Формула освещенности поверхности: Освещенность. Характеристики освещения и способы их улучшения.

Содержание

Освещенность. Характеристики освещения и способы их улучшения.

   Любой источник света является источником светового потока, и чем больший световой поток попадает на поверхность освещаемого предмета, тем лучше этот предмет видно. А физическая величина, численно равная световому потоку, падающему на единицу площади освещаемой поверхности, именуется освещенность.

   Освещенность обозначают символом Е, и находят ее значение по формуле Е = F/S, где F — световой поток, а S – площадь освещаемой поверхности. В системе СИ освещенность измеряется в Люксах (Лк), и один Люкс — это такая освещенность, при которой световой поток, попадающий на один квадратный метр освещаемого тела, равен одному Люмену. То есть 1 Люкс = 1 Люмен / 1 Кв.м.

Для примера приведем некоторые типичные значения освещенности
  • Солнечный день в средних широтах — 100000 Лк;
  • Пасмурный день в средних широтах — 1000 Лк;
  • Светлая комната, освещенная лучами солнца — 100 Лк;
  • Искусственное освещение на улице — до 4 Лк;
  • Свет ночью при полной луне — 0,2 Лк;
  • Свет звездного неба темной безлунной ночью — 0,0003 Лк.

   Представьте, что вы сидите в темной комнате с фонариком, и пытаетесь прочесть книгу. Для чтения нужна освещенность не меньше 30 Лк. Что вы сделаете?

  • Во-первых, вы приблизите фонарик к книге, значит освещенность связана с расстоянием от источника света до освещаемого предмета.
  • Во-вторых, вы расположите фонарик под прямым углом к тексту, значит освещенность зависит и от угла, под которым данная поверхность освещается.
  • В-третьих, вы можете просто достать более мощный фонарик, поскольку очевидно, что освещенность больше, если выше сила света источника.

   Допустим, световой поток попадает на какой-то экран, расположенный на каком-то расстоянии от источника света. Увеличим это расстояние вдвое, тогда освещаемая часть поверхности увеличится по площади в 4 раза. Так как Е = F/S, то и освещенность уменьшится в целых 4 раза. То есть освещенность обратно пропорциональна квадрату расстояния от точечного источника света до освещаемого предмета.

   Освещенность вычисляют по формуле

   Когда пучок света падает под прямым углом к поверхности, световой поток распределен на наименьшей площади, если же угол увеличивать, то увеличится площадь, соответственно, уменьшится освещенность. Как было отмечено выше, освещенность напрямую связана и с силой света, и чем больше сила света, тем больше и освещенность. Экспериментально давно установлено, что освещенность прямо пропорциональна силе света источника.

   Конечно, освещенность уменьшается, если свету препятствует туман, дым или частички пыли, но если освещаемая поверхность расположена под прямым углом к свету источника, и свет при этом распространяется через чистый, прозрачный воздух, то освещенность определяется непосредственно по формуле Е = I / R2 , где I – сила света, а R – расстояние от источника света до освещаемого предмета.

   В процессе ежедневной работы осветительных установок, возможен спад освещенности, поэтому для компенсации данного недостатка, еще на стадии проектирования осветительных установок вводят специальный коэффициент запаса. Он учитывает понижение освещенности и яркости в процессе эксплуатации осветительных приборов из-за загрязнений, утраты отражающих и пропускающих свойств отражающих, оптических, и других элементов приборов искусственного освещения. Загрязнения поверхностей, выход из строя ламп, все эти факторы учитываются. Для естественного освещения вводят коэффициент снижения КЕО (коэффициента естественной освещенности), ведь со временем могут загрязнится светопрозрачные заполнители световых проемов, и загрязниться отражающие поверхности помещений.

   Европейский стандарт определяет нормы освещенности для разных условий, так например, если в офисе не требуется рассматривать мелкие детали, то достаточно 300 Лк, если люди работают за компьютером — рекомендуется 500 Лк, если изготавливаются и читаются чертежи — 750 Лк.

Измерение освещённости

   Освещенность измеряют портативным прибором — люксметром. Его принцип работы аналогичен фотометру. Свет попадает на фотоэлемент, стимулируя ток в полупроводнике, и величина получаемого тока как раз пропорциональна освещенности. Есть аналоговые и цифровые люксметры. Часто измерительная часть соединена с прибором гибким спиральным проводом, чтобы можно было проводить измерения в самых труднодоступных, при этом важных местах. К прибору прилагается набор светофильтров, чтобы регулировать пределы измерений с учетом коэффициентов. Согласно ГОСТу, погрешность прибора должна быть не более 10%.

   Измеряем освещённость люксметром

   При измерении соблюдают правило, согласно которому прибор должен располагаться горизонтально. Его устанавливают поочередно в каждую необходимую точку, согласно схеме ГОСТа. В ГОСТе, кроме прочего, учитываются охранное освещение, аварийное освещение, эвакуационное освещение и полуцилиндрическая освещенность, там также описан метод проведения измерений. Измерения по искусственному и естественному освещению проводятся отдельно, при этом важно чтобы на прибор не попадала случайная тень. На основе полученных результатов, с использованием специальных формул делается общая оценка, и принимается решение, нужно ли что-то корректировать, или освещенность помещения и территории достаточна.

Освещенность рабочего места 

   Освещение исключительно важно для человека. С помощью зрения человек получает большую часть информации (около 90 %), поступающей из окружающего мира. Свет- это ключевой элемент нашей способности видеть, оценивать форму, цвет и перспективу окружающих нас предметов. Освещение влияет не только на функционирование зрительного аппарата, то есть определяет зрительную работоспособность, но и на психику человека, его эмоциональное состояние. Исследователями накоплено значительное количество данных по биологическому действию видимого света на организм. Сравнительная оценка естественного и искусственного освещения по его влиянию на работоспособность показывает преимущество естественного света. Ведущим фактором, определяющим биологическую неадекватность естественного и искусственного света, является разница в спектральном составе излучения, а также динамичность естественного света в течение дня. 

   Освещенность рабочего места 

   Работая при освещении плохого качества или низких уровней, люди могут ощущать усталость глаз и переутомление, что приводит к снижению работоспособности. В ряде случаев это может привести к головным болям. Причинами во многих случаях являются слишком низкие уровни освещенности, слепящее действие источников света и соотношение яркостей, которое недостаточно хорошо сбалансировано на рабочих местах. Головные боли также могут быть вызваны пульсацией освещения, что в основном является результатом использования электромагнитных пуско-регулирующих аппаратов (ПРА) для газоразрядных ламп, работающих на частоте 50 Гц. С точки зрения безопасности труда зрительная способность и зрительный комфорт чрезвычайно важны. 

   Для того чтобы обеспечить условия, необходимые для зрительного комфорта, в системе освещения должны быть реализованы следующие предварительные требования:

  • достаточное и равномерное освещение
  • оптимальная яркость
  • отсутствие бликов и ослепленности
  • соответствующий контраст
  • правильная цветовая гамма
  • отсутствие стробоскопического эффекта или пульсации света

   Каждый вид деятельности требует определенного уровня освещенности на том участке, где эта деятельность осуществляется. Обычно, чем сильнее затруднено зрительное восприятие, тем выше должен быть средний уровень освещенности. Важно рассматривать свет на рабочем месте, руководствуясь не только количественными, но и качественными критериями.

Можно выделить следующие качественные характеристики освещения и способы их улучшения

Прямая блескость

   Находящиеся в поле зрения человека поверхности высокой яркости могут производить неприятное, дискомфортное ощущение или вызывать состояние ослепленности. В результате резко снижается зрительная работоспособность. Источниками прямой блескости являются осветительные установки и источники света.

Уменьшение прямой блескости может быть достигнуто:

  • увеличением высоты установки светильников
  • уменьшением яркости светильников путем закрытия источников света светорассеивающими стеклами
  • ограничением силы света в направлениях, образующих большие углы с вертикалью, например, применением светильников с необходимым защитным углом
  • уменьшением мощности каждого отдельного светильника за счет соответствующего увеличения их числа
Отраженная блескость

   Возникает при больших коэффициентах отражения поверхностей, попадающих в поле зрения. Наибольшая опасность возникает при освещении поверхностей, не являющихся диффузными, когда свет падает на рабочие поверхности таким образом, что глаза находятся на направлении зеркального отражения лучей. В этом случае человек видит либо зеркальное отражение источника света, либо размытое, но очень яркое световое пятно. В обоих случаях может возникнуть состояние ослепленности, но чаще уменьшается эффективный контраст между деталью и фоном. Устранение отраженной блескости достигается правильной организацией местного и локализованного освещения и таким расположением светильников, чтобы зеркально отраженные поверхностью лучи не попадали в глаза. Для этого лучше всего делать боковое или заднебоковое направление света.

Контраст между объектом и фоном 

   Чем больше яркость объекта, тем больший световой поток от него поступает в глаз и тем сильнее сигнал, поступающий от глаза в зрительный центр. Таким образом, казалось бы, чем больше яркость, тем лучше человек видит объект. Однако это не совсем так. Если поверхность (фон), на которой располагается объект, имеет близкую к объекту по величине яркость (например, линия бледно-желтого цвета на белом листе), то интенсивность засветки участков сетчатки световым потоком, поступающим от фона и объекта, одинакова (или слабо различается), величина поступающих в мозг сигналов одинакова, и объект на фоне становится неразличимым.

   Чтобы объект был хорошо виден, яркости объекта и фона должны различаться. Разница между яркостями объекта и фона, отнесенная к яркости фона, называется контрастом. Контраст между деталями и фоном, который в наибольшей степени определяет видимость объекта, не всегда является заданным и может быть увеличен или уменьшен средствами освещения и созданием световой среды. Одним из эффективных средств для повышения контраста является искусственный фон (чаще всего светлый, если объект темный, или темный, если объект светлый). Разновидностью искусственных фонов являются световые столы, на которых поверхности просматриваются в проходящем свете.

Тени

   Различаются собственные тени, образованные рельефом поверхности, и тени, падающие от предметов, находящихся вне рабочей поверхности — оборудования, мебели, тела и рук человека и т. д. Собственные тени в большинстве случаев полезны, так как позволяют лучше различать конфигурацию детали. Падающие тени почти всегда вредны. Их вред заключается в том, что они искажают контраст, отвлекают внимание и т. д. Особенно вредны движущиеся тени. Устранение или ограничение вредных теней осуществляется правильным выбором направления света. Например, когда человек пишет правой рукой, он смотрит на рабочую точку слева и с этой же стороны должен падать свет. Тени размазываются при увеличении размеров осветительных установок, смягчаются при достаточно высокой яркости стен и потолков и почти исчезают при отраженном освещении.

Насыщенность помещения светом

   Для создания комфортных зрительных условий для человека важна не только освещенность какой бы то ни было поверхности, на которой осуществляется работа, но и впечатление насыщенности помещения светом, которое получает человек. При достаточной яркости рабочей поверхности одновременное присутствие в поле зрения темных поверхностей (например, стен, потолков, мебели, оборудования) создает затруднения при адаптации зрения. От яркости этих поверхностей зависит впечатление насыщенности помещения светом. Если в помещении установлены подвесные светильники прямого света, верхняя зона помещения останется темной. Это производит неприятное эстетическое и психологическое впечатление. Поэтому лучше применять светлую окраску стен и потолков, а для освещения применять светильники, излучающие некоторую (желательно не менее 15 %) часть светового потока в верхнюю полусферу.

Постоянство освещенности во времени

   Изменения освещенности по времени можно подразделить на медленные и плавные, частые колебания и пульсации. Медленные изменения вызываются постепенными изменениями сетевого напряжения и факторами, изменяющими освещенность в процессе эксплуатации (загрязнением источников света, снижением светоотдачи и т. д.). Если освещенность при этом сохраняется на уровне не ниже нормативного значения, эти изменения не являются вредными. Причиной частых колебаний являются перемещения светильников, их раскачивание движением воздуха (ветер, сквозняк, вентиляционная установка и т. д.) и колебания напряжения в сети, порождаемые изменением нагрузки.

Пульсации

   Пульсации освещенности обусловлены малой инерционностью излучения газоразрядных ламп, световой поток пульсирует при переменном токе промышленной частоты (50 Гц) с удвоенной частотой — 100 Гц. Эти пульсации неразличимы при наблюдении глазом неподвижной поверхности, но легко обнаруживаются при рассматривании движущихся предметов. Если при пульсирующем освещении быстро махать карандашом на контрастирующем фоне, то карандаш приобретает ясно видимые контуры. Это явление носит название стробоскопического эффекта — явление искажения восприятия движущихся или вращающихся объектов наблюдения. Практическая опасность стробоскопического эффекта состоит в том, что вращающиеся части механизмов могут показаться неподвижными, вращающимися с более медленной скоростью, чем в действительности, или в противоположном направлении. Это может стать причинной травматизма. Однако пульсации освещенности вредны и при работе с неподвижными поверхностями, вызывая утомление зрения и головную боль.

   К пульсациям наиболее чувствительно периферическое зрение и поэтому они опасны при общем освещении. Выявлено также неблагоприятное влияние колебаний света на фоторецепторные элементы сетчатки, а также на функциональное состояние нервной системы, что связано с развитием тормозных процессов и снижением лабильности нервных процессов. Воздействие пульсации возрастает с увеличением её глубины и уменьшается при повышении частоты. Большинство исследователей отмечает отрицательное влияние пульсации освещённости на работоспособность человека как при длительном пребывании в условиях пульсирующего освещения, так и при кратковременном.

   Ограничение пульсаций достигается чередованием питания ламп от разных фаз трехфазной сети. В ряде случаев применяется питание ламп током повышенной частоты, что достигается укомплектовыванием светильников электронными пуско-регулирующими аппаратами (ЭПРА).

Вывод

   Таким образом, становится очевидно, что неправильное освещение представляет значительную угрозу для здоровья работников. Правильная организация освещения на рабочем месте- залог здоровья, высокой производительности труда, комфортного эмоционального и психологического состояния человека. Правильная организация освещения предусматривает не только соблюдение нормативных требований по уровню освещенности и ряду других показателей, но и учет ряда качественных показателей- световой насыщенности, равномерности и однородности освещения, тенеобразования, цветовой гаммы световой среды и пр.

Будем рады, если подпишетесь на наш Блог!

[wysija_form id=»1″]

Освещенность — это… Что такое Освещенность?

Освещённость — физическая величина, численно равная световому потоку, падающему на единицу поверхности:

E=\frac{d\Phi}{d\sigma}

Единицей измерения освещенности в системе СИ служит люкс (1 люкс = 1 люмену на квадратный метр), в СГС — фот (один фот равен 10 000 люксов). В отличие от освещённости, выражение количества света, отражённого поверхностью, называется яркостью.

Освещённость прямо пропорциональна силе света источника света. При удалении его от освещаемой поверхности её освещённость уменьшается обратно пропорционально квадрату расстояния (Закон обратных квадратов).

Когда лучи света падают наклонно к освещаемой поверхности, освещённость уменьшается пропорционально косинусу угла падения лучей.

Освещенность E\!

от точечного источника находят по формуле:

E={I \over r^2}\cos i

где I\! — сила света в канделах; r\! — расстояние до источника света; i\! — угол падения лучей света относительно нормали к поверхности.

Освещённость в фототехнике определяют с помощью экспонометров и экспозиметров, в фотометрии — с помощью люксметров.

Примеры

ОписаниеОсвещённость, лк
Солнечными лучами в полдень100 000
При киносъёмке в студии10 000
На открытом месте в пасмурный день1000
В светлой комнате вблизи окна100
На рабочем столе для тонких работ400–500
На экране кинотеатра85–120
Необходимое для чтения30–50
От полной луны0,2
От ночного неба в безлунную ночь0,0003

Литература

Яштолд-Говорко В. А. Фотосъёмка и обработка. Съемка, формулы, термины, рецепты. Изд. 4-е, сокр. М., «Искусство», 1977.

Wikimedia Foundation. 2010.

Что такое освещенность?

Физическая величина, численно равная световому потоку, падающему на единицу площади освещаемой поверхности, называется освещенностью.
Освещенность обозначают символом Е, и находят ее значение по формуле Е = Ф/S, где Ф — световой поток, а S – площадь освещаемой поверхности.
Снимокw.PNG


Для примера приведем некоторые типичные значения освещенности:

  • Солнечный день в средних широтах — 100000 Лк;
  • Пасмурный день в средних широтах — 1000 Лк;
  • Светлая комната, освещенная лучами солнца — 100 Лк;
  • Искусственное освещение на улице — до 4 Лк;
  • Свет ночью при полной луне — 0,2 Лк;
  • Свет звездного неба темной безлунной ночью — 0,0003 Лк
Представьте, что вы сидите в темной комнате с фонариком, и пытаетесь прочесть книгу. Для чтения нужна освещенность не меньше 30 Лк. Что вы сделаете? Во-первых, вы приблизите фонарик к книге, значит освещенность связана с расстоянием от источника света до освещаемого предмета. Во-вторых, вы расположите фонарик под прямым углом к тексту, значит освещенность зависит и от угла, под которым данная поверхность освещается. В-третьих, вы можете просто достать более мощный фонарик, поскольку очевидно, что освещенность тем больше, чем выше сила света источника.
Когда пучок света падает под прямым углом к поверхности, световой поток распределен на наименьшей площади, если же угол увеличивать, то увеличится площадь, соответственно, уменьшится освещенность.
Освещенность напрямую связана и с силой света, и чем больше сила света, тем больше и освещенность. Экспериментально давно установлено, что освещенность прямо пропорциональна силе света источника.
В Америке и Англии используют единицу измерения освещенности Люмен на квадратный Фут или Фут-Кандела, в качестве единицы освещенности от источника, обладающего силой света в одну канделу, и расположенного на расстоянии в один фут от освещаемой поверхности.

Исследователи доказали, что через сетчатку человеческого глаза, свет воздействует на процессы, протекающие в мозге. По этой причине недостаточная освещенность вызывает сонливость, угнетает трудоспособность, а избыточное освещение — наоборот, возбуждает, помогает включить дополнительные ресурсы организма, однако, изнашивая их, если это происходит неоправданно.

В процессе ежедневной работы осветительных установок, возможен спад освещенности, поэтому для компенсации данного недостатка, еще на стадии проектирования осветительных установок вводят специальный коэффициент запаса.

Для естественного освещения вводят коэффициент снижения КЕО (коэффициента естественной освещенности), ведь со временем могут загрязнится светопрозрачные заполнители световых проемов, и загрязниться отражающие поверхности помещений.

Освещенность измеряют портативным прибором — люксметром. Его принцип работы аналогичен фотометру. Свет попадает на фотоэлемент, стимулируя ток в полупроводнике, и величина получаемого тока как раз пропорциональна освещенности. Есть аналоговые и цифровые люксметры.


Поделиться записью

3.2.4 Освещенность поверхности, е

Освещенностью поверхности называют величину

Е = (3.8)

где:

∆Φ — световой поток, падающей на поверхность площади

∆S, рисунок 3.3. Если ∆Φ = 1лм,

∆S = 1м, освещенность = 1люксу, (лк).

То есть, 1лк = 1лм : 1м2.

Рисунок 3.3

3.2.5 Закон освещенности

Элементарные преобразования [5, с.48] позволяют установить взаимосвязь освещенности Е поверхности с расстоянием R и углом падения света j на поверхность, рисунок 3.3, в виде:

. (3.9)

Формула (3.9) носит название закона освещенности.

3.2.6 Светимость излучающей поверхности, м

До сих пор, мы рассматривали точечные источники света. Всякий реальный источник имеет конечные размеры. Пусть светящаяся площадка площади DS, рисунок 3.4, излучает свет в полусферу, которой соответствует телесный угол DW = 2πср. Обозначим через DΦПС световой поток, излучаемый площадью DS в полусферу.

Величина , лм/м2 называется светимостью излучающей площадиDS.

Согласно рисунка 3.4 светимость М численно равна световому потоку, излучаемому с единицы площади светящейся поверхности в телесный угол 2π стерадиан.

Рисунок 3.4

3.2.7 Яркость светящейся поверхности, l

Пусть светящаяся поверхность площади DS излучает световой поток DΦ в телесный угол DΩ, ось симметрии которого составляет угол Θ с нормалью к излучающей поверхности, рисунок 3.5.

Рисунок 3.5

Величина

, (3.10)

согласно [5, c.52], называется яркостью светящейся поверхности.

3.2.8 Закон Ламберта

В 1760 году немецким ученым Ламбертом было по казано, что, если площадь DS не только излучает свет, но еще идеально равномерно рассеивает его по всем направлениям, яркость излучения L не зависит от угла Θ, входящего в (3.10).

Согласно закона Ламберта

LL = const, (3.11)

для любых Θ, входящих в (3,10).

Элементарные преобразования, [5, с.52], показывают, что для Ламбертовского источника, взаимосвязь между светимостью излучающей поверхности МL и ее яркостью LL имеет вид:

МL = LL × π (3.12)

3.2.9 Световая экспозиция, нс

Световой экспозицией HС называется произведение освещенности поверхности Е на время t, в течение которого производится облучение поверхности. По определению,

HС = Е × t, (лк × с) (3.13)

В заключение раздела 3.2 мы приводим в таблице 3.2 основные фотометрические характеристики, аналитические выражения для них и размерности в “S I“.

Таблица 3.2 Перечень основных фотометрических характеристик.

Наименование фотометрических величин

Аналитическое выражение

Размерность в “SI“

Сила света

IС

Кандела, (кд)

Световой поток

DΦ = I ×DΩ

Люмен, (лм)

Освещенность поверхности

Люкс, (лк), (люмен на квадратный метр), (лм/м

).

Светимость излучающей поверхности

Люмен на квадратный метр, (лм/м)

Яркость светящейся поверхности

Кандела на квадратный метр, (кд/м)

3.3 Энергетические характеристики оптического излучения [15, с. 15]

3.3.1 Энергетическая экспозиция, НЭ

Величина, равная отношению энергии излучения DW, падающего на поверхность, к площади этой поверхности DS:

, (3.14)

3.3.2 Поток излучения, ФЭ

Величина, равная отношению энергии излучения DW, переносимой излучением, к времени переноса этого излучения Dt

ФЭ = , (Вт), (3.15)

называется потоком излучения.

3.3.3 Энергетическая светимость Є (интегральная излучательная способность)

Интегральная излучательная способность равна отношению потока излучения ФЭ к площади DSИ, с которой этот поток испускается:

Є = ,(3.16)

3.3.4 Облученность поверхности, ЄО

Величина, равная отношению потока излучения ФЭ к площади DSП, на которую этот поток падает и поглощается

Є0 = . (3.17)

Библиография

  1. Игнатов А.Н. Основы оптоэлектроники. Ч.1. Излучающие и фото-приемные приборы. – Новосибирск, 1988.

  2. Игнатов А.Н. Основы оптоэлектроники. Ч.2. Жидкокристаллические и электролюминесцентные индикаторные приборы. – Новосибирск, 1989.

  3. Селиванов Л.В. Основы оптики. Часть I. – Новосибирск.: СибГАТИ, 1995г. – 54с

  4. Селиванов Л.В. Основы оптики. Часть II. – Новосибирск.: СибГАТИ, 1995г. – 56с.

  5. Селиванов Л.В. Основы оптики. Часть V. – Новосибирск.: СибГАТИ, 1997г. – 56с.

  6. Селиванов Л.В. Основы оптики. Часть IV. – Новосибирск.: СибГАТИ, 1997г. – 63с.

  7. Goss F., Hanchen H. Ann. Phys. Ser. 6, I. – Leipzig, 1947 – 333s.

  8. Хансперджер Р. Интегральная оптики. Перевод с английского. – М.: МИР, 1985г. – 380с.

  9. Мальке Г., Гессинг П. Волоконно-оптические кабели. Перевод с английского. – Новосибирск: ИЗДАТЕЛЬ, 1997г. – 264с.

  10. Чео П.К. Волоконная оптика. Перевод с английского. – М.: Энергоатомиздат, 1988г. – 279с.

  11. Гауэр Д. Оптические системы связи. Перевод с английского. – М.: Радио и связь, 1989г. – с.

  12. Мэзон У. Физическая акустика, т.3, ч.Б. Перевод с английского. – М.: МИР, 1968г. – 320с.

  13. Селиванов Л.В. Основы оптики. Часть III. – Новосибирск: СибГАТИ, 1995г. – 44с.

  14. Ландсберг Г.С. Оптика. – М.: НАУКА, 1976г. – 926с.

  15. Физические величины. Справочник / под редакцией Григрьевой И.С., Мейлихов Е.З. – М.: Энергоатомиздат, 1991г. – 1232с.

Светотехнические параметры и понятия. Часть 2. Справочная информация

В статье, посвященной светотехническим параметрам и понятиям (Часть 1), мы уже рассказали об основной терминологии, которую употребляют светотехники и светодизайнеры. Но помимо самых базовых понятий, существуют еще важные факторы и характеристики, на которые обращают внимание при проектировании освещения.

Представленные ниже светотехнические параметры, тоже имеют значение. Если в помещении освещение приносит дискомфорт, неудобство и раздражение, значит, что-то не было учтено при проектировании. Правильный выбор светового прибора, подходящего для требуемых условий, необходимое и достаточное условие для формирования комфортной среды с учетом всех составляющих (размеров помещения, цвета, отделочных материалов, наличия окон/дверей, особенностей архитектуры и т. п.).

Светотехнические параметры и понятия.

1 — Показатели ослепленности и дискомфорта

Эти показатели характеризуют прямое слепящее действие источников света (светильников). По показателю ослепленности можно судить о степени ухудшения видимости при работе блестких источников. Например, при значении показателя = 100, видимость снижается на 10%.

По российским нормам для точных производственных работ значение показателя ослепленности должно быть ≤ 20. Показатель дискомфорта (М) характеризует степень неудобства или напряженности при наличии в поле зрения источников повышенной яркости.

Границе комфорт-дискомфорт присвоено значение М=25.

 

2 — Коэффициент пульсации освещенности (Кп)

Характеризует относительную глубину пульсации освещенности в процентах (%) в заданной точке помещения при питании ламп от сети переменного тока. Неконтролируемая пульсация освещенности приводит к повышению опасности травматизма пи работе с движущимися и вращающимися объектами, а также зрительному утомлению.

В нормах России для большинства зрительных работ установлено значение Кп ≤ 20.

Коэффициент пульсации освещенности

3 — Контрастность освещения

Характеризует тенеобразующие и моделирующие свойства освещения (правильную передачу размеров и формы предметов). Зависит от отношений освещенностей на разноориентированных плоскостях. Например, внутри равнояркой сферы, все плоскости которой освещены одинаковой, создается бестеневое освещение. Используется несколько показателей контрастности освещения, например, отношение освещенностей в горизонтальной и вертикальной плоскостях Ег/Ев, горизонтальной освещенности к цилиндрической Ег/Ец.

Контрастность освещения

4 — Блесткость

Блесткость — условие видения, при котором появляется дискомфорт или уменьшение способности видеть детали, объекты или и то и другое, вследствие неблагоприятного распределения яркости, или диапазона яркости, или экстремальных контрастов в пространстве.

 

Блесткость делят обычно на прямую и отраженную:

1 — Прямая блесткость исходит непосредственно от источника света (неприкрытая лампа), косвенная — наблюдается на освещаемых поверхностях. Явление слепимости сопровождается раздражением и резью в глазах, головными болями. Гигиенически допустимая яркость поверхностей, отражающих свет, — до 0 75 сб / стильб. При этом создаются объективные условия для травматизма.

2 — Отраженная блескость — характеристика отражения светового по­тока от рабочей поверхности в направлении глаз работающего, определя­ющая снижение видимости вследствие чрезмерного увеличения яркости рабочей поверхности и вуалирующего действия, снижающего контраст между объектом и фоном.

 

Блесткость делят на слепящую и дискомфортную:

— Слепящая (TI/GR) — нарушает видимость объектов, но не вызывает дискомфорт;

— Дискомфортная (UGR/NB) — вызывает неприятные ощущения, но не ухудшает видимость.

 

Создается на рабочем месте при отражении света ярких источников блестящими поверхностями (экран компьютера, глянцевая бумага, картины и т. п.). Характеризуется значением максимально допустимой яркости.

Например, поверхности, которые могут быть видны при отражении от экрана компьютера, не должны иметь яркость выше 200 кд/м2.

Блесткость. светотехнический дискомфор

5 — Равномерность (освещенности / яркости)

Коэффициент соотношения минимальной величины освещенности (яркости) к средней величине освещенности (яркости) на данной поверхности.

Емин/Есредн

Lмин/Lсредн

 

6 — Защитный угол (для источников света светильника)

Угол между горизонтом и положением глаз, при котором становится, виден источник света.

Защитный угол вычисляют по формуле:

α3=(180/π)arctg(h/d),

 

где h — расстояние от светящейся поверхности источника света до плоскости, проходящей через выходное отверстие осветительного прибора;

d — расстояние по горизонтали от основания высоты h до края выходного отверстия осветительного прибора.

Очевидно, что чем больше защитный угол, тем ближе потребуется подойти к светильнику, что бы увидеть непосредственно светящийся источник света.

Защитный угол (для источников света светильника)

7 — Угол прямого выхода (для светильников)

Угол между вертикальной осью светильника и точкой, в которой становится не виден источник света и рабочие поверхности светильника с высокой яркостью.

 

8 — Срок службы

Время горения лампы до выхода ее из строя или до того, как она считается не соответствующей нормам, установленным техническими правилами.

Измеряется в часах — (ч).

 

9 — Рабочий КПД (светильника)

Отношение общего светового потока светильника, измеренного в определенных практических условиях с его собственными лампами и компонентами, и сумм световых потоков каждой из тех же ламп, когда они работают вне светильника с теми же компонентами при определенных условиях.

Рабочий КПД (светильника)

Формулы площади поверхности

Формулы площади поверхности
(Математика | Геометрия | Формулы площади поверхности)

( пи = = 3,141592 …)

Поверхность Формулы площади
В общем, площадь поверхности представляет собой сумму все области всех форм, покрывающие поверхность объекта.

Cube | Прямоугольный Призма | Призма | Сфера | Цилиндр | Единицы

Примечание: «ab» означает «а» умножить на «б». «а 2 » означает «в квадрате», то же самое, что «а» умножить на «а».

Будьте осторожны !! Количество единиц. Используйте одни и те же единицы для всех измерений. Примеры

Площадь поверхности куба = 6 а 2

(а — длина стороны каждый край куба)

Проще говоря, площадь поверхности куба — это площадь шести квадратов, которые накрой это.Площадь одного из них a * a, или 2 . Поскольку эти одинаковы, вы можете умножить одно из них на шесть, так что поверхность площадь куба в 6 раз больше квадрата одной из сторон.

Площадь поверхности прямоугольника Призма = 2ab + 2bc + 2ac

(a, b и c — длины трех сторон)

Проще говоря, площадь поверхности прямоугольной призмы равна площади шести прямоугольники, которые его покрывают.Но нам не нужно вычислять все шесть, потому что мы знаем, что верх и низ одинаковы, передняя и задняя — это то же самое, и левая и правая стороны одинаковы.

Площадь верха и низа (длины сторон a и в) = а * с. Поскольку их два, вы получаете 2ac. Передняя и задняя имеют длину стороны b и c. Площадь одного из них b * c, а там их два, поэтому площадь поверхности этих двух равна 2bc. Левая и правая сторона имеет длину сторон a и b, поэтому площадь поверхности одного из их это а * б.Опять же, их два, поэтому их общая площадь поверхности это 2ab.

Площадь любой призмы

(б — форма концов)

Площадь поверхности = Боковая площадь + Площадь двух концов

(Боковая площадь) = (периметр формы b ) * L

Площадь поверхности = (периметр формы b ) * L + 2 * (Площадь формы b )

Площадь поверхности сферы = 4 пи r 2

(r — радиус окружности)

Площадь поверхности цилиндра = 2 pi r 2 + 2 pi r h

(h — высота цилиндра, r — радиус вершины)

Площадь поверхности = области сверху и снизу + площадь сбоку

Площадь поверхности = 2 (Площадь верха) + (периметр верха) * высота

Площадь поверхности = 2 ( pi r 2 ) + (2 pi r) * h

На словах проще всего представить банку.Площадь поверхности — это площади всех частей, необходимых для закрытия банки. Это верх, низ, и бумажная этикетка, которая оборачивается по центру.

Можно найти область сверху (или снизу). Это формула для площади круга ( пи р 2 ). Так как есть и верх, и дно, которое умножается на два.

Сторона похожа на этикетку банки. Если отклеить и положить плоский это будет прямоугольник.Площадь прямоугольника — это произведение с двух сторон. Одна сторона — это высота банки, другая — периметр круга, так как этикетка один раз оборачивается вокруг банки. Так площадь прямоугольника (2 pi r) * h.

Сложите эти две части вместе, и вы получите формулу поверхности. площадь цилиндра.

Площадь поверхности = 2 ( pi r 2 ) + (2 pi r) * h


Совет! Не забывайте единицы.

Эти уравнения дадут вам правильные ответы, если вы будете держать единицы прямо. Например — найти площадь поверхности куба со стороной 5 дюймов, уравнение:

Площадь поверхности = 6 * (5 дюймов) 2

= 6 * (25 квадратных дюймов)

= 150 кв. Дюймов

.

Формула площади поверхности

Здесь мы предлагаем вам исчерпывающий список формул площади поверхности для некоторых распространенных трехмерных фигур, таких как куб, цилиндр, прямоугольная призма, сфера, правый круговой конус и правая квадратная пирамида.



Куб:

Площадь поверхности = 6 × a 2



Правый круговой цилиндр:

Площадь поверхности = 2 × pi × r 2 + 2 × pi × r × h

pi = 3.14
h — высота
r — радиус



Прямоугольная призма:

rectangular-solid-image

Площадь поверхности = 2 × l × w + 2 × l × h + 2 × w × h

l — длина
w — ширина
h — высота



Сфера:

Sphere-image

Площадь поверхности = 4 × pi × r 2

pi = 3,14
r — радиус



Правый круговой конус:

Cone-image

Площадь поверхности = pi × r 2 + pi × r × (√ (h 2 + r 2 ))

pi = 3.14
r — радиус
h — высота
l — наклонная высота



Правая квадратная пирамида:

pyramid-image

Площадь поверхности = s 2 + 2 × s × l

s — длина основания
h — высота
l — наклонная высота



Пара примеров, показывающих, как использовать формулу площади поверхности для решения некоторых задач.

Пример №1.

Найдите площадь поверхности куба, если длина одной стороны равна 5 см.

Формула для определения площади поверхности куба: 6a 2

6a 2 = 6 × a 2 = 6 × 5 2 = 6 × 25 = 150

Площадь поверхности куб 150 см 2

Пример №2.

Размеры прямоугольной призмы показаны ниже.

Длина равна 5 см

Ширина равна 6 см

Высота равна 3 см

Найдите площадь поверхности прямоугольной призмы.

Формула, которую следует использовать для определения площади поверхности прямоугольной призмы, как уже было показано выше: 2 × l × w + 2 × l × h + 2 × w × h

2 × 5 × 6 + 2 × 5 × 3 + 2 × 6 × 3

2 × 30 + 2 × 15 + 2 × 18

60 + 30 + 36

90 + 36

126

Площадь поверхности прямоугольной призмы 126 см 2

Новые уроки математики

Ваша электронная почта в безопасности. Мы будем использовать его только для информирования вас о новых уроках математики.

.

Площадь сферы

Площадь поверхности сферы — Math Open Reference

Определение: Количество квадратных единиц, которые точно покрывают поверхность сферы.

Попробуй это Перетащите оранжевую точку, чтобы настроить радиус сферы и обратите внимание на изменение области.


Площадь поверхности сферы определяется формулой Где r — радиус сферы. На рисунке выше перетащите оранжевую точку, чтобы изменить радиус сферы. и обратите внимание, как формула используется для расчета площади поверхности.

Эта формула была открыта более двух тысяч лет назад греческим философом Архемедом. Он также понял, что площадь поверхности сферы в точности равна площади изогнутой стенки описываемой им поверхности. цилиндр, который является самым маленьким цилиндром, который может содержать сферу. См. Площадь поверхности цилиндра.

Если вы знаете площадь

Переставив приведенную выше формулу, вы можете найти радиус: где а — площадь поверхности.

Интересные факты

  1. Для данного объема сфера — это форма с наименьшей площадью поверхности.Вот почему он так часто появляется в природе, как капли воды, пузыри и планеты.
  2. Площадь поверхности сферы ровно в четыре раза больше площади круга того же радиуса. Вы можете увидеть это в формуле площади, так как площадь круга равна а площадь поверхности шара равна

Что попробовать

    • На рисунке выше нажмите «скрыть детали».
    • Перетащите оранжевую точку, чтобы изменить размер сферы.
    • Рассчитать объем сферы
    • Нажмите «показать подробности», чтобы проверить свой ответ.
    • На рисунке выше нажмите «Сброс», затем снимите флажок «Показать радиус».
    • Перетащите оранжевую точку, чтобы изменить размер сферы.
    • Вычислить радиус сферы из объема
    • Нажмите «показать радиус», чтобы проверить свой ответ.

Связанные темы

(C) Открытый справочник по математике, 2011 г.
Все права защищены.

.

Калькулятор площади

Квадратная пирамида

Pyramid Diagram with h = height, l = length and w = width and s = slant height

h = высота
s = наклонная высота
a = длина стороны
e = длина боковой кромки
г = а / 2
В = объем
S tot = общая площадь поверхности
S lat = площадь боковой поверхности
S bot = площадь нижней поверхности

Рассчитывайте больше с Калькулятор пирамид

Использование калькулятора

Онлайн-калькулятор для расчета площади поверхности геометрических тел, включая капсулу, конус, усеченную вершину, куб, цилиндр, полусферу, пирамиду, прямоугольную призму, сферу, сферический колпачок и треугольную призму

Единицы: Обратите внимание, что единицы показаны для удобства, но не влияют на вычисления.Единицы измерения указывают порядок результатов, например футы, футы 2 или футы 3 . Например, если вы начинаете с мм и знаете r и h в мм, ваши расчеты приведут к V в мм 3 и S в мм 2 .

Ниже приведены стандартные формулы для определения площади поверхности.

Формулы площади поверхности:

Площадь поверхности капсулы

  • Объем = πr 2 ((4/3) r + a)
  • Площадь поверхности = 2πr (2r + a)

Площадь поверхности круглого конуса

  • Объем = (1/3) πr 2 ч
  • Площадь боковой поверхности = πrs = πr√ (r 2 + h 2 )
  • Площадь базовой поверхности = πr 2
  • Общая площадь
    = L + B = πrs + πr 2 = πr (s + r) = πr (r + √ (r 2 + h 2 ))

Площадь поверхности круглого цилиндра

  • Объем = πr 2 ч
  • Площадь верхней поверхности = πr 2
  • Площадь нижней поверхности = πr 2
  • Общая площадь
    = L + T + B = 2πrh + 2 (πr 2 ) = 2πr (h + r)

Площадь поверхности конической усадки

  • Объем = (1/3) πh (r 1 2 + r 2 2 + (r 1 * r 2 ))
  • Площадь боковой поверхности
    = π (r 1 + r 2 ) s = π (r 1 + r 2 ) √ ((r 1 — r 2 ) 2 + h 2 )
  • Площадь верхней поверхности = πr 1 2
  • Площадь базовой поверхности = πr 2 2
  • Общая площадь
    = π (r 1 2 + r 2 2 + (r 1 * r 2 ) * s)
    = π [r 1 2 + r 2 2 + (r 1 * r 2 ) * √ ((r 1 — r 2 ) 2 + h 2 )]

Площадь поверхности куба

  • Объем = a 3
  • Площадь поверхности = 6a 2

Площадь поверхности полушария

  • Объем = (2/3) πr 3
  • Площадь изогнутой поверхности = 2πr 2
  • Площадь базовой поверхности = πr 2
  • Общая площадь поверхности = (2πr 2 ) + (πr 2 ) = 3πr 2

Площадь поверхности пирамиды

  • Объем = (1/3) 2 ч
  • Площадь боковой поверхности = a√ (a 2 + 4h 2 )
  • Площадь базовой поверхности = 2
  • Общая площадь
    = L + B = a 2 + a√ (a 2 + 4h 2 ))
    = a (a + √ (a 2 + 4h 2 ))

Площадь поверхности прямоугольной призмы

  • Объем =
  • л / ч
  • Площадь поверхности = 2 (lw + lh + wh)

Площадь поверхности сферы

  • Объем = (4/3) πr 3
  • Площадь поверхности = 4πr 2

Площадь поверхности сферической крышки

  • Объем = (1/3) πh 2 (3R — h)
  • Площадь поверхности = 2πRh

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *