильников, многим будет полезно знать, не только как проверить люминесцентную лампу, но также и то, как проверить балласт люминесцентной лампы. Для быстрой проверки необходимо минимум приборов: контрольная лампочка, провод, пара скрепок, а также несколько минут свободного времени.

Как проверить балласт люминесцентной лампы?

Для начала необходимо представить схему электронного балласта люминесцентной лампы и внести в ее конструкцию контрольную лампочку (обозначенная красными линиями).




Схемы большинства светильников практически идентичны друг другу, отличаются лишь небольшими изменениями.

В общих словах, перед тем, как проверять электронный балласт для люминесцентных ламп, необходимо снять трубку, затем закоротить выводы нитей накала, а дальше между ними подключить обычную лампочку накала на 220 В небольшой мощности.

Внимание! Для избегания выходя из строя электронных компонентов балласта, не рекомендуется включать в сеть схему без нагрузки, т.е. без лампочки.

Для простых светильников очень удобно применять скрепку, она надежно замыкает контакты, идущие к трубке.

После всех манипуляций такую конструкцию можно включать в сеть. Рабочий балласт сможет подать напряжение на лампочку, и как видно из фото она будет светиться.

Если производился ремонт балласта своими руками, и необходимо проверять его работоспособность, лучше всего последовательно со светильником подключить еще одну лампочку. При допущенных в работе ошибках, или коротком замыкании эта лампочка будет светиться ярко, а компоненты схемы не выйдут из строя.

Вконтакте

Facebook

Twitter

Одноклассники

comments powered by HyperComments

diodnik.com

Балласт электронный: схема 2х36

Электронный балласт — это устройство, которое включает люминесцентные лампы. Модели между собой отличаются по номинальному напряжению, сопротивлению и перегрузке. Современные устройства способны работать в экономном режиме. Подключение балластов осуществляется через контроллеры. Как правило, они применяются электродного типа. Также схема подключения модели предполагает применение переходника.

Стандартная схема устройства

Схемы электронных балластов люминесцентных ламп включают в себя набор трансиверов. Контакты у моделей применяются коммутируемого типа. Обычное устройство состоит из конденсаторов емкостью до 25 пФ. Регуляторы в устройствах могут применяться операционного либо проводникового типа. Стабилизаторы в балластах устанавливаются через обкладку. Для поддержания рабочей частоты в устройстве имеется тетрод. Дроссель в данном случае крепится через выпрямитель.

Устройства низкого КПД

Балласт электронный (схема 2х36) низкого КПД подходит для ламп на 20 Вт. Стандартная схема включает в себя набор расширительных трансиверов. Пороговое напряжение у них составляет 200 В. Тиристор в устройствах данного типа используется на обкладке. С перегрузками борется компаратор. У многих моделей используется преобразователь, который работает при частоте 35 Гц. С целью повышения напряжения применяется тетрод. Дополнительно используются переходники для подключения балластов.

Устройства высокого КПД

Электронный балласт (схема подключения показана ниже) имеет один транзистор с выходом на обкладку. Пороговое напряжение элемента равняется 230 В. Для перегрузок используется компаратор, который работает на низких частотах. Данные устройства хорошо подходят для ламп мощностью до 25 Вт. Стабилизаторы довольно часто применяются с переменными транзисторами.

Во многих схемах используются преобразователи, и рабочая частота у них равняется 40 Гц. Однако она может повышаться при возрастании перегрузок. Также стоит отметить, что у балластов используются динисторы для выпрямления напряжения. Регуляторы часто устанавливаются за трансиверами. Операционные налоги выдают частоту не более 30 Гц.

Устройство на 15 Вт

Балласт электронный (схема 2х36) для ламп на 15 Вт собирается с интегральными трансиверами. Тиристоры в данном случае крепятся через дроссель. Также стоит отметить, что есть модификации на открытых переходниках. Они выделяются высокой проводимостью, но работают при низкой частоте. Конденсаторы используются только с компараторами. Номинальное напряжение при работе доходит до 200 В. Изоляторы используются только в начале цепи. Стабилизаторы применятся с переменным регулятором. Проводимость элемента составляет не менее 5 мк.

Модель на 20 Вт

Электрическая схема электронного балласта для ламп на 20 Вт подразумевает применение расширительного трансивера. Транзисторы стандартно используются разной емкости. В начале цепи они устанавливаются на 3 пФ. У многих моделей показатель проводимости доходит до 70 мк. При этом коэффициент чувствительности сильно не снижается. Конденсаторы в цепи используются с открытым регулятором. Понижение рабочей частоты осуществляется через компаратор. При этом выпрямление тока происходит благодаря работе преобразователя.

Если рассматривать схемы на фазовых трансиверах, то там имеется четыре конденсатора. Емкость у них стартует от 40 пФ. Рабочая частота балласта поддерживается на уровне 50 Гц. Триоды для этого используются на операционных регуляторах. Для понижения коэффициента чувствительности можно встретить различные фильтры. Выпрямители довольно часто используются на подкладках и устанавливаются за дросселем. Проводимость балласта в первую очередь зависит от порогового напряжения. Также учитывается тип регулятора.

Схема балласта на 36 Вт

Балласт электронный (схема 2х36) для ламп на 36 Вт имеет расширительный трансивер. Подключение устройства происходит через переходник. Если говорить про показатели балластов, то номинальное напряжение равняется 200 Вт. Изоляторы для устройств подходят низкой проводимости.

Также схема электронного балласта 36W включает в себя конденсаторы емкостью от 4 пФ. Тиристоры довольно часто устанавливаются за фильтрами. Для управления рабочей частотой имеются регуляторы. У многих моделей используется два выпрямителя. Рабочая частота у балластов данного типа максимум равняется 55 Гц. При этом перегрузка может сильно возрастать.

Балласт Т8

Электронный балласт Т8 (схема показана ниже) имеет два транзистора с низкой проводимостью. У моделей используются только контактные тиристоры. Конденсаторы в начале цепи имеются большой емкости. Также стоит отметить, что балласты производятся на контакторных стабилизаторах. У многих моделей поддерживается высокое напряжение. Коэффициент тепловых потерь составляет около 65 %. Компаратор устанавливается с частотой 30 Гц и проводимостью 4 мк. Триод для него подбирается с обкладкой и изолятором. Включение устройства осуществляется через переходник.

Использование транзисторов MJE13003A

Балласт электронный (схема 2х36) с транзисторами MJE13003A включает в себя только один преобразователь, который находится за дросселем. У моделей используется контактор переменного типа. Рабочая частота у балластов составляет 40 Гц. При этом пороговое напряжение при перегрузках равняется 230 В. Триод в устройствах применяется полюсного типа. У многих моделей имеется три выпрямителя с проводимостью от 5 мк. Недостатком устройства с транзитами MJE13003A можно считать высокие тепловые потери.

Использование транзисторов N13003A

Балласты с данными транзисторами ценятся за хорошую проводимость. У них малый коэффициент тепловых потерь. Стандартная схема устройства включает проводной преобразователь. Дроссель в данном случае используется с обкладкой. У многих моделей низкая проводимость, но рабочая частота равняется 30 Гц. Компараторы для модификаций подбираются на волновом конденсаторе. Регуляторы подходят только операционного типа. Всего в устройстве имеется два реле, а контакторы устанавливаются за дросселем.

Использование транзисторов КТ8170А1

Балласт на транзисторе КТ8170А1 состоит из двух трансиверов. У моделей имеется три фильтра для импульсных помех. За включение трансивера отвечает выпрямитель, который работает при частоте 45 Гц. У моделей используются преобразователи только переменного типа. Они работают при пороговом напряжении 200 В. Данные устройства замечательно подходят для ламп на 15 Вт. Триоды в контроллерах используются выходного типа. Показатель перегрузки может меняться, и это в первую очередь связано с пропускной способностью реле. Также надо помнить о емкости конденсаторов. Если рассматривать проводные модели, то вышеуказанный параметр у элементов не должен превышать 70 пФ.

Использование транзисторов КТ872А

Принципиальная схема электронного балласта на транзисторах КТ872А предполагает использование только переменных преобразователей. Пропускная способность составляет около 5 мк, но рабочая частота может меняться. Трансивер для балласта подбирается с расширителем. У многих моделей используется несколько конденсаторов разной емкости. В начале цепи применяются элементы с обкладками. Также стоит отметить, что триод разрешается устанавливать перед дросселем. Проводимость в таком случае составит 6 мк, а рабочая частота не будет выше 20 Гц. При напряжении 200 В перегрузка у балласта составит около 2 А. Для решения проблем с пониженной чувствительностью используются стабилизаторы на расширителях.

Применение однополюсных динисторов

Электронный балласт (2х36 схема) с однополюсными динисторами способен работать при перегрузке свыше 4 А. Недостатком таких устройств является высокий коэффициент тепловых потерь. Схема модификации включает в себя два трансивера низкой проводимости. У моделей рабочая частота составляет около 40 Гц. Кондукторы крепятся за дросселем, а реле устанавливается только с фильтром. Также стоит отметить, что у балластов имеется проводниковый транзистор.

Конденсатор используется низкой и высокой емкости. В начале цепи применяются элементы на 4 пФ. Показатель сопротивления на этом участке составляет около 50 Ом. Также надо обратить внимание на то, что изоляторы используются только с фильтрами. Пороговое напряжение у балластов при включении равняется примерно 230 В. Таким образом, модели можно использовать для ламп разной мощности.

Схема с двухполюсным динистором

Двухполюсные динисторы в первую очередь обеспечивают высокую проводимость у элементов. Электронный балласт (2х36 схема) производится с компонентами на коммутаторах. При этом регуляторы используются операционного типа. Стандартная схема устройства включает в себя не только тиристор, но и набор конденсаторов. Трансивер при этом используется емкостного типа, и у него высокая проводимость. Рабочая частота элемента составляет 55 Гц.

Основной проблемой устройств является низкая чувствительность при больших перегрузках. Также стоит отметить, что триоды способны работать только при повышенной частоте. Таким образом, лампы часто мигают, а вызвано это перегревом конденсаторов. Чтобы решить эту проблему, на балласты устанавливаются фильтры. Однако они не всегда способны справиться с перегрузками. В данном случае стоит учитывать амплитуду скачков в сети.

fb.ru

Схема электронного балласта для люминесцентной лампы. Принцип работы люминесцентных ламп

Экономные люминесцентные лампы способны работать только с электронными балластами. Предназначены данные устройства для выпрямления тока. Информации про электронный балласт (схема, ремонт и подключение) имеется очень много. Однако в первую очередь важно изучить устройство прибора.

Стандартная модель включает в себя трансформатор, динистор и транзистор. Довольно часто для защиты системы устанавливается предохранитель. Для подключения ламп предусмотрены специальные каналы. Также в устройстве имеются выходы, на которые подается электроэнергия.

Принцип работы

Принцип работы электронного балласта построен на преобразовании тока. Весь процесс начинается после подачи электроэнергии на канал. Далее в работу вступает дроссель. На этом этапе предельная частота устройства значительно снижается. При этом отрицательное сопротивление в цепи, наоборот, возрастает. Далее ток проходит через динистор и попадает на транзистор. В результате осуществляется преобразование тока. В конечном счете через трансформатор проходит напряжение нужного диапазона для люминесцентной лампы.

Модели диодного типа

Модели диодного типа на сегодняшний день считаются бюджетными. В данном случае трансформаторы используются лишь понижающего типа. Некоторые производители транзисторы устанавливают открытого типа. За счет этого процесс понижения частоты в цепи происходит не очень резко. Для стабилизации выходного напряжения применяются два конденсатора. Если рассматривать современные модели балластов, то там имеются динисторы операционного типа. Ранее их заменяли обычными преобразователями.

Двухконтактные модели

Данного типа схема электронного балласта для люминесцентной лампы отличается от прочих моделей тем, что в ней используется регулятор. Таким образом, пользователь способен настраивать параметр выходного напряжения. Трансформаторы используются в устройствах самые различные. Если рассматривать распространенные модели, то там установлены понижающие аналоги. Однако однофазовые конфигурации не уступают им по параметрам.

Всего конденсаторов в цепи у моделей предусмотрено два. Также двухконтактные схемы электронных балластов энергосберегающих ламп включают в себя дроссель, который устанавливается за выходными каналами. Транзисторы для моделей подходят лишь емкостные. На рынке они представлены как постоянного, так и переменного типа. Предохранители в устройствах используются редко. Однако если в цепи установлен тиристор для выпрямления тока, то без него не обойтись.

Схема балласта «Эпра» 18 Вт

Данная схема электронного балласта для люминесцентной лампы включает в себя понижающий трансформатор, а также две пары конденсаторов. Транзистор для модели предусмотрен лишь один. Отрицательное сопротивление он максимум способен выдерживать на уровне 33 Ом. Для устройств данного типа это считается нормальным. Также схема электронного балласта 18 Вт включает в себя дроссель, который расположен над трансформатором. Динистор для преобразования тока применяется модульного типа. Понижение тактовой частоты происходит при помощи тетрода. Находится данный элемент возле дросселя.

Балласт «Эпра» 2х18 Вт

Указанный электронный балласт 2х18 (схема показана ниже) состоит из выходных триодов, а также понижающего трансформатора. Если говорить про транзистор, то он в данном случае предусмотрен открытого типа. Всего конденсаторов в цепи имеется два. Еще у схемы электронных балластов «Эпра» 18 Вт есть дроссель, который располагается под трансформатором.

Конденсаторы при этом стандартно устанавливаются возле каналов. Процесс преобразования осуществляется через понижение тактовой частоты устройства. Стабильность напряжения в данном случае обеспечивается благодаря качественному динистору. Всего каналов у модели имеется два.

Схема балласта «Эпра» 4х18 Вт

Этот электронный балласт 4х18 (схема показана ниже) включает в себя конденсаторы инвертирующего типа. Емкость их составляет ровно 5 пФ. В данном случае параметр отрицательного сопротивления в электронных балластах доходит до 40 Ом. Также важно упомянуть о том, что дроссель в представленной конфигурации расположен под динистором. Транзистор у этой модели имеется один. Трансформатор для выпрямления тока применяется понижающего типа. Перегрузки он способен от сети выдерживать большие. Однако предохранитель в цепи все-таки установлен.

Балласт Navigator

Электронный балласт Navigator (схема показана ниже) включает в себя однопереходный транзистор. Также отличие этой модели кроется в наличии специального регулятора. С его помощью пользователь сможет настраивать параметр выходного напряжения. Если говорить про трансформатор, то он в цепи предусмотрен понижающего типа. Расположен он возле дросселя и фиксируется на пластине. Резистор для этой модели подобран емкостного типа.

В данном случае конденсаторов имеется два. Первый из них расположен возле трансформатора. Предельная емкость его равняется 5 пФ. Второй конденсатор в цепи располагается под транзистором. Емкость его равняется целых 7 пФ, а отрицательное сопротивление максимум он может выдерживать на уровне 40 Ом. Предохранитель в данных электронных балластах не используется.

Схема электронного балласта на транзисторах EN13003A

Схема электронного балласта для люминесцентной лампы с транзисторами EN13003A является на сегодняшний день довольно сильно распространенной. Выпускаются модели, как правило, без регуляторов и относятся к классу бюджетных приборов. Однако прослужить устройства способны долго, и предохранители у них имеются. Если говорить про трансформаторы, то они подходят только понижающего типа.

Устанавливается транзистор в цепи возле дросселя. Система защиты у таких моделей в основном используется стандартная. Контакты приборов защищены динисторами. Также схема электронного балласта на 13003 включает в себя конденсаторы, которые часто устанавливаются с емкостью около 5 пФ.

Использование понижающих трансформаторов

Схема электронного балласта для люминесцентной лампы с понижающими трансформаторами часто включает в себя регуляторы напряжения. В данном случае транзисторы используются, как правило, открытого типа. Многими специалистами они ценятся за высокую проводимость тока. Однако для нормальной работы устройства очень важен качественный динистор.

Для понижающих трансформаторов часто используют операционные аналоги. В первую очередь они ценятся за свою компактность, а для электронных балластов это является существенным преимуществом. Дополнительно они отличаются пониженной чувствительностью, и небольшие сбои в сети для них нестрашны.

Применение векторных транзисторов

Векторные транзисторы в электронных балластах применяются очень редко. Однако в современных моделях они все-таки встречаются. Если говорить про характеристики компонентов, то важно отметить, что отрицательное сопротивление они способы держать на уровне 40 Ом. Однако с перегрузками они справляются довольно плохо. В данном случае большую роль играет параметр выходного напряжения.

Если говорить про транзисторы, то для указанных трансформаторов они подходят больше ортогонального типа. Стоят они на рынке довольно дорого, однако расход электроэнергии у моделей крайне низок. В данном случае модели с векторными трансформаторами по компактности значительно проигрывают конкурентам с понижающими конфигурациями.

Схема с интегральным котроллером

Электронный балласт для люминесцентных ламп с интегральным контроллером довольно прост. В данном случае трансформаторы применяются понижающего типа. Непосредственно конденсаторов в системе имеется два. Для понижения предельной частоты у модели имеется динистор. Транзистор используется в электронном балласте операционного типа. Отрицательное сопротивление он способен выдерживать не менее 40 Ом. Выходные триоды в моделях данного типа практически никогда не используются. Однако предохранители устанавливаются, и при сбоях в сети они помогают сильно.

Применение низкочастотных триггеров

Триггер на электронный балласт для люминесцентных ламп устанавливается в том случае, когда отрицательное сопротивление в цепи превышает 60 Ом. Нагрузку с трансформатора он снимает очень хорошо. Предохранители при этом устанавливаются очень редко. Трансформаторы для моделей этого типа используются лишь векторные. В данном случае понижающие аналоги неспособны справляться с резкими скачками предельной тактовой частоты.

Непосредственно динисторы в моделях устанавливаются возле дросселей. По компактности электронные балласты довольно сильно отличаются. В данном случае многое зависит от используемых компонентов устройства. Если говорить про модели с регуляторами, то места они требуют очень много. Также они способны работать в электронных балластах только на два конденсатора.

Модели без регуляторов очень компактны, однако транзисторы для них могут использоваться лишь ортогонального типа. Отличаются они хорошей проводимостью. Однако следует учитывать, что данные электронные балласты на рынке покупателю обойдутся недешево.

fb.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *