Формула освещенности – Единица измерения света и формула расчета освещенности помещения

Содержание

Что такое освещенность, цветовая температура и яркость света

Трудно встретить человека, который не разбирался бы в мерах длины, площади, объема, веса. Не вызывает сложностей исчисление времени, определение температуры. Но вот если спросить кого-нибудь о фотометрических величинах, то в большинстве случаев внятного ответа ожидать не приходится. А между тем, с освещением, естественным или искусственным, мы живём в постоянном контакте. Значит, надо научиться и его оценивать каким-то образом.

Освещенность это…Освещенность это…

Безусловно, такая оценка производится всегда и всеми, но чаще всего – чисто на уровне субъективного восприятия: достаточно света или нет. Однако, подобная «градация» именно что субъективная, и может давать существенные ошибки. Последствия таких некорректных оценок нельзя недооценивать — и недостаточность освещения, и его избыточность негативно влияют и на органы зрения человека, и на его психоэмоциональное состояние.

А между тем, существует специальная величина – освещенность, значение которой регламентируется законодательными актами в области строительства и санитарии. То есть освещенность это как раз тот критерий качества, позволяющий правильно оценить организацию системы освещения помещений. В этой статье мы как раз и поговорим об этом параметре и связанными с ним другими фотометрическими величинами, посмотрим, как это можно использовать в практическом приложении.

Какие фотометрические величины используются при расчетах освещения

По укоренившейся привычке многие продолжают считать, что оценку освещенности помещения можно производить в единицах измерения энергии – ваттах. Такое заблуждение легко объяснимо – в наследство от времен полного господства ламп накаливания нам остался этот устойчивый стереотип.

Лампы накаливания выпускались различной потребляемой мощности – 15, 25, 40, 60, 75, 100, 150 и более ватт. И каждый хозяин дома или квартиры на собственном опыте знал, что для нормального освещения в гостиной, например, он должен ввернуть в люстру три лампочки по 60 ватт, для настольной лампы достаточно будет «сороковки», в кухню нужно приобрести стоваттную и т.д.

Кстати, явным наследием этого до сих пор остаётся практика, применяемая производителями ламп – указывать на их упаковке, кроме потребляемой мощности, светоотдачу, выраженную в эквиваленте мощности старых ламп накаливания.

Такие аналогии с лампами накаливания той или иной мощности помогают простому человеку мысленно оценить ожидаемую светоотдачу. Но никакой прямой связи здесь нет.Такие аналогии с лампами накаливания той или иной мощности помогают простому человеку мысленно оценить ожидаемую светоотдачу. Но никакой прямой связи здесь нет.

Так что запомним первое – в ваттах ни световой поток, излучаемый лампой, ни получающаяся от нее освещенность поверхности не измеряются. Указанные на корпусе прибора ватты – это количество потребленной лампой электроэнергии, которая путем тех или иных физических преобразований превращается в видимый свет.

Некоторые люди старшего поколения вообще уверены, что световая отдача осветительного прибора измеряется в свечах. Кстати, это не столь далеко от истины, а почему – станет понятно ниже. Но это опять же – никак не освещенность.

Так что имеет смысл рассмотреть основные фотометрические величины по порядку, от источника света к освещаемой поверхности. Сразу оговоримся – тема эта довольно сложная для восприятия неподготовленным человеком. Поэтому постараемся максимально упростить изложение, не будем его перегружать громоздкими формулами. Так, чтобы просто сложилось общее понимание вопроса.

Световой поток

Свет, как известно, имеет волновую природу. В определённом диапазоне длин волн электромагнитное излучение воспринимается органами зрения человека, то есть становится видимым. Примерные границы этого диапазона – от 400÷450 нм (красная часть спектра) до 630÷650 (фиолетовая область).

Помните, как в нас в детстве учили запоминать цвета радуги – «Каждый охотник…» и т.д.? А ведь радуга – это наглядный природный пример спектрального разложения света.Помните, как в нас в детстве учили запоминать цвета радуги – «Каждый охотник…» и т.д.? А ведь радуга – это наглядный природный пример спектрального разложения света.

Электромагнитные волны являются переносчиком энергии – именно энергия Солнца обеспечивает жизнь на Земле. Но отвлечёмся от астрономических категорий, вернемся к обычным источникам света.

Итак, раз источник излучает свет, то это означает излучение и перенос определённой энергии. Количество этой лучистой энергии (We), перенесенной в единицу времени, носит название лучистого потока (Фе). И измеряется он в ваттах.

Однако, речь идет об освещении, то есть восприятии цвета человеческим зрением. И оценить количество энергии «на глаз» — это сразу заложить большую погрешность. Например, два источника, обладающих равной мощностью излучения, но с разным цветом свечения, будут восприниматься глазом тоже по-разному.

Чтобы унифицировать этот параметр, введена специальная физическая величина – световой поток (Ф). Это тоже показатель мощности лучистого потока, но только той его части, что воспринимается среднестатистическим здоровым человеческим глазом.

Измеряться световой поток  также может в ваттах (это, скорее, энергетический показатель), или в люменах (световой показатель). На практике обычно применяются люмены.

Для точного значения одного люмена в качества эталона взято излучение из центральной, зеленой части видимого спектра, длиной 555 нм.

Итак, принято, что лучистый поток с длиной волны 555 нм величиной 1 ватт соответствует 683 люменам. Почему такой странный коэффициент? Просто окончательное утверждение этой единицы в системе СИ состоялось в 1979 году, а первые опыты по фотометрии с введением показателя светового потока начали производиться задолго до этого. В ту пору, когда электрического освещения еще не существовало, и более-менее стабильным, «эталонным» источником света служила обычная свеча. И сложившееся соотношение энергетического ватта и светового люмена было со временем пересчитано  и перешло до наших дней.

Еще раз напомним — упомянутые выше ватты, которыми также может измеряться световой поток, не имеют никакого отношения к тем, что указаны на упаковке лампы. Там показывается потребление светильника, то есть то количество энергии, которое он «заберет» из сети. Нас же должна больше волновать его энергетическая световая отдача – какое количество видимой лучистой энергии он «выдаст». Так что гораздо правильнее будет при выборе лампы обращать внимание не на эфемерные сравнительные аналогии в ваттах, а на четко указанное значение светового потока в люменах.

Ищите на упаковке лампы значение ее светового потока в люменах.
Ищите на упаковке лампы значение ее светового потока в люменах.

Световая отдача

Это – очень интересная в практическом плане величина, так как она, по сути, характеризует эффективность источника света. Важно выбирать лампу не исходя из ее потребляемой электрической мощности, а из того, как эта мощность расходуется при преобразовании в световую энергию.

Итак, величина светоотдачи показывает, какой световой поток вырабатывается лампой при преобразовании одного ватта затраченной энергии. Понятно, что и измеряется она в люменах на ватт (лм/Вт).

Преобразование одного вида энергии в другой производится по-разному. Например, в привычных лампах накаливания применен резистивный принцип – свечение вызывает раскаленная спираль с большим электрическим сопротивлением. Понятно, что это сопровождается огромными тепловыми потерями. Более эффективными являются современные осветительные приборы, основанные на принципах свечения полупроводниковых матриц при пропускании тока или специально подобранных газовых смесей при их ионизации. Здесь на ненужный нагрев расходуется значительно меньше затраченной энергии.

Принципы преобразования электрической энергии в световой поток у разных ламп – различные. Отсюда и разница в их энергоэффективности, то есть в показателях светоотдачи.Принципы преобразования электрической энергии в световой поток у разных ламп – различные. Отсюда и разница в их энергоэффективности, то есть в показателях светоотдачи.

Выше уже говорилось, что пик нормального восприятия света человеческим глазом приходится на длину волны в 555 нм. И в идеальных условиях, при полном преобразовании электрической энергии в монохроматический световой поток указанной длины волны, то есть при совершенном отсутствии потерь, теоретически возможно добиться светоотдачи в 683 лм/Вт. Это называется идеальным источником света, которого в природе, увы, не существует.

В таблице ниже приведены сравнительные характеристики для наиболее применяемых в быту ламп – накаливания, люминесцентных и светодиодных. Хорошо видно, насколько экономичнее становится использование современных источников света, то есть как возрастает показатель светоотдачи.

(Значения в таблице указаны примерные. В любой из категории ламп могут быть отклонения в ту или иную сторону – это зависит от качества конкретной модели. Но общую картину таблица представляет довольно наглядно).

Световой поток, ЛмЛампы накаливанияЛюминесцентные лампыСветодиодные лампы
Потребляемая
мощность, Вт
Светоотдача,
лм/Вт
Потребляемая
мощность, Вт
Светоотдача,
лм/Вт
Потребляемая
мощность, Вт
Светоотдача,
лм/Вт
2502012.55÷7 41.72÷3100
400401010÷1336.44÷588.9
7006011.715÷1645.26÷1087.5
900751218÷2047.410÷1281.8
12001001225÷3043.612÷1588.9
18001501240÷504018÷2094.7
250020012.560÷8038.525÷3090.9

Конкретное значение светоотдачи не всегда, но все же указывается некоторыми производителями ламп на их упаковке. Это может быть надпись «светоотдача» или же «Lighting effect». Если нет, то его несложно определить и самому, разделив паспортный световой поток на указанную потребляемую мощность.

На упаковках некоторых ламп производитель сразу указывает и световую отдачу прибора.
На упаковках некоторых ламп производитель сразу указывает и световую отдачу прибора.

Совершенно очевидно, что из всех ламп, применяемых в бытовых условиях, наилучшими показателями светоотдачи обладают светодиодные приборы – у них этот показатель доходит до 100 лм/Вт, и даже может быть несколько выше. Но прогресс не стоит на месте, и разработчики заявляют о скором выходе в серийное производства ламп со светоотдачей порядка 200 лм/Вт. Но до идеального источника еще ой как далеко…

Кстати, ученым удалось оценить световую отдачу Солнца, и она – не столь высока: примерно 93 лм/Вт.

Про световую отдачу источников света различного типа рассказывается и в предлагаемом видеосюжете:

Видео: Что такое световая отдача, и каково практическое применение этого параметра?

Сила света

В физике есть понятие точечного источника света – он распространяет излучение совершенно одинаково во всех направлениях. На практике такое если и бывает, то крайне редко, да и то – с некоторым упрощением понятий. На деле световой поток в разные стороны бывает неравномерен. И чтобы оценить, скажем так, его пространственную плотность, оперируют величиной силы света. А чтобы разобраться, что это такое, придется вспомнить еще и понятие телесного угла.

Начнем именно с геометрии. Итак, телесный угол – это часть пространства, объединяющая все лучи, исходящие из одной точки и пересекающую определенную поверхность (ее называют стягивающей поверхностью). В фотометрии, понятно, это освещаемая поверхность. Измеряется этот угол в особых величинах – стерадианах (ср), и обычно в формулах обозначается символом Ω.

Схема, помогающая понять, что же такое телесный угол.Схема, помогающая понять, что же такое телесный угол.

Величина телесного угла – это отношение площади стягивающей поверхности к радиусу сферы.

Ω = S/R²

То есть если взять, к примеру, сферу с радиусом один метр, то телесный угол в один стерадиан «вырежет» на ее поверхности пятно площадью один квадратный метр.

Для чего это знать? Дело в том, что понятие силы света напрямую связано с телесным углом. А конкретно – световой поток в один люмен, распространяющийся в пространстве, ограниченном телесным углом в один стерадиан, обладает силой света в одну канделу. Математически эта зависимость выглядит так:

I = Ф/ Ω

А если говорить об энергетической силе света, равной одной канделе, то это 1/683 Вт/ср.

Кстати, кандела – это одна из семи основных величин системы СИ.

Кандела в буквальном переводе с латинского означает свечу. Это как раз тот «пережиток прошлого», о котором уже говорилось выше, но зато он очень наглядно показывает всю взаимосвязь величин.

Поясним на рисунке:

Рисунок, хорошо демонстрирующий взаимосвязь основных фотометрических величинРисунок, хорошо демонстрирующий взаимосвязь основных фотометрических величин

Итак, имеется точечный источник света – свеча. Ее горящий фитиль излучает свет силой в одну канделу (поз. 1).

В пространстве, ограниченном телесным углом, равным одному стерадиану (поз. 2), будет при этом распространяться световой поток (поз. 3), равным одному люмену. На некотором расстоянии от источника (радиусе сферы – поз. 4) этот поток освещает поверхность определённой площади (поз. 5). Забегая вперёд сразу скажем, если площадь равна одному квадратному метру, то что при таких условиях в этом «световом пятне» обеспечивается освещенность, равная одному люксу (лк).

Если вернуться к свече, как к эталонному источнику света, то несложно рассчитать и ее общий световой поток. Полная сфера имеет телесный угол, равный 4π, то есть, с небольшим округлением, он равен 12.56 стерадиан. А это значит, что свеча, излучающая во все стороны свет силой в одну канделу, дает общий световой поток, равный 12.56 люмен.

Интересно, что еще не столь давно излучающую способность источников света и оценивали «в свечах». Например, говорили – нужна «лампочка на шестьдесят свечей». Продавцы и покупатели прекрасно понимали друг друга – приобреталась лампочка накаливания на 60 Вт, хотя, по сути, эти величины никак между собой в данном случае, с точки зрения физики, не связаны. И что забавно – это было близко к истине.

Давайте посмотрим – 60 свечей по 12,56 люмен дадут в сумме 753,6 люмена. Заглянем в таблицу выше – лампа накаливания с потреблением 60 ватт обладает световым потоком в примерно в 700 люмен. Совсем рядышком!

Но, повторимся, правильна оценка источников света все же должна осуществляться в люменах.

Яркость света

Стоит рассмотреть еще один параметр – это яркость источника света. Дело в том, что с точечными источниками дело иметь практически не приходится. То есть большинство источников обладает какой-то определенной излучающей поверхностью. И при равном световом потоке, но отличающейся площади излучения света, зрением это будет восприниматься по-разному.

 

Два источника света с равными показателями излучаемой силы света и светового потока, расположенные на одинаковом расстоянии от человека, но имеющие разные размеры, будут восприниматься зрением как более яркий и более тусклый.Два источника света с равными показателями излучаемой силы света и светового потока, расположенные на одинаковом расстоянии от человека, но имеющие разные размеры, будут восприниматься зрением как более яркий и более тусклый.

То есть, по сути, яркость – эта сила света, излучаемого с определенной единицы площади видимой поверхности источника света.

L = I/S

Понятно, что единицей яркости будет кандела на квадратный метр.

Это важная величина, так как органы зрения, если смотреть на источник света, реагируют, скорее, не на силу света как таковую, а именно на яркость. При большой ее величине (свыше 160 тыс. кандел на квадратный метр) свет может вызвать раздражение глаз, болезненные ощущения, слезливость. Поэтому производители осветительных приборов и выпускают лампы с матовыми колбами. Практически без потери светового потока, излучение идет не конкретно от волоска накаливания или светодиода с их небольшими площадями, а с куда большей по площади поверхности колбы. Такое свечение значительно безопаснее для сетчатки глаза, воспринимается зрением намного комфортнее.

Освещенность поверхности

Вот, наконец, добрались мы и до освещенности. Эту величину можно считать самой прикладной, так как именно освещенностью того или иного участка оценивается общая работа осветительных приборов.

Образно выражаясь, освещенность (Е) – это поверхностная плотность светового потока (Ф), распределенного на той или иной площади (S). Если подходить с некоторым упрощением, то это можно выразить такой формулой:

Е = Ф/ S

Как мы видели выше, один люмен светового потока на площади в один квадратный метр создает освещенность, равную одному люксу (лк).

Зависит освещенность от целого ряда факторов, если даже не принимать во внимание собственные характеристики источника света.

  • Во-первых, чем дальше расположен источник от освещаемой поверхности, тем больше площадь «светового пятна» (вспоминаем конус телесного угла). То есть световой поток распределяется по большему участку. Причём, как мы помним, эта зависимость – квадратичная. То есть при изменении расстояния вдвое, освещённость снизится в четыре раза, втрое – в девять раз, и т.п.

Если рассматривать точечный источник, то можно применить формулу Кеплера:

Е = I / r²

О значении входящих в формулу величин повторяться не будем – они приведены выше.

  • Во-вторых, показанная выше формула Кеплера справедлива лишь для поверхности, перпендикулярной направлению светового потока. На деле, безусловно, так бывает нечасто. То есть в том случае, когда освещаемая плоскость расположена под каким-то углом α к направлению потока, приходится делать поправку и на это:

Е = (I / r²) × cos α.

Вспомните – когда вам необходимо максимально ярко осветить поверхность, вы направляете фонарь перпендикулярно к ней. Но если его расположить под углом – освещенность резко упадет, так как свет как будто «размазывается» по поверхности.

  • В-третьих, освещенность конкретного участка зависит еще и от его, так сказать, окружения. Дело в том, что большинство поверхностей не поглощают весь попадающий на них свет, а в значительной степени отражают его. И тем самым сами становятся своеобразными источниками света.
Подсвеченные поверхности потолка или стен сами начинают выступать в роли источников светаПодсвеченные поверхности потолка или стен сами начинают выступать в роли источников света

Вспомним что говорилось в разделе про яркость свечения. Да, действительно, яркость таких подсвеченных участков бывает не особо высока. Но зато излучение идет с приличной площади, и в итоге создается весьма значимый световой поток.

А яркость такой подсвеченной поверхности зависит и от ее освещенности, и от диффузно-отражающей способности, которая имеет отдельное название – альбедо. Чем выше это альбедо, тем ярче свечение. А раз ярче – то и больше изучаемый «вторичный» цветовой поток.

Несколько наглядных примеров отраженного света. Лист белой бумаги при освещённости всего в 50 люкс будет иметь яркость в 15 кд/м². Свечение полной луны (а это, как мы знаем – отраженный от ее поверхности солнечный свет) характеризуется яркостью в 2500 кд/м². А поверхность чистого белого снега в солнечный день достигает яркости до 3000 кд/м². Немало!

Это явление очень широко используется при организации освещения и в дизайнерском оформлении комнат. Выпускаются целые модельные линейки светильников, специально рассчитанных на направленность в сторону стен или потолка, то есть «в работу» по общему освещению помещения включаются именно подсвеченные участки. Этот же эффект применяется при создании многоярусных потолочных конструкций со светодиодной ленточной подсветкой.

Несложно догадаться, что освещенность помещения будет зависеть и от выбранного стиля его отделки. Одна и та же лампочка, скажем, в белой комнате даст куда большую освещенность, чем в выкрашенной в темных тонах.

Так как конечным ожидаемым результатом работы осветительных приборов является создание комфортных и безопасных для здоровья показателей освещения в помещении, именно значение освещенности поверхностей и подлежит регламентации. В законодательных актах (СНиП и СанПиН) указывается, какая освещенность должна достигаться в различных помещениях, в зависимости от их предназначения.

Так, действующим СНиП 23-05-95 в его актуализированной редакции (Свод Правил СП 52.13330.2011 ) указанные следующие нормативные показатели освещенности для жилых домов:

Тип (предназначение) помещенияНормы освещенности в соответствии с действующими СНиП, люкс
Жилые комнаты150
Детские комнаты200
Кабинет, мастерская или библиотека300
Кабинет для выполнения точных чертежных работ500
Кухня150
Душевая, санузел раздельный или совмещенный, ванная комната50
Сауна, раздевалка, бассейн100
Прихожая, коридор, холл50
Вестибюль проходной30
Лестницы и лестничные площадки20
Гардеробная75
Спортивный (тренажерный) зал150
Биллиардная300
Кладовая для колясок или велосипедов30
Технические помещения – котельная, насосная, электрощитовая и т.п.20
Вспомогательные проходы, в том числе на чердаках и в подвалах20
Площадка у основного входа в дом (крыльцо)6
Площадка у запасного или технического входа4
Пешеходная дорожка у входа в дом на протяжении 4 метров4

При этом оценка освещенности должна вестись на горизонтальной плоскости на высоте пола. Для лестниц – как на высоте пола, так и на переходных площадках и ступенях.

Для оценки уровня освещенности применяются специальные приборы – люксметры. Они состоят из фотоприемника со сферической поверхностью датчика, и блока-преобразователя с аналоговой (стрелочной) или цифровой индикацией показаний.

Компактный люксметр – прибор для измерения освещенностиКомпактный люксметр – прибор для измерения освещенности

Понятно, что люксметр – это узкопрофессиональный дорогостоящий прибор, которым пользуются специалисты, и иметь который дома совершенно не требуется. Но разбираться в вопросах основных фотометрических величин – не помешает любому хозяину дома или квартиры.

Зачем? — могут спросить многие. Да хотя бы для того, чтобы суметь самостоятельно спланировать использование тех или иных источников света, чтобы добиться нужной освещённости. Ведь от нее напрямую зависит здоровье и общее настроение всех членов семьи.

О практическом положении этих знаний как раз пойдет речь в следующем разделе публикации.

Цветовая температура

Чтобы закончить разговор об основных характеристиках источников света, необходимо остановиться и на их цветовой температуре.

При совершенно равных показателях излучаемого светового потока одна лампочка может давать тёплый желтоватый цвет, другая – белый нейтральный, а третья, например – светиться холодным оттенком синевы. Как их различить по этому параметру? Для этого разработана специальная шкала цветовой температуры.

Сразу оговоримся – здесь нет никакой связи между температурой воздуха в помещении или температурой нагрева самого источника света. Просто в качестве эталона взято свечение физического тела, разогретого до больших температур.

Любое тело, если его температура выше абсолютного нуля, само по себе является источником инфракрасного излучения. По мере роста температуры, длина волны этого излучения меняется, и в определенный момент доходит до видимого участка спектра.

Это, наблюдал, наверное, каждый – металлический пруток при нагревании сначала краснеет, затем начинает светиться ярко-красным светом, можно его раскалить, как говорят, и «добела». А при выполнении электросварочных работ, когда температура дуги достигает очень высоких показателей, плавящийся метал может приобрести и голубой оттенок.

Именно эта градация и положена в основу шкалы цветовой температуры. Она указывается в Кельвинах – а по шкале можно увидеть, какое свечение будет излучать лампа.

Графических изображений температурной цветовой шкалы – очень много. Например, довольно наглядным видится вот такое.Графических изображений температурной цветовой шкалы – очень много. Например, довольно наглядным видится вот такое.

Эта цветовая температура обычно указывается в маркировке ламп. Иногда она сопровождается и текстовым пояснением, или даже миниатюрной шкалой, показывающей, в какой области видимого спектра будет светиться лампа.

На упаковке лампы или в нанесенной на цоколе или колбе маркировке должна указываться цветовая температура излучаемого света.На упаковке лампы или в нанесенной на цоколе или колбе маркировке должна указываться цветовая температура излучаемого света.

Выбор ламп по их цветовой температуре зависит от того, какую обстановку планируется поддерживать в помещении. Безусловно, здесь будет играть немалую роль и субъективный фактор – то есть предпочтения хозяев. И готовых «рецептов» на этот счет нет. Но в таблице ниже приведен рекомендательный обзор ламп по их свечению. Возможно, это кому-то поможет при выборе.

Цветовая температураЗрительное восприятиеВозможные определения создаваемой атмосферыХарактерные области применения
2700 КТеплый светОткрытая, теплая, дружеская, уютная, расслабляющаяЖилые комнаты, вестибюли гостиниц, небольшие бутики, рестораны, кафе
3000 КБелый светИнтимнаая, дружеская, располагающая к общениюЖилые комнаты, библиотеки, магазины, офисы
3700 КНейтральный светДружеская, располагающая к общению, дающая ощущение безопасности, повышающая внимательностьМузеи и выставочные залы, книжные магазины, офисы
4100 КХолодный светСпособствующая концентрации вниимания, чистая, ясная, продуктивнаяУчебные помещения, конструкторские бюро, офисы, больгицы, крупные магазины, вокзалы
5000 — 6500 КХолодный дневной светТревожная, излишне яркая, подчеркивающае цвета, стерильная, со временем — утомляющаяМузеи, ювелирные магазины, некоторые кабинеты в медицинских учреждениях

Проведение самостоятельных расчетов.

Как и было обещано, в этом разделе публикации будет рассмотрен алгоритм проведения расчета освещенности. Точнее, если быть более корректным, расчет имеет как раз обратную направленность. То есть нормальное значение освещенности нам уже известно. И вычисления должны нас привести к результату, сколько ламп и с каким световым потоком потребуется для его обеспечения.

Общая формула для проведения расчетов

Итак, начнем с той формулы, которая будет у нас служить основой расчетов.

Fл = (Ен × Sп × k × q) / (Nc × n × η)

— это световой поток лампы, которую требуется установить в светильник. То есть эта та самая величина, которая поставлена целью проведения вычислений.

Ен — нормативная освещённость поверхностей, в зависимости от типа помещения. Она соответствует параметрам, установленным СНиП и приведенным выше в таблице.то есть отталкиваемся именно от нормативного значения.

Sп — площадь освещаемой поверхности. Обычно здесь фигурирует площадь комнаты, если рассчитывается общее освещение. Но если целью ставится расчет освещенности локального участка (например, рабочей зоны), то подставляется именно площадь этой зоны.

k — корректирующий коэффициент, который часто называют коэффициентом запаса. Его введением учитывается сразу несколько обстоятельств, влияющих на световую отдачу ламп. Во-первых, многие лампы со временем начинают растрачивать свой излучающий потенциал, попросту говоря – тускнеть. Во-вторых, на излучающую способность могут влиять и некоторые внешнее факторы – это запыленность помещения или, скажем, высокая концентрация пара, препятствующая свободному распространению световых лучей.

Коль речь у нас идет о жилых помещениях, где плотный пар стоять не должен, а пыль удаляется регулярными уборками, то вторую группу факторов можно сбросить со счетов. А по постепенной потере излучающей способности коэффициент для разных типов ламп можно принять следующим:

— лампы люминесцентные (газоразрядные): 1.2;

— обычные лампы накаливания и «галогенки»: 1.1;

— лампы светодиодные: 1.0.

q — коэффициент, учитывающий неравномерность свечения некоторых типов ламп. Он принимается равным:

— для ламп накаливания и газоразрядных ртутных ламп: 1.2;

— для компактных люминесцентных ламп накаливания и светодиодных источников света: 1.1.

Переходим к знаменателю дроби.

Nc — количество осветительных приборов, планируемых к установке в помещении или в отдельной зоне, для которой проводится расчет.

n — количество рожков в планируемом к установке светильнике.

Наверное, понятно, что произведение последних двух величин показывает, какое же количество ламп планируется к установке. Например, устанавливается одна пятирожковая люстра. Тогда Nc =1, а n =5. Или планируется осветить помещение двумя приборами, каждый по три лампочки: Nc =2, а n =3, Но если освещение будет осуществляться одним прибором с одной лампой, что обе эти величины будут равны единице.

η — коэффициент использования светового потока. Эта поправочная величина учитывает множество факторов, касающихся как особенностей помещения, так и специфики планируемых к установке осветительных приборов.

Так как именно этот коэффициент пока что остается неизвестной величиной, с него и следует начать проведение расчётов.

Находим коэффициент использования светового потока

Эту величину можно назвать табличной эмпирической. Она зависит и от площади помещения, и от расположения светильника, и от основного направления светового потока, и от отделки поверхностей потока, стен и пола.

Прежде всего для входа в таблицу придется определить так называемый индекс помещений. Он учитывает размеры помещения, причём, именно в соотношении длины и ширины, так как в квадратной комнате и в вытянутой прямоугольной световой поток все же будет распространяться по-разному. И второе – он учитывает высоту расположения светильника над освещаемой поверхностью. Как мы помним – по требования СНиП оценка освещенности ведется по горизонтальной плоскости на уровне пола.

Важно – иногда путают высоту потолка в комнате с высотой установки светильника. А это все же не одно и то же! Например, осветительный прибор может быть закреплён на стене (бра), установлен на стойке или размещен на столе или тумбочке (торшер или настольная лампа), подвешен к потоку на определенном расстоянии от потолочной поверхности (люстра).

Формула, наверное, ни о чем не скажет. Лучше предложим воспользоваться для определения этого индекса помещения онлайн-калькулятором.

Калькулятор для определения индекса помещения.

Перейти к расчётам

Итогом расчетов станет какая-то дробная величина. Ее приводят в ближайшую сторону к следующим значениям: 0,5;  0,6;  0,7;  0,8;  0,9;  1,0;  1,1,  1,25;  1,5;  1,75;  2,0;  2,25;  2,5;  3,0;  3,5;  4,0;  5,0. Почему именно к ним? Да, четно говоря, просто потому, что именно такая градация принята в таблицах, расположенных ниже.

Таблицы для определения коэффициента использования светового потока

Для входа в таблицу необходимо будет еще оценить отражающую способность поверхностей в помещении (помните, говорилось о некотором альбедо, способствующим освещенности или, наоборот, приглушающим ее).

Отражающую способность поверхностей, в зависимости от цвета их отделки, можно принять следующую:

Оттенки интерьерной отделкиКоэффициент отражающей способности
Белый цвет70%
Светлые тона50%
Средние тона30%
Темные тона10%
Черный цвет0%

Для пользования таблицей следует сразу оценить отделку комнаты в порядке: потолок – стена – пол в процентах отражающей способности. Понятно, что здесь придётся проявить определённую сообразительность – с белым и черным цветов ясность есть, а вот с остальным необходимо подумать, отнести их больше к светлым, средним или темным тонам. Но для человека с нормальным восприятием цвета это не должно стать проблемой.

Следующим шагом следует определить тип светильника, планируемого к установке – предложено пять различных вариантов. Именно этот критерий поможет выбрать нужную таблицу. (все таблицы размещены в правом столбце. Изображения «кликабельны», то есть увеличатся до нормального размера при клике мышкой).

Ну и уже по этой выбранной  таблице, на основании всех собранных данных, находится коэффициент.

Просто для примера. Планируется к установке на потолочный поверхности подвесной светильник с плафоном, дающим преимущественное распространение света вниз. Находим устраивающую нас таблицу. Вот она:

Пример определения коэффициента использования светового потока по таблицеПример определения коэффициента использования светового потока по таблице

Проведённым ранее расчётом определили индекс помещения. Допустим, он равен 1.0.

По оценке отделки получаем следующее соотношение – 70% (белый потолок), 30% (темно-бежевые стены, которые можно отнести к средним тонам), 10% (темный, близкий к черному пол).

По этим значениям находим пересечение столбцов и строки (пример показан на иллюстрации), и получаем искомое значение коэффициента использования светового потока, равное 0,30.

Всё, теперь у нас есть уже все данные для проведения окончательного расчета. И для него можно, опять же, воспользоваться встроенным онлайн-калькулятором.

Калькулятор расчёта необходимого светового потока источников света

Перейти к расчётам

Полученное значение показывает, какой должен быть световой поток у ламп, которые обеспечат необходимую норму освещенности в помещении.

*  *  *  *  *  *  *

Что можно добавить напоследок?

  • Если расчет ведётся для какой-то ограниченной зоны, например, для подсветки рабочей области в мастерской или гараже, то и значения площади берутся только для нее. И расположение и тип светильников также – только те, которые будут освещать именно этот участок. То есть исходим из принципа автономности – рабочая зона должна быть нормально освещена даже при полностью выключенном общем освещении. Это же касается и других локальных участков – письменного стола, выделенного места для рукоделия в кресле под торшером и т.п.
  • Нормальная освещенность довольно часто в повседневной жизни выглядит избыточной. Например, человеку просто хочется побыть одному в полумраке, или просто для просмотра телепередач яркий свет не требуется. Значит, можно и нужно предусмотреть зональную дополнительную подсветку (на которую уже не будут распространяться санитарные нормы), или установить диммер, с помощью которого можно изменять излучаемый световой поток осветительных приборов.
  • В публикации уже не раз подчеркивалось, и проведение расчета – тому лишнее подтверждение, что определяющим критерием при выборе ламп для обеспечения требуемой освещенности должен являться именно световой поток. Но про потребляемую мощность тоже забывать не следует.

Дело в том, что многие светильники имеют ограничения по этому параметру. Например, в паспорте изделия указано, что максимальная суммарная мощность не должна превышать 60 ватт. Это может быть вызвано ограниченной термостойкостью пластиковых деталей светильника или малым сечением проводов, проложенных в нем. То есть и потребляемую мощность ламп также следует учитывать. Если же она получается выше допустимого значения, значит, придется подыскивать другой светильник.
Может случиться и так, что расчетный световой поток получился столь высоким, что таких ламп в ассортименте магазинов попросту нет. Значит, планируемое количество источников света — недостаточное. Придется рассматривать варианты с увеличением количества светильников, или же со светильниками с большим количеством рожков.

stroyday.ru

Светотехнические параметры и понятия. Часть 1. Справочная информация

Профессиональные светотехники и специалисты, работающие в области освещения, постоянно употребляют разные термины и определения, которые мало о чем говорят простому обывателю.

Чтобы было проще понимать, о чем идет речь, и что обозначают эти слова, мы подготовили список, объясняющий основные светотехнические термины и характеристики. Его не нужно учить наизусть, можно просто заходить на нужную страницу и освежать в памяти забытый параметр. Говорить «на одном языке» всегда проще.

Светотехнические параметры и понятия.

1 — Видимое и оптическое излучение

Весь окружающий нас мир образуется видимым излучением, сосредоточенным в полосе электромагнитных волн от 380 до 760 нм. К ней с одной стороны добавляется ультрафиолетовое излучение (УФ), а с другой инфракрасное (ИК).

УФ-лучи оказывают биологическое воздействия и применяются для уничтожения бактерий. Дозировано они используются для лечебного и оздоровительного эффектов.

ИК-лучи используются для нагрева и сушки в установках, так как в основном производят тепловое воздействие.

2 — Световой поток (Ф)

Световой поток характеризует мощность видимого излучения по воздействию на человеческое зрение. Измеряется в люменах (лм). Величина не зависит от направления. Световой поток — это самая важная характеристика источников света.

Например, лампа накаливания Е27 75 Вт имеет световой поток 935 лм, галогенная G9 на 75 Вт — 1100 лм, люминесцентная Т5 на 35 Вт — 3300 лм, металлогалогенная G12 на 70 Вт (теплая) — 5300 лм, светодиодная Е27 9,5 Вт (теплая) — 800 лм.

3 — Люмен

Люмен (лм) — это световой поток от источника света (лампы) при окружающей температуре 25°, измеренной при эталонных условиях.

 

4 — Освещенность (Е)

Освещенность — это отношение светового потока, подающего на элемент поверхности, к площади этого элемента. Е=Ф/А, где, А -площадь. Единица освещенности — люкс (лк).

Чаще всего нормируется горизонтальная освещенность (на горизонтальной плоскости).

Средние диапазоны освещенности: на улице при искусственном освещении от 0 до 20 лк, в помещении от 20 до 5000 лк, 0,2 лк в полнолуние в природных условиях, 5000 -10000 лк днем при облачности и до 100 000 лк в ясный день.

На картинке представлены: а — средняя освещенность на площади А, б — общая формула для расчета освещенности.

5 — Сила света (I)

Сила света — это пространственная плотность светового потока, ограниченного телесным углом. Т. е. отношение светового потока, исходящего от источника света и распространяющегося внутри малого телесного угла, содержащего рассматриваемое направление.

I=Ф/ω Единица измерения силы света — кандела (кд).

Средняя сила света лампы накаливания в 100 Вт составляет около 100 кд.

КСС (кривая силы света) — распределение силы света в пространстве, это одна из важнейших характеристик светотехнических приборов, необходимая для расчета освещения.

 

6 — Яркость (L)

Яркость (плотность света) — это отношение светового потока, переносимого в элементарном пучке лучей и распространяющемся в телесном угле, к площади сечения данного пучка.

L=I/A (L=I/Cosα) Единица измерения яркости — кд/м2.

Яркость связана с уровнем зрительного ощущения; распространение яркости в поле зрения (в помещении/интерьере) характеризует качество (зрительный комфорт) освещения.

В полной темноте человек реагирует на яркость в одну миллионную долю кд/м2.

Полностью светящийся потолок яркостью боле 500 кд/м2 вызывает у человека дискомфорт.

Яркость солнца примерно миллиард кд/м2, а люминесцентной лампы 5000–11000 кд/м2.

7 — Световая отдача (H)

Световая отдача источника света — это отношение светового потока лампы к ее мощности.

Η=Ф/Р Единица измерения светоотдачи — лм/Вт.

Это характеристика энергоэкономичности источника света. Лампы с высокой световой отдачей обеспечивают экономию электроэнергии. Заменяя лампу накаливания со светоотдачей 7–22 лм/Вт на люминесцентные (50–90 лм/Вт), расход электроэнергии уменьшится в 5–6 раз, а уровень освещенности останется тот же.

 

8 — Цветовая температура (Тц)

Цветовая температура определяет цветность источников света и цветовую тональность освещаемого пространства. Цветовая температура равна температуре нагретого тела (излучатель Планка, черное тело), одинакового по цвету с заданным источником света.

Единица измерения Кельвин (К) по шкале Кельвина: Т — (градусы Цельсия + 273) К.

 

Пламя свечи — 1900 К

Лампа накаливания — 2500–3000 К

Люминесцентные лампы — 2700 — 6500 К

Солнце — 5000–6000 К

Облачное небо — 6000–7000 К

Ясный день — 10 000 — 20 000 К.

9 — Индекс цветопередачи (Ra или CRI)

Индекс цветопередачи характеризует степень воспроизведения цветов различных материалов при их освещении источником света (лампой) при сравнении с эталонным источником.

Максимальное значение индекса цветопередачи Ra =100.

 

Показатели цветопередачи:

Ra = 90 и более — очень хорошая (степень цветопередачи 1А)

Ra = 80–89 — очень хорошая (степень цветопередачи 1В)

Ra = 70–79 — хорошая (степень цветопередачи 2А)

Ra = 60–69 — удовлетворительная (степень цветопередачи 2В)

Ra = 40–59 — достаточная (степень цветопередачи 3)

Ra = менее 39 — низкая (степень цветопередачи 3)

 

Ra он же CRI — color rendering index был разработан для сравнения источников света непрерывного спектра, индекс цветопередачи которых был выше 90, поскольку ниже 90 можно иметь два источника света с одинаковым индексом цветопередачи, но с сильно различающейся передачей цвета.

Комфортное для глаза человека значение CRI = 80–100 Ra

comments powered by HyperComments

www.o-svet.ru

Расчет освещенности помещений врукопашную / Habr

Постараюсь очень кратко и просто изложить метод ручного расчета освещения в помещениях, которому меня научили на курсе «Расчет освещения» школы светодизайна LiDS.

Какой должна быть освещенность
При планировании освещения, в первую очередь нужно определить соответствующую нормам целевую освещенность и посчитать общий световой поток, который должны давать светильники в помещении.
С нормативами определиться просто – либо ищем свой тип помещения в таблицах СанПиН 2.21/2.1.1/1278-03 «Гигиенические требования к естественному, искусственному и совмещенному освещению жилых и общественных зданий» и СП 52.13330.2011 «Естественное и искусственное освещение», либо соглашаемся с основным требованием по освещенности жилых помещений – 150лк или офисных помещений с компьютерами – 400лк.

Грубая оценка необходимого светового потока
По умолчанию расчет освещенности делается в программе Dialux. Но результат хотя бы приблизительно нужно знать заранее, чтобы сверить данные с оценкой «на глазок».
Как написано даже в Википедии, средняя освещенность поверхности — это отношение падающего на нее светового потока к площади. Но в реальном помещении часть светового потока светильника рабочих плоскостей не достигает, пропадая на стенах. Освещенность в помещении – это отношение общего светового потока светильников к площади помещения с поправочным коэффициентом «η».

Долю света «η», который доходит до рабочих поверхностей, можно оценить на глазок. В самом общем приближении для некоего очень среднего помещения с какими-то там светильниками до рабочих поверхностей доходит примерно половина света, а значит для очень грубой оценки можно использовать коэффициент η = 0,5.
Например, в комнате площадью 20м2 светильник со световым потоком 700лм (эквивалент лампы накаливания 60Вт) создаст освещенность Е = 0,5 × 700лм / 20м2 = 18лк. А это значит, что для достижения норматива в 150лк, нужно F = 700лм × (150лк / 18лк) =5800лм, или эквивалент 8-ми лампочек накаливания по 60Вт!
(Полкиловатта ламп накаливания на небольшую комнату! Понятно, почему нормы освещенности для жилых помещений гораздо ниже, чем для учреждений, и почему учреждения уже давно никто лампами накаливания не освещает.)

Более точный метод ручного расчета
Но так как помещения бывают с разными стенами, разной формы, с высокими или низкими потолками, поправочный коэффициент не обязательно равен 0,5 и для каждого случая свой: на практике, от 0,1 до 0,9. При том, что разница между η = 0,3 и η = 0,6 уже означает разбег результатов в два раза.
Точное значение η нужно брать из таблиц коэффициента использования светового потока, разработанных еще в СССР. В полном виде с пояснениями таблицы привожу в отдельном документе. Здесь же воспользуемся выдержкой из таблиц для самого популярного случая. Для стандартного светлого помещения с коэффициентами отражения потолка стен и пола в 70%, 50%, 30%. И для смонтированных на потолок светильников, которые светят под себя и немного вбок (то есть имеют стандартную, так называемую, «косинусную» кривую силы света).


Табл. 1 Коэффициенты использования светового потока для потолочных светильников с косинусной диаграммой в комнате с коэффициентами отражения потолка, стен и пола – 70%, 50% и 30% соответственно.

В левой колонке таблицы указан индекс помещения, который считается по формуле:

, где S — площадь помещения в м2, A и B — длина и ширина помещения, h — расстояние между светильником и горизонтальной поверхностью, на которой рассчитываем освещенность.
Если нас интересует средняя освещенность рабочих поверхностей (стола) в комнате площадью 20м2 со стенами 4м и 5м, и высоте подвеса светильника над столами 2м, индекс помещения будет равен i = 20м2 / ( ( 4м + 5м ) × 2,0м ) = 1,1. Удостоверившись, что помещение и лампы соответствуют указанным в подписи к таблице, получаем коэффициент использования светового потока – 46%. Множитель η = 0,46 очень близок к предположенному навскидку η = 0,5. Средняя освещенность рабочих поверхностей при общем световом потоке 700лм составит 16лк, а для достижения целевых 150лк, потребуется F = 700лм × ( 150лк / 16лк ) = 6500лм.
Но если бы потолки в комнате были выше на полметра, а комната была не «светлым», а «стандартным» помещением с коэффициентами отражения потолка, стен и пола 50%, 30% и 10%, коэффициент использования светового потока η составил бы (см. расширенную версию таблицы) η = 0,23, и освещенность была бы ровно вдвое меньше!

Проверяем расчеты в диалюксе
Построим в диалюксе комнату 4 × 5м, высотой 2,8м, с высотой рабочих поверхностей 0,8м и теми же коэффициентами отражения, что и при ручном счете. И повесим 9шт мелких светильников с классической косинусной диаграммой по 720лм каждый (6480лм на круг).


Рис. 1 Взятый для примера светильник Philips BWG201 со световым потоком 720лм, и его классическое «косинусное» светораспределение

Получится ли у нас средняя освещенность рабочих поверхностей в 150лк, как мы оценили вручную? Да, результат расчета в Dialux – 143лк (см. рис2), а в пустой комнате без мебели и человеческой фигуры – 149лк. В светотехнике же значения, различающиеся менее чем на 10% считаются совпадающими.


Рис. 2 Результат расчета в диалюксе – средняя освещенность рабочей поверхности (при коэффициенте запаса 1,0) составила 143лк, что соответствует целевому значению 150лк.


Рис. 3 Красивые картинки, в которые верят люди.

Заключение:
На грубую оценку примитивным методом по формуле E = 0.5 × F / S потребуется 1 минута времени, на уточнение коэффициента использования по таблицам – еще 3 минуты, на проект в диалюксе после некоторого обучения – около 20 минут и еще 20 минут, если хочется «навести красоту». Диалюкс выдает очень красивые картинки (см. рис. 3), которые стоят потраченного труда, потому что в них верят люди. Но по соотношению эффективности и трудозатрат оценка освещенности врукопашную вне конкуренции. Ручной счет прост, надежен и эффективен как саперная лопатка, дает уверенность и понимание.

habr.com

Измерение коэффициента использования светового потока и единицы светопотока

Мощность светового излучения, отдаваемая источником, – это поток света, который в состоянии воспринимать и оценивать человеческий глаз. Сила излучения разных источников света зависит от скорости электромагнитных волн. При выборе осветительных устройств часто возникает путаница в основных понятиях и обозначениях физических величин, характеризующих качество полученного освещения.

Оптический поток

Что такое световой поток

Определить свойства и качественные характеристики света от излучателя поможет такое понятие, как световой поток. При помощи этой величины вычисляют значение силы света, попадающего на единицу площади. Выполняя расчёты систем освещения, используют эту меру. Существуют требования к освещённости различных помещений. Проще говоря, поток света – это мощность, с которой излучение действует на какую-либо поверхность. Система единиц (СИ) обозначает поток буквой Ф, единицу измерения – 1 люмен (лм; lm).

Формула светового потока

Отличие освещенности от светового потока

Когда поток света в 1 лм падает на освещаемый участок площадью в 1 м², получается освещённость в 1 лк. Освещённость обозначают буквой Е, измеряют в люксах (лк). Её можно рассчитать по формуле:

Е = Ф/S, где:

  • Ф – светопоток, лм;
  • S – площадь поверхности, мм2.

Разницу между этими двумя физическими величинами понимают так: 1 люкс = 1 лм/м² освещаемой поверхности.

Световой поток и яркость – не одно и то же

Обращаясь к определению яркости L, измеряемой в канделах на квадратный метр (Кн/м²), видно, что это количество отражённого поверхностью света.

Яркость источника – это соотношение силы его свечения и величины этой силы, приходящейся на единицу площади поверхности источника, которую видит глаз. Сила света измеряется в канделах, потому яркость обозначается буквой L и измеряется в Кн/м².

Если наблюдать издалека два источника света, имеющих разную площадь поверхности, но с одинаковой силой света, то меньшая поверхность будет выглядеть ярче. Увеличение угла, под которым смотрят на световой источник, уменьшает воспринимаемую глазом яркость. Яркость максимальна, когда плоскость, в которой лежит излучатель, перпендикулярна глазу.

Величина яркости изменяется от вида поверхности:

  • светоотражающая поверхность увеличивает яркость;
  • светопоглощающая или рассеивающая поверхность уменьшают значение L.

Важно! Световые потоки – это вся энергия излучения источника, яркость – только та доля, которая поступает в глаз или на предмет. В частности, оптический проектор в своих технических характеристиках имеет обозначение не яркости, а величины СП.

Оптический проектор

Как и в чем измеряется

С появлением ламп, у которых используемая мощность в ваттах стала отличаться от яркости, возник вопрос, как измерить потоки света.

Единицы измерений светового потока 1 люмен – это свет, отдаваемый излучателем с силой в 1 кд в рамках телесного угла в 1 стерадиан. Обозначается буквой Ф.

Для информации. Лампа с нитью накаливания в 100 Вт выдаст поток света, равный 1000 лм. Чем ярче светильник, тем он больше люмен выдаст.

Небольшой перечень приборов, которые применяются для измерения:

  • портативный люксметр;
  • сферический фотометр;
  • люксметр-пульсметр.

Самостоятельно проверить соответствие параметров приобретённого осветительного прибора можно люксметром CEM DT-1300. При помощи этого прибора определяют уровень освещения поверхности или помещения. В комплекте – выносной сенсор, который регистрирует интенсивность потока. Дисплей отображает показания в единицах – Lux или FC. На выполнение измерения необходимо 1,5 секунды.

Что касается точности измерения световых параметров, то сложность заключается в том, что световое излучение – это поток, движущийся во всех направлениях. В лабораторных условиях используют сферические фотометры. Источник помещают в сферу, имеющую высокое оптическое использование измерения.

Интересно. Любая лампочка при излучении имеет пульсацию. Завышенный коэффициент пульсации при тусклом освещении вызывает усталость глаз и со временем снижает зрение. Измерить пульсацию осветительных приборов можно с помощью люксметра – пульсметра.

Типовое значение светового потока для источников света

При приобретении осветительных устройств стоит обращать внимание на СП, который будет излучаться. На самих приборах и на упаковке не всегда проставлены значения этой величины. Всё зависит от фирмы изготовителя и достоверности информации. Лампочки накаливания продаются в картонном поясе и с численным обозначением напряжения и мощности на колбе. Сколько люмен выдаёт лампа, не написано. Однако присутствует связь между Р (Вт) и Ф (Лм).

Стандартные значения Ф для осветительных элементов

Лампа накаливания, мощность, ВтСветодиодная
лампа, мощность, Вт
Люминесцентная
лампа, мощность, Вт
Световой поток,
Лм
202-35-7≈ 250
404-510-13≈ 400
608-1015-16≈ 700
7610-1218-20≈ 900
10012-1520-30≈ 1200

Распространённые источники света

К сведению. Получившие популярность светодиодные лампы, как показывает таблица, устанавливать выгодно. При низком, по сравнению с другими источниками, энергопотреблении они отдают света больше.

Освещенность и световой поток

Освещённость – это показатель силы светового потока, ложащегося на объект заранее известной площади. Связь между этими физическими величинами прослеживается при рассмотрении формулы:

Е=Ф/S, где:

  • Е – освещённость, Лк;
  • Ф – поток света, Лм;
  • S – площадь поверхности, м².

Из формулы видно, что освещённость зависит от силы светового потока.

Приступая к проектированию освещения в служебном помещении или квартире, сначала определяется необходимое значение освещённости рассматриваемой площади поверхности, потом выполняется расчёт необходимого светового потока:

Ф=Е*S.

Освещенность и требования стандартов

Там, где в дневное время недостаточно солнечного света, а также в вечерние и ночные часы, пользуются искусственными источниками. На предприятиях каждое рабочее место проходит аттестацию на соответствие допустимым санитарным нормам. В эти нормы укладывают и уровень освещённости. Неправильное освещение или его недостаток влияет на здоровье работников.

Основным нормативным документом, регламентирующим стандарты этого параметра, выступает СНИП 23-05-95 – это нормы, принятые к исполнению в 1995 году. Откорректированный его вариант в виде СП 52.13330.2011 от 20.05.2011 г. действует и поныне.

В перечне отражены границы степени освещённости для помещений:

  • производственных и складских;
  • рабочих площадок вне зданий;
  • жилых и общественных помещений;
  • уличного освещения населённых пунктов;
  • архитектурных подсветок;
  • витринной и рекламной иллюминации;
  • специального освещения.

Важно! Вреден как недостаток, так и избыток света. Яркие пятна люминесцентных реклам и витринных окон, выполненных с превышением требований, загрязняют световой фон улиц.

Освещённость

Ограничения на расчеты освещенности

При первичных расчётах учитываются следующие значения:

  • световой поток источников в светильнике;
  • нормируемая освещённость;
  • коэффициент запаса, зависящий от загрязнённости объекта и типа ламп;
  • поправочный коэффициент – отношение средней освещённости к освещённости нормируемой;
  • количество ламп;
  • коэффициент использования светового потока;
  • S помещения.

Теоретические расчёты содержат погрешность до 30%, значит, необходимы дополнительные измерения люксметром. При этом необходимо учитывать время суток и длительность пребывания человека в расчётном месте. Учитывается и конструктивное исполнение осветительного устройства: плафоны, крышки, стёкла. Защитные покрытия вносят искажения в характеристики ламп.

Особенности использования светодиодных ламп

Лидирующее место занимают LED-лампы, применяемые в современном освещении. В конструкцию входят от одного до нескольких светодиодов сразу. На первый взгляд это обычная лампа, но наличие электрической схемы и светоизлучающих элементов в сочетании с оптической системой обеспечивает иное качества излучения света. Изменяя количество светодиодов, можно менять мощность, применение разных оптических решений линзы позволяет фокусировать или рассеивать поток.

LED-лампы обладают рядом достоинств:

  • отсутствие ультрафиолетовой части спектра;
  • пульсация некоторых моделей менее 1%;
  • экономичность;
  • низкая теплоотдача;
  • срок службы 100 000 ч.;
  • минимальные размеры;
  • мгновенное включение в полноценный режим.

К недостаткам можно отнести следующие пункты:

  • стоимость;
  • спектр излучения требует тщательного подбора;
  • деградация кристалла;
  • нейтральный и холодный оттенки в некоторых случаях влияют на регуляцию сна.

Параметры дешёвых китайских изделий нарушают все допустимые нормы качества освещения. При выборе ЛЭД-ламп следует тщательно изучить характеристики и приобретать изделия проверенных производителей.

Светодиодные лампы

Нормы освещения помещений по использованию (СНиП)

Подробные нормы для различных зданий и объектов можно посмотреть в СП 52.13330.2011 от 20.05.2011 года. Для комфортного и безопасного освещения желательно знать, какие параметры должны иметь бытовые помещения. Некоторые из них отражены в таблице.

Таблица параметров

Грамотно подобранное искусственное освещение по своему спектру приближается к дневному солнечному свету. Знание физических характеристик светового потока позволяет правильно выбрать и разместить источники этого вида излучения для обеспечения комфортной среды обитания.

Видео

amperof.ru

Световой поток, освещенность, сила света

Любой кто начинает изучать характеристики светильников и отдельных видов ламп, обязательно сталкивается с такими понятиями как освещенность, световой поток и сила света. Что они означают и чем отличаются друг от друга?

Давайте попробуем простыми, понятными для всех словами, разобраться в этих величинах. Как они связаны между собой, их единицы измерения и каким образом все это дело можно замерить без специальных приборов.

Что такое световой поток

В старые добрые времена, основным параметром по которому выбирали лампочку в прихожую, на кухню, в зал, была ее мощность. Никто никогда и не задумывался спрашивать в магазине про какие-то люмены или канделы.

Сегодня с бурным развитием светодиодов и других видов ламп, поход в магазин за новыми экземплярами сопровождается кучей вопросов не только по цене, но и по их характеристикам. Одним из наиболее важных параметров является световой поток.

Говоря простыми словами, световой поток – это количество света, которое дает светильник.

Однако не путайте световой поток светодиодов по отдельности, со световым потоком светильников в сборе. Они могут существенно отличаться.

Надо понимать, что световой поток это всего лишь одна из множества характеристик источника света. Причем его величина зависит:

  • от мощности источника

Вот таблица этой зависимости для светодиодных светильников: 

А это таблицы их сравнения с другими видами ламп накаливания, люминесцентных, ДРЛ, ДНаТ: 

Лампочка накаливанияЛюминесцентная лампаГалогеннаяДНаТДРЛ

Однако есть здесь и нюансы. Светодиодные технологии до сих пор еще развиваются и вполне возможен вариант, когда светодиодные лампочки одинаковой мощности, но разных производителей, будут иметь абсолютно разные световые потоки.

Просто некоторые из них ушли более вперед, и научились снимать с одного ватта больше люмен, чем другие.

Кто-то спросит, для чего нужны все эти таблицы? Для того, чтобы вас тупо не обманывали продавцы и производители.

На коробочке красиво напишут:

  • светопоток 1000Лм
  • аналог лампы накаливания 100Вт
На что вы будете смотреть в первую очередь? Правильно, на то что более знакомо и понятно — показатели аналога лампы накаливания.

Но с такой мощностью вам и близко не будет хватать прежнего света. Начнете ругаться на светодиоды и технологии их несовершенства. А дело то оказывается в недобросовестном производителе и его товаре.

  • от эффективности

То есть, насколько эффективно тот или иной источник преобразует электрическую энергию в световую. Например, обычная лампа накаливания имеет отдачу 15 Лм/Вт, а натриевая лампа высокого давления уже 150 Лм/Вт. 

Получается, что это в 10 раз более эффективный источник, чем простая лампочка. При одной и той же мощности, вы имеете в 10 раз больше света!

Измеряется световой поток в Люменах – Лм.

Что такое 1 Люмен? Днем при нормальном свете, наши глаза больше всего чувствительны к зеленному цвету. К примеру, если взять два светильника с одинаковой мощностью синего и зеленого цвета, то для всех нас более ярким покажется именно зеленый.

Длина волны зеленого цвета равна 555 Нм. Такое излучение называется монохроматическим, потому что содержит в себе очень узкий диапазон.

Конечно, в реалии зеленый дополняется и другими цветами, чтобы в итоге можно было получить белый.

Но так как чувствительность человеческого глаза максимальна именно к зелени, то и люмены привязали к нему.

Так вот, световой поток в один люмен, как раз таки и соответствует источнику, который излучает свет с длиной волны 555 Нм. При этом мощность такого источника равняется 1/683 Вт.

Почему именно 1/683, а не 1 Вт для ровного счета? Величина 1/683 Вт возникла исторически. Изначально, основным источником света была обычная свечка, и излучение всех новых ламп и светильников как раз таки и сравнивались со светом от свечи.

В настоящее время эта величина 1/683 узаконена многими международными соглашениями и принята повсеместно.

Для чего нам нужна такая величина как световой поток? С ее помощью можно легко произвести расчет освещенности помещения.

Это напрямую влияет на зрение человека.

Отличие освещенности от светового потока

При этом многие путают единицы измерения Люмены с Люксами. Запомните, в люксах измеряется именно освещенность.

Как наглядно объяснить их разницу? Представьте себе давление и силу. С помощью всего лишь маленькой иголки и небольшой силы, можно создать высокое удельное давление в отдельно взятой точке.

Также и с помощью слабого светового потока, можно создать высокую освещенность в отдельно взятом участке поверхности.

1 Люкс – это когда 1 Люмен попадает на 1м2 освещаемой площади.

Допустим, у вас есть некая лампа со световым потоком в 1000 Лм. Внизу этой лампы стоит стол.

На поверхности этого стола должна быть определенная норма освещенности, чтобы вы могли комфортно работать. Первоисточником для норм освещенности служат требования сводов правил СП 52.13330

Для обычного рабочего места это 350 Люкс. Для места, где производятся точные мелкие работы – 500 Лк.

Данная освещенность будет зависеть от множества параметров. К примеру, от расстояния до источника света.

От посторонних предметов рядом. Если стол находится около белой стены, то и люксов соответственно будет больше, чем от темной. Отражение обязательно скажется на общем итоге.

Любую освещенность можно замерить. Если у вас нет специальных люксометров, воспользуйтесь программами в современных смартфонах.

Правда заранее приготовьтесь к погрешностям. Но для того, чтобы сделать навскидку первоначальный анализ, телефон вполне сгодится.

Расчет светового потока

А как узнать примерный светопоток в люменах, вообще без измерительных приборов? Здесь можно воспользоваться значениями светоотдачи и их пропорциональной зависимости к потоку.

  • для светодиодных ламп с матовой колбой — мощность лампы умножьте примерно на 80лм/Вт и узнаете сколько в ней люмен
  • для филаментных – умножайте мощность лампы на 100
  • энергосберегайки КЛЛ – на 60лм/Вт
  • ДРЛ = мощность * 58лм/вт

Безусловно, свет от разных источников распространяется не равномерно. Один светильник бьет очень узким пучком света, а другой наоборот максимально широким.

Но если сравнить их паспортные данные, оба они могут иметь одновременно одинаковое количество люмен.

Именно поэтому ориентироваться только на люмены, в корне не правильно.

Например, при покупке светильника через интернет, можно получить вовсе не то освещение, на которое изначально рассчитывали.

Еще раз запомните, световой поток показывает только КОЛИЧЕСТВО света, без учета направления его распространения.

Поэтому здесь еще нужно учитывать и другую характеристику – силу света. Что это такое?

Это величина светового потока разделенного на телесный угол, внутри которого он распространяется.

Проще говоря, если световой поток это количество света, то сила света – это его ”плотность”.

Измеряется сила света в канделах – Кд.

1 кандела – это 1 люмен распространяющийся в пределах конуса с углом в 65 градусов.

Чтобы визуально представить себе силу в 1 канделу, посмотрите опять же на обыкновенную свечу. Именно поэтому определение кандела произошло от латинского слова ”candela” – что в переводе означает свеча.

Кстати, теоретически человеческий глаз может увидеть свет от такого источника на расстоянии почти 50км!

Однако из-за кривизны поверхности земли, данное расстояние фактически сокращается до 5км.

svetosmotr.ru

Формула освещенности. Сила света . Световой поток. Источники света

Сегодня расскажем все о формуле освещенности для открытой местности и помещения, а также приведем величины светового потока при разных обстоятельствах.

Свеча и прялка

До широко распространенной электрификации источником света были солнце, луна, костер и свеча. Ученые уже в пятнадцатом веке умели создавать систему линз для усиления освещенности, но большинство людей работали и жили при свечах.

Некоторым было жалко тратить деньги на восковые источники света, или этот способ продлить день был просто недоступен. Тогда использовали альтернативные варианты топлива – масло, жир животных, дерево. Например, русские крестьянки средней полосы всю жизнь ткали лен при свете лучины. Читатель может спросить: «Почему это надо было делать ночью?» Ведь коэффициент естественной освещенности днем гораздо выше. Дело в том, что в светлое время суток у крестьянок было множество других забот. Кроме того, процесс ткачества весьма кропотлив и требует спокойствия. Женщинам было важно, чтобы никто не наступал на полотно, чтобы дети не путали нитки, а мужчины не отвлекали.

Но при такой жизни есть одна опасность: световой поток (формулу мы приведем чуть ниже) от лучины очень низкий. Глаза перенапрягались, и женщины быстро теряли зрение.

Освещение и обучение

Когда первоклассники идут в школу первого сентября, они с волнением ожидают чудес. Их захватывают линейка, цветы, красивая форма. Они интересуются, какой будет их учительница, с кем они будут сидеть за одной партой. И эти ощущения человек запоминает на всю жизнь.

Но взрослые, когда отправляют детей в школу, должны подумать о более прозаических вещах, нежели восторг или разочарование. Родителей и учителей заботит удобство парты, размер классной комнаты, качество мела и формула освещенности помещения. Эти показатели имеют нормы для детей всех возрастов. Поэтому школьники должны быть благодарны за то, что люди заранее продумали не только учебную программу, но и материальную сторону вопроса.

Освещение и работа

Недаром в школах проводятся проверки, в которых применяется формула расчета освещенности комнат для занятий. Дети десять или одиннадцать лет только и делают, что читают и пишут. Потом они вечером выполняют домашнее задание, снова не расставаясь с ручками, тетрадками и учебниками. После чего современные подростки еще и утыкаются в разнообразные экраны. В итоге вся жизнь школьника сопряжена с нагрузкой на зрение. Но школа – только начало жизненного пути. Дальше всех этих людей ждет вуз и труд.

Каждый вид работ требует своего светового потока. Формула расчета всегда учитывает, что человек делает по 8 часов в сутки. Например, часовщик или ювелир должен рассматривать мельчайшие детали и оттенки цветов. Поэтому рабочее место людей этой профессии требует больших и ярких ламп. А ботанику, который изучает растения тропического леса, наоборот, необходимо постоянно пребывать в полумраке. Орхидеи и бромелии привыкли к тому, что верхний ярус деревьев отбирает почти весь солнечный свет.

Формула

Подходим непосредственно к формуле освещенности. Ее математическое выражение выглядит так:

Eυ = dΦυ / dσ.

Рассмотрим выражение поближе. Очевидно, что Eυ – это и есть освещенность, тогда Φυ – это световой поток, а σ – малая единица площади, на которую поток падает. Видно, что Е — величина интегральная. Это значит, что рассматриваются очень небольшие отрезки и кусочки. То есть ученые суммируют освещенность всех этих маленьких участков, чтобы получить конечный результат. Единица освещенности – люкс. Физический смысл одного люкса – это такой световой поток, для которого на один квадратный метр приходится один люмен. Люмен, в свою очередь, – это весьма конкретная величина. Она обозначает световой поток, который излучает точечный изотропный источник (следовательно, свет монохроматический). Сила света этого источника равна одной канделе в телесный угол один стерадиан. Единица освещенности сложная величина, которая включает понятие «кандела». Физический смысл последнего определения таков: сила света в известном направлении от источника, который испускает монохроматическое излучение частотой 540·1012 Гц (длина волны лежит в видимой области спектра), причем энергетическая сила света равна 1/683 Вт/ср.

Понятия, связанные с освещенностью

Конечно, все эти понятия на первый взгляд похожи на сферического коня в вакууме. Таких источников не существует в природе. И внимательный читатель непременно задаст себе вопрос: «Зачем это нужно?» Но у физиков есть необходимость сравнивать. Следовательно, им приходится вводить некие нормы, на которые надо ориентироваться. Формула освещенности проста, но многое может быть непонятно. Раскроем это подробнее.

Индекс «υ»

Индекс υ означает, что величина не совсем фотометрическая. И связано это с тем, что человеческие возможности ограничены. Например, глаз воспринимает только видимый спектр электромагнитного излучения. Причем центральную часть этой шкалы (относится к зеленому цвету) люди видят гораздо лучше, чем краевые области (красный и фиолетовый). То есть фактически человек не воспринимает 100% фотонов желтого или голубого цвета. При этом существуют приборы, лишенные такой погрешности. Редуцированные величины, которыми оперирует формула освещенности (световой поток, например) и которые обозначаются греческой буквой «υ», имеют поправку на человеческое зрение.

Генератор монохроматического излучения

В самой основе, как уже было сказано выше, лежит количество фотонов с определенной длиной волны, которые испускаются в определенном направлении за единицу времени. Даже самый монохроматический лазер имеет некоторое распределение по длинам волн. И уж точно он должен на чем-то держаться. Значит, фотоны испускаются не во всех направлениях. Но в формуле фигурирует такое понятие, как «точечный источник света». Это очередная модель, призванная унифицировать некоторую величину. И ни один объект вселенной не может так называться. Итак, точечный источник света – это генератор фотонов, который излучает равное количество квантов электромагнитного поля во всех направлениях, его размер равен математической точке. Однако есть одна хитрость, она может сделать реальный объект точечным источником: если расстояние, на которое долетают фотоны, очень велико по сравнению с размерами генератора. Таким образом, наша центральна звезда Солнце – это диск, а вот далекие звезды – это точки.

Беседка, колодец, парк

Наверняка внимательный читатель замечал следующее: в яркий солнечный день открытая местность кажется освещенной гораздо сильнее, чем закрытая с одной стороны поляна или лужайка. Поэтому берег моря так манит: там всегда солнечно и тепло. А вот даже большая поляна в лесу – более темная и холодная. И неглубокий колодец освещен плохо в самый яркий день. Это потому, что если человек видит только часть небосвода, до его глаза долетает меньше фотонов. Коэффициент естественной освещенности так и вычисляется, как соотношение потока света от всего небосвода к видимому участку.

Круг, овал, угол

Все эти понятия имеют отношение к геометрии. Но сейчас речь пойдет о явлении, которое непосредственно относится к формуле освещенности и, следовательно, к физике. До этого момента предполагалось, что свет падает на поверхность перпендикулярно, строго вниз. Это, конечно же, тоже приближение. При соблюдении данного условия удаление от источника света означает падение освещенности пропорционально квадрату расстояния. Таким образом, звезды, которые человек видит невооруженным глазом на небе, либо расположены не так далеко от нас (все они относятся к галактике Млечный Путь), либо очень яркие. Но если свет падает на поверхность под углом, все иначе.

Представьте себе фонарик. Он дает круглое пятно света, когда направлен строго перпендикулярно стене. Если его наклонить, то пятно изменит форму на овал. Как известно из геометрии, у овала площадь больше. А раз фонарик все тот же, значит, и сила света та же, но она как бы «размазана» на большую площадь. Сила света зависит от угла падения по закону косинуса.

Весна, зима, осень

Заголовок звучит как название красивого фильма. Но наличие сезонов напрямую зависит от угла, под которым падает свет в своей наивысшей точке на поверхность планеты. И в данный момент речь идет не только о Земле. Сезоны существует на любом объекте солнечной системы, ось вращения которого наклонена по отношению к эклиптике (например, на Марсе). Читатель, наверное, уже догадался: чем больше угол наклона, тем меньше фотонов приходится на квадратный километр поверхности в секунду. Значит, тем холоднее будет сезон. В момент наибольшего отклонения планеты в полушарии царит зима, в момент наименьшего – лето.

Цифры и факты

Чтобы не быть голословными, приведем некоторые данные. Предупреждаем: все они усреднены и для решения конкретных задач не годятся. Кроме того, существуют справочники освещенностей поверхностей разными типами источников. Лучше обращаться к ним при проведении расчетов.

  1. На расстоянии от Солнца до любой точки пространства, которая примерно равна расстоянию до Земли, освещенность составляет сто тридцать пять тысяч люкс.
  2. Наша планета обладает атмосферой, которая поглощает часть излучения. Поэтому поверхность земли освещена максимально на сто тысяч люкс.
  3. Летом средние широты в полдень освещены на семнадцать тысяч люкс в ясную погоду и на пятнадцать тысяч люкс – в пасмурную.
  4. Ночью в полнолуние освещенность составляет две десятые люкс. Свет звезд в безлунную ночь дарит всего лишь одну-две тысячные люкса.
  5. Для чтения книги необходима освещенность минимум в тридцать-пятьдесят люкс.
  6. Когда человек смотрит фильм в кинотеатре, световой поток составляет около ста люкс. Самые темные сцены будут иметь показатель в восемьдесят люкс, а изображение яркого солнечного дня «потянет» на сто двадцать.
  7. Закат или восход Солнца над морем даст освещенность примерно в одну тысячу люкс. При этом на глубине пятидесяти метров освещенность будет составлять около 20 люкс. Вода очень хорошо поглощает солнечный свет.

fb.ru

Освещённость — это… Что такое Освещённость?

Освещённость — отношение светового потока, падающего на малый участок поверхности, к его площади.

Определение и свойства

Освещённость численно равна световому потоку, падающему на участок поверхности малой единичной площади:

Единицей измерения освещённости в системе СИ служит люкс (1 люкс = 1 люмену на квадратный метр), в СГС — фот (один фот равен 10 000 люксов). В отличие от освещённости, выражение количества света, отражённого поверхностью, называется светимостью.

Освещённость прямо пропорциональна силе света источника света. При удалении его от освещаемой поверхности её освещённость уменьшается обратно пропорционально квадрату расстояния (Закон обратных квадратов).

Когда лучи света падают наклонно к освещаемой поверхности, освещённость уменьшается пропорционально косинусу угла падения лучей.

Освещённость от точечного источника находят по формуле:

где — сила света в канделах; — расстояние до источника света; — угол падения лучей света относительно нормали к поверхности.

Освещённость в фототехнике определяют с помощью экспонометров и экспозиметров, в фотометрии — с помощью люксметров.

Примеры

ОписаниеОсвещённость, лк
Вне атмосферы на среднем расстоянии Земли от Солнца[1][2]135 000
Солнечными лучами в полдень100 000
При киносъёмке в студии10 000
На футбольном стадионе (искусственное освещение)1200
На открытом месте в пасмурный день1000
В светлой комнате вблизи окна100
На рабочем столе для тонких работ400–500
На экране кинотеатра85–120
Необходимое для чтения30–50
От полной луны0,2
От ночного неба в безлунную ночь0,0003

См. также

Примечания

Литература

Яштолд-Говорко В. А. Фотосъёмка и обработка. Съемка, формулы, термины, рецепты. Изд. 4-е, сокр. М., «Искусство», 1977.

dic.academic.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *