Дроссель для светодиодных светильников: Немного об основах схемотехники светодиодных ламп / Хабр

Содержание

Немного об основах схемотехники светодиодных ламп / Хабр

Судя по комментариям, многих людей интересуют не только параметры светодиодных ламп, но и теория их внутреннего устройства. Потому я решил немного поговорить об основах схемотехнических решений, чаще всего применяемых в этой области.

Итак, ядром и главным компонентом светодиодной лампочки является светодиод. С точки зрения схемотехники светоизлучающие диоды ничем не отличаются от любых других, разве только тем, что в смысле применения их как собственно диодов они обладают ужасными параметрами – очень маленьким допустимым обратным напряжением, относительно большой емкостью перехода, огромным рабочим падением напряжения (порядка 3.5 В для белых светодиодов – например, для выпрямительного диода это был бы кошмар) и т.д.

Однако мы понимаем, что главная ценность светодиодов для человечества состоит в том, что они светятся, причем порой достаточно ярко. Чтобы светодиод светился долго и счастливо, ему необходимо два условия: стабильный ток через него и хороший теплоотвод от него.

Качество теплоотвода обеспечивается различными конструкционными методами, потому сейчас мы не будем останавливаться на этом вопросе. Поговорим о том, зачем и как современное человечество достигает первой цели – стабильного тока.

К слову, о белых светодиодахПонятное дело, что для освещения более всего интересны белые светодиоды. Делаются они на основе кристалла, излучающего синий свет, залитого люминофором, переизлучающим часть энергии в желто-зеленой области. На заглавной картинке хорошо видно, что токоведущие проволочки уходят в нечто желтое — это и есть люминофор; кристалл расположен под ним. На типичном спектре белого светодиода хорошо виден синий пик:


Спектры светодиодов с разными цветовыми температурами: 5000K (синий), 3700K (зеленый), 2600K (красный). Подробнее тут.

Мы уже разобрались, что в схемотехническом смысле светодиод отличается от любого другого диода только значениями параметров. Здесь надо сказать, что прибор это принципиально нелинейный; то есть, знакомому со школы закону Ома он совершенно не подчиняется.

Зависимость тока от приложенного напряжения на таких устройствах описывается т.н. вольт-амперной характеристикой (ВАХ), причем для диода она носит экспоненциальный характер. Из этого следует, что самое незначительное изменение приложенного напряжения приводит к огромному изменению тока, но и это еще не все – при изменении температуры (а также старении) ВАХ смещается. Кроме этого, положение ВАХ слегка разное для разных диодов. Оговорю отдельно – не только для каждого типа, но для каждого экземпляра, даже из одной партии. По этой причине распределение тока через диоды, включенные параллельно, обязательно будет неравномерным, что не может хорошо сказаться на долговечности конструкции. При изготовлении матриц стараются либо использовать последовательное включение, что решает проблему в корне, либо выбирать диоды с примерно одинаковым прямым падением напряжения. Чтобы облегчить задачу, производители обычно указывают так называемый «бин» — код выборки по параметрам (по напряжению в том числе), в которую попадает конкретный экземпляр.


ВАХ белого светодиода.

Соответственно, чтобы все работало хорошо, светодиод необходимо подключать к устройству, которое вне зависимости от внешних факторов будет с высокой точностью автоматически подбирать такое напряжение, при котором в цепи протекает заданный ток (например, 350 мА для одноваттных светодиодов), причем контролировать процесс непрерывно. Вообще, такое устройство называется источником тока, но в случае светодиодов в наши дни модно употреблять заморское слово «драйвер». В целом, драйвером часто называют решения, главным образом предназначенные для работы в конкретном применении – например, «драйвер MOSFET» — микросхема, предназначенная для управления конкретно мощными полевыми транзисторами, «драйвер семисегментного индикатора» — решение для управления конкретно семисегментниками, и т.д. То есть, называя источник тока драйвером светодиодов, люди намекают, что этот источник тока по задумке предназначен именно для работы со светодиодами. Например, он может иметь специфичные функции – что-нибудь в духе наличия светового интерфейса DMX-512, определения обрыва и короткого замыкания на выходе (а обычный источник тока, вообще, должен без проблем работать и на короткое замыкание), и т.

п. Тем не менее, понятия часто путают, и, например, называют драйвером самый обычный адаптер (источник напряжения!) для светодиодных лент.

Кроме того, устройства, предназначенные для задания режима осветительного прибора, часто называют балластом.

Итак, источники тока. Самым простым источником тока может быть сопротивление, включенное последовательно со светодиодом. Так делают при малых мощностях (где-то до полуватта), например, в тех же светодиодных лентах. С увеличением мощности потери на резисторе становятся слишком велики, а требования к стабильности тока повышаются, и потому возникает необходимость в более продвинутых устройствах, поэтичный образ которых я нарисовал выше. Все они строятся по одинаковой идеологии – в них имеется регулирующий элемент, контролируемый обратной связью по току.

Стабилизаторы тока разделяются на два типа – линейные и импульсные. Линейные схемы – родственники резистора (сам резистор и его аналоги также относятся к этому классу). Особого выигрыша в КПД они обычно не дают, зато повышают качество стабилизации тока.

Импульсные схемы являют собой наилучшее решение, однако они сложнее и дороже.

Давайте теперь кратко пробежимся по тому, что в наши дни можно увидеть внутри светодиодных ламп или рядом с ними.

1. Конденсаторный балласт

Конденсаторный балласт являет собой развитие идеи насчет включения сопротивления последовательно со светодиодом. В принципе, светодиод можно подключить в розетку прямо так:

Встречновключенный диод необходим для того, чтобы не допустить пробоя светодиода в момент, когда сетевое напряжение сменит полярность – я уже упоминал, что светодиодов с допустимым обратным напряжением в сотни вольт не встречается. В принципе, вместо обратного диода можно поставить еще один светодиод.

Номинал резистора в схеме выше рассчитан для тока светодиода около 10 – 15 мА. Поскольку напряжение сети гораздо больше падения на диодах, последнее можно не учитывать и считать прямо по закону Ома: 220/20000 ~ 11 мА. Можно подставить пиковое значение (311 В) и убедиться, что даже в предельном случае ток диода не превысит 20 мА. Все выходит замечательно, кроме того, что на резисторе будет рассеиваться мощность около 2.5 Вт, а на светодиоде – около 40 мВт. Таким образом, КПД системы составляет порядка 1.5% (в случае одного светодиода будет еще меньше).

Идея рассматриваемого метода заключается в том, чтобы заменить резистор конденсатором, ведь известно, что в цепях переменного тока реактивные элементы обладают способностью ограничивать ток. Кстати, использовать дроссель тоже можно, более того, так делают в классических электромагнитных балластах для люминесцентных ламп.

Считая по формуле из учебника, легко получить, что в нашем случае требуется конденсатор емкостью 0.2 мкФ, либо катушка индуктивностью около 60 Гн. Здесь становится ясно, почему в подобных балластах светодиодных ламп никогда не встречаются дроссели – катушка такой индуктивности представляет собой серьезное и дорогое сооружение, а вот конденсатор на 0.2 мкФ добыть гораздо проще. Разумеется, он должен быть рассчитан на пиковое сетевое напряжение, причем лучше с запасом. На практике применяются конденсаторы с рабочим напряжением не менее 400 В. Немного дополнив схему, получаем то, что уже видели в предыдущей статье.

Лирическое отступление«Микрофарад» сокращется именно как «мкФ». Я останавливаюсь на этом потому, что достаточно часто вижу людей, пишущих в этом контексте «мФ», в то время как последнее — сокращение от «миллифарад», то есть 1000 мкФ. По-английски «микрофарад», опять же, пишется отнюдь не как «mkF», но, напротив, «uF». Это потому, что буква «u» напоминает букву «μ» с оторванным хвостиком.

Итак, 1 Ф/F = 1000 мФ/mF = 1000000 мкФ/uF/μF, и никак иначе!

Кроме того, «Фарад» — мужского рода, так как назван в честь великого физика-мужчины. Так что, «четыре микрофарада», но не «четыре микрофарады»!

Как я уже говорил, преимущество у такого балласта только одно – простота и дешевизна. Подобно балласту с резистором, здесь обеспечивается не слишком хорошая стабилизация тока, и, что еще хуже, присутствует значительная реактивная составляющая, что не особо хорошо для сети (особенно при заметных мощностях). Кроме того, при увеличении желаемого тока будет расти необходимая емкость конденсатора. Например, если мы хотим включить одноваттный светодиод, работающий при токе 350 мА, нам потребуется конденсатор емкостью около 5 мкФ, рассчитанный на напряжение 400 В. Это уже дороже, больше по габаритам и сложнее в конструкционном плане. С подавлением пульсаций здесь тоже все непросто. В целом можно сказать, что конденсаторный балласт простителен только для небольших ламп-маячков, не более того.

2. Бестрансформаторная понижающая топология

Это схемотехническое решение относится к семейству бестрансформаторных преобразователей, включающему в себя понижающую, повышающую и инвертирующую топологии. Кроме того, к бестрансформаторным преобразователям также относится SEPIC, преобразователь Чука и другая экзотика, вроде переключаемых конденсаторов. В принципе, драйвер светодиодов можно построить на основе любой из них, однако на практике в этом качестве они встречаются гораздо реже (хотя повышающая топология применяется, например, во многих фонариках).

Один из вариантов драйвера на основе бестрансформаторной понижающей топологии приведен на рисунке ниже.

В живой природе такое включение можно наблюдать на примере ZXLD1474 или варианта включения ZXSC310 (которая в исходной схеме включения, кстати, как раз повышающий преобразователь).

Здесь светодиод включается последовательно с катушкой. Схема управления отслеживает ток с помошью измерительного резистора R1 и управляет ключом T1. Если ток через светодиод падает ниже заданного минимума, транзистор открывается, и катушка с включенным последовательно с ней светодиодом оказывается подключенной к источнику питания. Ток в катушке начинает линейно нарастать (красный участок на графике), диод D1 в это время заперт. Как только схема управления регистрирует достижение током заданного максимума, ключ закрывается. В соответствии с первым законом коммутации катушка стремится поддержать ток в цепи за счет энергии, накопленной в магнитном поле. В этот момент ток протекает через диод D1. Энергия поля катушки расходуется, сила тока линейно убывает (зеленый участок на графике). Когда ток падает ниже заданного минимума, схема управления регистрирует это и снова открывает транзистор, подкачивая энергию в систему – процесс повторяется. Таким образом, ток поддерживается в заданных пределах.

Отличительная особенность понижающей топологии – возможность сделать пульсации светового потока сколь угодно малыми, поскольку в таком включении ток через светодиод никогда не прерывается. Путь приближения к идеалу лежит через увеличение индуктивности и повышение частоты коммутации (сегодня существуют преобразователи с рабочими частотами до нескольких мегагерц).

На основе такой топологии был сделан драйвер лампы Gauss, рассмотренной в предыдущей статье.

Недостатком метода является отсутствие гальванической развязки – когда транзистор открыт, схема оказывается напрямую соединенной с источником напряжения, в случае сетевых светодиодных ламп – с сетью, что может быть небезопасно.

3. Обратноходовый преобразователь

Несмотря на то, что обратноходовый преобразователь содержит нечто, похожее на трансформатор, в данном случае эту деталь правильнее называть двухобмоточным дросселем, поскольку ток никогда не течет через обе обмотки одновременно. В действительности по принципу действия обратноходовый преобразователь похож на бестрансформаторные топологии. Когда T1 открыт, ток в первичной обмотке нарастает, энергия в запасается в магнитном поле; при этом полярность включения вторичной обмотки сознательно подбирается такой, чтобы диод D3 на этом этапе был закрыт и тока на вторичной стороне не текло. Ток нагрузки в этот момент поддерживает конденсатор С1. Когда T1 закрывается, полярность напряжения на вторичной обмотке становится обратной (поскольку производная тока в первичной обмотке меняет знак), D3 открывается и накопленная энергия передается на вторичную сторону. В смысле стабилизации тока все то же самое – схема управления анализирует падение напряжения на резисторе R1 и подстраивает временные параметры так, чтобы ток через светодиоды оставался постоянным. Чаще всего обратноходовый преобразователь применяется при мощностях не более 50 Вт; далее он перестает быть целесообразным из-за возрастающих потерь и необходимых габаритов трансформатора-дросселя.

Надо сказать, что существуют варианты обратноходовых драйверов без оптоизолятора (например). Они полагаются на тот факт, что токи первичной и вторичной обмоток связаны, и при определенных оговорках можно ограничиться анализом тока первичной обмотки (или, чаще, отдельной вспомогательной обмотки) – это позволяет сэкономить на деталях и, соответственно, удешевить решение.

Обратноходовый преобразователь хорош тем, что он, во-первых, обеспечивает изоляцию вторичной части от сети (выше безопасность), а, во-вторых, позволяет относительно легко и дешево изготавливать лампы, совместимые со стандартными диммерами для ламп накаливания, а также устраивать коррекцию коэффициента мощности.

Лирическое отступлениеОбратноходовый преобразователь называется так потому, что изначально подобный метод применялся для получения высокого напряжения в телевизорах на основе электронно-лучевых трубок. Источник высокого напряжения был схемотехнически объединен со схемой горизонтальной развертки, и импульс высокого напряжения получался во время обратного хода электронного луча.

Немного о пульсациях

Как уже было упомянуто, импульсные источники работают на достаточно высоких частотах (на практике – от 30 кГц, чаще около 100 кГц). Потому ясно, что сам по себе исправный драйвер не может быть источником большого коэффициента пульсаций – прежде всего потому, что на частотах выше 300 Гц этот параметр просто не нормируется, ну и, кроме того, высокочастотные пульсации в любом случае достаточно легко отфильтровать. Проблема заключается в сетевом напряжении.

Дело в том, что, разумеется, все перечисленные выше схемы (кроме схемы с гасящим конденсатором) работают от постоянного напряжения. Потому на входе любого электронного балласта прежде всего стоит выпрямитель и накопительный конденсатор. Предназначением последнего является питать балласт в те моменты, когда сетевое напряжение уходит ниже порога работы схемы. И здесь, увы, необходим компромисс – высоковольтные электролитические конденсаторы большой емкости, во-первых, стоят денег, а, во-вторых, занимают драгоценное место в корпусе лампы. Здесь же коренится причина проблем с коэффициентом мощности. Описанная схема с выпрямителем имеет неравномерное потребление тока. Это приводит к возникновению высших гармоник оного, что и является причиной ухудшения интересующего нас параметра. Причем чем лучше мы будем пытаться отфильтровать напряжение на входе балласта, тем более низкий коэффициент мощности мы получим, если не предпринимать отдельных усилий. Этим объясняется тот факт, что почти все лампы с низким коэффициентом пульсаций, которые мы видели, показывают очень посредственный коэффициент мощности, и наоборот (разумеется, введение активного корректора коэффициента мощности скажется на цене, потому на нем пока что предпочитают экономить).

Пожалуй это все, что в первом приближении можно сказать на тему электроники светодиодных ламп. Надеюсь, что этой статьей я в какой-то мере ответил на все вопросы схемотехнического толка, которые были заданы мне в комментариях и личных сообщениях.

Простой драйвер светодиода от сети 220В

Для питания светодиоду требуется источник постоянного напряжения и устройство стабилизации тока – драйвер. А если требуется (или очень хочется) подключить светодиод к сети 220В? И светодиод, при этом, мощный? Простым резистором и диодом здесь не обойтись. Самый правильный, вернее, единственно правильный способ – использовать специализированный драйвер. Его можно даже самому собрать (читайте в статье «Схема драйвера для светодиодов от сети 220В»).

Впрочем, есть и менее правильные, но, в целом, рабочие варианты. Один из них – собрать стабилизатор тока для светодиода из обычной энергосберегающей лампы.

Прежде чем начнем, помните: все, что вы делаете, вы делаете на свой страх и риск! Мы не даем никакой гарантии, что получившийся прибор заработает у вас правильно.

И не несем никакой ответственности за возможный ущерб или повреждения, которые, теоретически, могут случиться, если что-то пойдет не так, как задумано.

Предстоит работать с опасным для жизни напряжением в 220В и, скорее всего, без точной технической документации на конкретную переделываемую лампу. Если вы не знаете правил предосторожностей при работе с высоким напряжением, не сильно уверенно держите в руках паяльник, то лучше откажитесь от этой затеи – в конце концов, готовый драйвер от сети 220В стоит не так уж дорого.

Но, если интересно, то вперед!

Обычная энергосберегайка, она же компактная люминесцентная лампа или КЛЛ, содержит в себе электронное устройство, обеспечивающее поджег и горение газоразрядных ламп. КЛЛ имеют очень приличный срок службы – до 10 000 часов, но с течением времени яркость их свечения снижается, они начинаю сильнее греться, начинают мерцать или вообще перестают светить. При этом, чаще всего, из строя выходит именно «стеклянная часть» лампы, а ее электроника остается в полном порядке.

Поэтому, для экспериментов вполне подойдет старая лампа, которая перестала работать, а вы ее почему-то не выбросили. Если есть выбор, то лучше взять лампу помощнее. У меня для опытов оказался пациент, изображенный на картинке в начале статьи.

Запыленная и пожелтевшая лампа Maxus 26W верой и правдой отслужила несколько лет и была заменена, поскольку светить стала чуть ли не вдвое тусклее, чем нужно.

Аккуратно, по пояску открываем лампу.

Аккуратно открытая энергосберегающая лампа

Видим балласт, от которого два провода уходят к цоколю и четыре к стеклянным колбам. Откусываем их все и извлекаем электронную часть. Только внимательно – один из цокольных проводов к плате может идти через висящий резистор. Он тоже нужен, откусывайте за ним.

Получилась вот такая штучка.

Извлеченный балласт люминесцентной лампы — до переделки

Теперь от разрушения ламп переключимся к изучению их принципиальных схем. Импульсный преобразователь (электронный балласт) компактных люминесцентных ламп может различаться деталями для конкретных ламп, но принципиально его схема выглядит так:

Принципиальная схема балласта компактной люминесцентной лампы

Желтым цветом выделено то, что может значительно отличаться от лампы к лампе в зависимости от производителя и ее мощности. В любом случае, оставляем эту часть безо всяких изменений. То, что отмечено синим, останется бесхозным после удаления ламп (стеклянных колб) и может быть безболезненно удалено с платы, дабы не мешало.

Получится примерно так:

Импульсный преобразователь после удаления «лишних» деталей

После удаления «синей» части схемы, останется два проводника, повисших в воздухе. Их нужно соединить друг с другом – закоротить. Найдем что с чем соединять на конкретной плате.

Обратная сторона платы импульсного преобразователя

Как видно, нужно закоротить выход дросселя (он же вход в колбы) с выходом из колб по кратчайшему пути. Электроника вашей лампы, скорее всего, внешне будет отличаться от того, что вы видите на картинке. Важно понять сам принцип.

Следующий шаг – сделать из дросселя трансформатор, выпрямить получившийся ток и запитать им светодиоды.

Дело в том, что люминесцентные лампы питаются напряжением высокой частоты (до 50КГц). Соответственно, намотав на дроссель вторичную обмотку, можно получить на ней нужное напряжение.

Аккуратно выпаиваем дроссель. Дальше очень творческая задача – его разобрать. Дроссель состоит из катушки с проводом, в которую сверху и снизу вставляются две половинки Е-образного феррита. Разобрать дроссель – это значит разъединить спаявшиеся за года половинки тонкого и хрупкого феррита (которые еще иногда заливают лаком), снять их и получить свободный доступ к катушке с проводом. Удалите ленту, которая расположена по периметру феррита, после чего нежно и не прикладывая больших усилий, попробуйте его разъединить. Помогает нагревание – например, аккуратно паяльником по всему периметру феррита. У меня получилось, правда, далеко не сразу.

Побежденный и разобранный дроссель

На открывшуюся катушку поверх наматываем вторичную обмотку. По моим наблюдениям один оборот вторичной обмотки дает в ней около 0.8В напряжения. В моих планах было запитать две линейки одноваттных светодиодов по 10шт. Для этого мне нужно около 30В напряжения. Итоговый ток требуется небольшой – до 200-250мА, поскольку светодиоды ну очень китайские.

В моем случае получилось 40 витков эмальпровода диаметром 0.25мм. Наматывайте аккуратно, поскольку дроссель потом нужно будет собрать обратно, т.е. вернуть ферриты на место. Не забудьте в конце узкой полоской изоленты или скотча скрепить между собой половинки феррита. Впаиваем дроссель обратно. Получится как-то так.

Результат работы — готовый «драйвер» из балласта энергосберегайки

Подключаем входное сетевое напряжение. Взрывов, фейерверков нет? Чудесно! Теперь аккуратно меряем переменное напряжение на выходах вторичной обмотки. Получилось то, что нужно? Здорово! Если нет, отключаемся от сети и отматываем (чтобы уменьшить) или добавляем (чтобы увеличить) несколько витков в обмотке. Разбирать дроссель для этого не нужно – просто аккуратно продевайте провод между катушкой и ферритом.

У меня две линейки светодиодов. Подключить их можно двумя способами – параллельно – для этого нужно предварительно выпрямить ток. Или встречно – для этого выпрямлять ток не нужно. На схеме это выглядит так.

Параллельное подключение двух линеек светодиодов

Параллельное подключение. Зеленая область – вторичная обмотка, диодный мост и светодиоды. Синяя линия – перемычка. Диодный мост собирается из быстрых диодов. Я взял 4 диода HER307.

Встречное подключение выглядит так:

Встречное подключение двух линеек светодиодов

Оба варианта имеют право на жизнь, я выбрал параллельное подключение с выпрямлением.

После сбора схемы подключите светодиоды через амперметр. Подключите питание. Если сила тока такая, как необходимо – отлично, если нет, то убирая/добавляя витки вторичной обмотки дросселя уменьшите или увеличьте ток.

Результат работы — светодиоды подключены и ярко светят.

У меня получилось около 200мА на две линейки по 10 светодиодов. Маловато, но для настольного светильника хватит.

Очень непривычно видеть подключение светодиодов напрямую от источника тока. Но здесь стабилизация тока достигается за счет точной стабилизации напряжения. И, в данном случае, если что-то произойдет с одной из параллельных линеек светодиодов, ток в оставшихся линейках не изменится, в отличие от обычного подключения через драйвер.

Правильно собранная схема должна иметь серьезный запас по мощности – у меня рабочая мощность 6 из 26 Вт. Ничего (кроме светодиодов) не должно существенно нагреваться в процессе работы (только проверяйте после отключения от сети).

В итоге получился компактный и практически бесплатный «драйвер», который позволил мне подключить светодиоды к сети 220В. Осталось соорудить корпус и смонтировать настольный светодиодный светильник. Но это уже другая история и о ней читайте в статье «Светодиодный светильник своими руками».

Также, имеются готовые модели драйверов для светодиодов, без которых никак не обойтись, если будет нужно получить мощный и яркий свет.

Драйвер для светодиодов из энергосберегающей лампы.

Приобрел себе на пробу светодиоды 10 Вт 900лм теплого белого света на AliExpress. Цена в ноябре 2015года составляла 23 рубля за штуку. Заказ пришел в стандартном пакетике, проверил все исправные.

Для питания светодиодов в осветительных устройствах применяются специальные блоки — электронные драйверы, представляющие собой преобразователи стабилизирующие ток, а не напряжение на своём выходе. Но так как драйверы для них(заказывал тоже на AliExpreess) были еще в пути решил запитать от балласта от энергосберегающих ламп. У меня было несколько таких неисправных ламп. у которых сгорела нить накала в колбе. Как правило, у таких ламп преобразователь напряжения исправен, и его можно использовать в качестве импульсного блока питания или драйвера светодиода.
Разбираем люминисцентную лампу.

Для переделки я взял 20 Вт лампу, дроссель которой с лёгкостью может отдать в нагрузку 20 Вт. Для 10 Вт светодиода больше никаких переделок не требуется. Если планируется запитать более мощный светодиод, требуется взять преобразователь от более мощной лампы, либо установить дроссель с большим сердечником.
Установил перемычки в цепи розжига лампы.

На дроссель намотал 18 витков эмальпровода, подпаиваем выводы намотанной обмотки к диодному мосту, подаём на лампу сетевое напряжение и замеряем выходное напряжение. В моём случае блок выдал 9,7В. Подключил светодиод через амперметр, который показал проходящий через светодиод ток в 0,83А. У моего светодиода рабочий ток равен 900мА, но я уменьшил ток чтобы увеличить ресурс. Собрал диодный мост на плате навесным способом.

Схема переделки.

Светодиод установил на термопасту на металлический абажур старой настольной лампы.

Плату питания и диодный мост установил в корпус настольной лампы.

При работе около часа температура светодиода 40 градусов.

На глаз освещенность как от 100 ваттной лампы накаливания.

Эта светодиодная настольная лампа работает уже около месяца. Пока все нормально а дальше время покажет. В результате я получил бесплатный драйвер для светодиодов. Когда придут заводские драйвера сравню их работу с самоделкой.
Кому интересно можно посмотреть на видео.
www.youtube.com/watch?v=Glfcvr0iUYw

Электронный балласт для светодиодной лампы

Статья в стадии написания…

См. также:  Эффективное использование светодиодов. Советы конструктору.

Статья-обзор комплектующих и схемотехнических решений светодиодных электронных балластов — устройств для питания светодиодных ламп от сети переменного тока.

В последние годы, в связи с небывалым прогрессом в области технологии белых светодиодов, значительно усилился интерес потребителей к источникам светодиодного освещения как наиболее экономичному решению в области бытового и общественного освещения. Производители светодиодов предлагают на рынок всё более совершенные, с высоким качеством передачи цвета, мощные и экономичные твердотельные излучатели. Однако, почти никто не использует светодиоды отдельно, светодиодный источник света содержит оптику (отражатели, защитные стекла) и систему питания, от качества которых в значительной мере зависит качество и экономичность готового светильника, осветительного устройства. В этой статье рассмотрим существующие предложения производителей комплектующих по светодиодным драйверам — микросхем для устройств питания светодиодных ламп.

Единичный светодиод в большинстве случаев, является маломощным и низковольтным устройством. Хотя некоторые производители предлагают готовые светодиодные модули, рассчитанные на высокое напряжение (например, ParagonLED, различные CoB модули), основное количество светодиодных решений основано на светодиодах мощностью 1-3 Вт часто 0,5 Вт и менее. В общем то все модули высокого напряжения состоят из отдельных маломощных светодиодов или светодиодных чипов, расположенных в корпусе того или иного типа. Некоторые светильники содержат лишь один светодиод, другие имеют цепочку светодиодов, соединённых последовательно, либо содержат несколько таких цепочек в параллельном включении. Соответственно, устройства питания таких устройств должны удовлетворять этому разнообразию по току и напряжению.

Ограничение задачи

Светодиодные устройства имеют отчетливую тенденцию к удешевлению. Следовательно перспективное устройство питания должно иметь невысокую стоимость, при этом хорошо справляться с основной задачей — обеспечивать стабильный ток питания и обладать максимально высокой эффективностью. В последнее время, начали широко использоваться импульсные стабилизаторы тока без гальванической развязки с питанием непосредственно от сети переменного тока. Такие устройства обладают высокой эффективностью, малыми размерами и малым количеством компонентов на плате, хорошо выполняют основные функции и, в случае использования в закрытых конструкциях светильников, вполне безопасны. Основное применение — источники питания, встроенные в сменные лампы, в потолочные светильники, в уличные системы освещения.

Полностью универсальное устройство питания, если и можно создать, то оно будет недешёвым и, возможно немаленьким. В нашем случае, при питании от сети переменного тока, входное напряжение питания определяется уровнем выпрямленного сетевого напряжения. Поскольку, мостовая схема выпрямления, плюс сглаживающий конденсатор, дают существенный уровень пульсаций, для обеспечения непрерывного питания светодиодов и отсутствия мерцания, необходимо ограничить максимальное напряжение на светодиодной цепочке. Так, при использовании недорогого фильтрующего конденсатора в 10-20 мкФ и уровне потребления до 30 Вт, входное напряжение может проваливаться до 120-150 Вольт. Следовательно, цепочка светодиодов должна иметь общее напряжение не более 110 Вольт. Для обеспечения хорошей эффективности устройства, в схемах без использования трансформатора, выходное напряжение не должно отличаться от входного более, чем в 5-10 раз. Снижение выходного напряжения увеличивает потери в ключевом элементе. При мощности светильника в 5 и более Ватт, ток выходного ключа не должен превышать 1-2 ампера, иначе существенно увеличивается стоимость изделия.

Итак, рассмотрим устройство питания светодиодного светильника, который удовлетворяет следующим условиям:

  • Входное напряжение 220 Вольт переменного тока, мостовая схема выпрямления.
  • Выходное напряжение от 30 до 110 Вольт, одна или несколько цепочек светодиодов, CoB модуль.
  • Выходной ток до 500 мА.
  • Отсутствие гальванической развязки, трансформатора, для питания светильника в электрически безопасном корпусе.
  • Отсутствие систем теплоотвода, радиаторов, вентиляторов. Рассеяние тепла за счет платы и компонентов.
  • Минимальное количество и стоимость компонентов.

Обзор существующей комплектации

Если внимательно посмотреть существующие схематические решения, наиболее простое устройство питания имеет мостовой выпрямитель на входе, ключевой элемент с реактором — дросселем и цепочку измерения тока. Для такого типа устройств промышленность выпускает управляющие микросхемы и микросхемы с встроенным ключом. Вот что нашлось.

International Rectifier LEDrivIR:

  • IRS25411 — Синхронный импульсный стабилизатор с внешним ключом (не рекомендован для новых разработок).
  • IRS2980 — Инвертирующий гистерезисный импульсный стабилизатор с внешним ключом (не рекомендован для новых разработок).

Эти две микросхемы имеют корпус SOIC-8 и, в комплекте с внешним ключом, позволяют создать компактную и недорогую схему драйвера. Наиболее простая схема получается при использовании IRS2980. Для питания микросхемы используется встроенный линейный стабилизатор с максимальным напряжением до 400 Вольт, имеется встроенная схема диммирования. Драйвер работает на частоте 60 кГц, что позволяет использовать небольшой по размерам дроссель. Для работы требуется всего несколько внешних компонентов, максимальный выходной ток не превышает 350 мА. Эффективность готового устройства достигает 85%.

Производитель выпускает демо-плату и предоставляет референс дизайн. Это удобно при разработке нового устройства. Однако, опыт применения микросхемы показал её высокую чувствительность к помехам, в результате чего, микросхема выключается и повторное включение возможно только при перезапуске питания. Кроме того, отсутствие выходного фильтра даёт существенный уровень электромагнитного излучения, что ограничивает применение компактными экранированными устройствами. Видимо, всё это заставило производителя отказаться от дальнейшего выпуска этих микросхем.

Power Integrations:

  • LYTSwitch0 — импульсный стабилизатор с встроенным ключом.

LYTSwitch0 — это интегральный модуль с встроенным ключом в корпусе SOIC-8. Микросхема специально сконструирована для максимального снижения количества внешних компонентов, получает питание от проходящего через неё тока, содержит схему автоматического перезапуска, имеет ограничение выходной мощности и защиты от короткого замыкания, обрыва нагрузки и перегрева. Выходная мощность ограничена 7 Ваттами, выпускается несколько модификаций с различным выходным током. Эффективность устройства 91 — 92 %.

Taiwan Semiconductor предлагает несколько микросхем для реализации драйвера:

  • TS19451CY — импульсный стабилизатор с встроенным ключом в корпусе SOT89.
  • TS19450CS, TS19460CS — импульсный стабилизатор с внешним ключом в корпусе SOIC8
  • TS19452CS, TS19453CS — импульсный стабилизатор с встроенным ключом в корпусе SOIC8
  • TS19720CX6, TS19702CX6 — импульсный стабилизатор с внешним ключом и активным корректором мощности в корпусе SOT-26

Производитель предлагает целый набор микросхем для реализации устройств питания светодиодов различной мощности. Заслуживают внимания драйверы с встроенным ключом, а также стабилизаторы с внешним ключом и активным корректором мощности TS19720CX6 и TS19702CX6 в компактных корпусах SOT-26. Микросхема TS19702CX6 имеет также функцию диммирования. Устройства на базе этих микросхем, судя по анализу демо-плат, имеют эффективность более 90% и коэффициент мощности более 95% при выходной мощности до 20 Ватт.

Fairchild Semiconductor:

  • FL7701 — импульсный стабилизатор с внешним ключом и активным корректором мощности в корпусе SOIC8.
  • FLS0116 — импульсный стабилизатор с встроенным ключом и активным корректором мощности в корпусе SOIC8.

Особое внимание следует уделить микросхеме FLS0116, которая позволяет создать достаточно простое устройство с электронным корректором мощности. Эффективность готового сетевого драйвера составляет не более 80% при выходной мощности не более 3 Ватт. Блок питания на микросхеме FL7701 может достигать лучших параметров, но устройство получается посложнее — эффективность до 90%, коэффициент мощности более 90%, выходная мощность — более 30 Ватт.

Microchip Technology (Supertex Inc.):

  • HV9801A, HV9910, HV9861A — импульсный стабилизатор с внешним ключом в корпусе SOIC8.
  • HV9921, HV9922, HV9923 — импульсный стабилизатор с встроенным ключом в корпусе SOT89, TO92 с фиксированным выходным током.
  • HV9930 — импульсный гистерезисный стабилизатор с внешним ключом в корпусе SOIC8.
  • HV9925 — импульсный стабилизатор с встроенным ключом в корпусе SOIC8.
  • HV9931 — импульсный стабилизатор с внешним ключом и электронным корректором мощности в корпусе SOIC8.

Интегральные стабилизаторы с встроенным ключом HV9921, HV9922, HV9923, позволяют создать простое устройство с выходной мощностью до 1 Ватта, с фиксированным выходным током 20mA для HV9921, 50mA для HV9922 и 30mA для HV9923. Микросхемы выпускаются в экономичном корпусе (SOT89, TO92) и имеют минимальное количество внешних компонентов. Эффективность устройства на базе этой микросхемы не превышает 80 %.

Заслуживает внимания микросхема HV9931, которая позволяет создать устройство с высоким коэффициентом мощности до 98 % и эффективностью до 83%. Выходная мощность определяется используемым внешним ключом и, согласно примерам использования, не превышает 15 Ватт.

В новой модификации микросхемы HV9910C добавлена защита от перегрева, что важно в высоковольтных приложениях, поскольку даже небольшой ток собственного потребления приводит к значительному тепловыделению встроенного линейного стабилизатора питания.

On Semiconductor:

  • NCL30100 — импульсный стабилизатор с внешним ключом в миниатюрном корпусе SOT-23.
  • NCL30105, NCL30002 — импульсный стабилизатор с внешним ключом в корпусе SOIC8.
  • LV5026MC — импульсный стабилизатор с внешним ключом в корпусе SOIC10.
  • LV5011MD — импульсный стабилизатор с встроенным ключом в корпусе SOIC10.
  • Серия линейных стабилизаторов NSIxxx — линейные стабилизаторы на различный ток.

Компания выпускает большую номенклатуру микросхем — драйверов, но в основном для низковольтного питания. Для прямой работы от сети, производитель предлагает и другие микросхемы, но все они на мой взгляд, даже указанные в этом списке имеют существенно бóльшее количество внешних компонентов, чем заслуживают. При анализе предложений и референс-дизайнов возникло ощущение, что компания позиционирует себя в зоне низковольтных или более мощных и сложных решений и пока не предлагает хорошего решения для питания микросхем от проходящего тока или напрямую от сети.

Несмотря на то, что в этой статье не рассматриваются линейные и пассивные балласты, добавил линейный стабилизатор серии NSIxxx, например NSIC2020B, поскольку именно такое устройство больше всего подходит для определения простейшего электронного балласта — деталь имеет всего два вывода и для её работы ничего дополнительного не надо, достаточно включить её последовательно с цепочкой светодиодов.

NXP Semiconductor:

  • SSL5301T, SSL5231T — импульсный стабилизатор с внешним ключом в корпусе SOIC8 с диммированием.

Широко известный поставщик комплектующих, для источников питания в том числе, также не предлагает простых решений для светодиодных сетевых стабилизаторов тока. Указанные микросхемы выбраны как наиболее простые решения, которые однако всё равно требуют достаточно большого количества внешних компонентов. Анализ демо-плат устройств без использования трансформатора, показывает эффективность не более 85% при выходной мощности 5 Ватт и более с коэффициентом мощности более 85% и возможностью диммирования.

Texas Instruments:

  • TPS54200 — миниатюрный LED драйвер на 1.5A со встроенными синхронными ключами в корпусе SOT23-6
  • TPS92074 — импульсный стабилизатор с внешним ключом в корпусе SOIC8, SOT23-6.
  • LM3444 — импульсный стабилизатор с внешним ключом в корпусе SOIC10.
  • TPS92075 — импульсный стабилизатор с внешним ключом в корпусе SOIC8, SOT23-6 диммируемый, работающий с традиционными тиристорными диммерами.
  • LM3445 — импульсный стабилизатор с внешним ключом в корпусе SOIC10, работающий с традиционными тиристорными диммерами.
  • LM3448 — импульсный стабилизатор с встроенным ключом в корпусе SOIC16, работающий с традиционными тиристорными диммерами.

Хорошо зарекомендовавший себя поставщик электронных компонентов для высоко эффективных источников питания также предлагает большой набор решений для светодиодных драйверов. Однако даже выбранные микросхемы требуют бóльшего количества внешних элементов, чем хотелось бы. Большинство решений требует как минимум внешнего стабилизатора собственного питания. Но, несмотря на это, микросхемы вполне подходят для изготовления устройств более высокой мощности и высокой эффективности, чем простейшие электронные балласты конкурентов. Например, диммируемый блок питания лампы на 14 Ватт обладает эффективностью до 89% при коэффициенте мощности до 98%.

Новая разработка компании — TPS54200, миниатюрный LED драйвер на 1.5A со встроенными синхронными ключами в корпусе SOT23-6, позволяет создавать устройства с эффективностью до 95%.

Поскольку микросхема имеет встроенные ключи, схема включения очень проста и требует мимнимум внешних компонент. Стабилизатор поддерживает наалоговый и PWM димминг, имеет встроенную защиту от обрыва, КЗ и по температуре. Питание до 28 Вольт.

Diodes Incorporated:

  • PAM99700, AL9910, AP1694 — импульсный стабилизатор с внешним ключом в корпусе SOIC8.
  • AP1695 — импульсный стабилизатор с встроенным ключом в корпусе SOIC8.

Микросхема AP1695 имеет встроенный ключ, AP1694 — внешний, но обе требуют внешней схемы питания. Микросхемы PAM99700 и AL9910 позволяют создать устройство питания светодиодов с эффективностью более 90%, PAM99700 имеет существенно меньшее собственное потребление, следовательно бóльшую эффективность в высоковольтных приложениях.

IXYS Integrated Circuits Division (Clare)

  • CPC9909 — импульсный стабилизатор с внешним ключом в корпусе SOIC8.
  • MXHV9910 — импульсный стабилизатор с внешним ключом в корпусе SOIC8 с возможностью регулировки частоты.

Известный производитель силовой электроники, компания IXYS Integrated Circuits предлагает несколько решений для светодиодных драйверов средней мощности. Управляющая микросхема CPC9909, представляет собой основу понижающего преобразователя с высокой эффективностью. За счёт наличия теплоотводящей площадки на корпусе SOIC8, решены проблемы повышенного тепловыделения встроенного стабилизатора собственного питания, работающего вплоть до 550 Вольт. Кроме микросхем импульсных преобразователей, производитель предлагает целый набор линейных интегральных стабилизаторов тока различной мощности.

Назад к каталогу статей >>>

Электронный пускорегулирующий аппарат (ЭПРА), его применение для люминесцентных и светодиодных ламп

Включение газоразрядных ламп, в чисто которых входят всем известные люминесцентные лампы, имеет ряд особенностей. Для возникновения разряда между электродами в среде газа требуется импульс высокого напряжения между предварительно прогретыми электродами.

Во время работы ток разряда должен ограничиваться специальным балластом, функции которого выполняет дроссель – катушка с большой индуктивностью.

Пускорегулирующая аппаратура, разработанная для включения люминесцентных ламп имела множество существенных недостатков:

  • низкая надежность стартера из-за наличия контактной группы;
  • громоздкий тяжелый и шумный дроссель;
  • мерцание ламы с частотой питающей сети;
  • длительный процесс зажигания ламп;
  • затрудненный пуск при низкой температуре;
  • низкий КПД;
  • высокий уровень электромагнитных помех.

На смену устаревшим пусковым агрегатам были разработаны электронные устройства, которые не содержат механических контактов и тяжелого и габаритного дросселя.

Малые габариты современных электронных пускорегулирующих устройств (ЭПРА) дали толчок дальнейшему развитию и широкому распространению малогабаритных люминесцентных ламп, которые в народе прозвали «экономками».

Новое оборудование полностью свободно от перечисленных недостатков и, к тому же, увеличивает продолжительность работы источников света за счет плавного разогрева нитей накаливания.

Кроме того, ЭПРА имеет следующие достоинства:

  • отсутствуют механические контакты;
  • питание производится высокочастотным напряжением, что полностью исключает мерцание;
  • малые габариты и вес;
  • высокий КПД за счет введения цепей коррекции мощности;
  • минимум сетевых помех и практически полное отсутствие электромагнитных.

Работа лампы с электронным запуском включает несколько последовательных стадий:

  1. Разогрев нитей накаливания.
  2. Инициирование разряда в среде газа между электродами.
  3. Поддержание горения.

Все этапы включения полностью контролируются электронной схемой ЭПРА, которая состоит из следующих элементов:

Входной фильтр.
Не пропускает помехи от ЭПРА в сеть и наоборот.
Корректор мощности.
Устанавливается, в основном в дорогих и мощных пускателях.
Сглаживающий фильтр.
Исполняется в виде электролитического конденсатора большой емкости.

Также в состав устройства входят инверторная схема преобразования напряжения и малогабаритный дроссель.

В инверторе используются мощные высоковольтные транзисторные ключи, которые включены в мостовую схему с автогенерацией или управляются специальной микросхемой. В диагональ моста включен многообмоточный резонансный трансформатор, одна из обмоток которого включена последовательно с нитями накала и резонансным конденсатором.

При включении лампы напряжение обмотки трансформатора разогревает нити накала, а затем, за счет резонанса, происходит разряд конденсатора между электродами.

Межэлектродный разряд уменьшает сопротивление рабочей среды лампы, в результате чего резонансный конденсатор оказывается закороченным и резонанс пропадает. Оставшегося значения напряжения достаточно для нормального горения. Ток разряда ограничивается дросселем, включенным последовательно с электродами.

ЭПРА ДЛЯ ПИТАНИЯ ЛЮМИНЕСЦЕНТНЫХ ЛАМП

Первоначально конструкции ЭПРА разрабатывались для замены старых дроссельно-стартерных устройств для установки в классические светильники с люминесцентными лампами.

Для облегчения перехода на новую аппаратуру, ее габаритные размеры, как говорилось выше, делали схожими со старыми устройствами.

Такой подход позволял без изменения технологических линий по производству светильников устанавливать электронные пускатели.

Использование миниатюрных SMD компонентов и совершенствование схемотехники позволили создавать ЭПРА с минимальными габаритами.

Такие устройства помещаются в стандартный цоколь типоразмера Е27 или даже Е14, что привело к широкому распространению энергосберегающих люминесцентных ламп обладающих большим разнообразием:

  • форм;
  • мощностей;
  • цветов и оттенков свечения.

Основными характеристиками электронного пускателя для люминесцентных ламп является допустимая мощность светильника и количество одновременно подключаемых источников.

Некоторые типы имеют режим плавного пуска. При этом после нажатия клавиши включения освещения светильник загорается через время от одной до нескольких секунд.

В подобных устройствах за счет схемотехнических решений разряд резонансного конденсатора происходит только после полного прогрева нитей накаливания. Лампы, включаемые через такой пускатель меньше изнашиваются, поэтому срок их службы возрастает.

Некоторые модели дешевых пускорегулирующих аппаратов имеют низкое качество изготовления. Особенно это касается параметров электролитического конденсатора фильтра. Малая емкость приводит к заметным пульсациям света, а низкое граничное напряжение увеличивает вероятность выхода конденсатора из строя.

Очень опасны модели, в которых мощные ключевые транзисторы крепятся радиатором к металлическому корпусу устройства через пластиковую изоляцию. Через некоторое время работы пластик под действием нагрева транзистора деформируется и радиатор замыкается на корпус.

Прикосновение к такому блоку во время его работы приводит к удару электрическим током.

ЭПРА ДЛЯ СВЕТОДИОДНЫХ СВЕТИЛЬНИКОВ И ПАНЕЛЕЙ

Сразу следует заметить, что пускорегулирующая аппаратура для светодиодных ламп и других LED источников света не существует! Как бы не утверждали продавцы магазина или консультанты в интернет-сервисах, это свидетельствует лишь о их некомпетентности.

Светодиодные источники света в пусковых устройствах типа ЭПРА не нуждаются. Необходим источник постоянного напряжения, а в идеальном варианте – стабилизатор тока.

Такие устройства называются драйверами. Они формируют напряжение на выходных клеммах в соответствии с подключаемым источником света и ограничивают или стабилизируют значение выходного тока в определенных пределах.

Дело в том, что светодиоды нормально функционируют только в узком диапазоне протекающего через них тока. Меньшее значение снижает яркость, а высокое вызывает резкое снижение срока службы вплоть до мгновенного перегорания излучающего диода.

Светодиод, как полупроводниковый элемент, обладает ярко выраженной зависимостью величины сопротивления от температуры, поэтому ее изменение всего на несколько градусов способно вызвать критический рост тока.

Чем отличается стабилизатор напряжения от стабилизатора тока?

Если выразить простыми словами, то стабилизатор напряжения имеет на выходе стабильное напряжение при том, что ток потребления подключенных устройств может меняться в широких пределах.

Иная ситуация в случае стабилизатора тока. Здесь обеспечивается стабильное значение тока при различных сопротивлениях нагрузки. При этом значение напряжения стабилизатора может изменяться в достаточно широком диапазоне.

Данная характеристика накладывает ограничение на совместимость устройств различных типов. К источнику тока нельзя подключать светодиодные светильники иной мощности, чем той, что указана в спецификации.

Нельзя подключать параллельно несколько ламп. В крайнем случае возможно последовательное подключение, но это если позволяет диапазон выходных напряжений.

Пример.

Драйвер (именно так именуется в настоящее время стабилизатор тока) рассчитан на выходной ток 100 мА и 12 — 24 В выходного напряжения. Можно подключать:

  • светодиодную лампу 100 мА 12 В или 100 мА 24 В;
  • две лампы 100 мА 12 В, соединенные последовательно;
  • две лампы 50 мА 12 – 24 В, соединенные параллельно.

Схема драйвера может быть выполнена быть выполнена как на основе трансформатора, так и при помощи инвертора, что в настоящее время составляет подавляющее большинство устройств. Драйверы с изменяемым значением выходного тока используются для регулировки яркости LED светильников.

Большинство компактных ламп выпускаются со встроенными драйверами, освобождая покупателя от мук выбора. Использование отдельных драйверов необходимо только в случае использования светодиодных лент или изготовления светильников из отдельных светодиодов или матриц.

Приобретая светодиодные панели с фиксированными размерами, желательно сразу же рассчитывать на драйвер с рекомендуемыми параметрами.

© 2012-2020 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов


как устроен и как подключить к лампе > Свет и светильники

Газоразрядные лампы, в том числе ДНаТ не получиться просто подключить к сети, так как напряжения для их запуска недостаточно. Чтобы осветительные устройства работали, нужно приобрести пускорегулирующее устройства (ПРА, дроссель, балласт). Кроме того, для нормального функционирования устройства понадобится ИЗУ (импульсное зажигающее устройство) и конденсатор.

Дроссель для ДНаТ сдерживает и стабилизирует напряжение при запуске лампы, оказывает сопротивление его изменениям (резкие скачки тока, появление электрических сигналов другой частоты). Таким образом, ПРА обеспечивает нормальную работу натриевых осветительных элементов, продлевает срок их эксплуатации. Но, чтобы балласт выполнял все свои функции, нужно знать, как он устроен, и как его правильно применять.

Содержание

Зачем нужен дроссель: изменчивое сопротивление ламп

Лампа ДНаТ имеет стеклянный корпус, внутри которого находится горелка, наполненная смесью газов (соединения натрия, пары ртути, ксенон). По обоим краям трубки размещены электроды, которые образуют дугу. После запуска источника света с помощью ИЗУ создаются импульсы с высоким напряжением, после чего гарантированной возникает дуговой разряд. Из-за резкого увеличения тока и чрезмерного тепловыделения пары внутри лампы перегреваются. Это грозит тем, что прибор придет в негодность или даже взорвется. Чтобы избежать этого, нужно использовать дроссель для ДНаТ.

Для ограничения величины рабочего тока в ДНаТ применяют балласты разного вида: электромагнитные (ЭмПРА) и электронные (ЭПРА). Вторые считаются более продуктивными, однако их стоимость слишком высокая. По этой причине чаще применяют электромагнитный дроссель. На вид это компактный блок, который регулирует мощность осветительного прибора.

ПРА помогают уменьшить пульсацию напряжения, сглаживают частоту тока, ограничивают и стабилизируют его подачу. То есть, прибор регулирует изменение тока в цепи: поддерживает его при убывании и сдерживает при резком увеличении. Благодаря этим функциям, дроссель для ламп ДНаТ повышает их светоотдачу, продлевает срок эксплуатации.

Параметры и хаpaктеристики катушки индуктивности

При выборе пускорегулирующего устройства нужно учитывать его хаpaктеристики. Один из главных параметров – это индуктивность, которая измеряется в Гн (Генри). Величина реактивного сопротивления включенного балласта зависит от его индуктивности. Эта величина хаpaктеризует магнитные свойства электрической цепи. 1Гн пропускает 1А тока при напряжении 1В.

К основным параметрам индуктивной катушки относят:

  • длина катушки в м;
  • число витков;
  • проницаемость материала сердечника;
  • размер поперечного сечения магнитопровода;
  • магнитное насыщение.

Индуктивность обмотки балласта зависит от всех вышеописанных хаpaктеристик.

Сопротивление витков обмотки катушки зависит от величины поперечного сечения сердечника. Поэтому при выборе ПРА для ДНаТ нужно учитывать их мощность, от которой зависит номинальный ток нагрузки. Соответственно, размеры электрического балласта зависят от мощности лампы.

Внешний вид

Принцип работы балласта построен на способности катушки к самоиндукции. По сути, ПРА – это и есть катушка индуктивности, внутри которой находится сердечник с металлической оправой. Эта оправа состоит из стальных и ферромагнитных пластинок, которые изолированы друг от друга. Это необходимо для того, чтобы не образовались вихревые токи, из-за которых возникают помехи. Сверху прибор покрыт кожухом.

В последнее время очень популярны электронные балласты. Они выглядят, как компактные блоки с выведенными клеммами. Основа прибора – это печатная плата, которая размещена в пластиковом коробе.

Все дроссели имеют внешнее сходство с трaнcформаторами. Количество выводов у них может быть разное, поэтому идентифицировать их только по внешнему виду сложно. Для этого нужно обращать внимание на изображение на корпусе прибора.

Читайте также  Как самому сделать отличную подсветку для орхидей

Если трaнcформатор имеет одну обмотку, то это балласт. Но, чтобы убедится в этом, нужно провести прозвонку с помощью мультиметра. Если во время проверки показания сопротивления отличаются, то вы нашли выводы одной обмотки.

Нередко одинаковые обмотки являются компонентами входной и выходной цепи питания осветительного устройства, выполняя функции балласта. Тогда они прозваниваются с одинаковыми показаниями сопротивления.

Важно! Проверить наличие замыкания между витками обмотки в ПРА можно с помощью мультиметра. Если после прозвонки индуктивность меньше, чем в технической документации, то это свидетельствует о том, что изоляция обмоток разрушена. Использовать такой дроссель для ДНаТ запрещено, так как он приведет в негодность любую лампу.

Устройство и сборка пускорегулирующего (ПРА) аппарата для ДНаТ

Дроссели для ДНаТ делятся на низкочастотные и высокочастотные. В первом случае катушка индуктивности задерживает ток низкой частоты, а во втором – высокой.

Балласт для тока низкой частоты состоит из катушки, внутри которой стальной сердечник, а его пластины изолированы друг от друга. Индуктивность такого прибора составляет от 1Гн. Это свойство позволяет ему ограничивать напряжение, если оно снижается или увеличивается.

Высокочастотные дроссели для ДНаТ не имеют сердечника. В таких приборах медная проволока навивается на каркас из пластика или резистор. Выглядит такой балласт, как секционная (многослойная) намотка.

Материал для сердечника влияет на размер дросселя для ДНаТ. Магнитный стержень, как правило, находится внутри компактных устройств. Однако размер не влияет на их индуктивность.

Высокочастотные приборы оснащены ферритовыми или стальными сердечниками. Такие ПРА используются в широком диапазоне частот.

В зависимости от места установки разделяют встраиваемые и закрытые дроссели для ДНаТ. Первые вставляют в корпус осветительных приборов, которые защищают их от влаги, а вторые монтируются в герметичный блок.

Для чего нужны ИЗУ (импульсные зажигающие устройства)

Без импульсного зажигающего устройства подключить натриевую лампу не получиться. Эта деталь не нужна только в том случае, если ИЗУ уже встроено в осветительное устройство.

Зажигающий прибор необходим для запуска газоразрядного источника света. Он генерирует импульсы высокого напряжения на электроды, что обеспечивает образование дуги. То есть, ИЗУ помогает ДНаТ запуститься, после чего его влияние на работу лампы заканчивается.

Диапазон мощностей зажигающего устройства – от 35 до 400Вт. Кроме того, ИЗУ бывает двух- или трех контактное. Схема подключения устройств разного типа немного отличается.

Кроме балласта, а также ИЗУ специалисты рекомендуют дополнять комплект для ДНаТ конденсатором. Его преимущество в том, что этот прибор помогает снизить нагрузку на проводку.

Схемы подключения дросселя и газоразрядных ламп

Если вы не знаете, как подключить лампу ДНаТ, но хотите это сделать самостоятельно, то изучите информацию ниже. В первую очередь вам нужно подготовить дроссель, ИЗУ, желательно конденсатор и само осветительное устройство. Затем попытайтесь найти схему подключения, которая обычно изображена на корпусе балласта или зажигающего прибора.

Чтобы запустить ДНаТ, подведите к балласту фазу, потом пустите ее на зажигающее устройство, а потом подключите источник света. После этого можно проверить работоспособность лампы.

Как упоминалось ранее, схема подключения ДНаТ с применением ИЗУ с двумя и тремя выводами отличается. Первые лучше использовать для маломощных лампочек, для запуска которых достаточно импульса до 2 киловольт.

С трехконтактным ИЗУ

Комплект для ДНаТ можно собрать в компактном щитке или встроить в корпус осветительного прибора, если его габариты позволяют.

Схема подключения с сайта lampa.dn.ua

Подключение газоразрядных светильников проводиться по такому плану:

Читайте также  Как своими руками разобрать и отремонтировать светодиодную лампу на 220 В

Внимание. В первую очередь проверьте изоляцию дросселя и конденсатора с помощью тестера. Для этого переключите прибор в режим максимального сопротивления. Это поможет узнать, не проходит ли напряжение на корпус.

  • Найдите 2 провода с отрицательным зарядом, которые выходят из автомата. Одну жилу проведите к лампе, а вторую – к соответствующему выходу на дросселе, который имеет маркировку «N». Устанавливайте балласт только в разрыв фазного кабеля (не нулевого), который идет к лампе.
  • Потом расключите фазу. Одну жилу, идущую с автомата, вставьте в контакт дросселя, а потом подключите его к клемме ИЗУ с маркировкой «В».
  • Вставьте провод в вывод зажигающего устройства, обозначенный «Lp» и проведите его к патрону лампы.

После этого можно проверить работоспособность ДНаТ.

С двухконтактным ИЗУ

Зажигающие устройства с двумя выводами подключаются параллельно источнику света. То есть, после дросселя нужно завести фазный провод в однотипный выход ИЗУ, а к другой клемме подключают жилу с отрицательным зарядом. При этом не важно откуда она выходит, ее можно провести даже от патрона.

Схема подключения с сайта lampa.dn.ua

Конденсаторное устройство подключите параллельно все цепи. Для этого просто один кабель соедините с фазой автомата, а второй с нулем. Потом протяните провод и разведите его концы на патрон.

5 ошибок при подключении лампы ДНаТ

Часто новички при подключении натриевой лампы допускают ошибки, которые приводят к тому, что срок эксплуатации осветительного прибора уменьшается:

  1. Неправильно подключают дроссель с 4 выводами. Начинающие мастера заводят фазный и нулевой провод на одни клеммы, а к другим подсоединяют лампу. Но это неправильно. Чтобы не допустить ошибку, нужно изучить схему, которая изображена на корпусе балласта, и строго соблюдать ее.

Важно! В продаже имеются дроссели на 4, 5, 6 выходов. Схема подключения разных видов устройств отличается.

  1. Устанавливают лампу гoлыми руками. После прикосновения к стеклу на корпусе остается жир, который после нагревания ДНаТ темнеет, образуя пятна. Целостность лампы на этих участках может нарушиться. Чтобы этого не случилось, перед запуском всегда протирайте стекло.
  2. Используют для подключения ДНаТ дроссели с большей мощностью. Например, нельзя в комплект для подключения источника света на 250Вт включать балласт на 400Вт. Это приведет к тому, что светильник начнет моргать, и со временем лампа придет в негодность. Подбирайте дроссель с мощностью такой же, как у источника света.
  3. Подключают дроссель от другого вида натриевых ламп, например, ДРЛ, к ДНаТ. Если балласт подобран неправильно, то осветительный прибор быстрее выйдет из строя.
  4. Не включают в комплект для подключения ДНаТ конденсатор. Тогда провода постоянно перегреваются.

Запомните эти ошибки, чтобы не допускать их во время работы.

Основные выводы

Как видите, дроссель для ДНаТ – это необходимое устройство, которое обеспечивает бесперебойную работу осветительной аппаратуры.

Оно уменьшает пульсацию напряжения, сглаживает частоту тока, ограничивает и стабилизирует его подачу.

Но, чтобы осветительный прибор работал корректно, подбирайте дроссель с такой же мощностью, как у лампы.

Для подключения ДНаТ кроме балласта понадобиться ИЗУ и конденсатор.

Чтобы правильно подключить светильник, изучите схему на корпусе балласта, и строго соблюдайте ее.

Не допускайте распространенные ошибки при подключении осветительного устройства, чтобы оно прослужило вам, как можно дольше.

ПредыдущаяЛампы и светильникиЧто такое лампы ДНаТ, их особенности подключения и примененияСледующаяЛампы и светильникиКак проверить и подключить ИЗУ для ДНаТ своими руками

Схема драйвера для светодиодной лампы на 220В

Неотъемлемой частью любой качественной лампы или светильника на светодиодах является драйвер. Применительно к освещению, под понятием «драйвер» следует понимать электронную схему, которая преобразует входное напряжение в стабилизированный ток заданной величины. Функциональность драйвера определяется шириной диапазона входных напряжений, возможностью регулировки выходных параметров, восприимчивостью к перепадам в питающей сети и эффективностью.

От перечисленных функций зависят качественные показатели светильника или лампы в целом, срок службы и стоимость. Все источники питания (ИП) для светодиодов условно разделяют на преобразователи линейного и импульсного типа. Линейные ИП могут иметь узел стабилизации по току или напряжению. Часто схемы такого типа радиолюбители конструируют своими руками на микросхеме LM317. Такое устройство легко собирается и имеет малую себестоимость. Но, ввиду очень низкого КПД и явного ограничения по мощности подключаемых светодиодов, перспективы развития линейных преобразователей ограничены.

Импульсные драйверы могут иметь КПД более 90% и высокую степень защиты от сетевых помех. Их мощность потребления в десятки раз меньше мощности, отдаваемой в нагрузку. Благодаря этому они могут изготавливаться в герметичном корпусе и не боятся перегрева.

Первые импульсные стабилизаторы имели сложное устройство без защиты от холостого хода. Затем они модернизировались и, в связи с бурным развитием светодиодных технологий, появились специализированные микросхемы с частотной и широтно-импульсной модуляцией.

Схема питания светодиодов на основе конденсаторного делителя

К сожалению, в конструкции дешёвых светодиодных ламп на 220В из Китая не предусмотрен ни линейный, ни импульсный стабилизатор. Мотивируясь исключительно низкой ценой готового изделия, китайская промышленность смогла максимально упростить схему питания. Называть её драйвером не корректно, так как здесь отсутствует какая-либо стабилизация.

Из рисунка видно, что электрическая схема лампы рассчитана на работу от сети 220В. Переменное напряжение понижается RC-цепочкой и поступает на диодный мост. Затем выпрямленное напряжение частично сглаживается конденсатором и через токоограничивающий резистор поступает на светодиоды. Данная схема не имеет гальванической развязки, то есть все элементы постоянно находятся под высоким потенциалом.

В результате частые просадки сетевого напряжения приводит к мерцанию светодиодной лампы. И наоборот, завышенное напряжение сети вызывает необратимый процесс старения конденсатора с потерей ёмкости, а, иногда, становится причиной его разрыва. Стоит отметить, что еще одной, серьезной отрицательной стороной данной схемы является ускоренный процесс деградации светодиодов вследствие нестабильного тока питания.

Схема драйвера на CPC9909

Современные импульсные драйверы для светодиодных ламп имеют несложную схему, поэтому ее можно легко смастерить даже своими руками. Сегодня, для построения драйверов, производится ряд интегральных микросхем, специально предназначенных для управления мощными светодиодами. Чтобы упростить задачу любителям электронных схем, разработчики интегральных драйверов для светодиодов в документации приводят типичные схемы включения и расчеты компонентов обвязки.

Общие сведения

Американская компания Ixys наладила выпуск микросхемы CPC9909, предназначенной для управления светодиодными сборками и светодиодами высокой яркости. Драйвер на основе CPC9909 имеет небольшие габариты и не требует больших денежных вложений. ИМС CPC9909 изготавливается в планарном исполнении с 8 выводами (SOIC-8) и имеет встроенный стабилизатор напряжения.

Благодаря наличию стабилизатора рабочий диапазон входного напряжения составляет 12-550В от источника постоянного тока. Минимальное падение напряжения на светодиодах – 10% от напряжения питания. Поэтому CPC9909 идеальна для подключения высоковольтных светодиодов. ИМС прекрасно работает в температурном диапазоне от -55 до +85°C, а значит, пригодна для конструирования светодиодных ламп и светильников для наружного освещения.

Назначение выводов

Стоит отметить, что с помощью CPC9909 можно не только включать и выключать мощный светодиод, но и управлять его свечением. Чтобы узнать обо всех возможностях ИМС, рассмотрим назначение ее выводов.

  1. VIN. Предназначен для подачи напряжения питания.
  2. CS. Предназначен для подключения внешнего датчика тока (резистора), с помощью которого задаётся максимальный ток светодиода.
  3. GND. Общий вывод драйвера.
  4. GATE. Выход микросхемы. Подает на затвор силового транзистора модулированный сигнал.
  5. PWMD. Низкочастотный диммирующий вход.
  6. VDD. Выход для регулирования напряжения питания. В большинстве случаев подключается через конденсатор к общему проводу.
  7. LD. Предназначен для задания аналогового диммирования.
  8. RT. Предназначен для подключения время задающего резистора.

Схема и ее принцип работы

Типичное включение CPC9909 с питанием от сети 220В показано на рисунке. Схема способна управлять одним или несколькими мощными светодиодами или светодиодами типа High Brightness. Схему можно легко собрать своими руками даже в домашних условиях. Готовый драйвер не нуждается в наладке с учетом грамотного выбора внешних элементов и соблюдением правил их монтажа.

Драйвер для светодиодной лампы на 220В на базе CPC9909 работает по методу частотно-импульсной модуляции. Это означает, что время паузы является постоянной величиной (time-off=const). Переменное напряжение выпрямляется диодным мостом и сглаживается емкостным фильтром C1, C2. Затем оно поступает на вход VIN микросхемы и запускает процесс формирования импульсов тока на выходе GATE. Выходной ток микросхемы управляет силовым транзистором Q1. В момент открытого состояния транзистора (время импульса «time-on») ток нагрузки протекает по цепи: «+диодного моста» – LED – L – Q1 – RS – «-диодного моста». За это время катушка индуктивности накапливает энергию, чтобы отдать её в нагрузку во время паузы. Когда транзистор закрывается, энергия дросселя обеспечивает ток нагрузки в цепи: L – D1 – LED – L. Процесс носит циклический характер, в результате чего ток через светодиод имеет пилообразную форму. Наибольшее и наименьшее значение пилы зависит от индуктивности дросселя и рабочей частоты. Частота импульсов определяется величиной сопротивления RT. Амплитуда импульсов зависит от сопротивления резистора RS. Стабилизация тока светодиода происходит путем сравнения внутреннего опорного напряжения ИМС с падением напряжения на RS. Предохранитель и терморезистор защищают схему от возможных аварийных режимов.

Расчет внешних элементов

Частотозадающий резистор

Длительность паузы выставляют внешним резистором RT и определяют по упрощенной формуле:

tпаузы=RT/66000+0,8 (мкс).

В свою очередь время паузы связано с коэффициентом заполнения и частотой:

tпаузы=(1-D)/f (с), где D – коэффициент заполнения, который представляет собой отношение времени импульса к периоду.

Рекомендованный производителем диапазон рабочих частот составляет 30-120 кГц. Таким образом, сопротивление RT можно найти так: RT=(tпаузы-0,8)*66000, где значение tпаузы подставляют в микросекундах.

Датчик тока

Номинал сопротивления RS задает амплитудное значение тока через светодиод и рассчитывается по формуле: RS=UCS/(ILED+0.5*IL пульс), где UCS – калиброванное опорное напряжение, равное 0,25В;

ILED – ток через светодиод;

IL пульс – величина пульсаций тока нагрузки, которая не должна превышать 30%, то есть 0,3*ILED.

После преобразования формула примет вид: RS=0,25/1.15*ILED (Ом).

Мощность, рассеиваемая датчиком тока, определяется формулой: PS=RS*ILED*D (Вт).

К монтажу принимают резистор с запасом по мощности 1,5-2 раза.

Дроссель

Как известно, ток дросселя не может измениться скачком, нарастая за время импульса и убывая во время паузы. Задача радиолюбителя в том, чтобы подобрать катушку с индуктивностью, обеспечивающей компромисс между качеством выходного сигнала и её габаритами. Для этого вспомним об уровне пульсаций, который не должен превышать 30%. Тогда потребуется индуктивность номиналом:

L=(USLED*tпаузы)/ IL пульс, где ULED – падение напряжения на светодиоде (-ах), взятое из графика ВАХ.

Фильтр питания

В цепи питания установлены два конденсатора: С1 – для сглаживания выпрямленного напряжения и С2 – для компенсации частотных помех. Так как CPC9909 работает в широком диапазоне входного напряжения, то в большой ёмкости электролитического С1 нет нужды. Достаточно будет 22 мкФ, но можно и больше. Емкость металлопленочного С2 для схемы такого типа стандартная – 0,1 мкФ. Оба конденсатора должны выдерживать напряжение не менее 400В.

Однако, производитель микросхемы настаивает на монтаже конденсаторов С1 и С2 с малым эквивалентным последовательным сопротивлением (ESR), чтобы избежать негативного влияния высокочастотных помех, возникающих при переключении драйвера.

Выпрямитель

Диодный мост выбирают, исходя из максимального прямого тока и обратного напряжения. Для эксплуатации в сети 220В его обратное напряжение должно быть не менее 600В. Расчетная величина прямого тока напрямую зависит от тока нагрузки и определяется как: IAC=(π*ILED)/2√2, А.

Полученное значение необходимо умножить на два для повышения надежности схемы.

Выбор остальных элементов схемы

Конденсатор C3, установленный в цепи питания микросхемы должен быть ёмкостью 0,1 мкФ с низким значением ESR, аналогично C1 и C2. Незадействованные выводы PWMD и LD также через C3 соединяются с общим проводом.

Транзистор Q1 и диод D1 работают в импульсном режиме. Поэтому выбор следует делать с учетом их частотных свойств. Только элементы с малым временем восстановления смогут сдержать негативное влияние переходных процессов в момент переключения на частоте около 100 кГц. Максимальный ток через Q1 и D1 равен амплитудному значению тока светодиода с учетом выбранного коэффициента заполнения: IQ1=ID1= D*ILED, А.

Напряжение, прикладываемое к Q1 и D1, носит импульсный характер, но не более, чем выпрямленное напряжение с учетом емкостного фильтра, то есть 280В. Выбор силовых элементов Q1 и D1 следует производить с запасом, умножая расчетные данные на два.

Предохранитель (fuse) защищает схему от аварийного короткого замыкания и должен длительно выдерживать максимальный ток нагрузки, в том числе импульсные помехи.

IFUSE=5*IAC, А.

Установка терморезистора RTH нужна для ограничения пускового тока драйвера, когда фильтрующий конденсатор разряжен. Своим сопротивлением RTH должен защитить диоды мостового выпрямителя от пробоя в начальные секунды работы.

RTH=(√2*220)/5*IAC, Ом.

Другие варианты включения CPC9909

Плавный пуск и аналоговое диммирование

При желании CPC9909 может обеспечить мягкое включение светодиода, когда его яркость будет постепенно нарастать. Плавный пуск реализуется при помощи двух постоянных резисторов, подключенных к выводу LD, как показано на рисунке. Данное решение позволяет продлить срок службы светодиода.

Также вывод LD позволяет реализовывать функцию аналогового диммирования. Для этого резистор 2,2 кОм заменяют переменным резистором 5,1 кОм, тем самым плавно изменяя потенциал на выводе LD.

Импульсное димирование

Управлять свечением светодиода можно путем подачи импульсов прямоугольной формы на вывод PWMD (pulse width modulation dimming). Для этого задействуют микроконтроллер или генератор импульсов с обязательным разделением через оптопару.

Кроме рассмотренного варианта драйвера для светодиодных ламп, существуют аналогичные схемные решения от других производителей: HV9910, HV9961, PT4115, NE555, RCD-24 и пр. Каждая из них имеет свои сильные и слабые места, но в целом, они успешно справляются с возложенной нагрузкой при сборке своими руками.

Все, что вам нужно знать о светодиодных лампах

Замена люминесцентных ламп на светодиодные может быть запутанным и пугающим процессом. Мы составили это руководство, чтобы прояснить все тонкости замены люминесцентных ламп на светодиодные ламповые.

1) Преимущества светодиодных трубок перед люминесцентными

Многие преимущества светодиодных трубок перед люминесцентными лампами описаны достаточно подробно, поэтому мы не будем углубляться в подробности, но три основных преимущества:


  • Более высокая эффективность , экономия энергии (до 30-50%)

  • Более длительный срок службы (обычно 50 тыс. часов)

  • Без ртути



2) Размеры люминесцентных ламп и модернизация светодиодных ламп

Поскольку люминесцентные светильники устанавливаются часто в потолок и подключены непосредственно к электросети, они относительно дороги и их сложно заменить полностью.

В результате часто бывает наиболее экономичным просто использовать тот же люминесцентный светильник, но заменить люминесцентную лампу на светодиодную лампу.

Таким образом, важно понимать, какие типы люминесцентных ламп были разработаны, чтобы можно было установить правильный светодиодный светильник.

За прошедшие годы производители люминесцентных ламп разработали множество различных размеров и типов.


  • T8 4 фута: 4 фута люминесцентные лампы T8 сегодня являются наиболее часто используемым типом.Их длина составляет 48 дюймов, а диаметр лампы — 1 дюйм.

  • T12 4 фута: четырехфутовые люминесцентные лампы T12 менее эффективны по сравнению с лампами T8. Они такой же длины, как лампы T8, но имеют больший диаметр лампы на 1,5 дюйма.

  • T5 4 фута: 4 фута люминесцентные лампы T5, как правило, являются наиболее эффективными и являются одними из новейших типов ламп, представленных в 2000-х годах в США. Обычно они обозначаются T5HO (высокая мощность) и обеспечивают большую яркость, чем их аналоги T8.Они немного короче четырех футов (45,8 дюйма). Лампы T5 бывают различной длины, например, 1 фут, 2 фута и 3 фута, и обычно используются в непотолочных светильниках, таких как настольные лампы.



Трубки T8 и T12 также доступны с другой длиной, например, 8-футовые трубы, но 4-футовые трубы остаются наиболее распространенными типами. Светодиодные трубчатые лампы

повторяют механические размеры, чтобы гарантировать, что они могут быть настоящей заменой при модернизации, и имеют те же названия форм-факторов (например,грамм. 4-футовый светодиодный трубчатый светильник T8).

Крепления T8 и T12 обычно имеют одинаковую длину и используют одни и те же штыри, поэтому механически они обычно перекрестно совместимы.

Светильники

T5 НЕ совместимы с лампами T8 и T12 из-за их различных размеров штырей и фактической длины.

3) Люминесцентные балласты и модернизация светодиодных ламп

Во всех люминесцентных лампах используется устройство, называемое балластом, для регулирования яркости лампы по мере ее нагрева. Эти устройства необходимы для люминесцентных ламп и отличаются от ламп накаливания, которые можно подключать непосредственно к электросетям.

В светильниках люминесцентных ламп обычно балласт находится внутри светильника, и доступ к нему без снятия светильника с потолка невозможен. Переделку балласта люминесцентных ламп должны производить только те, кто хорошо разбирается в электромонтажных работах.


Source

Люминесцентные лампы T5, T8 и T12 работают немного по-разному и, следовательно, имеют разные типы люминесцентных балластов.

Светодиодные лампы, с другой стороны, работают иначе, чем люминесцентные лампы, и не используют балласт (но используют электронные компоненты, составляющие драйвер светодиода).

Ранние светодиодные ламповые лампы требовали удаления или обхода люминесцентного балласта. Теперь многие светодиодные ламповые лампы совместимы с люминесцентными балластами, что позволяет легко заменить люминесцентную лампу без повторного подключения проводки. Ниже мы обсудим общие термины, используемые для каждой из этих конфигураций.

3A) Светодиодный трубчатый светильник UL типа A — совместим с балластом


Обычно конструкция «UL Type A» — эти светодиодные трубчатые лампы совместимы с люминесцентными балластами.Они наиболее просты в использовании, поскольку не требуют переналадки люминесцентного светильника.

Светодиодная трубка UL типа A по существу ведет себя так же, как люминесцентная лампа, и ее легко заменить.

Идеально подходит для: Потребителей, которым неудобно или которые предпочитают избегать электромонтажных работ, осветительных установок с высокими затратами на оплату труда электриков

Недостатки : люминесцентные балласты могут выйти из строя, требуя постоянного обслуживания и возможной замены или обхода балласта; потенциальные проблемы с совместимостью люминесцентных балластов; более низкий общий электрический КПД из-за балласта.

3B) Светодиодные трубчатые лампы UL типа B — байпас балласта

Светодиодные трубчатые лампы, имеющие спецификацию «UL типа B», несовместимы с люминесцентными балластами. Они не могут использоваться с люминесцентным балластом и должны быть подключены непосредственно к электросети. Однако светодиодный драйвер встроен в саму светодиодную трубку.

Светодиодные лампы UL типа B можно разделить на одно- и двухсторонние.

В односторонней конфигурации используются только два контакта на одном конце трубки (один контакт = ток, один контакт = нейтраль), а два контакта на другом конце электрически не работают и используются только для удерживая лампу на месте.


Для несимметричных конфигураций важно направление установки лампы — неправильная конфигурация может привести к тому, что лампа не загорится, или к потенциально опасному возгоранию. В односторонних конфигурациях на одном конце трубки обычно имеется наклейка с надписью «AC INPUT» или аналогичной. Некоторые несимметричные конфигурации могут принимать питание с любого конца.

В двусторонней конфигурации два контакта на каждой стороне трубки имеют одинаковую полярность.Следовательно, патроны на одном конце трубки должны быть подключены к [нейтрали], а другой — к [плюсу].


Идеально подходит для: инсталляций, в которых возможно изменение электропроводки; более высокая эффективность и более низкие затраты на обслуживание.

Недостатки : требуется комфорт и знания в области электропроводки и электробезопасности.

3C) Светодиодная трубка UL типа C — дистанционный драйвер

Светодиодные трубки UL типа C относительно редки, но обеспечивают наибольшую гибкость и эффективность для системы освещения.В отличие от светодиодных трубок UL типа B, в них отсутствует светодиодный драйвер, интегрированный в светодиодную трубку, и поэтому требуется отдельное устройство светодиодного драйвера, которое должно быть подключено между светодиодной трубкой и электросетью.

Идеально для: минимальных затрат на техническое обслуживание, поскольку драйверы светодиодов можно заменить без замены всей светодиодной трубки; дополнительные параметры драйвера светодиодов, такие как регулировка яркости 0-10 В и другие возможности подключения к Интернету вещей.

Недостатки : Требуется больше всего электромонтажных работ, так как люминесцентный балласт необходимо удалить, а затем заменить драйвером светодиода.

3D) Шунтированные и нешунтированные надгробия

Надгробия — это «розетки» или патроны, в которые будут устанавливаться светодиодные ламповые лампы, обеспечивающие как механическую поддержку, так и электрический ток.

Надгробные плиты имеют два электрических контакта, соответствующих двум контактам люминесцентной / светодиодной лампы. Два электрических контакта могут быть:

i) не подключены к какому-либо источнику электроэнергии

ii) один подключен к току, другой подключен к нейтрали

iii) оба подключены к фазе или нейтрали

Сценарий ii) называется не -shunted, в то время как сценарий iii) называется shunted.«Шунтирование» относится к объединению двух отдельных цепей в одну. В результате шунтирования оба контакта надгробного камня соединяются с одинаковой электрической полярностью.


В общем, люминесцентные светильники, которые никогда не заменялись светодиодами или балластами с мгновенным запуском , имеют нешунтированные надгробные плиты , в то время как те, которые были изменены на светодиоды или балласты с мгновенным запуском , могут иметь шунтированные надгробные плиты .

Иногда надгробные плиты шунтируются снаружи, как показано на фотографии выше, где вводы проводов открыты только с одной стороны.Однако в некоторых случаях надгробные плиты можно шунтировать изнутри, когда вводы проводов с обеих сторон открыты, но соединены внутри надгробия.

Поскольку некоторые надгробия внутренне шунтируются, визуальная проверка надгробий не дает окончательного результата. Мы настоятельно рекомендуем проверить два контакта надгробия с помощью вольтметра, чтобы определить, существует ли замкнутая или разомкнутая цепь. Замкнутая цепь укажет на шунтированные надгробные плиты.

3E) Определите, совместим ли ваш светодиодный трубчатый светильник с шунтированной или нешунтированной конфигурацией надгробий.

Если ваш светодиодный трубчатый светильник является несимметричным, он НЕ совместим с шунтированными надгробиями.Это связано с тем, что каждый из двух контактов в надгробной плите должен иметь противоположную полярность, чтобы однотактный светодиодный ламповый светильник работал. Однако в случае шунтированного надгробия это невозможно из-за внутреннего короткого замыкания.

Если у вас шунтированные надгробия, вам нужно будет перемонтировать или заменить их и соединить в соответствии со схемой проводки производителей односторонних светодиодных ламп.

Если ваш светодиодный ламповый светильник двусторонний, он, вероятно, совместим как с шунтированными, так и с шунтированными надгробиями.Причина в том, что два контакта на каждом конце светодиодной трубки имеют одинаковую полярность, поэтому, шунтируются они или нет, не должно влиять на окончательную результирующую схему.


Имейте в виду, что в этом разделе обсуждается, шунтируется ли само надгробие или нет — обязательно правильно подключите провода к надгробной плите, чтобы они соответствовали электрической схеме производителя, чтобы обеспечить безопасную установку.

3F) Что делать, если вы не хотите обо всем этом беспокоиться?

Установка светодиодной трубки неправильного типа может привести к преждевременным отказам и потенциально опасным коротким замыканиям и пожару.

Мы рекомендуем искать светодиодные лампы, которые совместимы с любой из потенциальных электрических конфигураций люминесцентного светильника — например, светодиодные лампы 3-в-1 Waveform Lighting T8.

Обычно называемые совместимыми 3-в-1, эти светодиодные трубки совместимы с любой из следующих конфигураций:

i) Без удаления люминесцентного балласта (UL типа A / совместимость с балластом)

ii) С удалением или обходом люминесцентного балласт (UL тип B / байпас балласта) и шунтированные или нешунтированные надгробные плиты (двусторонние)

iii) с удалением или обходом флуоресцентного балласта (UL тип B / байпас балласта) и нешунтированные надгробные плиты (односторонние)

4) Фотометрические характеристики светодиодных трубчатых ламп — цветовая температура (CCT), люмены и индекс цветопередачи (CRI)

Обычно называемые основными фотоэлектрическими характеристиками, также важно, чтобы качество излучаемого света было таким же или превышало качество вашего текущего освещения люминесцентными лампами.

Коррелированная цветовая температура (CCT)

Большинство люминесцентных ламп имеют коррелированную цветовую температуру (CCT) 4000K или 5000K, поскольку они считаются наиболее подходящими для розничной торговли и офисных помещений соответственно. Однако за последние годы многие разработки люминесцентных ламп позволили использовать широкий диапазон цветовых температур.

Точно так же доступны светодиодные трубчатые лампы с широким диапазоном цветовых температур. Как правило, внешний вид светодиодных ламп и люминесцентных ламп с одинаковым рейтингом цветовой температуры будет одинаковым.

Световой поток

Световой поток, измеряемый в люменах, измеряет общее количество света, излучаемого лампой, и является лучшим показателем для определения яркости лампы.

Лучший способ сравнить яблоки с яблоками — это сравнить значение светового потока люминесцентной лампы со светодиодной трубкой. Обычно люминесцентная лампа T8 мощностью 35 Вт излучает около 2500 люмен.

В светодиодных ламповых лампах следует отметить то, что они имеют тенденцию направлять свет вниз, а не на полные 360 градусов в люминесцентных лампах.Следовательно, при установке в потолочный светильник светодиодный трубчатый светильник может давать более полезные люмены, поскольку свет направлен вниз, а не обратно в светильник, как в люминесцентной лампе.

Индекс цветопередачи (CRI)

Индекс цветопередачи (CRI) измеряет степень, в которой цвета объектов выглядят точными и точными под источником света. Большинство люминесцентных ламп имеют индекс цветопередачи около 80, и большинство светодиодных ламп также имеют индекс цветопередачи около 80. 80 CRI приемлем для большинства приложений, но для улучшенного качества цвета и сред, где цветовое восприятие важно, ищите более высокий рейтинг CRI в светодиодной трубке.

5) Стоимость и финансирование светодиодных трубок

Наконец, мы немного поговорим о соображениях стоимости при покупке светодиодных трубок. В последние годы цена на светодиодные трубчатые лампы снизилась до уровня, позволяющего конкурировать с люминесцентными лампами, поэтому закупочная цена ламп делает светодиодные ламповые лампы очень привлекательным вариантом.

Если, однако, выбранная вами светодиодная трубка не является лампой UL типа A, вы понесете затраты на ремонт электрической проводки. Для крупной или коммерческой установки эти затраты могут быть значительными в зависимости от сложности изменения проводки, необходимой для люминесцентного светильника.Как правило, на каждый 4-ламповый люминесцентный светильник у квалифицированного электрика может уйти 15-25 минут.

Если предположить, что электрику, заряжающему 100 долларов в час, требуется час, чтобы завершить перемонтаж трех люминесцентных светильников с 4 лампами, мы можем рассчитать затраты на рабочую силу более 8 долларов на лампу. Вы можете увидеть, как затраты на рабочую силу быстро увеличивают первоначальную стоимость проекта, добавляя привлекательности светодиодных ламповых светильников, совместимых с UL типа A.

Подсчитайте, сколько затрат на электроэнергию и техническое обслуживание сэкономят светодиодные ламповые лампы, и определите период окупаемости.Как правило, чем короче, тем лучше!

Также следует учитывать гарантийные условия производителя. В идеале период окупаемости короче гарантии, так как таким образом вы застрахованы от любых преждевременных отказов продукта, которые ставят под угрозу экономию затрат при использовании светодиодных ламп.

Что такое балласт и почему он не используется в светодиодных лампах

Что такое балласт и почему он не используется в светодиодном освещении

Когда лампочки были новым изобретением, внутри ламп было размещено устройство.Целью этого устройства было ограничение силы тока в электрической цепи. Это устройство называется балластом. Если это не использовалось в лампах накаливания и лампочках T8 (ламповых светильниках), оставался риск повышения тока до разрушительного уровня. Балласт по-прежнему используется в лампах и ламповых фарах, чтобы избежать повышения тока в фарах. Галогениды металлов, пары ртути и HID также являются яркими примерами светильников с балластами.

Есть два основных типа балластов; магнитный балласт и электрический балласт (он же электронный балласт), и мы рассмотрим оба.

Магнитный балласт

Магнитный балласт — это, в основном, индукторы, которые обеспечивают надлежащее пусковое и рабочее электрическое состояние для питания определенных ламп. Работа трансформатора, обеспечивающая чистую и удельную мощность. Изобретенный в 1960-х годах, говорят, широко использовался в 70-90-х годах. Они встречаются в металлогалогенных лампах, ртутных парах, люминесцентных лампах, неоновых лампах или разрядных лампах высокой интенсивности (HID). Почти все основные фонари для парковок и уличные фонари использовали эту технологию около 30 лет, прежде чем примерно в 2010 году начали применяться светодиоды.

Электрический балласт

В электрическом балласте электрическая цепь используется для ограничения нагрузки или силы тока. Электронный балласт пытался поддерживать более стабильный и точный ток по сравнению с магнитными. Они стали популярными в 90-х годах и по сей день, где они все еще устанавливаются. Вы не поверите, но даже в 2017 году некоторые люди не покупают светодиодные лампы и по-прежнему выбирают старые технологии.

Функция балласта

Балласт регулирует ток ламп и обеспечивает напряжение, достаточное для запуска ламп.Лампы не имеют регулятора и могут потреблять слишком много или слишком мало энергии сами по себе. Балласт гарантирует, что величина тока, подаваемого на лампу, не превышает спецификации света. Без балласта лампа или колба быстро увеличивают потребление тока, и это также может стать неконтролируемым.

Когда в лампе присутствует балласт, мощность становится стабильной, и даже если такие лампы подключены к источникам большой мощности, балласт будет регулировать энергию и предотвращать рост тока.

Почему светодиоды не используют балласт

Светодиоды не нуждаются в балласте по ряду причин. Во-первых, в светодиодных лампах не требуется большой ток. Кроме того, светодиоды обычно используют постоянный ток (DC) и, следовательно, нуждаются в преобразователе переменного тока в постоянный. Вот почему при установке светодиодных ламп типа «кукуруза» вам необходимо направить провод к розетке. Наконец, размер светодиодов намного меньше, чем у ламп и ламповых фонарей, что не оставляет дополнительного места для установки балласта. Драйверы светодиодов могут быть сконструированы так, чтобы они были намного меньше.Некоторые специалисты также считают, что отсутствие балласта делает светодиоды энергоэффективными и обеспечивают лучшее освещение.

Настоящий ответ здесь заключается в том, что светодиоды используют драйвер, который выполняет многие из тех же функций, что и балласт, но работает гораздо более эффективно.

Что такое светодиодный драйвер

Светодиодный драйвер — это электрическое устройство, которое регулирует мощность светодиодной лампы. Он может регулировать мощность одного светодиода или цепочки светодиодов. Драйвер светодиода эффективно реагирует на изменяющиеся потребности светодиода в питании.Осушитель обеспечивает постоянный и равномерный уровень мощности светодиода, поскольку его электрические свойства меняются с температурой. Драйверы светодиодов могут тускнеть с помощью схем широтно-импульсной модуляции и могут иметь более одного канала для индивидуального управления разными светодиодами. Уровень мощности светодиодов поддерживается на постоянном уровне, и это выполняется драйвером светодиода. Драйвер светодиода действует так же, как балласт, но более эффективен.

Руководство по аварийному балласту для светодиодных и люминесцентных ламп

Ну, когда дело касается балласта и драйверов, тут много путаницы.А когда мы слышим аварийный балласт и аварийных водителей, сложность становится еще более сложной.


В этом руководстве мы проведем вас через все на языке непрофессионалов, а затем предоставим некоторые профессиональные рекомендации по выбору драйвера / балласта, который соответствует вашим потребностям в освещении.

Мы знаем, что существует множество руководств, наполненных жаргоном, которые заставят вас ломать голову. Но не здесь. В конце этого руководства вы будете светиться как светодиодная лампочка!


Что такое электрический балласт?


Электрический балласт — это устройство, используемое для регулирования тока, напряжения и формы волны источника освещения.Это устройство обеспечивает мощность, необходимую для запуска лампы.

Затем он контролирует подачу тока, напряжения и формы волны, чтобы гарантировать, что свет продолжает светиться, не повреждая себя из-за чрезмерного протекания тока, напряжения и волн.

Комплекты для экстренного переоборудования 3W3H 3 Вт 6-60 В постоянного тока Светодиодный светильник Комплект для экстренного переоборудования
Если провести аналогию, это похоже на человеческое сердце, которое регулирует поток крови к нашим органам в зависимости от их потребностей. Есть много видов балласта.Например, следующие два балласта используются в люминесцентных лампах (надеюсь, вы их помните).

Мы росли, видя дроссель (внизу слева) и стартер (внизу справа), и, если вы помните, лампы люминесцентных ламп мигали, прежде чем загорелись. Ну, это оба балласта.

ПРА стартера обеспечивает необходимое тепло для включения люминесцентной лампы, а пусковой балласт дросселя регулирует подачу тока и напряжения в лампу и продолжает ее освещать.

Что такое драйверы освещения?


У каждого механизма и технологии свое время, время расцвета и истечение срока. В конце концов, все выходит из моды. То же самое и с люминесцентными лампами. А технология, приговорившая флуоресцентные лампы к смертной казни, — это светодиодные лампы.

В отличие от своих предшественников, светодиодные фонари не содержат вредных химикатов и не излучают ультрафиолетовые лучи. Светодиодные фонари на 100% подлежат вторичной переработке и значительно сокращают углеродный след.

Благодаря тому, что одна светодиодная лампа способна работать примерно с 25 лампами накаливания в течение своего срока службы, светодиодные лампы также позволяют сэкономить на материалах и производстве.Благодаря этим характеристикам светодиодные фонари захватили рынок.

Но для их освещения, как и для ламп дневного света, в которые попали до того, как они появились на месте происшествия, им также был нужен драйвер, который регулировал бы подачу энергии на них.

Им требовалось очень мало энергии, и мощность должна была подаваться постоянным током (DC). Для выполнения этих условий, как и для люминесцентных ламп, был введен балласт, также известный как драйвер.

Это так называемые драйверы светодиодов.Но некоторые люди продолжали называть эти драйверы пускорегулирующими устройствами для светодиодов, поскольку они поступают от балласта люминесцентных ламп.

Что такое светодиодный аварийный балласт?


Светодиодный аварийный балласт или аварийные драйверы светодиодов — это драйверы светодиодов, которые оснащены перезаряжаемой батареей и могут освещать осветительный прибор в течение определенного времени в зависимости от выходной мощности аккумулятора и потребляемой мощности устройства.

Светодиодный аварийный балласт — это, по сути, аварийный светодиодный драйвер, который оснащен внутренней батареей и драйвером, который переключается на питание от аккумулятора, если основные огни выключаются, и поддерживает аккумулятор заряженным, пока сеть отключена.

По сути, это аварийный светодиодный драйвер, но, поскольку он может обеспечивать более высокую мощность и используется в светодиодных ламповых лампах, его называют аварийным светодиодным балластом.

Не потому, что это балласт, а потому, что балласты использовались в люминесцентных лампах. По сей день светодиодные аварийные пускорегулирующие устройства используются в светодиодных лампах и модификациях.

Что такое люминесцентные аварийные балласты?


Помимо обычных люминесцентных балластов, люминесцентные аварийные балласты интегрированы с внутренней батареей, которая питает осветительный прибор (люминесцентную лампу) в течение определенного периода времени в случае отключения сети.

Итак, в то время как обычный балласт регулирует только основную (переменную) мощность источника освещения, аварийный балласт для люминесцентных ламп регулирует и подает постоянный ток (DC) на осветительный прибор даже при отключении сети.

Какие фары нуждаются в балласте (или драйверах)?


Каждому свету, будь то лампа накаливания или галогенная лампа, нужны драйверы. Однако для других форм современных ламп или осветительных приборов, таких как люминесцентные лампы, компактные люминесцентные (CFL), HID-лампы или светодиоды, требуется балласт или драйверы для освещения.

Эти семейства ламп, которым требуется балласт, используют два разных типа балластов — магнитные и электронные. Магнитные балласты — это более старая технология, используемая в определенных источниках света.

Однако электронные балласты оказались энергоэффективными.

Теперь вопрос был бы, светодиодным фарам тоже нужен балласт. Ответ положительный. В светодиодах используется технология, аналогичная балласту, но названная драйвером.

Итак, эти драйверы, также известные как балласт, регулируют поток энергии (напряжение и ток) к источнику освещения и выполняют функцию балласта среди светодиодных лампочек.

В чем разница между аварийным балластом и аварийным светодиодным драйвером?


Несмотря на различную номенклатуру, как балласты, так и драйверы регулируют подачу питания на соответствующий светильник и обеспечивают питание от аккумулятора в случае отключения электроэнергии.

Оба устройства одинаковы по функциям, но различаются по своему назначению. Драйверы связаны со светодиодами, а балласты — с люминесцентными лампами.

Флуоресцентные аварийные балласты обеспечивают высокое напряжение от его начального всплеска и генерируют дугу мощности, которая проходит от катода к аноду через разрядную трубку. Итак, как только свет загорится — он действует в соответствии со спецификациями регулятора тока.

Аварийный источник питания оставался высокочастотным выходным током высокого напряжения при выходе аварийных фонарей.

С другой стороны, драйверы аварийных светодиодов для преобразования переменного тока в постоянный ток низкого напряжения.Тип питания, на которое рассчитаны светодиоды.

Таким образом, люминесцентные аварийные балласты дороже по сравнению с аварийными драйверами светодиодов, поскольку для более ранних моделей требуются батареи большой емкости для питания люминесцентных ламп в случае отключения электроэнергии.

С коммерческой точки зрения аварийные драйверы светодиодов более экономичны при установке, а также позволяют сократить ежемесячные счета за электроэнергию.

Как выбрать подходящий аварийный балласт для освещения?


Выбор подходящего аварийного балласта зависит от множества факторов.Вот некоторые из наиболее важных факторов

  1. Время автономной работы
    Время автономной работы — это расчетное количество часов, в течение которых ваш осветительный прибор должен работать от резервной батареи. Это прямо пропорционально емкости батареи, которая будет установлена ​​на аварийных драйверах.

Если вы находитесь в странах, где перебои в подаче электроэнергии являются повсеместными и продолжаются на несколько часов, вам следует выбрать аварийных водителей с большей емкостью аккумулятора.

Согласно законам и нормативным актам в разных странах, аварийный источник питания должен соответствовать определенному времени аварийного отключения, например, в Великобритании 3 часа, в Китае 1.5 часов, это критический фактор для определения продолжительности аварийной ситуации. Узнайте, какие требования действуют в вашей стране.

  1. Тип лампы
    У каждой лампы особые требования к мощности. Некоторым источникам света требуется постоянный ток, а другим может потребоваться постоянное напряжение. Проверьте свой бэкэнд с лампами или рисунок на предмет его требований к питанию.

Хотя многие аварийные пускорегулирующие устройства будут совместимы со стандартными лампами, такими как F17T8, F25T8, F32T8, F28T8 и U-образными версиями одной и той же лампы, настоятельно рекомендуется заранее убедиться в совместимости.

Если вы не уверены, обратитесь за советом к специалисту.

  1. Требования к температуре
    Лампы имеют определенные внешние и внутренние температуры для нормального функционирования, и драйверы / балласты играют важную роль в их регулировании. Для получения этой информации обратитесь к техническим характеристикам лампы, а если вы не можете понять это, обратитесь за советом к специалисту.
  2. Окрестности, которые будут установлены:
    Примите во внимание окружение, в котором будет / будет установлен свет.Если выход должен быть установлен во влажном месте или в месте, подверженном брызгам воды — тогда вам понадобится аварийный водитель с более высоким уровнем защиты от воды и пыли.

Если прибор должен быть установлен в очень жарком месте, вам понадобится драйвер, который может работать при таких температурах.

Производители аварийных светодиодных драйверов, такие как Sanforce, предлагают драйверы, адаптированные к конкретным потребностям проекта.

В отличие от серийно выпускаемых аварийных драйверов, имеющихся на рынке, мы предлагаем специально разработанные аварийные драйверы, которые соответствуют всем вашим требованиям и соответствуют стандартам безопасности в вашем регионе.

Свяжитесь с нами сегодня для бесплатного обсуждения с одним из наших экспертов.

Решения для светодиодных ламп, вызывающих помехи ТВ или радио

Мы большие поклонники светодиодного освещения на Reduction Revolution.

За последние несколько лет мы продали сотен тысяч светодиодных ламп от таких качественных брендов, как Philips, Osram и Verbatim.

В подавляющем большинстве случаев светодиодные фонари делают то, для чего они предназначены.Они обеспечивают лучшее освещение, используя до 90% меньше энергии. Иногда наши клиенты действительно сталкиваются с проблемой. Одна из таких проблем — помехи радио или телевидению.

Некоторые клиенты сообщали об этих помехах на своих телевизорах или радио после модернизации потолочных светильников MR16 до светодиодных. Это происходит только тогда, когда свет включен, но это может раздражать, особенно если вам нравится AM-радио! По-видимому, такое может случиться и со светодиодными лампами сетевого напряжения, хотя мы этого не испытывали.

Как устранить радиопомехи от светодиодных ламп

Вот список возможных решений, о которых мы знаем:

  1. Используйте качественную светодиодную лампу. Все наши светодиодные лампы полностью соответствуют действующим стандартам. Многие светодиодные лампы более дешевых или безымянных брендов не соответствуют требованиям.
  2. Замените трансформатор на трансформатор с лучшим подавлением электромагнитных помех, например светодиодный трансформатор Verbatim.
  3. Сократите длину кабеля и, если возможно, используйте экранированный кабель.
  4. Добавьте фильтр электромагнитных помех на входе / выходе трансформатора. Их также называют ферритовыми шариками или ферритовыми дросселями.

Пункт 2 выше подходит только для светодиодных ламп низкого напряжения. Другие предложения также можно использовать для светодиодных ламп сетевого напряжения.

Общие сведения о радиопомехах RF / EMF

В качестве дополнительной информации давайте проясним некоторые из используемых терминов и то, как все это работает.

  • RF — Радиочастота
  • EMF — Частота электромагнитного излучения
  • Трансформатор
  • — преобразует сетевое напряжение (240 В переменного тока) в низкое (12 В).

Важно: Светодиодная лампа — не единственная и не обязательно самая главная причина радиопомех.Необходимо учитывать всю систему.

Электромагнитная совместимость (ЭМС)

Все светодиодные лампы Philips (и других известных брендов) полностью соответствуют требованиям электромагнитной совместимости. Это тестирование обычно проводится третьими сторонами в соответствии со стандартом EMC CISPR15.

Электромагнитные помехи (EMI) —

Источник помех

Это относится к устройству, излучающему электромагнитную энергию (источник радиопомех). В случае светодиодного освещения это может быть:

  • Светодиодная лампа или глобус
  • Балласт
  • Трансформатор

Путь муфты —

Проводимость и излучение

Это относится к взаимодействию между «источником» и «жертвой».«В случае светодиодного освещения это может быть:

.
  • Светильник или «светильник»
  • Кабель
  • Потолок

Электромагнитная восприимчивость (EMS) —

Восприимчивый предмет

Это относится к элементу, на который могут повлиять вышеуказанные радиопомехи, и может включать:

  • AM или цифровое радио
  • телевизор
  • Компьютер

Ищете качественные светодиодные фонари? Ознакомьтесь с нашим полным ассортиментом здесь.

Покупка стандартных и нестандартных светодиодных осветительных катушек дроссельной катушки Опции

О продуктах и ​​поставщиках:
 Наслаждайтесь дружественными ценами на.  Светодиодный дроссель с дроссельной катушкой  доступен в различных формах и подходит для различных целей на Alibaba.com.  Светодиодный дроссель с дроссельной катушкой  - это пассивные двухконтактные провода, которые скручены и накапливают энергию в магнитном поле, когда через них проходит электрический ток. Они существуют в различных типах, таких как воздушный сердечник, железный сердечник, тороидальный, многослойный сердечник и порошковый железный сердечник.. Светодиодные лампы  дроссельные катушки индуктивности  доступны в индивидуальном исполнении, а также в стандартном исполнении для удобства. 

Найдите. Светодиодный индикатор , индуктор дроссельной катушки на Alibaba.com по сниженным ценам и в упаковке нестандартного размера. Ты используешь. светодиодный осветительный дроссель катушки индуктивности в импульсных источниках питания в качестве накопителя энергии для выработки постоянного электрического тока. Они обеспечивают постоянный поток тока в периоды выключения. Светодиодный дроссель дроссельной катушки , аналогичный используемому в электронном оборудовании переменного тока, таком как радиооборудование, блокирует переменный ток и пропускает постоянный ток.

Используйте расширение. Светодиодный осветительный дроссель , катушка индуктивности с разделением сигналов разной частоты. Комбинируя их с конденсаторами, вы можете создавать настроенные схемы, позволяющие настраивать теле- и радиоприемники. Светодиодные дроссели катушки освещения также доступны с высоким током и, как известно, используются в автомобильной промышленности для фильтрации преобразования постоянного тока в постоянный в двигателе. блоки управления трансмиссией, навигационные системы и драйверы впрыска дизельного топлива. Светодиодный дроссель катушки индуктивности освещения также способствует подавлению шума в двигателях, сиденьях и зеркалах с электроприводом.

Выберите для хранения энергии и выпуска тока по мере необходимости. Обеспечьте постоянный ток в вашем источнике питания с помощью высокочастотного, сильноточного, магнитного экранированного, привлекательного. светодиодный дроссель дроссельной катушки вариантов различных размеров, дизайна и цветов. Alibaba.com предлагает привлекательные акции и оптовые цены.

Балласты для соляриев | Warehouse-Lighting.com

Если вы используете солярий, вы понимаете важность лампочек внутри этого устройства.Если лампы не работают или работают на полную мощность, результаты не будут столь заметны для человека, использующего машину. Вот несколько вещей, которые нужно знать об уходе и обслуживании балластов и ламп для соляриев.

Первый ключ — это понять ваш балласт и основные операции. Обычно электрические балласты в солярии помогают уменьшить количество энергии, протекающей через лампы. Ограничивая этот ток, лампы прослужат дольше в машине, и балласт также будет находиться под меньшим давлением.Еще одна причина важности балласта заключается в том, что он может выдерживать 100-ваттную лампу и за счет комбинации индукции и электрической силы полностью зажечь лампу, снизив при этом мощность примерно до 65 Вт вместо 100.

Если вы обнаружите, что лампы в солярии не горят на полную мощность, это может быть признаком неисправности лампы или балласта. Если это лампочки, то обычно наблюдается полная потеря освещения с большинством лампочек, но также может проявляться мерцание, поскольку флуоресцентные лампы могут работать и с пониженной мощностью.Чтобы проверить это, замените неисправную лампочку. Если проблема не исчезнет даже с новой лампочкой, возможно, вам потребуется проверить балласт.

Хотя в большинстве устройств используется электронный балласт, у вас также может быть так называемый дроссельный балласт. Основное различие между ними заключается в том, что электронные балласты используют постоянный поток электрического тока для создания равномерного светового потока на нужном уровне, тогда как балластный дроссель может иметь больше мерцания в целом. Независимо от того, какой у вас тип, плохой балласт — проблема солярия.Чтобы проверить свой балласт, вы должны установить новую работающую лампу и включить устройство. Если блок не загорается, но вы знаете, что лампа исправна, следующим шагом будет процесс устранения, чтобы выяснить, является ли это балластом. Проверяйте проводку и контакты розетки там, где должна быть лампочка, попутно проверяя на предмет повреждений эти важные области. Если все остальное в рабочем состоянии, скорее всего, это сам балласт.

Замена балласта — это относительно просто и доступно по сравнению с покупкой новой машины или столкновением с более серьезной механической поломкой.Лучший способ предотвратить еще более дорогостоящий ремонт — решить проблему балласта, как только она возникнет. Чем дольше вы ждете ремонта какой-либо важной части вашей системы, тем больше вероятность того, что вы столкнетесь с более серьезным повреждением машины.

Вам также может понравиться …


Другие люди рассматривали эти продукты …


Также подумайте о просмотре этих видео …


Варианты крышек балласта для промышленных ленточных осветительных приборов

Когда дело доходит до световых решений, бывает сложно понять, какой вариант подходит именно вам.После того, как вы определились с осветительным прибором, есть несколько способов настроить освещение …

Смотреть видео

Что такое электронные балласты люминесцентного освещения?

Посмотрите нашу статью Что такое электронные балласты люминесцентного освещения? видео.Наши видеоролики научат вас уверенно покупать и устанавливать светодиодные светильники, независимо от того, предназначены ли они для новой инст …

Смотреть видео

Распространенные проблемы со светодиодными панелями и способы их устранения

Многие из проблем, которые влияют на работу светодиодных панелей, являются универсальными для всех светодиодов, например, мерцание, свечение, выгорание и жужжание.Для получения подробной информации о том, как бороться с этими типичными проблемами со светодиодами, ознакомьтесь с нашей статьей Как сделать так, чтобы светодиоды не мерцали, не жужжали, не светились и не перегорали.

Есть некоторые проблемы, которые особенно характерны для светодиодных панелей. На этой странице более подробно рассматриваются:

Быстрое обнаружение проблем со светодиодной панелью

Если ваша светодиодная панель выходит из строя, и вы не уверены в неисправности, вы можете сделать быструю диагностику. Попробуйте включить светодиодную панель и проверьте таблицу ниже.

Распространенные проблемы со светодиодами и их вероятные причины

Проблема

Вероятная причина

Светодиодная панель вообще не светится

Ошибка драйвера

Светодиодная панель мигает

Ошибка драйвера

Если горят только некоторые светодиоды на панели

Неисправность светодиода

Выявление проблемы и вероятной причины — это только половина дела.В разделах ниже вы сможете найти решения этих проблем.

Проблемы с драйверами и преобразованием напряжения

Обзор

Драйвер светодиода регулирует количество энергии, протекающей через систему освещения. Драйверы преобразуют мощность переменного тока из сети в мощность постоянного тока, необходимую для работы светодиодных панелей, и, таким образом, предотвращают скачки напряжения. Драйверы светодиодов — это небольшие блоки, которые подключаются к светодиодной панели. Они играют ту же роль, что и балласты в люминесцентных лампах.

Драйверы уязвимы к перегреву. Даже исправные драйверы со временем будут подвергаться воздействию тепла. Однако использование дешевых, низкокачественных драйверов или неправильного драйвера приведет к большему риску перегрева раньше.

Это связано с тем, что ток, протекающий через систему, не поддерживается на постоянном уровне, поэтому выделяемое избыточное тепло влияет на производительность драйвера.

Проблемы

  • Напряжение от источника питания составляет (240 В), драйвер преобразует его в 12 В или 24 В для правильной работы панели.Если драйвер работает неправильно, он не преобразует этот ток и поддерживает постоянное напряжение. Это означает, что лампочка будет мигать, и система не будет реагировать на перегрузки, что означает повышенный риск возгорания панелей.
  • Если ваша светодиодная панель вообще не работает, то наиболее вероятная причина — неисправная внутренняя проводка, из-за которой проводка неправильно подключена к драйверу.
  • Хотя технически это не является неисправностью проводки, установка светодиодных панелей с регулируемой яркостью и несовместимым переключателем яркости вызовет мерцание.

Решения

  • Убедитесь, что ваши светодиодные панели совместимы с цепями, источником питания и выключателями света, от которых они работают.
  • Инвестируйте в панели с задней или центральной подсветкой (где светодиодные чипы устанавливаются на панели, а не на краю панели), поскольку эти панели имеют встроенные драйверы, которые могут помочь уменьшить проблемы с драйверами, описанными выше. .
  • Попросите электрика проверить правильность подключения проводки в системе освещения.

Проблемы с плохой изоляцией, вентиляцией и перегревом

Обзор

Светодиодные панели

должны быть должным образом изолированы, чтобы выделяемое ими тепло рассеивалось и не перегревалось. Качественные светодиодные панели оснащены радиатором из проводящего металла (обычно алюминия), который отводит избыточное тепло от панели. Если этот радиатор низкого качества, плохо установлен или вообще не установлен, то избыточное тепло может вызвать выгорание светодиодных чипов в панели.

Не все светодиоды подходят для установки в закрытые светильники. Установка неподходящего светодиода в закрытый фитинг может привести к его перегреву, поскольку у лампы нет подходящего радиатора. Это не такая большая проблема для светодиодных панелей, поскольку они обычно предназначены для установки в закрытые светильники, однако всегда стоит проверять, подходят ли панели для установки в утопленную арматуру.

Проблемы

Решение

  • Покупайте только светодиодные панели с правильно подогнанным алюминиевым радиатором.Убедитесь, что панель предназначена для установки в утопленный фитинг.

Проблемы с некачественными светодиодами

Обзор

Светодиодные панели

дороже традиционных люминесцентных ламп, и по этой причине потребители могут выбирать дешевые светодиоды низкого качества и ожидать от них той же производительности, что и у ведущих брендов. Низкокачественные светодиодные панели часто содержат некачественные компоненты, которые не прошли надлежащую проверку.

Светодиодные панели

состоят из нескольких компонентов; низкое качество или неисправность любого из этих компонентов может повлиять на общую производительность светодиодных панелей.

Проблемы

  • Рама — обычно из алюминия, рама содержит свет внутри панели.
    • Если рама слишком легкая или сделана из материала, отличного от алюминия (дешевые светодиодные панели часто имеют пластиковую раму), это может привести к избыточному нагреву и увеличению риска возгорания от перегрева.
  • Светодиодные микросхемы
  • — эти микросхемы устанавливаются на печатную плату и являются источником света. В зависимости от типа панели они крепятся к задней или боковой стороне панели.
    • Микросхемы низкого качества могут вызвать ряд проблем, включая потускнение панели или ухудшение качества цвета.
    • Если в панели используются светодиодные чипы низкого качества, это может привести к появлению «синего» оттенка, из-за которого комната будет выглядеть холодной.
  • Световодная пластина — направляет свет, исходящий от светодиодов, на рассеиватель.
    • Если он установлен неправильно, это может повлиять на количество света и угол падения света на рассеиватель.
  • Рассеиватель — обеспечивает равномерное распределение света от светодиодов и помогает уменьшить блики.
    • Низкокачественный рассеиватель, сделанный из акрила или ПММА, а не из поликарбоната, не будет равномерно распределять свет.
    • Пластиковые диффузоры со временем могут обесцветиться по краям и пожелтеть, что снизит качество света, излучаемого светодиодной панелью.
  • Отражающая пластина — отражает свет обратно в световодную пластину.
    • Проблемы с отражающей пластиной могут вызвать ослепление.
  • Радиатор — это помогает предотвратить перегрев светодиодных панелей, так как проводящий металлический радиатор отводит избыточное тепло для охлаждения панели.
    • Плохой радиатор означает, что от светодиодных чипов отводится недостаточное количество тепла, что может привести к их выгоранию.
    • Дешевые пластиковые радиаторы не работают так же эффективно, как металлические радиаторы, и могут сократить срок службы светодиодов в панели.
  • Задняя крышка — алюминиевая пластина, защищающая компоненты.
    • Чем лучше задняя крышка подходит к раме, тем лучше отвод тепла, а это означает, что панель, вероятно, прослужит дольше.

Очень сложно определить, высокого или низкого качества светодиодная панель, пока она не установлена. Вы не обязательно узнаете, что у вас некачественный светодиод, пока он, например, быстро не перегорит или не будет давать некачественный свет.

Решение: Как выбрать качественную светодиодную панель

  • Выберите панель стоимостью не менее 15–30 фунтов стерлингов или 30–50 фунтов стерлингов для более высокого уровня.Когда речь идет о светодиодных панелях, цена означает качество. Панели стоимостью менее 12 фунтов стерлингов станут желтыми, покоробятся или деформируются намного быстрее.
  • Избегайте панелей, на которые предоставляется только двухлетняя гарантия. Гарантия на них составляет всего два года, потому что они не рассчитаны на длительный срок службы! Панели хорошего качества прослужат дольше.
  • Выберите панель со световодной пластиной из акрила (PMMA) или метилстирола (MS).
  • Выберите панель с порошковым покрытием, а не краской.
  • Ищите хорошо сконструированный каркас.
  • Выберите проверенный бренд. Их много, вот лишь некоторые из наших любимых:
    • Britesource
    • Philips
    • Osram
    • Toshiba
  • Поговорите с компанией, продающей светодиоды, и спросите их о качестве светодиодных панелей, которые они продают. Проверенная компания сможет дать совет. Если с компанией, у которой вы собираетесь совершить покупку, сложно связаться, пересмотрите вариант покупки у нее.
  • Посмотрите отзывы
  • Заменить панели низкого качества на панели более высокого качества.Сохранение существующих панелей низкого качества будет означать, что существующие проблемы сохранятся. Высококачественные светодиодные панели, в которых драйверы, оптика и светодиоды работают на оптимальном уровне, могут снизить эксплуатационные расходы на 25% по сравнению с более дешевыми панелями.

Метилстирол — лучший материал для световодной пластины (LGP)

Есть несколько незначительных признаков качества, таких как панель, которая покрыта порошковым покрытием, а не краской, и хорошо сконструированная рама, однако реальный маркер качества сводится к материалу, из которого изготовлена ​​световодная пластина.

Для изготовления LGP обычно используются три материала:

Мы рекомендуем выбирать LGP из MS.

PMMA имеет лучшее светопропускание и долговечность, но он также и самый дорогой — это качественный продукт, но не самый доступный.

PS обеспечивает хорошую передачу, но со временем имеет тенденцию желтеть из-за износа и воздействия тепла. Это хорошо известная проблема в отрасли, и часто именно поэтому на эти панели предоставляется гарантия всего 2 года.Со временем они также могут искривляться или деформироваться, потому что они недостаточно прочны, чтобы выдерживать нормальное тепловое воздействие. Это самый дешевый вариант из трех, но мы считаем его некачественным.

MS представляет собой комбинацию PMMA и PS. Он обеспечивает очень хорошее светопропускание, а также долговечен, но по более низкой цене является наиболее экономичным решением.

Проблемы с ранним выходом из строя светодиодных панелей

Обзор

Светодиоды

невероятно популярны, потому что, как известно, они служат намного дольше, чем стандартные галогенные или люминесцентные лампы.Некоторые светодиоды могут прослужить более 15000 часов, а это означает, что они должны прослужить невероятно долго. Такая долговечность делает светодиоды рентабельными и экологически безопасными.

Если ваша светодиодная панель выходит из строя раньше, это означает, что возникла проблема.

Проблема

  • Светодиодная панель не прослужит ожидаемое количество времени

Решение: исправить высокие температуры

  • Светодиоды работают при гораздо более низкой температуре, чем галогенные лампы
  • Светодиоды плохо переносят высокие температуры
  • Убедитесь, что для ваших светодиодов достаточно места для вентиляции (совет см. Выше).
  • Убедитесь, что ваши панели не находятся рядом с источниками сильного тепла
  • Старайтесь избегать использования комбинации люминесцентных и светодиодных панелей в одной комнате

Связанное содержимое

Вы можете узнать больше о том, что такое светодиодные панели и как они работают, в нашем Руководстве по светодиодным панелям.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *