Формула расчета площади прямоугольника в м2: Расчет площади прямоугольника в м2 онлайн калькулятор

Содержание

Формула расчета площади прямоугольника в м2

Прямоугольник – это четырехугольник, у которого все углы равны 90 градусам (прямые). Основными математичскими характеристиками прямоугольника являются длины его сторон.

Формула расчета площади прямоугольника:

S – площадь прямоугольника;
a – длина прямоугольника;
b – ширина прямоугольника.

Быстро выполнить эту простую математическую операцию можно с помощью нашей онлайн программы. Для этого необходимо в соответствующее поле ввести исходное значение и нажать кнопку.

На этой странице представлен самый простой онлайн калькулятор для рассчета площади прямоугольника в квадратных метрах. С помощью этой программы вы в один клик сможете рассчитать площадь прямоугольника в м2, если известны его длина и ширина.

На данной странице калькулятор поможет рассчитать площадь прямоугольника онлайн. Для расчета задайте длину сторон или длины диагоналей и угол между ними.

Прямоугольник — параллелограмм, у которого все углы прямые (равны 90 градусам).

Через стороны

Формула для нахождения площади прямоугольника через стороны:

Через диагонали и угол между ними

Формула для нахождения площади прямоугольника через диагонали и угол между ними:

Начиная ремонт, первым делом нужно определить необходимое количество строительных материалов. Провести расчеты могут специалисты, которые будут выполнять работы. Но они часто делают вычисления с большой погрешностью в свою пользу. Рассмотрим, как самостоятельно посчитать площадь стен.

Инструменты для подсчета квадратных метров

Для расчетов понадобятся:

  • уровень строительный;
  • рулетка с ограничителем;
  • длинная линейка и угольник;
  • карандаш и бумага;
  • калькулятор.

Для нанесения размеров нарисуем схему комнат. Обозначим двери, окна, ниши, выступы. Результаты замеров нанесем на чертеж.

Как рассчитать площадь прямоугольных стен

Измеряем высоту (h), длину (a), ширину (b).

Площадь: S = P × h

Периметр: P = (a + b) × 2

Вдоль плинтуса измеряем длину и ширину помещений.

Высоту — по вертикальному углу.

Р = (5 + 4) × 2 = 18 м;

Как правильно рассчитать площадь стен со сложной поверхностью

Не все помещения имеют строгую прямоугольную форму. В зданиях часто присутствуют замысловатые архитектурные элементы, усложняющие расчет.

Как посчитать квадратуру стен за вычетом проемов

При определении точного объема работ, вычтем размеры окон и дверей из общего количества квадратных метров стен комнаты. Для этого по краю рамы замеряем ширину и высоту окна, по краю коробки — габариты двери.

Перемножив длину и ширину проемов, получаем размер, который необходимо вычесть.

Аналогично действуем, если из подсчитываемой квадратуры комнаты нужно исключить печи, камины, радиаторы.

В помещении имеется окно 2,5 м × 1,5 м и дверь 0,9 м × 2,1 м.

S окна равна 2,5 × 1,5 = 3,75 м².

S двери равна 0,9 × 2,1 = 1,89 м².

S стен за вычетом проемов составляет 54 − 3,75 − 1,89 = 48,36 м².

Определение площади помещений неправильной формы

Для определения периметра зданий любых конфигураций сложим длины всех стен, включая выступы и ниши.

Проводить измерения помещений неправильной формы можно, разбив поверхность на несколько простых фигур.

Если у вас комната с прямоугольным выступом, вы имеете две фигуры, квадратуру которых легко вычислить, затем сложить.

Если элемент содержит в себе полукруг, для расчета нужно разбить его на полукруг и прямоугольник.

Как считать квадратные метры стен с круглыми элементами

Встречаются круглые и полукруглые жилые здания или строения с элементами окон или дверей в виде арки.

Их периметр можно определить, умножив диаметр на число π (Пи) = 3,14.

Квадратуру вертикальных поверхностей определяем, умножив полученное значение на высоту от пола до потолка.

S круга равна квадрату радиуса, умноженному на число π; полукруга — половине этой величины.

Если необходимо из квадратуры комнаты вычесть площадь круглых колонн или полукруглых выступающих элементов, при невозможности измерить диаметр или радиус, измеряем длину окружности (P) и применяем формулу: S = P² / 4π.

Как рассчитать квадратные метры конструкций в виде треугольника

В случае наличия комнаты с треугольными элементами, мы можем применить несколько формул, в зависимости от вида фигур:

Где a, b, c — длины сторон треугольника; p — периметр.

Объем помещения

Для определения объема необходимо высчитать площадь пола, и полученный показатель перемножить на высоту. V = S × h.

Расчет площади стен дома на калькуляторе

Существенно облегчат расчеты специальные программы, к которым относится строительный калькулятор в онлайн-версии.

Чтобы посмотреть, сколько квадратных метров составляют стены за вычетом проемов, достаточно выбрать геометрическую форму помещения и ввести показатели:

  • ширину;
  • длину;
  • высоту;
  • количество проемов;
  • размеры окон и дверей.

Строительный калькулятор рассчитает количество отделочных материалов, необходимых для вашего ремонта.

Советы и рекомендации

Необходимо помнить, что геометрические параметры зданий редко могут быть идеальными. Поэтому для определения точных величин замеры лучше производить в нескольких местах, а затем выводить среднее арифметическое. Например, рассчитывая площадь комнаты по стенам, длину лучше измерять по потолку, плинтусу и в середине вертикальной плоскости. Высоту — в углах и середине стены по отвесу.

Чтобы вычислить периметр при наличии множества выступов и ниш разных форм, необходимо проложить вдоль всех элементов шнур, затем измерить его рулеткой.

Подсчитав точные параметры, можно идти в магазин за строительными материалами. Лучше показать схемы с нанесенными размерами продавцу-консультанту. Специалист поможет рассчитать расход материалов с учетом нахлеста, подбора рисунка обоев или потерь при резке плитки.

175

Площадь прямоугольника онлайн калькулятор

Чему равна площадь прямоугольника? 1. Необходимо знать длину и ширину прямоугольника. 2. Внесите значения сторон в графы ниже. 3. Нажмите кнопку рассчитать площадь прямоугольника!

Прямоугольник — это простая двухмерная геометрическая фигура. Все углы у него прямые, по этому он и называется прямоугольник. Стороны имеют разный размер, попарно, и обычно называются ширина и длина.

Формула площади прямоугольника — посчитать!

L * H = S чтобы найти площадь прямоугольника, необходимо перемножить ширину на длину. Другими словами её можно выразить так: площадь прямоугольника равна произведению сторон.

1. Приведём пример расчёта как найти площадь прямоугольника, стороны равны известным величинам, например ширина 4 см, длина 8 см.

Как найти площадь прямоугольника со сторонами 4 и 8 см: Решение простое! 4 х 8 = 32 см2. Чтобы решить такую простую задачу нужно вычислить произведение сторон прямоугольника или просто умножить ширину на длину, это и будет площадь!

2. Частным случаем прямоугольника является квадрат, это тот случай когда стороны у прямоугольника равны, в этом случае найти площадь квадрата можно по выше приведённой формуле.

Чему равна площадь прямоугольника?

Умение рассчитывать площадь прямоугольника является базовым навыком для решения огромного количества бытовых или технических задач. Эти знания применяются практически во всех областях жизни! Например в тех случаях когда необходимы площади любых поверхностей в строительстве или недвижимости. При расчётах площадей земли, участков, стен домов, жилых помещений … не возможно назвать ни одной области деятельности человека, где это знание не может пригодиться!

Если расчёт площади прямоугольника вызывает у Вас сложности — просто воспользуйтесь нашим калькулятором! О моментально приведёт все необходимые вычисления и напишет текст решения с разъяснениями в деталях.

Площадь прямоугольника

Автор Ольга Андрющенко На чтение 5 мин. Просмотров 2.8k. Опубликовано

Площадь прямоугольника очень часто требуется найти в задачах по геометрии. И не только — в повседневной жизни очень многие плоскости имеют форму прямоугольника и надо найти площадь прямоугольника. Как это сделать? Давайте рассмотрим все формулы и примеры.

Мы учимся вычислять площадь прямоугольника или площадь прямоугольника в школе. Однако, когда вы станете старше, вполне возможно, что вы не будете помнить, как найти площадь прямоугольника. Для начала давайте вспомним, что такое прямоугольник.

Что такое прямоугольник

Давайте не будем «срезать углы». Чтобы иметь возможность вычислить площадь прямоугольника, естественно, что мы сначала знаем, что это такое. Поэтому для начала необходимо помнить, что прямоугольник является четырехугольником. Другими словами, это геометрическая фигура, которая имеет четыре стороны и четыре прямых угла. Противоположные стороны прямоугольника имеют одинаковую длину. Две самые длинные стороны представляют его длину, а две другие стороны представляют его ширину.

Не все четырехугольники являются прямоугольниками. Действительно, обязательно, чтобы они имели следующие свойства, чтобы мы могли сказать, что это действительно прямоугольник:

Характеристики прямоугольника

Противоположные стороны должны быть параллельны.

  • Диагонали прямоугольника должны быть одинаковой длины. Они также пересекаются в своей середине.
  • Точка пересечения диагоналей прямоугольника называется центром симметрии.
  • Кроме того, прямоугольник также является параллелограммом, так как его стороны попарно параллельны. Однако это частный случай параллелограмма. На самом деле он имеет четыре прямых угла, и его две параллельные стороны не должны иметь одинаковую длину. В противном случае все четыре стороны имеют одинаковую длину — тогда мы говорим о квадрате.

Формула площади прямоугольника

Как рассчитать площадь прямоугольника? Обратите внимание, что базовую формулу для вычисления площади (или площади) прямоугольника очень легко запомнить. Вы просто должны умножить его длину на ширину.

Площадь прямоугольника равна его длине, умноженной на ширину.

Например, площадь прямоугольника длиной 4 сантиметра и шириной 2 сантиметра равна 4 x 2 = 8 см².

Площадь поверхности прямоугольника длиной L и шириной l равна: S = L x l

Принцип расчета площади прямоугольника

Чтобы вычислить площадь прямоугольника, мы посчитаем количество единиц областей, которые содержит прямоугольник:

В прямоугольнике выше 12 квадратов по 1 см². Его площадь составляет 12 см² (4 х 3).

Примечание. В этом расчете длина L и ширина l прямоугольника должны быть выражены в одной и той же единице длины. Результат будет выражен в той же единице измерения, возведенной в квадрат. Например, если длина прямоугольника выражена в метрах, ширина также должна быть выражена в метрах, а результат формулы для расчета площади прямоугольника даст результат в квадратных метрах (м²).

Площадь прямоугольника эквивалентна его территории. Территория — это термин, используемый для обозначения меры площади земли (мы используем единицу измерения гектар, а не м²). Гектар — это метрическая мера земельной площади, равная 10 000 м

2.

Пример расчета

Рассмотрим прямоугольник длиной L = 4 см и шириной l = 2 см. Площадь S его поверхности равна:
A = L x l = 4 x 2 = 8 см².

Как рассчитать площадь прямоугольника, если мы знаем только одну сторону и диагональ

Можно определить площадь прямоугольника другим способом. Формула, которая была изложена ранее, не является единственным методом, который можно использовать. Действительно, вполне возможно сделать это по-другому. Для этого нам нужно будет, по крайней мере, измерить только одну сторону и необходимо знать длину диагонали. В этом случае мы делаем расчет, используя теорему Пифагора.

Что такое теорема Пифагора

Это формула, которая используется для определения длины третьей стороны прямоугольного треугольника, когда вы уже знаете значение двух других его сторон.

Обратите внимание, что прямоугольник состоит из двух прямоугольных треугольников. Действительно, диагональ представляет гипотенузу этого типа треугольника.

Теорема Пифагора

Кроме того, это также самая длинная сторона, которую можно найти на рисунке. Длина и ширина, с другой стороны, представляют две другие его стороны (скажем, смежные стороны). Это причина, почему можно использовать эту формулу для определения площади прямоугольника.

Теорема Пифагора основана на довольно простом уравнении, которое выглядит следующим образом: a² + b² = c². Где a и b используются для представления двух соседних сторон — катетов прямоугольного треугольника, а c представляет гипотенузу треугольника.

Чтобы полностью понять использование этой формулы, мы начнем с очень конкретного примера. Для этого предположим, что диагональ прямоугольника 10 см, а другая сторона 6 см. Если мы ссылаемся на формулу a² + b² = c², следовательно, сторона «a» составляет 6 см, а гипотенуза «c» — 10 см. Теперь нам нужно просто заменить буквенные значения числовыми значениями, которые у нас есть. Что дает нам:

a² + b² = c²
6² + b² = 10²
b² = 10² — 6²
b² = 100 — 36
b² = 64
b= 8
Мы получаем длину смежной стороны прямоугольника «b», которая равна 8 см. Теперь мы можем рассчитать площадь прямоугольника:

S = 8 см х 6 см
Следовательно, S = 48 см².

Как считается площадь прямоугольника формула. Площадь прямоугольника онлайн калькулятор. Где используется расчет периметра прямоугольника

Одна из первых формул, которая изучается в математике, связана с тем, прямоугольника. Она же является и самой часто используемой. Прямоугольные поверхности окружают нас повсюду, поэтому часто требуется знать их площади. Хотя бы для того, чтобы узнать, хватит ли имеющейся в наличии краски для покраски полов.

Какие единицы измерения площади существуют?

Если говорить о той, которая принята за международную, то это будет квадратный метр. Его удобно использовать при расчете площадей стен, потолка или пола. В них указывается площадь жилья.

Когда речь идет о меньших предметах, то вводят квадратные дециметры, сантиметры или миллиметры. Последние нужны, если фигура не больше ногтя.

При измерении площади города или страны самыми подходящими оказываются квадратные километры. Но есть еще и единицы, которые используют для того, чтобы указать размер площади: ар и гектар. Первая из них еще называется соткой.

Как быть, если заданы стороны прямоугольника?

Подобным образом рассчитывается который является частным случаем прямоугольника. Так как у него все стороны равны, то произведение становится квадратом буквы а .

Как быть, если фигура изображена на клетчатой бумаге?

В этой ситуации нужно полагаться на количество клеточек внутри фигуры. По их числу бывает просто посчитать площадь прямоугольника. Но это можно сделать тогда, когда стороны прямоугольника совпадают с линиями клеток.

Часто имеет место такое положение прямоугольника, при котором его стороны наклонены по отношению к разлиновке бумаги. Тогда количество клеток определить сложно, поэтому расчет площади прямоугольника усложняется.

Потребуется сначала узнать площадь прямоугольника, который можно прочертить по клеточкам точно вокруг данного. Это просто: перемножить высоту и ширину. Потом вычесть из получившегося значения площади всех А их четыре. К слову, их рассчитывают как половину произведения катетов.

Итоговый результат даст значение площади данного прямоугольника.

Как поступить, если стороны неизвестны, зато даны его диагональ и угол между диагоналями?

До того в этой ситуации нужно вычислить его стороны, чтобы воспользоваться уже знакомой формулой. Поначалу потребуется вспомнить свойство его диагоналей. Они равны и делятся точкой пересечения пополам. Можно увидеть на чертеже, что диагонали делят прямоугольник на четыре равнобедренных треугольника, которые попарно равны друг другу.

Равные стороны этих треугольников определяются как половины диагонали, которая известна. То есть в каждом треугольнике есть две стороны и угол между ними, которые даны в задаче. Можно воспользоваться

Одна сторона прямоугольника будет вычислена по формуле, в которой фигурируют равные стороны треугольника и косинус заданного угла. Для вычисления второй значение косинуса придется брать от угла, равного разности 180 и известного угла.

Что делать, если в задаче дан периметр?

Обычно в условии указывается еще и соотношение длины и ширины. Вопрос о том, как посчитать площадь прямоугольника, в этом случае проще на конкретном примере.

Допустим, что в задаче периметр некоторого прямоугольника равен 40 см. Известно также, что его длина в полтора раза больше ширины. Необходимо узнать его площадь.

Решение задачи начинается с записи формулы периметра. Его удобнее расписать как сумму длины и ширины, каждую из которых умножить на два по отдельности. Это будет первым уравнением в системе, которую потребуется решить.

Второе связано с известным по условию соотношением сторон. Первая сторона, то есть длина, равна произведению второй (ширины) и числа 1,5. Это равенство нужно подставить в формулу для периметра.

Получится, что он равен сумме двух одночленов. Первый — произведение 2 и неизвестной ширины, второй — произведение чисел 2 и 1,5 и той же ширины. В этом уравнении всего одна неизвестная — это ширина. Нужно ее сосчитать, а потом воспользоваться вторым равенством, чтобы сосчитать длину. Останется только перемножить эти два числа, чтобы узнать площадь прямоугольника.

Расчеты дают такие величины: ширина — 8 см, длина — 12 см, а площадь — 96 см 2 . Последнее число — ответ рассмотренной задачи.

Начиная с 5 класса, ученики начинают знакомиться с понятием площадей разных фигур. Особая роль отводится площади прямоугольника, так как эта фигура одна из наиболее простых в изучении.

Понятия площади

Любая фигура имеет свою площадь, а вычисление площади отталкиваются от единичного квадрата, то есть от квадрата с длинной стороны в 1 мм, либо 1 см, 1 дм и так далее.2$.

Диагонали разделяет прямоугольник на 4 фигуры – 4 треугольника. При этом треугольники попарно равны. Если провести диагональ в прямоугольнике, то она разделяет фигуру на два равных прямоугольных треугольника.

Диагонали не является биссектрисами углов прямоугольника. А также если провести биссектрисы каждого угла, то при их пересечении получится прямоугольник.

Что мы узнали?

Мы научились находить площадь прямоугольника. Ту или иную формулы нахождения площади используют в зависимости от исходных данных. Также стоит не забывать, что если в задании разные единицы измерения сторон необходимо перевести их одну.

Тест по теме

Оценка статьи

Средняя оценка: 4.4 . Всего получено оценок: 292.

Урок на тему: «Формулы определения площади треугольника, прямоугольника, квадрата»

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания. Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине «Интеграл» для 5 класса
Тренажер к учебнику И.И.Зубаревой и А.Г.Мордковича
Тренажер к учебнику Г.В.Дорофеева и Л.Г.Петерсона

Определение и понятие площади фигуры

Чтобы лучше понять, что такое площадь фигуры, рассмотрим рисунок.
Эта произвольная фигура разбита на 12 маленьких квадратика. Сторона каждого квадратика равна 1 см. А площадь каждого квадратика равна 1 квадратному сантиметру, что записывается так: 1 см 2 .

Тогда площадь фигуры равна 12 квадратным сантиметрам. В математике площадь обозначается латинской буквой S.
Значит, площадь нашей фигуры равна: S фигуры = 12 см 2 .

Площадь фигуры равна площади всех маленьких квадратиков, из которых она состоит!

Ребята, запомните!
Площадь измеряется квадратными единицами длины. Единицы измерения площади:
1. Квадратный километр — км 2 (когда площади очень большие, например, страна или море).
2. Квадратный метр — м 2 (вполне подходит для того, чтобы измерять площадь участка или квартиры).
3. Квадратный сантиметр — см 2 (обычно используется на уроках математики, когда рисуют фигуры в тетради).
4. Квадратный миллиметр — мм 2 .

Площадь треугольника

Рассмотрим два вида треугольников: прямоугольный и произвольный.

Чтобы найти площадь прямоугольного треугольника необходимо знать длину основания и высоту. В прямоугольном треугольнике высоту заменяет одна из сторон. Поэтому в формулу площади треугольника вместо высоты подставляем одну из сторон.
В нашем примере стороны равны 7 см и 4 см. Формула для расчета площади треугольника записывается так:
S прямоугольного треугольника АВС = ВС * СА: 2


S прямоугольного треугольника АВС = 7 см * 4 см: 2 = 14 см 2

Теперь рассмотрим произвольный треугольник.

Для такого треугольника необходимо провести высоту к основанию.
В нашем примере высота равна 6 см, а основание равно 8 см. Как и в предыдущем примере, рассчитываем площадь по формуле:
S произвольного треугольника АВС = ВС * h: 2.

Подставим в формулу наши данные и получим:
S произвольного треугольника АВС = 8 см * 6 см: 2 = 24 см 2 .

Площадь прямоугольника и квадрата

Возьмем прямоугольник АВСD со сторонами 5 см и 8 см.
Формула расчета площади прямоугольника записывается так:
S прямоугольника АВСD = АВ * ВС.


S прямоугольника АВСD = 8 см * 5 см = 40 см 2 .

Теперь рассчитаем площадь квадрата. В отличии от прямоугольника и треугольника, для нахождения площади квадрата необходимо знать только одну сторону. В нашем примере сторона квадрата ABCD равна 9 см. S квадрата АВСD = АВ * ВС = АВ 2 .

Подставим в формулу наши данные и получим:
S квадрата АВСD = 9 см * 9 см = 81 см 2 .

Для вычисления площади и периметра квадрата нужно разобраться в понятиях этих величин. Квадрат представляет собой прямоугольник только с четырьмя одинаковыми сторонам, которые имеют между собой угол в 90°. Периметр — это сумма длин всех сторон. Площадь — это произведение длины прямоугольной фигуры на ее ширину.

Площадь квадрата и как ее найти

Как было сказано выше, квадрат — это прямоугольник, имеющий 4 равные стороны, поэтому ответом на вопрос: «как найти площадь квадрата» является формула: S = a*a или S = a 2 , где а — сторона квадрата. Исходя из этой формулы, легко находится сторона квадрата, если известна площадь. Для этого необходимо извлечь квадрат из указанной величины.

Например, S = 121, следовательно, а = √121 = 11. Если заданное значение отсутствует в таблице квадратов, то можно воспользоваться калькулятором: S = 94, а = √94 = 9,7.

Как найти периметр квадрата

Периметр квадрата находится по легкой формуле: Р = 4а, где а — сторона квадрата.

Пример:

  • сторона квадрата = 5, следовательно, P = 4*5 = 20
  • сторона квадрата = 3, следовательно, Р = 4*3 = 12

Но существуют такие задачи, где заведомо обозначена площадь, а нужно найти периметр. При решении нужны формулы, которые представлены ранее.

Например: как найти периметр квадрата, если известна площадь, равная 144?

Шаги решения:

  1. Выясняем длину одной стороны: а = √144 = 12
  2. Находим периметр: Р = 4*12 = 48.

Нахождение периметра вписанного квадрата


Существуют еще несколько способов нахождения периметра квадрата. Рассмотрим один из них: нахождение периметра через радиус описанной окружности. Здесь появляется новый термин «вписанный квадрат» — это квадрат, чьи вершины лежат на окружности.

Алгоритм решения:


  • так как на рассмотрении квадрат, формулу можно выразить таким образом: a 2 + a 2 = (2r) 2 ;
  • затем следует уравнение сделать проще: 2a 2 = 4(r) 2 ;
  • делим уравнение на 2: (a 2 ) = 2(r) 2 ;
  • извлекаем корень: a = √(2r).

В итоге получаем последнюю формулу: а (сторона квадрата) = √(2r).

  1. Найденная сторона квадрата умножается на 4, далее применяется стандартная формула по нахождению периметра: P = 4√(2r).

Задача:

Дан квадрат, который вписан в окружность, ее радиус равен 5. Значит, диагональ квадрата равняется 10. Применяем теорему Пифагора: 2(a 2 ) = 10 2 , то есть 2a 2 = 100. Делим полученное на два и в результате: a 2 = 50. Так как это не табличное значение, используем калькулятор: а = √50 = 7,07. Умножаем на 4: Р = 4*7,07 = 28,2. Задача решена!

Рассмотрим еще один вопрос

Часто в задачах встречается другое условие: как найти площадь квадрата, если известен периметр?

Мы уже рассмотрели все необходимые формулы, поэтому для решения задач подобного типа, необходимо умело их применять и связывать между собой. Перейдем сразу к наглядному примеру: Площадь квадрата равна 25 см 2 , найдите его периметр.

Шаги решения:

  1. Находим сторону квадрата: а = √25 = 5.
  1. Находим сам периметр: Р = 4*а = 4*5 = 20.

Подводя итог, важно напомнить, что такие легкие формулы применимы не только в учебной деятельности, но и повседневной жизни. Периметр и площадь фигуры дети учатся находить еще в начальной школе. В средних классах появляется новый предмет — геометрия, где теорема Пифагора находится в самом начале изучения. Эти азы математики проверяются и по окончанию школы ОГЭ и ЕГЭ, поэтому важно знать эти формулы и правильно их применять.

§ Площадь фигур. Площадь квадрата. Площадь прямоугольника. Площадь сложной фигуры

Две фигуры называют равными, если одну их них можно так наложить на другую, что эти фигуры совпадут.

Площади равных фигур равны. Их периметры тоже равны.

Площадь квадрата

Запомните!

Для вычисления площади квадрата нужно умножить его длину на саму себя.

S = a · a

Пример:

SEKFM = EK · EK

SEKFM = 3 · 3 = 9 см2

Формулу площади квадрата, зная определение степени, можно записать следующим образом:

S = a2

Площадь прямоугольника

Запомните!

Для вычисления площади прямоугольника нужно умножить его длину на ширину.

S = a · b

Пример:

SABCD = AB · BC

SABCD = 3 · 7 = 21 см2


Запомните!

Нельзя вычислять периметр или площадь, если длина и ширина выражены в разных единицах длины.

Обязательно проверяйте, чтобы и длина, и ширина были выражены в одинаковых единицах, то есть обе в см, м и т.д.

Площадь сложных фигур

Запомните!

Площадь всей фигуры равна сумме площадей её частей.

Задача: найти площадь огородного участка.

Так как фигура на рисунке не является ни квадратом, ни прямоугольником, рассчитать её площадь можно используя правило выше.

Разделим фигуру на два прямоугольника, чьи площади мы можем легко рассчитать по известной формуле.

SABCE = AB · BC
SEFKL = 10 · 3 = 30 м2
SCDEF = FC · CD
SCDEF = 7 · 5 = 35 м2

Чтобы найти площадь всей фигуры, сложим площади найденных прямоугольников.
S = SABCE + SEFKL
S = 30 + 35 = 65 м2

Ответ: S = 65 м2 — площадь огородного участка.


Свойство ниже может вам пригодиться при решении задач на площадь.

Запомните!

Диагональ прямоугольника делит прямоугольник на два равных треугольника.

Площадь любого из этих треугольников равна половине площади прямоугольника.

Рассмотрим прямоугольник:

АС — диагональ прямоугольника ABCD. Найдём площадь треугольников ABC и ACD

Вначале найдём площадь прямоугольника по формуле.

SABCD = AB · BC
SABCD = 5 · 4 = 20 см2

S ABC = SABCD : 2

S ABC = 20 : 2 = 10 см2

S ABC = S ACD = 10 см2



Площадь прямоугольника формула 4. Как посчитать площадь прямоугольника: практические советы

Площадь прямоугольника, как не будет дерзко звучать, но это важное понятие. В повседневной жизни мы постоянно сталкиваемся с ним. Узнать размер полей, огородов, рассчитать количество краски, необходимой для побелки потолка, сколько понадобится обоев для оклейки ко

мнаты и другое.

Геометрическая фигура

Для начала поговорим о прямоугольнике. Это фигура на плоскости, которая имеет четыре прямых угла, а ее противоположные стороны равны. Стороны его привыкли называть длиной и шириной. Измеряют их в миллиметрах, сантиметрах, дециметрах, метрах и т. д. Теперь ответим на вопрос: «Как найти площадь прямоугольника?» Для этого необходимо длину умножить на ширину.

Площадь=длина*ширина

Но еще одна оговорка: длина и ширина должны быть выражены в одинаковых единицах измерения, то есть метр и метр, а не метр и сантиметр. Записывается площадь латинской буквой S. Для удобства обозначим длину латинской буквой b, а ширину латинской буквой a, как показано на рисунке. Отсюда мы делаем вывод, что единицей измерения площади является мм 2 , см 2 , м 2 и т. д.

Рассмотрим на конкретном примере, как найти площадь прямоугольника. Длина b=10 ед. Ширина a=6 ед. Решение: S=a*b, S=10 ед.*6 ед., S=60 ед 2 . Задача. Как узнать площадь прямоугольника, если длина в 2 раза больше ширины и составляет 18 м? Решение: если b=18 м, тогда а=b/2, a=9 м. Как найти площадь прямоугольника, если известны обе стороны? Правильно, подставить в формулу. S=a*b, S=18*9, S=162 м 2 . Ответ: 162 м 2 . Задача. Сколько необходимо купить рулонов обоев для комнаты, если ее размеры составляют: длина 5,5 м ширина 3,5, а высота 3 м? Размеры рулона обоев: длина 10 м, ширина 50 см. Решение: сделаем рисунок комнаты.

Площади противоположных сторон равны. Вычислим площадь стены с размерами 5,5 м и 3 м. S стены 1 =5,5*3,

S стены 1 =16,5 м 2 . Следовательно, противоположная стена имеет площадь равную 16,5 м 2 . Найдем площади следующих двух стен. Стороны их, соответственно, равны 3,5 м и 3 м. S стены 2 =3,5*3, S стены 2 =10,5 м 2 . Значит, и противоположная сторона равна 10,5 м 2 . Сложим все результаты. 16,5+16,5+10,5+10,5=54 м 2 . Как вычислить площадь прямоугольника, если стороны выражены в разных единицах измерения. Ранее мы вычисляли площади в м 2 , то и в этом случае будем использовать метры. Тогда ширина рулона обоев будет равна 0,5 м. S рулона =10*0,5, S рулона =5 м 2 . Теперь узнаем, сколько рулонов необходимо для оклейки комнаты. 54:5=10,8 (рулонов). Так как они измеряются целыми числами, то нужно купить 11 рулонов обоев. Ответ: 11 рулонов обоев. Задача. Как вычислить площадь прямоугольника, если известно, что ширина на 3 см короче длины, а сумма сторон прямоугольника составляет 14 см? Решение: пусть длина х см, тогда ширина (х-3) см. х+(х-3)+х+(х-3)=14, 4х-6=14, 4х=20, х=5 см — длина прямоугольника, 5-3=2 см — ширина прямоугольника, S=5*2, S=10 см 2 Ответ: 10 см 2 .

Резюме

Рассмотрев примеры, надеюсь, стало понятно, как найти площадь прямоугольника. Напомню, что единицы измерения длины и ширины должны совпадать, иначе получится неправильный результат, чтобы не допустить ошибок, читайте задание внимательно. Иногда сторона может быть выражена через другую сторону, не стоит бояться. Обратитесь к нашим решенным задачам, вполне возможно, они могут помочь. Но хоть раз в жизни мы сталкиваемся с нахождением площади прямоугольника.

Инструкция

Например, вам , что длина одной из сторон (а) равна 7 см, а периметр прямоугольника (P) равен 20 см. Так как периметр любой фигуры равен сумме длин ее сторон, а у прямоугольника противоположные стороны равны, то его периметр а будет выглядеть следующим образом: P = 2 x (a + b), или P = 2a + 2b. Из этой формулы следует, что найти длину второй стороны (b) можно с помощью несложной операции: b = (P – 2a) : 2. Так, в нашем случае сторона b будет равна (20 – 2 х 7) : 2 = 3 см.

Теперь, зная длины обеих смежных сторон (a и b), вы сможете подставить их в формулу площади S = ab. В данном случае прямоугольника будет равна 7х3 = 21. Обратите на то, что единицами измерения будут уже не , а сантиметры квадратные, так как длин двух сторон единицы их измерения (сантиметры) вы тоже умножали друг на друга.

Источники:

  • как находится периметр прямоугольника

Плоская фигура, состоящая из четырех сторон и четырех прямых углов. Из всех фигур площадь прямоугольника приходится вычислять чаще других. Это и площадь квартиры, и площадь садового участка, и площадь поверхности стола или полки. Например, чтобы просто оклеить комнату обоями, вычисляют площадь ее прямоугольных стен.

Инструкция

Кстати, из прямоугольника можно легко вычислить площадь . Достаточно достроить прямоугольный до прямоугольника так, чтобы гипотенуза стала диагональю прямоугольника . Тогда будет очевидно, что площадь такого прямоугольника равна произведению катетов треугольника, а площадь самого треугольника, соответственно, равна половине произведения катетов.

Видео по теме

Частный случай параллелограмма — прямоугольник – известен только в геометрии Евклида. У прямоугольника равны все углы, и каждый из них по отдельности составляет 90 градусов. Исходя из частных свойств прямоугольника , а также из свойств параллелограмма о параллельности противолежащих сторон можно найти стороны фигуры по заданным диагоналям и углу от их пересечения. Вычисление сторон прямоугольника основывается на дополнительных построениях и применении свойств получаемых фигур.

Инструкция

Буквой А отметьте точку пересечения диагоналей. Рассмотрите образованный построениями EFА. Согласно свойству прямоугольника его диагонали равны и пополам точкой пересечения А. Вычислите значения FА и EА. Так как треугольник EFА равнобедренным и его стороны EА и FА равны между собой и соответственно равны половине диагонали EG.

Далее вычислите первую EF прямоугольника . Данная сторона является третьей неизвестной стороной рассматриваемого треугольника EFА. Согласно теореме косинусов по соответствующей формуле найдите сторону EF. Для этого подставьте в формулу косинусов полученные ранее значения сторон FА EА и косинус известного угла между ними α. Вычислите и запишите полученное значение EF.

Найдите вторую сторону прямоугольника FG. Для этого рассмотрите другой треугольник EFG. Он является прямоугольным, где известны гипотенуза EG и катет EF. Согласно теореме Пифагора найдите второй катет FG по соответствующей формуле.

Относится к простейшим плоским геометрическим фигурам и является одним из частных случаев параллелограмма. Отличительная черта такого параллелограмма — прямые углы во всех четырех вершинах. Ограниченную сторонами прямоугольника площадь можно вычислить несколькими способами, используя размеры его сторон, диагонали и углы между ними, радиус вписанной окружности и т.д.

Инструкция

Если известна величина угла (α), который составляет диагональ прямоугольника с одной из его сторон, а также длина (С) этой диагонали, то для вычисления площади можно задействовать определения тригонометрических в прямоугольном . Прямоугольный треугольник здесь образуют две стороны четырехугольника и его диагональ. Из определения косинуса вытекает, что длина одной из сторон будет равна произведению длины диагонали на угла, величина известна. Из определения синуса можно вывести формулу длины другой стороны — она равна произведению длины диагонали на синус все того же угла. Подставьте эти тождества в формулу из предыдущего шага, и получится, что для нахождения площади надо перемножить синус и косинус известного угла, а также длины диагонали прямоугольника : S=sin(α)*cos(α)*С².

Если кроме длины диагонали (С) прямоугольника известна величина угла (β), который образуют диагонали, то для вычисления площади фигуры можно тоже задействовать одну из тригонометрических функций — синус. Возведите в квадрат длину диагонали и умножьте полученный результат на половину синуса известного угла: S=С²*sin(β)/2.

Если известен (r) вписанной в прямоугольник окружности, то для вычисления площади возведите эту величину во вторую степень и увеличьте результат в четыре раза: S=4*r². Четырехугольник, в который можно , будет являться квадратом, а длина его стороны равна диаметру вписанной окружности, то есть удвоенному радиусу. Формула получена подстановкой длин сторон, выраженных через радиус в тождество из первого шага.

Если известны длины (P) и одной из сторон (A) прямоугольника , то для нахождения площади внутри этого периметра вычислите половину произведения длины стороны на разницу между длиной периметра и двумя длинами этой стороны: S=A*(P-2*A)/2.

Видео по теме

С задачей найти периметр или площадь многоугольника сталкиваются не только ученики на уроках геометрии. Порой ее случается решать и взрослому человеку. Приходилось ли вам рассчитывать необходимое количество обоев для комнаты? Или, может быть, вы измеряли протяженность дачного участка, чтобы огородить его забором? Так знания основ геометрии иногда незаменимы для осуществления важных проектов.

Площадь геометрической фигуры — численная характеристика геометрической фигуры показывающая размер этой фигуры (части поверхности, ограниченной замкнутым контуром данной фигуры). Величина площади выражается числом заключающихся в нее квадратных единиц.

Формулы площади треугольника

  1. Формула площади треугольника по стороне и высоте
    Площадь треугольника равна половине произведения длины стороны треугольника на длину проведенной к этой стороне высоты
  2. Формула площади треугольника по трем сторонам и радиусу описанной окружности
  3. Формула площади треугольника по трем сторонам и радиусу вписанной окружности
    Площадь треугольника равна произведения полупериметра треугольника на радиус вписанной окружности.
  4. где S — площадь треугольника,
    — длины сторон треугольника,
    — высота треугольника,
    — угол между сторонами и,
    — радиус вписанной окружности,
    R — радиус описанной окружности,

Формулы площади квадрата

  1. Формула площади квадрата по длине стороны
    Площадь квадрата равна квадрату длины его стороны.
  2. Формула площади квадрата по длине диагонали
    Площадь квадрата равна половине квадрата длины его диагонали.
  3. где S — Площадь квадрата,
    — длина стороны квадрата,
    — длина диагонали квадрата.

Формула площади прямоугольника

    Площадь прямоугольника равна произведению длин двух его смежных сторон

    где S — Площадь прямоугольника,
    — длины сторон прямоугольника.

Формулы площади параллелограмма

  1. Формула площади параллелограмма по длине стороны и высоте
    Площадь параллелограмма
  2. Формула площади параллелограмма по двум сторонам и углу между ними
    Площадь параллелограмма равна произведению длин его сторон умноженному на синус угла между ними.

    a · b · sin α

  3. где S — Площадь параллелограмма,
    — длины сторон параллелограмма,
    — длина высоты параллелограмма,
    — угол между сторонами параллелограмма.

Формулы площади ромба

  1. Формула площади ромба по длине стороны и высоте
    Площадь ромба равна произведению длины его стороны и длины опущенной на эту сторону высоты.
  2. Формула площади ромба по длине стороны и углу
    Площадь ромба равна произведению квадрата длины его стороны и синуса угла между сторонами ромба.
  3. Формула площади ромба по длинам его диагоналей
    Площадь ромба равна половине произведению длин его диагоналей.
  4. где S — Площадь ромба,
    — длина стороны ромба,
    — длина высоты ромба,
    — угол между сторонами ромба,
    1 , 2 — длины диагоналей.

Формулы площади трапеции

  1. Формула Герона для трапеции

    Где S — Площадь трапеции,
    — длины основ трапеции,
    — длины боковых сторон трапеции,

Начиная с 5 класса, ученики начинают знакомиться с понятием площадей разных фигур. Особая роль отводится площади прямоугольника, так как эта фигура одна из наиболее простых в изучении.

Понятия площади

Любая фигура имеет свою площадь, а вычисление площади отталкиваются от единичного квадрата, то есть от квадрата с длинной стороны в 1 мм, либо 1 см, 1 дм и так далее.2$.

Диагонали разделяет прямоугольник на 4 фигуры – 4 треугольника. При этом треугольники попарно равны. Если провести диагональ в прямоугольнике, то она разделяет фигуру на два равных прямоугольных треугольника. Средняя оценка: 4.4 . Всего получено оценок: 214.

Полезный калькулятор для школьников и взрослых позволяет быстро вычислить площадь прямоугольника по двум его сторонам. Подобный расчет мы часто производим не только в рамках школьного курса геометрии, но и в повседневной жизни. Например, если нужно посчитать площадь комнаты при ремонте квартиры, для расчета необходимого количества материалов.

Удобная навигация по статье:

Как рассчитать площадь прямоугольника

Прямоугольником принято называть геометрическую плоскую фигуру, которая имеет параллельно расположенные противоположные стороны при углах в 90 градусов. В качестве длины этой геометрической фигуры выступает величина, которая имеет большую сторону. При этом, за ширину принимается величина меньшей стороны. Для правильного вычисления площади прямоугольника Вам необходимо знать определённые параметры, которыми обладает данная фигура. В их числе:

  • диагональ;
  • ширина;
  • так называемый угол наклона к одной из сторон диагонали;
  • длина.

Таким образом, произвести расчёт площади прямоугольника можно различными способами. Всё зависит от количества информации о фигуре, а именно, какие величины нам точно известны.

Как вычислить площадь прямоугольника, имея линейные параметры его сторон?

Давайте в качестве обозначения длины прямоугольника будем использовать букву «а», для его ширины – букву «b», а площадь геометрической фигуры обозначим буквой «S». Согласно этому, наша формула будет выглядеть следующим образом: S = a x b.

Зная линейные параметры прямоугольника, можно легко определить его периметр последующей формуле: P = 2(a + b), где в качестве обозначения периметра мы используем букву «P».

Как можно вычислить площадь прямоугольника, зная величину одну из его сторон и диагональ?

Как нам известно, диагональ делит любой прямоугольник на два так называемых прямоугольных треугольника. Давайте присвоим диагонали индекс «с», а длину стороны обозначим буквой «а». Теперь необходимо произвести следующий порядок действий:

  1. для начала необходимо найти длину неизвестной стороны. Для этого мы используем формулу Пифагора: b = V c2 – a2.
  2. После этого, нам следует определить площадь нашей основной геометрической фигуры (прямоугольника) как площадь треугольника, умноженную на два: Sтр = ½ (а х в).
  3. Согласно вышеописанной схеме расчёта площадь прямоугольника в данном случае будет равна: S = 2 x Sтр = а х в.

В том случае, если нам известны периметр прямоугольника, а также длина одной из его сторон, то площадь этой геометрической фигуры можно вычислить, определив длину второй стороны (b = (P – 2xa), по такой формуле: S = a x b.

Если же нам известны размер диагонали прямоугольника, а также угол между стороной и самой диагональю, то площадь можно вычислить при помощи следующих тригонометрических функций: Sтр = ½ х с2 х sinФ х cosФ.

При этом, общая площадь в данном случае будет составлять S = 2 x Sтр.

Площадь прямоугольника. Видео-урок.

Площадь прямоугольника

Площадь прямоугольника, формулы для вычисления площади прямоугольников в зависимости от известных исходных данных, калькулятор для нахождения площади онлайн и сводная таблица с формулами площадей прямоугольника. Наш калькулятор поможет вам бесплатно в режиме онлайн вычислить площадь прямоугольника с помощью различных формул или проверить уже выполненные вычисления.

Таблица с формулами площади прямоугольника (в конце страницы)

— Вычисления   (показано)   (скрыто)

— примечания   (показано)   (скрыто)


1

Площадь прямоугольника через две стороны

… подготовка …

a — сторона

b — сторона



2

Площадь прямоугольника через периметр и одну из сторон

В указанной формуле, площадь периметра прямоугольника вычисляется: 

… подготовка …

a (или b) — сторона

P — периметр



3

Площадь прямоугольника по диагонали и стороне

… подготовка …

a (или b) — сторона

d — диагональ



4

Площадь прямоугольника по диагоналям и углу между ними

… подготовка …

d — диагональ

α° — угол между диагоналями



5

Площадь прямоугольника через сторону и радиус описанной окружности

… подготовка …

a (или b) — сторона

R — радиус описанной окружности



6

Площадь прямоугольника через сторону и диаметр описанной окружности

… подготовка …

a (или b) — сторона

D — диаметр описанной окружности


Примечание:

Если в исходных данных угол задан в радианах, то для перевода в градусы вы можете воспользоваться «Конвертером величин». Или вычислить самостоятельно по формуле: 1 рад × (180/π) ° = 57,296°


Таблица с формулами площади прямоугольника



Определения

Площадь – это численная характеристика, характеризующая размер плоскости, ограниченной замкнутой геометрической фигурой.

Площадь измеряется в единицах измерения в квадрате: км2, м2, см2, мм2 и т.д.


Площадь прямоугольников — объяснения и примеры

По определению, площадь прямоугольника — это область, охватываемая прямоугольником в двухмерной плоскости . Прямоугольник — это двумерный многоугольник с четырьмя сторонами, четырьмя углами и четырьмя вершинами.

Прямоугольник состоит из двух сторон: длины (L) и ширины (W). Длина прямоугольника — самая длинная сторона, а ширина — самая короткая. Ширина прямоугольника иногда обозначается как ширина (b).

Как найти площадь прямоугольника?

Площадь прямоугольника можно рассчитать, подсчитав количество маленьких полных квадратов размером 1 * 1 кв. Единиц, необходимых для покрытия прямоугольника.

Например, если количество подсчитанных полных квадратов равно 20, это означает, что площадь прямоугольника равна 20 единицам квадратов.

Недостатком этого метода является то, что он не дает точных значений площади, а также метод неприменим для определения площади больших плоскостей.

Площадь прямоугольника Формула

Площадь прямоугольника равна произведению ширины и длины прямоугольника.

Следовательно, формула площади прямоугольника утверждает, что:

Площадь прямоугольника = Длина x Ширина

A = L * W, где A — площадь, L — длина, W — ширина или ширина. .

ПРИМЕЧАНИЕ: При умножении длины на ширину всегда проверяйте, что вы работаете в одной и той же единице длины. Если они даны в разных единицах, замените их на одну и ту же единицу.

Давайте решим несколько примеров задач о площади прямоугольника.

Пример 1

Найдите площадь прямоугольника, если его длина 25 м, а ширина 10 м.

Раствор

A = l x w

Заменить 25 на l и 10 на w.

= (25 x 10) м 2

= 250 м 2

Итак, площадь прямоугольника 250 м 2 .

Пример 2

Найдите площадь прямоугольника, длина и ширина которого составляют 10 см и 3 см соответственно.

Раствор

Дано,
Длина (l) = 10 см.
Ширина (b) = 3 см.
Площадь прямоугольника = длина × ширина

= 10 × 3 см 2 .

= 30 см 2 .

Пример 3

Если периметр прямоугольника составляет 60 см, а его длина в 5 раз больше ширины, найдите площадь прямоугольника.

Решение

Пусть ширина будет x.

Длина в 5 раз больше ширины, длина = 5x.

Но периметр прямоугольника = 2 (l + w) = 60 см

Замените 5x на l и x на w.

60 = 2 (5x + x)

60 = 12x

Разделите обе стороны на 12, чтобы получить.

x = 5

Теперь подставьте x = 5 в уравнение длины и ширины.

Следовательно, ширина = 5 см, а длина = 25 см.

Но площадь прямоугольника = lxw

= (25 x 5) см 2

= 125 см 2

Пример 4

Найдите площадь прямоугольника длиной 12 см и диагональ 13 см.

Решение

Здесь ширина не указана, поэтому мы используем теорему Пифагора для определения ширины.

c 2 = a 2 + b 2

13 2 = a 2 + 12 2

169 = a 2 + 144.

Вычесть 144 с обеих сторон .

169 — 144 = a 2 + 144 — 144

25 = a 2

Найдя квадратный корень из обеих частей, мы получим.

a = 5

Следовательно, ширина прямоугольника 5 см.

Теперь посчитайте площадь.

A = Д x Ш

= (12 x 5) см 2

Пример 5

Если цена цементирования пола составляет 12,40 долларов США за квадратный метр, найдите стоимость цементирования прямоугольного пола длиной 20 м и шириной 10 м.

Раствор

Чтобы найти общую стоимость цементирования пола, умножьте площадь пола на норму цементирования.

Площадь = Д x Ш

= (20 x 10) м 2

= 200 м 2

Стоимость цементирования = площадь x скорость цементирования

= 200 м 2 x 12,40 долл. США / м 2

= 2480 долларов США

Пример 6

Длина и ширина находятся в соотношении 11: 7, а его площадь составляет 693 квадратных фута. Найдите его длину и ширину.

Решение

Пусть общее соотношение длины и ширины = x

Следовательно, длина = 11x

Ширина = 7x

Площадь прямоугольника = L x W

693 кв.футов = (11x) (7x)

693 кв. ft = 77x 2

Разделим обе стороны на 77.

x 2 = 9

Найдите квадрат обеих сторон, чтобы получить;

x = 3.

Заменитель.

Длина = 11x = 11 * 3 = 33

Ширина = 7x = 7 * 3 = 21

Следовательно, длина прямоугольника составляет 33 фута, а его ширина — 21 фут.

Пример 7

Длина прямоугольника 0,7 м, ширина 50 см.Какова площадь прямоугольника в метрах?

Решение

Длина = 0,7 м

Ширина = 50 см.

Преобразуйте 50 см в метры, разделив 50 на 100. Итак, 50 см = 0,5 м

Площадь = Д x Ш

= (0,7 x 0,5) м 2

= 0,35 м 2

Пример 8

Размер прямоугольной стены 75 м на 32 м. Узнайте стоимость покраски стены, если ставка покраски 5 рупий за кв.м.

Решение

Площадь = Д x Ш

= (75 x 32) м 2

= 2400 м 2

Чтобы получить стоимость покраски стены, умножаем площадь стены по скорости покраски.

Стоимость = 2400 м 2 x 5 рупий за кв. М

= 12000 рупий

Пример 9

Пол прямоугольного двора размером 50 м на 40 м покрыт прямоугольной плиткой размеры, 1 м на 2 м.Найдите общее количество плиток, необходимых для полного покрытия пола двора.

Решение

Сначала вычислите площадь пола двора и плитки.

Площадь пола двора = (50 x 40) м 2

= 2000 м 2

Площадь плитки = (1 x 2) м 2

= 2 м 2

Чтобы найти количество плиток, необходимое для покрытия пола двора, мы делим пол двора на площадь плитки.

Количество плиток = 2000 м 2 /2 м 2

= 1000

Следовательно, для покрытия пола необходимо 1000 плиток.

Предыдущий урок | Главная страница | Следующий урок

Как найти площадь прямоугольника

Если вы считаете, что контент, доступный через Веб-сайт (как определено в наших Условиях обслуживания), нарушает или другие ваши авторские права, сообщите нам, отправив письменное уведомление («Уведомление о нарушении»), содержащее в информацию, описанную ниже, назначенному ниже агенту.Если репетиторы университета предпримут действия в ответ на ан Уведомление о нарушении, оно предпримет добросовестную попытку связаться со стороной, которая предоставила такой контент средствами самого последнего адреса электронной почты, если таковой имеется, предоставленного такой стороной Varsity Tutors.

Ваше Уведомление о нарушении прав может быть отправлено стороне, предоставившей доступ к контенту, или третьим лицам, таким как в качестве ChillingEffects.org.

Обратите внимание, что вы будете нести ответственность за ущерб (включая расходы и гонорары адвокатам), если вы существенно искажать информацию о том, что продукт или действие нарушает ваши авторские права.Таким образом, если вы не уверены, что контент находится на Веб-сайте или по ссылке с него нарушает ваши авторские права, вам следует сначала обратиться к юристу.

Чтобы отправить уведомление, выполните следующие действия:

Вы должны включить следующее:

Физическая или электронная подпись правообладателя или лица, уполномоченного действовать от их имени; Идентификация авторских прав, которые, как утверждается, были нарушены; Описание характера и точного местонахождения контента, который, по вашему мнению, нарушает ваши авторские права, в \ достаточно подробностей, чтобы позволить репетиторам университетских школ найти и точно идентифицировать этот контент; например нам требуется а ссылка на конкретный вопрос (а не только на название вопроса), который содержит содержание и описание к какой конкретной части вопроса — изображению, ссылке, тексту и т. д. — относится ваша жалоба; Ваше имя, адрес, номер телефона и адрес электронной почты; а также Ваше заявление: (а) вы добросовестно полагаете, что использование контента, который, по вашему мнению, нарушает ваши авторские права не разрешены законом, владельцем авторских прав или его агентом; (б) что все информация, содержащаяся в вашем Уведомлении о нарушении, является точной, и (c) под страхом наказания за лжесвидетельство, что вы либо владелец авторских прав, либо лицо, уполномоченное действовать от их имени.

Отправьте жалобу нашему уполномоченному агенту по адресу:

Чарльз Кон Varsity Tutors LLC
101 S. Hanley Rd, Suite 300
St. Louis, MO 63105

Или заполните форму ниже:

Обнаружение формул площади — элементарная математика

Формулы площади

Учащиеся, неформально относящиеся к области как к «количеству двумерного« материала », содержащегося внутри области, могут придумать для себя большинство формул, которые их часто просят просто запомнить.Каждая формула, которую они изобретают заново, помогает укрепить их понимание (и память) о других формулах, которые они знают. (См. Также площадь поверхности.)

Площадь прямоугольников

Выбирая квадрат в качестве единицы площади, мы получаем интуитивное представление о площади прямоугольников. Если мы решим, что площадь этого квадрата равна 1, то прямоугольник, который в 7 раз длиннее, будет иметь площадь 7 × 1.

Прямоугольник, который в два раза больше высоты, будет иметь удвоенную площадь, поэтому площадь составляет 2 × 7 единиц площади.Мы можем сосчитать два ряда по семь квадратов. Точно так же он имеет 3 ряда по 7 квадратов (или 7 столбцов по 3 квадрата), всего 7 × 3 квадратов, поэтому его площадь составляет 21 квадратную единицу.

Количество квадратов в одном ряду — это длина прямоугольника. Количество строк — это высота прямоугольника. Таким образом, площадь равна длине × высоте.

Поскольку прямоугольник можно нарисовать под наклоном, «высота» определяется как «направление, перпендикулярное основанию», а «основание» определяется как, ну, с какой бы стороны вы его ни выбрали.

Это работает для подсчета чисел. Это работает даже для дробей. Показанный здесь синий прямоугольник измеряет половину единицы длины на пять с половиной единиц длины. Если мы выберем соответствующий квадрат в качестве единицы площади, мы увидим, что синий прямоугольник содержит пять половинных единиц площади и одну четверть единицы площади, или всего две и три четверти единицы площади. (Розовые части показывают заполнение каждой квадратной единицы площади.)

Чтобы включить всех чисел, мы определяем площадь прямоугольника как основание × высота (где «основание» и «высота» означают длин, этих сторон, измеряется в те же единицы ).

Площадь параллелограммов

Идея

Мы можем вычислить формулу площади параллелограмма, разрезав параллелограмм и переставив части, чтобы получился прямоугольник. Поскольку параллелограмм и прямоугольник состоят из одинаковых частей, они обязательно имеют одинаковую площадь. (См. Определение площади, чтобы узнать, почему эти области одинаковы.)

Мы видим, что и имеют точно такую ​​же длину основания (синий) и точно такую ​​же высоту (зеленый).Поскольку основание × высота дает площадь прямоугольника, мы можем использовать те же измерения на параллелограмме, чтобы вычислить его площадь: основание × высота . (Как и раньше, «высота» измеряется перпендикулярно основанию, а «основание» — это та сторона, которую вы выбрали первой. См. Параллелограмм.)

На разрезе, показанном выше, легко увидеть, что базовая длина не изменилась.Фактически, перпендикулярный разрез можно делать в любом месте по основанию.

Укрепление отверстий

Интуиция и доказательство

Это рассечение дает интуитивное понимание формулы площади параллелограмма, причина , что он должен быть тем, чем он является. Но мы не сомневались, действительно ли рассечение «работает». То есть, когда мы разрезаем параллелограмм и переставляем его части, мы ожидаем, что получит , и результат определенно будет таким.Но внешность может быть обманчива. Что убеждает нас в том, что когда мы перемещаем этот треугольник, в результате получается прямоугольник? Что, если это больше похоже (хотя и менее преувеличено)? Если в результате не всегда получается идеальный прямоугольник, мы не можем использовать наши знания формулы площади прямоугольника, чтобы разработать формулу для параллелограмма. В старших классах школьники смогут доказать, что две части параллелограмма, если правильно собрать их, действительно образуют прямоугольник. В классах K-8 учащиеся по большей части должны полагаться на визуальный эксперимент и получать интуитивное ощущение.Узнайте больше о том, почему эти вскрытия работают.

Что, если мы выберем короткую сторону в качестве основания?


Мы можем выбрать любую сторону в качестве базы; «Высота» определяется как измеряемая перпендикулярно стороне, которую мы выбираем в качестве основания. Если мы возьмем за основу короткую сторону (синюю), то рассечение, показанное выше, не будет таким убедительным. Резка на такой высоте и перестановка деталей оставляет беспорядок:

В этом конкретном примере мы можем спасти беспорядок, сделав еще один разрез, но что, если бы параллелограмм был еще длиннее и тоньше?

Оказывается, любой параллелограмм , независимо от того, насколько он длинный и тонкий, можно разрезать таким образом, чтобы части — возможно, многие из них — могли быть преобразованы в прямоугольник.Но нужно потрудиться, чтобы показать, что это всегда можно сделать. Нам нужна другая идея.

Немного другая идея рассечения в этом случае значительно упрощает жизнь. (Самостоятельно вы можете показать, что это работает и в исходном случае.)

  • Заключите параллелограмм в прямоугольник.
  • Две части прямоугольника, которые находятся на , а не на внутри параллелограмма, являются конгруэнтными треугольниками.
  • Сдвиньте один из этих треугольников по направлению к другому, пока они не встретятся, образуя прямоугольник.Поскольку общая площадь внешнего прямоугольника не изменилась (это тот же прямоугольник, что и раньше), а желтая область не изменилась (части просто перемещались), разница между ними — фиолетовыми областями — должна быть такой же. Как и раньше, мы также можем видеть, что размеры прямоугольной фиолетовой области являются основанием и высотой исходного параллелограмма.

Интуиция и доказательство, повторение: Опять же, рассечение дает существенное понимание, но требуется немного больше работы, чтобы убедиться, что два желтых треугольника, которые, безусловно, выглядят , как будто они соединяются вместе, образуя прямоугольник, на самом деле точно подходят, а не просто почти .

Почему так важно быть осторожным?

При построении других формул площади (см. Ниже) мы захотим, чтобы использовал , как найти площадь параллелограмма, и поэтому мы хотим иметь возможность полагаться на найденное нами правило. Мы, , можем быть уверены, что перестановка частей не повлияет на область: это, в конце концов, то, как мы определяем область . Но мы также должны быть уверены, что детали подходят друг к другу, как мы заявляем, что это , или мы не можем полагаться на сделанные нами измерения.И мы должны быть уверены, что правило base × height не зависит от удачного выбора базы.

В большинстве учебных программ учащиеся не имеют достаточной систематической базы геометрических знаний до 8-го класса, чтобы убедительно доказать, что эти вскрытия работают. Но интуитивного понимания достаточно для объяснения и обоснования формул и хорошей основы для дальнейшего изучения геометрии.

Площадь треугольника

Знание того, как найти площадь параллелограмма, помогает нам найти площадь треугольника.

Рассечение треугольника

Мы можем разрезать треугольник на две части — одну из них треугольник, а другую — трапецию, разрезав его параллельно основанию. Если мы разрежем высоту ровно пополам с этим срезом, две части сложатся вместе, образуя параллелограмм с тем же основанием , но половиной высоты .

Итак, основание × на полувысоте дает площадь треугольника. Аналогичный разрез показывает полубаз × высота .Любой из них сокращается до bh .

Удвоение треугольника и уменьшение полученной площади пополам

Другой способ мышления: две копии треугольника образуют параллелограмм с тем же основанием, и такой же высотой , что и треугольник.

Площадь параллелограмма равна основанию × высотой , но это вдвое больше площади треугольника, поэтому площадь треугольника составляет из оснований × высотой , как мы видели с методом рассечения.

(Как всегда, выберите «основание» и измерьте высоту перпендикулярно этому основанию, от основания до противоположной вершины.)

Площадь трапеции

Удвоение трапеции и уменьшение полученной площади пополам

Как и в случае с треугольником, две копии трапеции можно соединить вместе, чтобы получился параллелограмм.

Высота параллелограмма равна высоте трапеции, но его основание представляет собой сумму двух оснований трапеции.Таким образом, площадь параллелограмма равна по высоте × ( base1 + base2 ). Но эта площадь составляет две трапеции , поэтому нам нужно разрезать ее пополам, чтобы получить площадь трапеции.

Рассечение трапеции

Мы также можем разрезать трапецию так же, как мы разрезали треугольник, с одним срезом, разрезающим ее высоту пополам. Две части соединяются вместе, образуя параллелограмм, основание которого является суммой двух оснований трапеции, но высота которого равна половине высоты трапеции.

В случае трапеции основания не могут быть выбраны произвольно. Две стороны , параллельные , являются основаниями, а высота, как всегда, представляет собой перпендикулярное расстояние от одного основания до противоположного.

Площадь этого параллелограмма равна его высоте (полувысоте трапеции), умноженной на его основание (сумма оснований трапеции), поэтому его площадь составляет полувысоты × ( base1 + base2 ). Поскольку параллелограмм состоит из того же материала, что и трапеция, это тоже площадь трапеции.

В любом случае площадь трапеции составляет × высота × ( base1 + base2 ) .

Площадь других специальных четырехугольников

Площадь ромба

Площадь ромба можно найти, разрезав и переставив части, чтобы сформировать параллелограмм. Это можно сделать несколькими способами:

  1. Разрежьте более короткую диагональ (a), чтобы получились два совпадающих треугольника. Переместите нижнюю половину треугольника рядом с верхней половиной, чтобы получился параллелограмм.Более короткая диагональ (a) становится основанием параллелограмма, а половина более длинной диагонали (b) становится высотой параллелограмма. Таким образом, площадь ромба равна a * b или произведению диагоналей, что является стандартной формулой для ромба.
  2. Другой аналогичный способ — разрезать ромб на четыре равных треугольника и переставить их в прямоугольник с более короткой диагональю в качестве основания и половиной длинной диагонали в качестве высоты.
  3. После разрезания ромба на два равных треугольника мы можем вычислить площадь одного из треугольников, которая равна * основанию (a) * высоте (b) = ab.Затем умножьте на два, так как их два: 2 * ab = ab.

Зона воздушного змея

Площадь воздушного змея может быть похожа на площадь ромба. Если разрезать более длинную диагональ, получится два равных треугольника. Если мы переставим их, мы можем сформировать параллелограмм с более длинной диагональю (b) в качестве основания и половиной более короткой диагонали (a) в качестве высоты. Итак, площадь становится b * a = ab. Более сложный подход требует немного алгебры. Разрежьте змей по более короткой диагонали, чтобы сформировать два треугольника с более короткой диагональю (a) в качестве основы.Таким образом, площадь первого треугольника — * волнистая, где волнистая — высота. Площадь второго треугольника равна a * (b — волнистый), где (b — волнистый) — оставшаяся часть большей диагонали. Таким образом, общая площадь становится (a * волнистая) + (a * (b — волнистая)). Вынося за скобки a, получаем a (волнистый + b — волнистый) = ab.

Ну что вы знаете. По сути, вам нужно только знать формулу для площади параллелограмма, а затем вывести формулу для других.

Калькулятор прямоугольников

.Найдите площадь и периметр любого прямоугольника

Если вам нужно знать площадь ковра, участка, экрана телевизора, прямоугольного бассейна или окна, этот прямоугольный калькулятор решит вашу проблему в мгновение ока! Все, что вам нужно сделать, это ввести длину и ширину (или диагональ) и позволить вычислению прямоугольника найти значения P (периметр) и A (площадь). Продолжайте читать, если вы хотите понять, что такое прямоугольник, вас интересуют определение прямоугольника, формулы, свойства прямоугольника… Или вы просто хотите узнать, как найти площадь прямоугольника.

Поскольку вы уже здесь, мы полагаем, что другие наши калькуляторы геометрических фигур могут быть вам интересны. Взгляните на наши замечательные инструменты, поиграйте с ними и опробуйте их!

Прямоугольник — это пример четырехугольной формы. Может быть, вы хотите посмотреть другие?

Что такое прямоугольник? Определение прямоугольника

Прямоугольник — это четырехугольник с четырьмя прямыми углами .Его также можно определить по-другому: параллелограмм, содержащий прямой угол — если один угол прямой, остальные должны быть такими же. Более того, каждая сторона прямоугольника имеет ту же длину, что и противоположная ему. Он также имеет неравные смежные стороны, в отличие от квадрата, который является частным случаем прямоугольника.

Если вы немного знаете латынь, название фигуры обычно многое объясняет. Слово прямоугольник происходит от латинского rectangulus . Это комбинация rectus (что означает «прямой, прямой») и angulus (угол), поэтому оно может служить простым базовым определением прямоугольника.

Как найти площадь прямоугольника?

На изображении выше показан типичный прямоугольник. У него четыре стороны и четыре прямых угла. Длины его сторон обозначены как a и b , а длина диагонали обозначена как d .

Если все стороны прямоугольника равны, он называется квадратом .

Площадь прямоугольника — это пространство, ограниченное его сторонами, или, другими словами, в пределах периметра прямоугольника.Чтобы найти площадь прямоугольника, все, что вам нужно сделать, это умножить стороны прямоугольника a и b :

Площадь = a * b

Формулы прямоугольника

В нашем калькуляторе прямоугольников реализованы следующие формулы:

  • Для площади прямоугольника : А = а * б

  • Для периметра прямоугольника : П = 2 * (а + б)

  • Для диагонали прямоугольника : d² = a² + b²

Если вас интересует площадь трехмерных тел, а не двумерные формы, воспользуйтесь калькулятором площади поверхности.

Вычисление прямоугольника: найти A (площадь)

Поскольку нам известна формула площади прямоугольника A = a * b , давайте покажем на примере, как можно вычислить это свойство:

  1. Выберите длину прямоугольника — например, a = 5 см .
  2. Определитесь с шириной прямоугольника — например, b = 6 см .
  3. Умножьте эти два значения: A = 5 см * 6 см = 30 см² .
  4. Площадь прямоугольника 30 см².

Вычисление прямоугольника: найти P (периметр)

Давайте узнаем, как найти периметр прямоугольника. Как обычно, периметр представляет собой сумму всех сторон фигуры:

P = a + b + a + b

, которое можно записать как:

P = 2 * (a + b)

Возьмем для примера тот же прямоугольник:

  1. Выбираем длину прямоугольника — a = 5 см в нашем случае .
  2. Определитесь с шириной прямоугольника — e.грамм. b = 6 см .
  3. Сложите эти два значения: a + b = 5 + 6 = 11 см .
  4. Умножьте результат на 2: P = 2 * 11 = 22 см .
  5. Поехали! Периметр нашего прямоугольника 22 см.

Вычисление прямоугольника: найти D (диагональ)

Диагональ прямоугольника — это отрезок, соединяющий две противоположные вершины прямоугольника. Рассчитаем длину диагонали примерного прямоугольника:

  1. Выберите длину прямоугольника — например, a = 5 см .
  2. Определитесь с шириной прямоугольника — например, b = 6 см .
  3. Вычислите a в степени двойки: a² = 25 см² .
  4. Вычислите b в степени двойки: b² = 36 см² .
  5. Сложите эти два значения: a² + b² = 25 + 36 = 61 см² .
  6. Наконец, извлеките квадратный корень из результата: d = √ (a² + b²) = √61 ~ 7,81 см .
  7. Длина по диагонали 7,81 см.

Естественно, вместо того, чтобы вычислять все эти значения вручную, вы можете использовать эту область прямоугольного калькулятора. Вы также можете использовать его в обратном порядке — например, чтобы вычислить ширину прямоугольника с известной длиной и периметром.

Золотой прямоугольник


Особый тип прямоугольника, называемый золотым прямоугольником, показан на изображении выше. Такой прямоугольник удовлетворяет следующему условию:

(a + b) / a = a / b = ϕ

, где φ — золотое сечение, равное 1.618.

Как вы, наверное, помните, отношение — это отношение между двумя величинами, часто представляемое в виде дроби.

Знаете ли вы, что золотой треугольник можно построить, используя только линейку и циркуль ? Всего несколько шагов!

  1. Нарисуйте квадрат.
  2. Проведите линию от середины одной стороны квадрата до противоположного угла.
  3. Нарисуйте круг с радиусом, равным этой линии, с центром в средней точке, как на картинке.
  4. Точка, где круг встречается со стороной расширенного квадрата, является следующим углом золотого прямоугольника.
  5. Найдите последнюю вершину и завершите золотой прямоугольник.

Taadaaah! Это было не так уж и сложно, правда?

Свойства прямоугольника

Прямоугольники обладают множеством интересных свойств. Прямоугольник:

  • — это циклический — это означает, что все углы лежат на одной окружности.
  • — это равноугольный — все углы его углов равны 90 градусам.
  • — это прямолинейный — его стороны пересекаются под прямым углом.
  • имеет две линии отражательной симметрии — вертикальную и горизонтальную через центр.
  • имеет две диагонали, которые делят пополам. Вы можете найти длину диагонали, используя теорему Пифагора.
  • противоположные стороны прямоугольника параллельны друг другу и имеют одинаковую длину.

Другие менее известные объекты прямоугольной формы:

  • Пересечение диагоналей — это центр описанной окружности — существует круг, центр которого находится в этой точке, и он проходит через четыре угла.
  • В прямоугольнике с разной длиной стороны (попросту говоря — не квадрате) невозможно нарисовать вписанную окружность.
  • Линии, соединяющие середины сторон прямоугольника, образуют ромб, который составляет половину площади прямоугольника. Стороны фигуры параллельны диагоналям.

Вы можете думать и о своей собственной собственности; например по поводу вращения прямоугольника — по бокам или диагонали, чтобы получился цилиндр или конус соответственно.

Прямоугольник и другие формы. Квадрат — это прямоугольник?

TL; DR:

  1. Является ли квадрат прямоугольником? ДА .
  2. Прямоугольник — это параллелограмм? ДА .
  3. Прямоугольник — это ромб? В общем — НЕТ. Только если это квадрат (все углы ромба равны 90 градусам).
  4. Ромб — это прямоугольник? В общем — НЕТ. Только если это квадрат (все стороны прямоугольника одинаковой длины).
  5. Прямоугольник — это четырехугольник? ДА , конечно.
  6. Прямоугольник — это трапеция? ДА .

Хотите знать, является ли квадрат прямоугольником или прямоугольником параллелограммом? Взгляните на картинку, и у вас больше не должно возникнуть сомнений относительно соотношения четырехугольников:

Как читать эту диаграмму? Начнем с нашего прямоугольника. Непосредственно к форме соединены три фигуры: квадрат, параллелограмм и равнобедренная трапеция.Итак, если фигура находится над интересующей нас фигурой — например, квадрат или прямоугольник — мы можем сказать, что:

  • Каждый квадрат — это прямоугольник , а квадрат — это частный случай прямоугольника .

Для двух других цифр мы можем указать аналогично:

  • Каждый прямоугольник — это параллелограмм , а прямоугольник — это частный случай параллелограмма .
  • Каждый прямоугольник — это трапеция , а прямоугольник — это особый случай трапеции .

Странный забавный факт: какая страна самой прямоугольной формы в мире?

Существует множество различных рейтингов, оценивающих страны — по их регионам, населению, уровню образования или лауреатам Нобелевской премии. Но задумывались ли вы когда-нибудь , кто является победителем конкурса самых прямоугольных стран? Австралийский геостатист Дэвид Барри рассчитал параметр прямоугольности для всех стран мира и составил рейтинг. Он выяснил, что самой прямоугольной страной является Египет, а титул «наименее прямоугольной страны в мире» достается Мальдивам (однако автор признает, что расчеты для стран, состоящих из множества небольших островов, могут быть ужасно ошибочными).Взгляните на таблицу ниже и выберите первые десять стран, а также страны с наименее прямоугольной формой.

Наивысшие баллы в рейтинге прямоугольности. Индекс 1 — идеальный прямоугольник, 0 — бесконечное количество бесконечно малых островов. Таблица адаптирована с веб-страницы мистера Барри, как изображение мира ниже.

Египет — лидер, но это никого не должно удивлять, проверяя очертания этой страны на карте. США находятся в середине рейтинга, в основном из-за неординарности Аляски и Гавайев.Смущает то, что вторая по величине прямоугольность страны — Ватикан — одновременно является четвертой по округлости страной, а Польша, занимающая 5-е место в классификации округлости, занимает 9-е место в рейтинге прямоугольности.

Как это вообще возможно быть прямоугольным и круглым одновременно ?! Как вы можете догадаться, все дело в определении прямоугольности и округлости, которые могут не подходить для сложных или рассеянных форм — и обычно такими примерами являются границы стран, содержащие острые края, небольшие острова или колонии где-то в другой части. Глобус.Если вас интересует эта тема, вы можете взглянуть на это объяснение и обсуждение результатов. Кроме того, в круглом калькуляторе вы найдете специальный абзац о округлости стран с аналогичной таблицей и примерами.

Можно было подумать, что мир было бы легче нарисовать, если бы каждая страна была прямоугольной … Или нет?

Прямоугольник

Форма прямоугольника используется во многих периодических моделях тесселяции. Его можно использовать для облицовки стен из кирпича, плитки для пола, тротуара или различной мозаики.Ниже вы найдете несколько популярных паттернов:

  • Стыковка в стопу — это наиболее распространенный и простой способ укладки плитки, так как плитки укладываются прямыми линиями.

  • Спусковая связка — типичная для мостовых и кирпичных связок.

  • Елочка — деревянные полы хорошо смотрятся с таким рисунком.

  • Basketweave — часто используется для коридоров или уличных дорожек.

Конечно, плитка бывает всех форм и размеров — довольно популярны шестиугольники и восьмиугольники с квадратами. Форма пятиугольника должна быть неправильной, чтобы образовался мозаичный узор.

Прямоугольники в быту: прямоугольная форма тела, прямоугольный бассейн, прямоугольная скатерть …

Одной из самых популярных проблем, связанных с прямоугольниками, является тип тела. Если вам интересно, на какую форму ваша фигура больше всего похожа, воспользуйтесь нашим калькулятором формы тела.Все, что вам нужно сделать, это измерить свой бюст, талию, бедра и высокие бедра и ввести значения в инструмент. Тогда вы получите информацию о вашей фигуре. Например, фигура прямоугольника определяется как «мальчишеский» тип телосложения — ваши бедра, талия и грудь примерно одинакового размера. Ваше тело стройно и спортивно. Ознакомьтесь также с нашим калькулятором жировых отложений, который поможет вам оценить процентное содержание жировых отложений в общей массе вашего тела.

Удивительно, но нас окружают прямоугольные предметы.Поэтому наш калькулятор прямоугольников может быть полезен не только на уроках математики, но и в решении повседневных задач. Конечно, вы не найдете идеального прямоугольника в реальности, поскольку он всегда имеет третье измерение; но если он мал по сравнению с двумя другими измерениями, приближение достаточно хорошее.

  • Прямоугольные скатерти — учитывая размер вашего стола, вы можете узнать, какая скатерть вам понадобится, а также сколько кружевной ленты или ленты для подшивки нужно использовать.
  • Двери или оконное стекло — ваше оконное стекло разбило шторм или мяч для гольфа? Подсчитайте площадь и оцените стоимость ремонта, учитывая цену за квадратный метр или квадратный метр.
  • Экраны электронных устройств — планшетов, смартфонов, телевизоров — используйте эту область прямоугольного калькулятора или наш специальный инструмент размера экрана, чтобы оценить, сколько места на стене займет ваш экран — или насколько большой экран вашего телефона хочу купить есть. Если вас интересует плотность пикселей, попробуйте наш калькулятор PPI
  • Классные доски, зеркала, рамки, холст, листы бумаги, записные книжки, конверты, деньги, флаги, прямоугольные бассейны … Это бесконечный список!

Посмотрите, можете ли вы найти больше прямоугольных предметов вокруг себя? Что вы можете!

Площадь квадрата — веб-формулы

Квадрат — это правильный многоугольник с четырьмя сторонами.У него четыре прямых угла и параллельные стороны. Чтобы вычислить площадь квадрата, умножьте основание на себя, что может быть выражено как сторона × сторона. Если квадрат имеет основание длиной 8 дюймов, его площадь будет 8 × 8 = 64 квадратных дюйма.

Площадь квадрата определяется по:

А = а 2

, где a = длина стороны

Периметр квадрата = 4а
Диагональ квадрата = (a) (sqrt (2)) или 1.414 (а)

Пример 1: Найдите площадь квадрата со стороной 15 м.

Решение :

Площадь квадрата = a 2 = 15 2 = 225 м 2

Пример 2: Вычислите площадь квадрата, длина стороны которого составляет 35 см.

Решение :

Площадь квадрата определяется как a × a.

Площадь = 35 × 35

Площадь = 1225 см

Пример 3: Какова площадь квадратного поля, если его периметр равен 32 ярду?

Решение :

Периметр квадратного поля = 32 ярда, а поскольку периметр квадрата равен P = 4s, где s — длина стороны. Мы можем легко определить длину, выделив s из приведенной выше формулы:

с = P / 4 = 32/4 = 8 ярдов

Площадь квадратного поля = s × s

Подставляем значение s, получаем:

Площадь = 8 × 8 = 64 ярда 2

Следовательно, площадь квадратного поля составляет 64 ярда 2 .

Пример 4: Сторона квадратного парка составляет 200 м. Сколько будет стоить озеленение при цене 0,5 доллара за кв. М?
Решение
:

Что нам нужно сделать, так это найти площадь парка, а затем умножить площадь на стоимость метра 2 .


Площадь квадратного парка = сторона × сторона

A = s²

Заменить значения и упростить.
А = 200 × 200
A = 40 000 м 2

Площадь озеленения = площадь парка = 40 000 кв. М.

Стоимость посадки травы = площадь посадки травы × ставка за квадратный метр.

Подставим значения получим:
Стоимость = 40 000 x 0,5 = 20 000 долларов США


Таким образом, стоимость посадки травы составляет 20 000 долларов США.

Пример 5: Квадратный газон окружен дорожкой шириной 2 м.Если площадь дорожки 160 кв.м, найдите площадь газона.

Решение :

Дано: Квадратный газон окружен дорожкой шириной 2 м; площадь дорожки 160 кв.м.
Найти: Площадь газона.
(Подсказка: лужайка окружена дорожкой, т. Е. Дорожка находится у внешнего края газона. Чтобы найти площадь лужайки, вычтите площадь дорожек из общей площади)
Пусть сторона лужайки будет y, тогда у нас будет:

Внешняя сторона, включая путь = сторона лужайки + ширина дорожки с обеих сторон.
= у + (2 + 2)
= y + 4

Общая площадь, включая путь = (y + 4) × (y + 4).
= y² + 8y + 16 (i).
И площадь газона = (сторона) ² = y × y = y² (ii).

Поскольку задана площадь пути (160 м 2 ), имеем:
Площадь дорожки = Общая площадь, включая дорожку — площадь лужайки.
А = (i) — (ii).
Подставим полученные значения в следующее уравнение, и, выделив y, мы можем определить длину стороны газона:
160 = (y² + 8y + 16) — y²
160 = y² + 8y + 16 — y²
160 = y² — y² + 8y + 16
160 = 8лет + 16
160–16 = 8 лет
144 = 8лет
18 = у
Сторона газона = 18 м


Площадь газона = сторона × сторона

А = с²
А = 18 × 18
A = 324 м 2

Отсюда площадь газона = 324 м 2 .

Онлайн-калькулятор площади

Прямоугольный калькулятор площади | Найти площадь прямоугольника

Площадь — это геометрический термин, определяемый как пространство, занимаемое объектом на двумерной поверхности. Чаще всего используется прямоугольная область. Чтобы купить ковролин в комнату, нам нужно будет оценить площадь, которую покрывает прямоугольный пол. Калькулятор площади прямоугольника поможет вам вычислить указанное выше значение.

Что такое прямоугольник?

Это четырехугольник с четырьмя сторонами, углы которых расположены под углом 90 ° или под прямым углом.Кроме того, каждая сторона имеет ту же длину, что и противоположная сторона. Он также состоит из соседних неравных полей.

Две стороны, обозначающие длину, одинаковы, аналогично две стороны, обозначающие ширину, одинаковы. Квадрат — исключительный случай, так как все его четыре стороны равны.

На нашем портале представлено множество полезных калькуляторов, таких как калькулятор наклона и калькулятор вероятности, которые студенты могут использовать для повышения своего обучения и повышения производительности.

Формула площади прямоугольника

Формула площади прямоугольника выражается как:

A = длина × ширина

где,

Длина = l.и ширина = w

Он измеряется в квадратных единицах, таких как квадратный сантиметр, квадратный дюйм, квадратный фут и квадратный метр.

Alse learn Как рассчитать кубический метр? & Как найти площадь поверхности и объем цилиндров.

Как найти длину и ширину по формуле площади прямоугольника?

Предположим, что газон ограничен линией границы длиной 40 метров и шириной 25 метров. Сколько места будет заключено в пределах границы?

Длина = 40 м

Ширина = 25 м

Площадь = A =?

A = 40 м * 25 м

A = 1000 м 2

Мы также можем найти длину или ширину, изменив формулу следующим образом:

L = A / W

L = 1000/25

L = 40 м

Также используйте другие бесплатные калькуляторы, такие как Калькулятор теорем Пифагора и Калькулятор объема конуса, чтобы учиться и практиковаться.

Как найти площадь прямоугольника?

Чтобы найти площадь поверхности прямоугольника, нам нужны только две вещи — длина и ширина двумерной формы. В четырехугольнике длина обычно относится к протяженной или более длинной из двух границ, в то время как ширина представлена ​​более короткой из двух сторон.

Изображение выше имеет четыре стороны под углом 90 °, и все стороны не равны. Более длинные стороны AB и CD представляют длину, где AB обозначается буквой a.Более короткие края — это AC и BD, обозначающие ширину, где AC обозначается буквой b. Чтобы получить это пространство, умножаем стороны a × b.

По теме: Как найти площадь заштрихованной области?

Что такое окружность прямоугольника?

Окружность — это сумма всех сторон фигуры. Окружность также известна как периметр. Формула окружности

Периметр = P = 2 (a + b) = 2a + 2b

Связанный: Как рассчитать окружность круга?

Что такое калькулятор площади прямоугольника?

Как и другие математические вычисления, поиск прямоугольной области может занять много времени.Calculatored разработал онлайн-калькулятор площади прямоугольника, чтобы сделать процесс вычисления быстрым.

Калькулятор площади прямоугольника

можно использовать бесплатно, и он экономит много времени, которое тратится на ручные вычисления.

Также узнайте, как шаг за шагом вычислять предельные функции и каковы правила округления чисел?

Как пользоваться калькулятором площади прямоугольника?

Калькулятор площади прямоугольника

быстр и прост в использовании. Просто следуйте инструкциям ниже.

Шаг № 1: Введите длину

Шаг 2: Введите ширину

Шаг № 3: Выберите единицу длины

Шаг №4: Нажмите кнопку «РАССЧИТАТЬ»

Как только вы нажмете кнопку, калькулятор площади прямоугольника сразу же покажет вам площадь, периметр прямоугольника и диагоноли.

Мы надеемся, что с нашим калькулятором площади прямоугольника вам будет удобнее учиться и практиковаться. Вы можете бесплатно использовать другие полезные онлайн-калькуляторы, такие как Интегральный калькулятор и Калькулятор производных, на нашем портале.

Площадь прямоугольников и квадратов

Взгляните на схему ниже. Сколько квадратов внутри?

Если вы потратили время на то, чтобы пересчитать все квадраты, вы должны увидеть, что их 48. Это означает, что площадь прямоугольника или пространство, которое покрывает прямоугольник, составляет 48 квадратных единиц.

Однако подсчет квадратов — не очень эффективный способ определения площади. Существует лучший способ.

A = lw
A = 8 шт. X 6 шт.
A = 48 квадратных единиц или 48 единиц 2

Прямоугольник особого типа, называемый квадратом , имеет четыре равные стороны.

Поскольку стороны равны, когда мы умножаем длину и ширину, мы получаем число, умноженное на само число, или число, возведенное в квадрат.

Итак, для квадратов мы можем упростить формулу и для
использовать A = s 2 . A = s 2

A = (8 единиц) 2

A = 64 единицы 2

Вот еще несколько примеров:

1.) Вычислите площадь прямоугольника длиной 4 и шириной 9 единиц.


Решение: A = lw

A = (4 единицы) (9 единиц)

A = 36 единиц 2

2.) Определите площадь прямоугольника


Решение: A = lw

A = (3 дюйма) (18 дюймов)

A = 54 дюйма 2

3.) Площадь прямоугольника — 30 см. 2 , длина — 6 см. Какая ширина прямоугольника?


Решение: Поскольку нам дана площадь, работайте в обратном направлении, разделяя.

A = lw

30 см 2 = (6 см) w

30 см 2 ÷ 6 см = w

5 см = w

4.) Определите площадь квадрата со стороной 10 см.


A = s 2

A = (10 см) 2

A = 100 см 2

5.) Определите площадь показанной формы.


A = s 2

A = (7 мм) 2

A = 49 мм 2

6.) Площадь квадрата составляет 144 дюйма 2 . Какова длина каждой стороны?


Решение: Поскольку нам дана площадь, работайте в обратном порядке, извлекая квадратный корень.

A = s 2

144 дюйма 2 = s 2

√144 дюйма 2 = √s 2

12 дюймов = s

7.) Площадь квадрата составляет 225 см 2 . Какой периметр?


Решение: для определения периметра необходимо сначала определить длину стороны. Затем используйте длину стороны, чтобы определить периметр.

A = s 2 P = 4s

225 см 2 = s 2 P = 4 (15 см)

√225 см 2 = √s 2 P = 60 см

15 см = с


Давайте рассмотрим

Чтобы определить площадь прямоугольника, мы должны умножить длину и ширину.

Используем формулу A = lw. Если нам даны площадь и одна сторона, мы можем работать в обратном направлении, разделив, чтобы определить длину другой стороны.

Чтобы определить площадь квадрата, мы можем использовать формулу прямоугольника или специальную формулу: A = s 2 . Если нам дана площадь квадрата, мы можем работать в обратном направлении или извлекать квадратный корень, чтобы определить длину стороны.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *