Фаза или ноль на выключатель ? – RozetkaOnline.COM
Принцип работы стандартного, знакомого всем выключателя света довольно прост, при нажатии клавиши он физически разрывает (или соединяет) электрическую цепь, проложенную к люстре, бра или любому другому светильнику.
А так как для работы светильника нужен фазный и нулевой проводники, установить выключатель, фактически, можно в разрыв любого из них, при этом система будет работать, на первый взгляд, одинаково правильно.
Возможно, именно поэтому довольно часто возникает вопрос, что по правилам должен размыкать выключатель фазу или ноль и почему?
На первую часть этого вопроса, а именно, что должен разрывать выключатель фазу или ноль, есть ответ в ПУЭ, правилах устройства электроустановок, основном документе, который регламентирует правила и нормы электромонтажа.
В, последнем, актуальном на сегодняшний день, 7-ом издании ПУЭ, в пункте 6.6.28, указано следующее:
В трех- или двухпроводных однофазных линиях сетей с заземленной нейтралью могут использоваться
Как видите правила прямо говорят, что выключатель света устанавливается в разрыв фазного проводника, а не нулевого и только так, а не иначе нужно выполнять монтаж.
Правильная схема подключения одноклавишного выключателя выглядят так:
Почему именно фазу, а не ноль должен разрывать выключатель света ?
На первый взгляд нет никакой разницы обе схемы работают одинаково, ведь и при разрыве нуля выключателем, свет так же погаснет, как и при разрыве фазы.
Чтобы лучше разобраться в этом, давайте, для наглядности, рассмотрим схему подключения выключателя, в которой к нему подведен нулевой проводник (ноль).
Как вы видите, при такой схеме подключения выключателя, на светильнике всегда есть напряжение, это и есть тот главный недостаток, который может вызывать серьезные проблемы и неудобства в работе и обслуживании источников света.
В первую очередь, главная опасность такого способа подключения состоит в том, что вас может “ударить током”, например, при замене ламп, когда вы случайно коснётесь токопроводящих контактов.
Кроме того, при нарушении изоляции питающего кабеля или повреждении электрического соединения внутри светильника, фазный проводник может замкнуть на корпус. И тогда, при простом касании люстры или бра, вы сами станете проводником, частью электрической сети, ощутите серьезный электрический разряд, при этом, в определенных условиях, поражение электрическим током может быть даже смертельным.
Это становится особенно актуально потому, что для групп освещения, в том же ПУЭ, разрешено не устанавливать дифференциальную защиту, например, УЗО, поэтому вы узнаете о напряжении на корпусе, лишь когда почувствуете разряд, при этом светильник может быть даже не включен.
Еще одна не такая опасная, но не менее неприятная проблема – это мерцание ламп при выключенном свете. Современные энергоэффективные лампы – энергосберегающие (люминесцентные) или светодиодные, могут реагировать даже на незначительные колебания в электрической сети, даже сверхнизкие токи могут запускать их. Поэтому, даже при выключенном выключателе света может наблюдаться мерцание таких ламп, а это уменьшает как ресурс ламп, так и просто многих раздражает.
Поэтому, чтобы избежать этих и некоторых других проблем, правильно делать так, чтобы выключатель разрывал именно фазу, а не ноль.
К сожалению, чаще всего, люди задаются вопросом фаза или ноль должна быть в выключателе в случае, когда уже столкнулись с неправильной разводкой проводов, имея ноль в выключателе и все вышеописанные проблемы. Что же делать в таком случае?
Как сделать, чтобы выключатель разрывал фазу, а не ноль
Если у вас неправильно выполнена схема подключения выключателя к светильнику, и размыкается ноль, вместо фазы (Жми, чтобы узнать, как самому определить какой из проводов ноль, а какой фаза). То исправить это можно, лишь изменив подключение в распределительной коробке.
Для этого, вам необходимо найти распределительную коробку, которая чаще всего расположена прямо над выключателем света, на расстоянии 10-30см от потолка. Согласно правилам электромонтажа, к ней должен быть обеспечен легкий доступ и нередко вы сможете обнаружить её довольно быстро (но, к сожалению, не всегда).
ВНИМАНИЕ! Все работы по изменению схемы подключения выключателя необходимо проводить только на обесточенной сети. Для этого обязательно отключите автоматический выключатель этой группы в электрощите, после чего, убедитесь в отсутствии напряжения в месте монтажа.
Итак, вот так выглядит схема подключения в распределительной коробке, в которой к выключателю подведен ноль, а фаза идёт напрямую к светильнику.
Чаще всего, схема будет именно такая, вводной питающий кабель будет входить в коробку и затем выходить к следующей распредкоробке, поэтому, обычно, заходит именно четыре кабеля:
1.n – Кабель идущий на выключатель (двухжильный для одноклавишного выключателя)
2.n – Вводной электрический кабель (Стандартный трехжильный: фаза, ноль, заземление)
3.n – Кабель идущий к люстре (Трехжильный: фаза, ноль с выключателя, заземление для одноклавишного выключателя)
4.n – Кабель идущий к следующему выключателю света или розеточным группам (Трехжильный: фаза, ноль, заземление)
Теперь нам нужно поменять эту схему, чтобы выключатель разрывал фазу, а не ноль.
Для этого:
– Провод 1.1 на схеме, идущий на выключатель, подсоединяем к контакту фазных проводов 2.2.+ 4.2
– Провод 1.2 (возвращающийся из выключателя) соединяем с фазным проводом 3.2 который идёт к люстре
– Оставшийся нулевой провод 3.1, идущий к люстре, подключаем к контакту проводников 2.1 + 4.1
Схема замены нулевого проводника в выключателе на фазный, представлена ниже:
Теперь у вас выключатель будет подключен правильно, к нему будет подходить фазный проводник, а не нулевой. Как видите, сделать изменение в схеме подключения, достаточно просто.
Советую прочитать нашу статью, в которой описаны все разрешенные способы соединения проводов в распределительных коробках и выбрать самый удобный для вас при выполнении такого. На мой взгляд, в бытовых условиях, без использования специализированного инструмента и особых навыков, для соединения проводов групп освещения, удобно применять клеммники WAGO.
UPD: Некоторые советуют просто поменять фазу с нолём местами в электрощите и автоматически в выключателях схема изменится на нужную. Я бы не советовал так делать всем, нужно сперва хорошо проанализировать всю схему электропроводки квартиры, а сделать это довольно непросто, лучше такие серьезные вмешательства без должного опыта и знаний не производить.
Если же у вас остались вопросы, на тему фаза или ноль должны подходить к выключателю, обязательно оставляйте их в комментариях. Кроме того, как всегда приветствуется здоровая критика, личный опыт и любые другие полезные мнения.
Выключатель размыкает фазу, а не ноль: почему так происходит
Выключатель размыкает фазу, а не ноль: почему так происходит
Выключатель — электрический аппарат для замыкания и размыкания электрической цепи, включения и отключения оборудования.
Любой выключатель, отвечающий например за включение и выключение света в комнате, обязательно должен размыкать именно фазу, а не ноль. Фаза в сети переменного тока — это тот из проводников, на котором все время присутствует переменное напряжение относительно нулевого проводника. Нулевой же проводник имеет в идеале нулевой потенциал относительно земли, который в исправной сети всегда остается таковым, поскольку нулевой проводник по определению заземлен.
Будь сеть трехфазной или однофазной, нулевой (нейтральный) проводник обязан иметь заземление, поэтому он в принципе гораздо безопаснее фазного проводника. Фактически заземление имеют генераторы и трансформаторы, от которых электрическая сеть получает энергию. Если нулевой проводник не заземлен, значит в сети случилась авария, обрыв нулевого проводника.
Обычно в быту мы используем однополюсные выключатели, то есть такие, которые размыкают или замыкают всего один провод при нажатии на кнопку. Допустим, на потолке висит люстра, получающая питание от однофазной бытовой сети 220 вольт. К люстре идут два провода, один из них — фаза, второй — ноль. Выключатель установлен в разрыв одного из двух этих проводов.
Пусть выключатель стоит на фазном проводнике, и его перевели в состояние «выключено». Тогда оба проводника, по которым к люстре подается электричество, будут обесточены, их потенциалы будут равны нулю, потому что нулевой проводник, который не прерывался выключателем, по определению имеет нулевой потенциал, а фазный проводник прерван с помощью выключателя, то есть на нем нет фазного напряжения.
Оба проводника безопасны, можно менять лампочку, ремонтировать потолок, снимать люстру и т. д., не опасаясь попасть под фазное напряжение и получить удар током. Хотя лучше в этом случае для надежности выключить автомат в электрощите.
Как делать нельзя
Но что если выключатель по ошибке установлен в разрыв нулевого, а не фазного проводника? В этом случае даже если выключатель находится в положении «выключено», к люстре все равно подходит один фазный проводник. Второй проводник ни к чему не подключен.
Если в такой ситуации начать менять лампочку, ремонтировать люстру, работать с потолком, то можно ненароком задев фазный провод, получить удар током, особенно если стоишь на проводящей стремянке, которая случайно контактирует с чем-нибудь заземленным или вообще стоит на земле.
Замена лампочки может закончиться трагедией с человеческими жертвами. Ладно если стоишь на деревянной табуретке, в резиновых сапогах, при этом работаешь в защитных перчатках. Здесь все может закончиться удачно. Но при неблагоприятном стечении обстоятельств выключатель на нулевом проводнике может обернуться смертельной опасностью.
Ранее ЭлектроВести писали, что в России на Калининской АЭС было отключено от сети три энергоблока из четырех. Представитель концерна «Росэнергоатом» сказал, что остановка была вызвана отключением одного из трансформаторов тока.
По материалам: electrik.info.
Почему выключатель размыкает фазу, а не ноль?
- Какой провод пускают на выключатель: ноль или фазу?
- Выключатель на Фазу или на Ноль нужно ставить? Почему именно так?
- Что будет если перепутать фазу и ноль в выключателе?
- Что значит выключатель с нулем, без нуля и фаза на разрыв?
- Можно ли рвать ноль автоматом?
- Какой провод идет на выключатель ноль или фаза?
- Выключатель прерывает фазу или ноль
Специалист вы или нет, а если решитесь поменять в своем доме электропроводку, даже пусть на участке «коробка – выключатель – лампочка», должны знать элементарные правила ПУЭ (полная расшифровка — «Правила устройства электроустановок», то есть свод нормативов, применяемых к любым электроустановкам и электросетям). Именно отсюда и можно почерпнуть информацию о том, идет на выключатель ноль или фаза.
Каким проводом запитывается выключатель света?
Несмотря на то что в некоторых квартирах можно обнаружить, что на выключатель приходит «ноль», это отнюдь не нормально. Потому что любой выключатель должен разрывать именно фазу. Если ноль или фаза на выключателе перепутаны, скорее всего, в проводке этой квартиры уже ранее «поковырялся» какой-то горе-умелец либо изначально нулевой провод был запитан не по стандарту.
Какие цвета должны быть у проводов в электропроводке квартиры
Любой проводник, покупаемый для монтажа электропроводки, должен содержать в себе жилу с голубой (синей) оплеткой. Именно ее и рекомендуется использовать в сети как нулевой провод.
Если в квартире предусмотрен третий провод – прямое заземление, на него рекомендуется пускать желто-зеленый провод. Все остальные провода (это может быть белый, коричневый, черный и пр.) используются как фазонесущие.
Так что на вопрос, фазу или ноль разрывает выключатель, ответ будет однозначный — фазу, причем жила эта будет не голубого (синего) и не зеленого цвета.
Если в вашей квартире провода перепутаны, значит, монтажом электропроводки в ней занимались не профессионалы и, скорее всего, она уже претерпела ремонт.
Суть электричества
Попытаемся объяснить работу электричества самыми доступными словами. Еще из уроков физики мы знаем, что сама суть электроэнергии такова, что фаза всегда стремится разрядиться на ноль. Именно между несущим электроэнергию и заземляющим потоком и включаются в цепь разного рода приборы. Тогда разрядка происходит в них, заставляя их при этом работать.
В частности, так работает и нить накала или диодная схема в лампе освещения. У нити или у диодной схемы есть свое сопротивление, которое сбалансировано так, что лампы, когда через них замыкается сеть, не перегорают, а начинают светиться.
И в сущности без разницы, какой провод подходит на выключатель — ноль или фаза, если к самой лампе с одного контакта подается ноль, а с другого – фаза, она будет работать все равно. На работоспособность прибора это никак не повлияет.
Это нужно лишь в целях безопасности.
Почему «фаза», а не «ноль»?
Мы вплотную подобрались к ответу на вопрос о том, ноль или фаза идет на выключатель и почему. Выключатель размыкает участок сети, в котором работает лампочка.
И прерывает он в простых выключателях только один из проводов, который через него пропускается. Второй провод так и остается запитан на лампу напрямую.
Если в вашем случае через выключатель пропущен ноль, то напрямую к люстре на постоянку подключена фаза, а это значит, что даже при простой замене лампочки устройство может ударить вас током.
Если же выключатель размыкает фазу, то напрямую к люстре от коробки идет ноль. Это значит, что если выключатель находится в разомкнутом (выключенном) состоянии, к устройству фаза уже не подается, поскольку она прерывается самим выключателем, и замена лампы будет безопасной.
Правильная установка выключателя с заменой проводов, идущих на него и на люстру
Когда разобрались с вопросом, какой провод – «фаза» или «ноль» на выключатель должен приходить, чтобы соответствовать нормам ПУЭ, разберемся, как будет выглядеть правильная схема участка домашней электросети, которая будет обуславливать нормальную работу электроприбора. Опять же объясним все простыми словами (в целях безопасности все работы, связанные с монтажом или ремонтом электропроводки, должны осуществляться при выключенном центральном автомате в главном щите).
- Для правильного монтажа проводки от ближайшей распределительной коробки у нас должно быть проделано две штробы – одна к выключателю, одна к люстре.
- Как подключить выключатель «фаза — ноль», то есть обычный выключатель? Берем кусок двухжильного провода. Пропускаем его через боковое отверстие коробки, идущее на штробу к выключателю. Также пропускаем кабель через боковое отверстие коробки выключателя.
- Запитываем одну жилу к левой клемме выключателя, другую – к правой. В коробке одна из жил запитывается к фазному проводу. Одна остается пока свободной.
- Что у нас получилось? Теперь ток приходит на выключатель и в замкнутом положении выключателя возвращается назад в коробку. Осталось смонтировать сеть для осветительного прибора.
- Допустим, люстра у нас рассчитана на одну лампу. Тогда подойдет обычный двухжильный кабель. Пропускаем его через боковое отверстие коробки, ведущее к люстре, заделываем в штробу и подключаем к клеммам люстры.
- В коробке уходящий на люстру двухжильный кабель подключаем следующим образом: одну жилу запитываем к возвращающейся свободной жиле – фазе с выключателя, другую запитываем к основному нолю в коробке.
Схема собрана. Теперь, зная какой провод идет на выключатель, «ноль» или «фаза», вы сделали участок сети, обеспечивающий работу осветительного прибора полностью безопасным.
В заключение некоторые нюансы
В своей статье мы ориентировались на простую сеть, не предусматривающую третьего провода – заземления. Также мы отталкивались от того, что у нас простая люстра, рассчитанная на 1 патрон под лампу. Поэтому и выключатель у нас простой – одноклавишный.
В случае с заземлением вы никогда не перепутаете. Просто придется использовать трех- или более жильный кабель и желто-зеленую жилу всегда запитывать к массе, то есть к клемме, идущей на корпус прибора.
А в случае с многоклавишными выключателями придется из коробки на выключатель бросать две или более (в зависимости от того, сколько клавиш в выключателе) жил. То же самое следует делать и с запиткой люстры.
Сколько бы от выключателя ни приходило на люстру фаз, ноль в ней всегда будет один, клемма его будет выделена отдельно. Также можно сориентироваться и по проводам. Ноль в приборах всегда будет синим (голубым).
fb.ru
anatol4254 [6.1K]
Что бы окончательно определиться на фазу, или на ноль ставить выключатель, надо ознакомиться с правилами ПУЭ, если точней с пунктом этих правил 6.6.28 (последнее издание), они однозначно трактуют это правило выключатель необходимо устанавливать в разрыв фазного провода, а не нулевого. в избранное А что делать, если у вас выключатель установлен на разрыв ноля? Эта ошибка легко исправляется изменением соединений в распределительной коробке. Только помните, работы должны проводиться в обесточенной системе. в избранное
в избранное |
Фаза или ноль на выключатель ?
Принцип работы стандартного, знакомого всем выключателя света довольно прост, при нажатии клавиши он физически разрывает (или соединяет) электрическую цепь, проложенную к люстре, бра или любому другому светильнику.
А так как для работы светильника нужен фазный и нулевой проводники, установить выключатель, фактически, можно в разрыв любого из них, при этом система будет работать, на первый взгляд, одинаково правильно.
Возможно, именно поэтому довольно часто возникает вопрос, что по правилам должен размыкать выключатель фазу или ноль и почему?
На первую часть этого вопроса, а именно, что должен разрывать выключатель фазу или ноль, есть ответ в ПУЭ, правилах устройства электроустановок, основном документе, который регламентирует правила и нормы электромонтажа.
В, последнем, актуальном на сегодняшний день, 7-ом издании ПУЭ, в пункте 6.6.28, указано следующее:
- В трех- или двухпроводных однофазных линиях сетей с заземленной нейтралью могут использоваться однополюсные выключатели, которые должны устанавливаться в цепи фазного провода, или двухполюсные, при этом должна исключаться возможность отключения одного нулевого рабочего проводника без отключения фазного.
- Как видите правила прямо говорят, что выключатель света устанавливается в разрыв фазного проводника, а не нулевого и только так, а не иначе нужно выполнять монтаж.
- Правильная схема подключения одноклавишного выключателя выглядят так:
Почему именно фазу, а не ноль должен разрывать выключатель света ?
На первый взгляд нет никакой разницы обе схемы работают одинаково, ведь и при разрыве нуля выключателем, свет так же погаснет, как и при разрыве фазы.
Чтобы лучше разобраться в этом, давайте, для наглядности, рассмотрим схему подключения выключателя, в которой к нему подведен нулевой проводник (ноль).
Как вы видите, при такой схеме подключения выключателя, на светильнике всегда есть напряжение, это и есть тот главный недостаток, который может вызывать серьезные проблемы и неудобства в работе и обслуживании источников света.
В первую очередь, главная опасность такого способа подключения состоит в том, что вас может «ударить током», например, при замене ламп, когда вы случайно коснётесь токопроводящих контактов.
Кроме того, при нарушении изоляции питающего кабеля или повреждении электрического соединения внутри светильника, фазный проводник может замкнуть на корпус.
И тогда, при простом касании люстры или бра, вы сами станете проводником, частью электрической сети, ощутите серьезный электрический разряд, при этом, в определенных условиях, поражение электрическим током может быть даже смертельным.
Это становится особенно актуально потому, что для групп освещения, в том же ПУЭ, разрешено не устанавливать дифференциальную защиту, например, УЗО, поэтому вы узнаете о напряжении на корпусе, лишь когда почувствуете разряд, при этом светильник может быть даже не включен.
Еще одна не такая опасная, но не менее неприятная проблема — это мерцание ламп при выключенном свете.
Современные энергоэффективные лампы — энергосберегающие (люминесцентные) или светодиодные, могут реагировать даже на незначительные колебания в электрической сети, даже сверхнизкие токи могут запускать их.
Поэтому, даже при выключенном выключателе света может наблюдаться мерцание таких ламп, а это уменьшает как ресурс ламп, так и просто многих раздражает.
Поэтому, чтобы избежать этих и некоторых других проблем, правильно делать так, чтобы выключатель разрывал именно фазу, а не ноль.
К сожалению, чаще всего, люди задаются вопросом фаза или ноль должна быть в выключателе в случае, когда уже столкнулись с неправильной разводкой проводов, имея ноль в выключателе и все вышеописанные проблемы. Что же делать в таком случае?
Как сделать, чтобы выключатель разрывал фазу, а не ноль
Если у вас неправильно выполнена схема подключения выключателя к светильнику, и размыкается ноль, вместо фазы (Жми, чтобы узнать, как самому определить какой из проводов ноль, а какой фаза). То исправить это можно, лишь изменив подключение в распределительной коробке.
Для этого, вам необходимо найти распределительную коробку, которая чаще всего расположена прямо над выключателем света, на расстоянии 10-30см от потолка. Согласно правилам электромонтажа, к ней должен быть обеспечен легкий доступ и нередко вы сможете обнаружить её довольно быстро (но, к сожалению, не всегда).
ВНИМАНИЕ! Все работы по изменению схемы подключения выключателя необходимо проводить только на обесточенной сети. Для этого обязательно отключите автоматический выключатель этой группы в электрощите, после чего, убедитесь в отсутствии напряжения в месте монтажа.
Итак, вот так выглядит схема подключения в распределительной коробке, в которой к выключателю подведен ноль, а фаза идёт напрямую к светильнику.
- Чаще всего, схема будет именно такая, вводной питающий кабель будет входить в коробку и затем выходить к следующей распредкоробке, поэтому, обычно, заходит именно четыре кабеля:
- 1.n – Кабель идущий на выключатель (двухжильный для одноклавишного выключателя)
- 2.n – Вводной электрический кабель (Стандартный трехжильный: фаза, ноль, заземление)
- 3.n – Кабель идущий к люстре (Трехжильный: фаза, ноль с выключателя, заземление для одноклавишного выключателя)
- 4.n – Кабель идущий к следующему выключателю света или розеточным группам (Трехжильный: фаза, ноль, заземление)
- Теперь нам нужно поменять эту схему, чтобы выключатель разрывал фазу, а не ноль.
- Для этого:
— Провод 1.1 на схеме, идущий на выключатель, подсоединяем к контакту фазных проводов 2.2.+ 4.2
— Провод 1.2 (возвращающийся из выключателя) соединяем с фазным проводом 3.2 который идёт к люстре
— Оставшийся нулевой провод 3.1, идущий к люстре, подключаем к контакту проводников 2.1 + 4.1
Схема замены нулевого проводника в выключателе на фазный, представлена ниже:
Теперь у вас выключатель будет подключен правильно, к нему будет подходить фазный проводник, а не нулевой. Как видите, сделать изменение в схеме подключения, достаточно просто.
Советую прочитать нашу статью, в которой описаны все разрешенные способы соединения проводов в распределительных коробках и выбрать самый удобный для вас при выполнении такого. На мой взгляд, в бытовых условиях, без использования специализированного инструмента и особых навыков, для соединения проводов групп освещения, удобно применять клеммники WAGO.
UPD: Некоторые советуют просто поменять фазу с нолём местами в электрощите и автоматически в выключателях схема изменится на нужную. Я бы не советовал так делать всем, нужно сперва хорошо проанализировать всю схему электропроводки квартиры, а сделать это довольно непросто, лучше такие серьезные вмешательства без должного опыта и знаний не производить.
Если же у вас остались вопросы, на тему фаза или ноль должны подходить к выключателю, обязательно оставляйте их в х. Кроме того, как всегда приветствуется здоровая критика, личный опыт и любые другие полезные мнения.
Простой выключатель. Схема подключения
В любое электрифицированное жилье заходит как минимум 2 провода, правда, провод может быть и один, но в нем есть как минимум 2 жилы. Внешне эти провода (или жилы) ни чем не отличаются, отличие у них внутри — один провод — это фаза, а второй провод — ноль.
По сути эти провода — участок электрической цепи, практически такой же, как в школьной лаборатории по физике. Пока к проводам ничего не подключено, электрическая цепь остается разомкнутой.
Когда мы подсоединяем к проводам какой-либо электроприбор, электрическая цепь замыкается, электроэнергия потребляется, счетчик крутится.
Для подключения к электрической цепи переносных электроприборов, даже таких больших как холодильник, используются электрические розетки, а производители переносных электроприборов предусмотрительно снабжают свои изделия электрическими вилками.
Для стационарных электроприборов, даже таких маленьких, как врезные растровые светильники, тоже можно использовать розетки, если внешний вид помещения волнует Вас меньше всего.
Но обычно, пользуясь тем что стационарные электроприборы никуда не денутся, их подключают напрямую к электрической цепи, а чтобы электроприбор не работал постоянно, для замыкания и размыкания электрической цепи используются выключатели.
Выключатель можно ставить на любой провод, как на фазу, так и на ноль, но обычно принято ставить выключатель на фазовый провод. Это позволяет заменить или отремонтировать стационарный электроприбор без риска замыкания электрической цепи. Обычно, чтобы исключить риск замыкания электрической цепи, отключают контакты на счетчике, обесточивая таким образом всю квартиру или дом. Вот в принципе и все с теоретической точки зрения.
Для реализации на практике столь не сложных теоретических положений в квартире или доме делается электропроводка. Электропроводка делается так, чтобы любой электроприбор подключался к электрической цепи параллельно.
Чтобы не прокладывать провода от каждой розетки или светильника к месту ввода электрических проводов в квартиру или дом, сначала прокладываются провода от места ввода (обычно в этом месте стоит электрический счетчик) к распределительным (разветвительным) коробкам в жилых комнатах или служебных помещениях, а потом от распределительных коробок провода разводятся по помещению.
Таким образом подключение розеток в распределительной коробке никаких проблем не представляет, если провода в разноцветной изоляции (а таких в последнее время все больше и больше), то концы проводов зачищаются и соединяются в 2 счалки согласно цвету.
Даже если розеток в помещении будет 20, то все равно будет только 2 счалки (скрутки) проводов.
А вот для правильного подключения светильника или любого другого стационарного электроприбора нулевой провод, который идет от места ввода, подключается с одному из проводов, подключаемых к светильнику, фаза подключается к одному из проводов, идущих к выключателю, а оставшиеся свободными один провод от светильника и один провод от выключателя соединяются между собой. Таким образом в распределительной коробке будет 3 счалки (скрутки проводов) даже если в распределительной коробке подключены только одна лампочка и один выключатель на эту лампочку и тут если используются провода в разноцветной изоляции, обязательно будет одна счалка проводов двух разных цветов:
- Рисунок 1.
- А — принципиальная схема работы одноклавишного выключателя
- В — схема подключения проводов в коробке
На схемах показано положение выключателей в положении «выключено». Голубым цветом обозначен Ноль, а оранжевым — Фаза. Само собой, в этой же коробке обычно подключаются и розетки (на рисунке не показаны).
Но при этом количество счалок (скруток) проводов в коробке все равно будет = 3: две большие счалки, обеспечивающие подключение всех розеток, а также подключение одного провода светильника и одного провода выключателя и одна маленькая счалка двух проводов — провода от светильника и провода от выключателя.
Если при разводке используются разноцветные провода, то обычно в больших счалках соединяются провода согласно цвету, а в маленькой счалке соединяются два провода с разными цветами изоляции.
В одноклавишных выключателях есть только два контакта, к которым можно прикрутить или в которых можно зажать провода, при этом спутать, какой провод куда должен прикручиваться — невозможно. Как ни прикручивай провода, все равно при одном из положений клавиши выключатель будет включенным, а при другом положении клавиши — выключенным.
Фотография 1.
Раньше было принято устанавливать выключатели так, чтобы при выключенном состоянии выпирал верх клавиши, а при включенном состоянии выпирал низ клавиши, раньше на клавишах снизу даже ставилась красная точка, обозначающая включенное состояние.
Теперь считается, что в выключатель будет меньше попадать пыль, если его устанавливать наоборот — так, чтобы при выключенном состоянии выпирал низ клавиши, а при включенном состоянии выпирал верх клавиши.
Чтобы поменять положение клавиши для режимов «вкл-выкл», нужно просто повернуть выключатель в подрозетнике на 180о.
Если в клавише есть светодиодная подсветка, то как правило никаких дополнительных действий при подключении такого выключателя не требуется. Светодиод обычно уже подключен производителем выключателя и нужно точно также просто прикрутить провода к контактам выключателя.
Если нужно подключить двухклавишный выключатель, то количество счалок в распредкоробке увеличится на одну:
Рисунок 2.
Примечание: Большинство двухклавишных выключателей рассчитаны на разводку трехжильными проводами, и поэтому в них только три, а не четыре контакта. Более правильно отобразить подключение таких выключателей можно так:
Рисунок 3.
Если разводка выполняется двухжильными проводами, то можно просто никуда не подключать одну жилу двухжильного провода, ведущего от коробки в выключателю.
В двухклавишном выключателе с тремя контактами в отличие от одноклавишного выключателя путать провода нельзя. Самым простым способом не спутать провода является маркировка.
На двухжильных проводах в двойной изоляции удобно делать маркировку обычной гелевой ручкой.
Подробности установки евро выключателя в советский подрозетник и евро выключателя в евро подрозетник и проблемы, которые могут при этом возникнуть, изложены отдельно.
Выключатель размыкает фазу, а не ноль: почему так происходит
Выключатель размыкает фазу, а не ноль: почему так происходит
Выключатель — электрический аппарат для замыкания и размыкания электрической цепи, включения и отключения оборудования.
Любой выключатель, отвечающий например за включение и выключение света в комнате, обязательно должен размыкать именно фазу, а не ноль.
Фаза в сети переменного тока — это тот из проводников, на котором все время присутствует переменное напряжение относительно нулевого проводника.
Нулевой же проводник имеет в идеале нулевой потенциал относительно земли, который в исправной сети всегда остается таковым, поскольку нулевой проводник по определению заземлен.
Будь сеть трехфазной или однофазной, нулевой (нейтральный) проводник обязан иметь заземление, поэтому он в принципе гораздо безопаснее фазного проводника. Фактически заземление имеют генераторы и трансформаторы, от которых электрическая сеть получает энергию. Если нулевой проводник не заземлен, значит в сети случилась авария, обрыв нулевого проводника.
Обычно в быту мы используем однополюсные выключатели, то есть такие, которые размыкают или замыкают всего один провод при нажатии на кнопку. Допустим, на потолке висит люстра, получающая питание от однофазной бытовой сети 220 вольт. К люстре идут два провода, один из них — фаза, второй — ноль. Выключатель установлен в разрыв одного из двух этих проводов.
Пусть выключатель стоит на фазном проводнике, и его перевели в состояние «выключено».
Тогда оба проводника, по которым к люстре подается электричество, будут обесточены, их потенциалы будут равны нулю, потому что нулевой проводник, который не прерывался выключателем, по определению имеет нулевой потенциал, а фазный проводник прерван с помощью выключателя, то есть на нем нет фазного напряжения.
Оба проводника безопасны, можно менять лампочку, ремонтировать потолок, снимать люстру и т. д., не опасаясь попасть под фазное напряжение и получить удар током. Хотя лучше в этом случае для надежности выключить автомат в электрощите.
Как делать нельзя
Но что если выключатель по ошибке установлен в разрыв нулевого, а не фазного проводника? В этом случае даже если выключатель находится в положении «выключено», к люстре все равно подходит один фазный проводник. Второй проводник ни к чему не подключен.
Если в такой ситуации начать менять лампочку, ремонтировать люстру, работать с потолком, то можно ненароком задев фазный провод, получить удар током, особенно если стоишь на проводящей стремянке, которая случайно контактирует с чем-нибудь заземленным или вообще стоит на земле.
Замена лампочки может закончиться трагедией с человеческими жертвами. Ладно если стоишь на деревянной табуретке, в резиновых сапогах, при этом работаешь в защитных перчатках. Здесь все может закончиться удачно. Но при неблагоприятном стечении обстоятельств выключатель на нулевом проводнике может обернуться смертельной опасностью.
Ранее ЭлектроВести писали, что в России на Калининской АЭС было отключено от сети три энергоблока из четырех. Представитель концерна «Росэнергоатом» сказал, что остановка была вызвана отключением одного из трансформаторов тока.
Как правильно подключить выключатель | Для дома, для семьи
Здравствуйте, уважаемые читатели сайта sesaga.ru. Многие сталкиваются с такой проблемой как подключить выключатель. На самом деле это довольно просто. Главное иметь минимальное представление об электричестве из школьного курса физики и умение работать со слесарным инструментом.
Одно дело, просто заменить старый выключатель на новый, а другое дело, добавить новый к существующей проводке. Рассмотрим возможные варианты схем подключения выключателей.
Внимание! Все работы по замене выключателей производите при отключенном напряжении 220В.
Как видите схема очень простая. Фаза (коричневый цвет) проводом (1) заходит в коробку и, соединяясь с жилой провода (2) подключается к нижнему (входному) контакту выключателя.
С верхнего (выходного) контакта, уже пунктирной линией, фаза проводом (2) заходит в коробку и, соединяясь в коробке с жилой провода (3) приходит на лампочку.
Ноль (синий цвет) проводом (1) заходит в коробку и, соединяясь с жилой провода (3) приходит на лампочку.
Запомните! Нулевая жила (ноль) от распределительной коробки идет сразу на потолок к лампочке. К выключателю и от него на лампочку идет только фазная жила.
Так предусмотрено правилами и сделано в целях Вашей безопасности и безопасной эксплуатации электрооборудования, чтобы при отключенном выключателе разрывалась именно фаза, а не ноль. Так как при отсоединении от нагрузки выключателем нулевого провода, проводка остается под напряжением фазы, а это опасно и не удобно. Например, при замене лампочки достаточно будет отключить выключатель и на светильнике не будет напряжения.
Чтобы определить фазный провод достаточно воспользоваться индикаторной отверткой. Перед работой отвертку проверяют на исправность, в месте, заведомо находящимся под напряжением. Например, Ваша розетка. Засветившийся индикатор указывает на наличие фазы.
Теперь рассмотрим схему с двухклавишным выключателем.
В этой схеме добавилась одна фаза и лампочка.
Здесь фаза (коричневый цвет) проводом (1) заходит в коробку, соединяясь с жилой провода (2) подключается к нижним (входным) контактам выключателя.
С верхних (выходных) контактов пунктирной линией фаза, размножаясь на две, проводом (2) заходит в коробку, соединяется с жилами провода (3) и приходит на лампочки. В зависимости от того, какой контакт выключателя замкнут, такая лампочка и загорается.
Ноль (синий цвет) проводом (1) заходит в коробку и, соединяясь с жилой провода (3), приходит на лампочки.
Здесь есть один нюанс. Если хотите обычный выключатель заменить на двойной, то Вам придется от коробки тянуть одну «фазную» жилу к выключателю, и еще одну «фазную» жилу к лампочке на потолок.
Чтобы определить входной и выходные по схеме контакты, достаточно взглянуть на заднюю сторону выключателя. У двойного, как правило, имеются три вывода: два на одной стороне (L1 и L2) – выходные, и один на противоположной (L3) – входной.
Также можно воспользоваться, например, мультиметром. Переведите мультиметр в режим «прозвонка» и измерительными щупами садитесь на предполагаемый входной и один выходной контакты.
Включая и выключая клавишу выключателя, следим за показаниями прибора. Если контакт замкнется, то мультиметр издаст звуковой сигнал или на индикаторе появится величина сопротивления короткого замыкания, то есть нули.
Теперь один щуп мультиметра оставляем на предполагаемом входном, а другим садимся на второй выходной контакт и также пробуем нажимать следующую клавишу выключателя. Если прибор покажет величину сопротивления короткого замыкания или издаст звуковой сигнал, значит, мы все сделали правильно и входной контакт найден.
Ну а если все же возникли вопросы о подключении выключателя посмотрите видеоролик, который должен их развеять.
А в следующей статье Вы узнаете как правильно подключить люстру к двойному выключателю.
Удачи!
Как правильно — Фаза или ноль на выключатель?
При обустройстве электросистемы в жилье или другом инженерном сооружении может возникнуть вопрос о том, что именно размыкает выключатель.
Электрик с опытом производит работы автоматически – не задумываясь об этом вопросе: размыкание производится – протекание электрического тока прерывается – выключатель работает.
Будет отсекаться тот провод, на который подведен выключатель – по рабочему соединению.
Однако суть вопроса – в безопасности пользователя.
Нужно рассмотреть эту мелочь подробнее и понять, в чем заключается корректный монтаж выключателя освещения.
Нормативные документы определяют выключатель как механизм, предназначенный для снятия электрического тока с цепи (одной или сразу нескольких). Основное его применение – в системе освещения.
Несмотря рассмотрение для данного вопроса выполняется для бытового выключателя, определение годится и для более мощных устройств.
Подключение выключателя показывается либо на общих схемах, либо силами производителя (в комплектной схеме к изделию). Как правило, указание на подключение определенного типа провода – ноль либо фаза – отсутствует.
Считается, что производитель таким образом ограничивает свою ответственность уже на уровне технической документации. Решение о том, что подключать, остается за мастером.
При монтаже эта идея не обсуждается, главное – обеспечить прочность соединений и отсутствие тока при выключенном устройстве.
Фаза, ноль – не имеет значения:
· когда размыкается цепь, поток света прекращается;
· когда цепь замыкается, поток света возобновляется.
Дело сделано, электрик спокоен.
Однако пользователя подстерегает один важный момент.
При размыкании электроцепи проявляется весьма важный недостаток того, что выключатель завязан на ноль.
При полностью работоспособной системе оказывается так, что осветительный прибор остается запитан фазой – напрямую.
Провод идет к контакту от коробки, соединений разъемного типа на нем нет – отключить не представляется возможным.
Когда хозяин или тот же электрик прикоснется к контакту (случайно, при замене лампы или ремонтных работах), его организм мгновенно подвергнется удару током.
Если этого не произойдет, остается вероятность получить удар при касании контакта выключателя.
Это приводит к значительному снижению электробезопасности при пользовании электросетью и освещением.
Во избежание такой ситуации рекомендуется отключать хотя бы ту силовую линию от распределительного щитка, на которой планируется работа, если это возможно. Если нет – желательно обесточить весь дом.
Снятие питания гарантирует личную безопасность при отсутствии представления о задействованном способе монтажа проводки и состоянии ее изоляции.
Нормативные документы по этому поводу говорят следующее (см. ПУЭ): выключатели с одним полюсом допускаются к применению для двухпроводных и трехпроводных линий с одной фазой и заземляемой нейтралью, если они монтируются на провод с фазой.
Стоит сделать оговорку: речь не только о бытовых, но и автоматических механизмах.
Но суть остается прежней: обеспечить электробезопасность при случайном касании к контакту разомкнутого выключателя.
А если вспомнить, что УЗО под освещение почти не применяется, то последствия становятся сильнее.
Световые диоды могут мерцать – после долговременной эксплуатации или они поставляются ненадежным изготовителем.
Ввиду простоты их как оптических приборов причина мерцания заключается с соединением на фазу.
Если подвести итог: следует не допускать разночтений и своеволия при электромонтаже, а контролировать установку выключателя только на фазный провод.
С этой целью на выключатель из коробки выводятся фаза общей линии и фаза светильника (парный контакт лампы – ноль).
Только так возможно обеспечить безопасность в эксплуатации и доработке системы освещения и электросети в целом.
Мы, профессиональные электрики с мощным стажем, можем помочь не только с этим вопросом – нам приходилось выполнять как единичные ремонтные операции, так и комплексные монтажи сложных электросетей.
P.S. Для тех кто любит всё делать сам, смотрите видео по установке выключателя;
Почему выключатель разрывает фазу, а не ноль?
Возможно, именно поэтому довольно часто возникает вопрос, что по правилам должен размыкать выключатель фазу или ноль и почему?
На первую часть этого вопроса, а именно, что должен разрывать выключатель фазу или ноль, есть ответ в ПУЭ, правилах устройства электроустановок, основном документе, который регламентирует правила и нормы электромонтажа.
В, последнем, актуальном на сегодняшний день, 7-ом издании ПУЭ, в пункте 6.6.28, указано следующее:
В трех- или двухпроводных однофазных линиях сетей с заземленной нейтралью могут использоваться однополюсные выключатели, которые должны устанавливаться в цепи фазного провода, или двухполюсные, при этом должна исключаться возможность отключения одного нулевого рабочего проводника без отключения фазного.
Как видите правила прямо говорят, что выключатель света устанавливается в разрыв фазного проводника, а не нулевого и только так, а не иначе нужно выполнять монтаж.
Правильная схема подключения одноклавишного выключателя выглядят так:
Блок: 1/3 | Кол-во символов: 988
Источник: https://RozetkaOnline.ru/poleznie-stati-o-rozetkah-i-vikluchateliah/item/164-faza-ili-nol-na-vyklyuchatel
Можно ли разрывать нулевой провод автоматическим выключателем
Согласно ПУЭ в однофазных сетях могут использоваться как однополюсные, так и двухполюсные автоматические выключатели.
В каких случаях должен ставиться двухполюсный автомат, а в каких достаточно однополюсного? Чтобы ответить на этот вопрос необходимо хорошо ориентироваться в библии электриков – ПУЭ.
Но не стоит пугаться друзья, по ходу статьи я буду ссылаться на различные пункты этого нормативного документа, так что Вам не придется сидеть и тратить время на поиски ответа на данный вопрос. Чтобы ответить на вопрос можно ли рвать нейтраль питающего кабеля, необходимо знать какая система заземления используется в вашем доме. Самыми популярными на сегодняшний день являются система заземления TN-C и TN-S. Основное отличие между ними это способ эксплуатации нулевых и защитных проводников.
Таким образом, вопрос о том, нужно ли ставить автомат на ноль, правильней было бы сформулировать так: когда допускается разрыв фазы без нуля, а когда этого делать нельзя ни при каких условиях.
Блок: 2/4 | Кол-во символов: 1053
Источник: https://electricvdome.ru/avtomaticheskie-vikluchateli/nuzhno-li-stavit-avtomat-na-nol.html
Фаза или ноль на выключатель: что говорит ПУЭ?
В последнем 7-ом издании ПУЭ в пункте 6.6.28 в отношении подключения однополюсных выключателей сказано:
6.6.28. В трех- или двухпроводных однофазных линиях сетей с заземленной нейтралью могут использоваться однополюсные выключатели, которые должны устанавливаться в цепи фазного провода, или двухполюсные, при этом должна исключаться возможность отключения одного нулевого рабочего проводника без отключения фазного.
Как видим, правила гласят, что разрываться должна именно фаза, и правильной будет схема, показанная ниже.
Но почему в ПУЭ именно такое указание и чем может быть опасно изменение схемы? Если фаза будет идти напрямую, а ноль разрываться выключателем, тогда при отключении лампочки патрон в люстре всегда будет находиться под напряжением. И при замене лампочки при касании патрона вас может ударить током.
Еще одной проблемой неправильного подключения может быть мигание или свечение светодиодных ламп при постоянной подаче фазы на патрон. Для светодиодных ламп порой достаточно сверхнизких токов, чтобы они светились тусклым светом (как ночник) или мерцали время от времени. Это значительно сокращает их срок службы и менять их придется гораздо чаще.
Еще пара интересных феноменов в электротехнике:
Теги светодиодные лампы электричество
Блок: 2/2 | Кол-во символов: 2309
Источник: https://ichip.ru/sovety/ekspluataciya/pochemu-vyklyuchatel-razryvaet-fazu-a-ne-nol-713002
Можно ли ставить автомат на ноль в системе заземления TN-C?
Наиболее устаревшей и часто встречающейся в домах старой постройки является система заземления типа TN-C. Суть электроснабжения в данном случае заключается в том, что нулевой защитный и нулевой рабочий проводники совмещены в одном проводнике, который называется PEN. При однофазном питании в такой системе в электрощит заводится два проводника – фазный (L) и нулевой (PEN). При трехфазном питание в щит будет заходить четыре проводника: три фазы и PEN.
Чтобы ответить на вопрос можно ли ставить автомат на ноль в такой схеме для начала давайте рассмотрим пункт 1.7.145 ПУЭ в котором сказано.
Как видно друзья в данном случае согласно пункта 1.7.145 ПУЭ ЗАПРЕЩЕНО рвать проводник PEN, то если запрещено устанавливать в него какие либо коммутационный аппараты.
В данном случае, если завести на автомат PEN проводник – это будет равносильно тому, что при срабатывании автоматического выключателя одновременно будет рваться и защитная шина, что из соображений безопасности совершенно недопустимо. В частности это касается случая, когда по причине неисправности автомата фазный контакт останется замкнутым (например, произойдет залипание или подгорание контактов). При случайном прикосновении к нему человек ничем не будет защищен.
Поэтому при электроснабжении квартиры или частного дома по системе TN-C необходимо устанавливаться однополюсный автомат. В случае трехфазного питания на его место ставится 3-хполюсное коммутирующее устройство, в то время как PEN проводник подключается напрямую на электросчетчик или на нулевую шину.
Вывод из этого один – запрещено подключать нулевой проводник через автомат в системе TN-C. Правда, в реальных ситуациях допускается пропускать нулевой провод через двухполюсный автомат (4-х полюсный для цепей питания 380 Вольт) и при системе заземления TN-C.
Но это возможно лишь при условии, что в линии однофазного (3х фазного) ответвления предусмотрено специальное расщепление PEN проводника на отдельные PE и N шины с одновременным обустройством повторного заземления!
Блок: 3/4 | Кол-во символов: 2078
Источник: https://electricvdome.ru/avtomaticheskie-vikluchateli/nuzhno-li-stavit-avtomat-na-nol.html
Как сделать, чтобы выключатель разрывал фазу, а не ноль
Если у вас неправильно выполнена схема подключения выключателя к светильнику, и размыкается ноль, вместо фазы (Жми, чтобы узнать, как самому определить какой из проводов ноль, а какой фаза). То исправить это можно, лишь изменив подключение в распределительной коробке.
Для этого, вам необходимо найти распределительную коробку, которая чаще всего расположена прямо над выключателем света, на расстоянии 10-30см от потолка. Согласно правилам электромонтажа, к ней должен быть обеспечен легкий доступ и нередко вы сможете обнаружить её довольно быстро (но, к сожалению, не всегда).
ВНИМАНИЕ! Все работы по изменению схемы подключения выключателя необходимо проводить только на обесточенной сети. Для этого обязательно отключите автоматический выключатель этой группы в электрощите, после чего, убедитесь в отсутствии напряжения в месте монтажа.
Итак, вот так выглядит схема подключения в распределительной коробке, в которой к выключателю подведен ноль, а фаза идёт напрямую к светильнику.
Чаще всего, схема будет именно такая, вводной питающий кабель будет входить в коробку и затем выходить к следующей распредкоробке, поэтому, обычно, заходит именно четыре кабеля:
1.n – Кабель идущий на выключатель (двухжильный для одноклавишного выключателя)
2.n – Вводной электрический кабель (Стандартный трехжильный: фаза, ноль, заземление)
3.n – Кабель идущий к люстре (Трехжильный: фаза, ноль с выключателя, заземление для одноклавишного выключателя)
4.n – Кабель идущий к следующему выключателю света или розеточным группам (Трехжильный: фаза, ноль, заземление)
Теперь нам нужно поменять эту схему, чтобы выключатель разрывал фазу, а не ноль.
Для этого:
— Провод 1.1 на схеме, идущий на выключатель, подсоединяем к контакту фазных проводов 2.2.+ 4.2
— Провод 1.2 (возвращающийся из выключателя) соединяем с фазным проводом 3.2 который идёт к люстре
— Оставшийся нулевой провод 3.1, идущий к люстре, подключаем к контакту проводников 2.1 + 4.1
Схема замены нулевого проводника в выключателе на фазный, представлена ниже:
Теперь у вас выключатель будет подключен правильно, к нему будет подходить фазный проводник, а не нулевой. Как видите, сделать изменение в схеме подключения, достаточно просто.
Советую прочитать нашу статью, в которой описаны все разрешенные способы соединения проводов в распределительных коробках и выбрать самый удобный для вас при выполнении такого. На мой взгляд, в бытовых условиях, без использования специализированного инструмента и особых навыков, для соединения проводов групп освещения, удобно применять клеммники WAGO.
UPD: Некоторые советуют просто поменять фазу с нолём местами в электрощите и автоматически в выключателях схема изменится на нужную. Я бы не советовал так делать всем, нужно сперва хорошо проанализировать всю схему электропроводки квартиры, а сделать это довольно непросто, лучше такие серьезные вмешательства без должного опыта и знаний не производить.
Если же у вас остались вопросы, на тему фаза или ноль должны подходить к выключателю, обязательно оставляйте их в комментариях. Кроме того, как всегда приветствуется здоровая критика, личный опыт и любые другие полезные мнения.
Блок: 3/3 | Кол-во символов: 3200
Источник: https://RozetkaOnline.ru/poleznie-stati-o-rozetkah-i-vikluchateliah/item/164-faza-ili-nol-na-vyklyuchatel
Нужно ли ставить автомат на ноль в системе заземления TN-S?
Питание по системе заземления TN-S подразумевает разделение проводников N и PE на всем протяжении, начиная от источника питания (конкретно ТП) и заканчивая конечным потребителем.
В этом случае нулевой рабочий и нулевой защитный проводники подключаются к разным шинам. Систему TN-S легко определить, заглянув в электрощиток. При трехфазном вводе в электрощит будет заходить пять проводов: три фазы, ноль и заземление. При однофазном питании три провода: фаза, ноль и заземление. Схема питания при трехфазном и однофазном подключении будет иметь примерно следующий вид.
Согласно ПУЭ пункт 1.7.145 заземляющий проводник (PE) запрещается рвать любыми коммутационными аппаратами, включая автоматические выключатели. А так как заземляющий и нулевой проводники разделены, то нулевой проводник разрешается заводить в автомат. Следовательно в системе заземления TN-S ДОПУСКАЕТСЯ разрывать нулевой рабочий проводник.
Друзья еще хочу акцентировать внимание что при подключении нужно использовать многополюсные автоматические выключатели, которые будут одновременно отключать нулевой проводник совместно со всеми фазными проводниками. ЗАПРЕЩЕНО устанавливать два независимых автомата на фазу и ноль. В правилах ПУЭ пункт 3.1.18 вот что сказано на этот счет.
Какой можно сделать вывод из всего этого. Согласно ПУЭ нет четного требования «нужно» или «необходимо» разрывать нулевой рабочий проводник в системе заземления TN-S. Там четко сказано «допускается», и следовательно вам решать нужно ли ставить автомат на ноль или нет.
на сайте:
Блок: 4/4 | Кол-во символов: 1600
Источник: https://electricvdome.ru/avtomaticheskie-vikluchateli/nuzhno-li-stavit-avtomat-na-nol.html
Количество использованных доноров: 3
Информация по каждому донору:
- https://electricvdome.ru/avtomaticheskie-vikluchateli/nuzhno-li-stavit-avtomat-na-nol.html: использовано 3 блоков из 4, кол-во символов 4731 (42%)
- https://ichip.ru/sovety/ekspluataciya/pochemu-vyklyuchatel-razryvaet-fazu-a-ne-nol-713002: использовано 1 блоков из 2, кол-во символов 2309 (21%)
- https://RozetkaOnline.ru/poleznie-stati-o-rozetkah-i-vikluchateliah/item/164-faza-ili-nol-na-vyklyuchatel: использовано 2 блоков из 3, кол-во символов 4188 (37%)
В розетке две фазы – что делать и как устранить повреждение
Одной из популярных неисправностей электропроводки в квартире является появление так называемой второй фазы в розетке. Если пропал свет в комнатах, но все приборы работают, значит и Вы стали жертвой такой поломки. Далее мы расскажем, что делать, если в розетке две фазы, почему такое может произойти и как устранить повреждение самостоятельно!
Как это происходит?
Для того, чтобы Вы поняли причину неисправности, предоставим наглядную схему подключения розетка-выключатель-лампочка:
Как Вы понимаете, напряжение подается по фазному проводу и возвращается по нулевому. А теперь представьте, что будет, если произойдет обрыв нуля:
Если включить выключатель света, напряжение пройдет через нить накаливания либо включенный электроприбор, перейдет в нулевой провод и т.к. нули связаны, направится к розетке по второму контуру. Итог – при проверке напряжения в гнездах розетки пробником Вы увидите две фазы. Если Вы позаботились о заземлении квартиры, опасности для жизни не будет, просто нужно будет найти обрыв нулевого провода и восстановить контакт. Однако если в квартире использовалось зануление электропроводки, последствия могут быть не самыми лучшими.
Основные причины неполадки
Как Вы уже поняли, причиной появления двух фаз на розетке чаще всего является обрыв нуля. Потеря контакта может произойти на этажном щитке, на вводе в квартиру, в одной из распределительных коробок и даже просто в стене.
Если провод отгорел в электрощитке, в квартире погаснет свет, но розетки все также будут работать, но только когда включаешь электроприбор либо освещение в комнате. Если же Вы все выключите и проверите напряжение в розетке, увидите, что фаза будет только одна.
Иной случай, когда обрыв нуля происходит в распределительной коробке одой из комнат. В этом случае перестанет гореть свет только в этой комнате, в остальных все будет работать, как и раньше. Чтобы решить проблему, нужно будет раскрыть распредкоробку и восстановить соединение проводов.
Еще одна частая причина, почему две фазы в розетке – старая проводка при которой вместо автоматических выключателей на вводе вкручены пробки. Если выбьет только одну пробку, нулевую, напряжение появится в двух гнездах. Чтобы такого не произошло, рекомендуем заменить электропроводку в квартире на современную – с нулевой шиной.
Также часто встречается ситуация, когда обрыв происходит непосредственно в стене из-за Вашего непрофессионализма. Перед тем, как вешать картину необходимо обязательно найти электропроводку в стене, чтобы не повредить ее гвоздем (и себя в том числе). Если Вы перебьете только нулевой проводник, появятся две фазы в розетках. Сюда же можно отнести и повреждение провода грызунами, которые могут существовать в пустотах панелей многоквартирных домов. О том, как защитить проводку от грызунов, мы рассказывали в соответствующей статье.
Рекомендуем просмотреть видео, на котором наглядно предоставлена неисправность:
Итак, мы рассказали, почему может появиться напряжение в двух гнездах розетки, как это происходит и что делать, чтобы решить проблему. Теперь хотелось бы объяснить, как сразу же понять, что произошло повреждение провода N и это не обе фазы, а одна, которая перетекла по второй линии электросети.
Полезный совет читателям
Ситуация понятная – пропал свет в квартире и Вы сразу же пробником решили проверить напряжение в розетках. Заметив, что индикатор показывает фазу на двух проводах, Вы подумали, что это две фазные жилы у Вас в электропроводке. Как мы уже сказали, все далеко не так и убедиться в этом можно следующим образом:
С помощью мультиметра проверьте напряжение в розетке, если покажет 0, значит фаза у Вас только одна, перетекающая на нулевой проводник.
Это самый верный способ определить неисправность, ведь индикаторная отвертка это крайне не точный метод проверки. Индикатор может сработать на наводку и показать вторую фазу, хотя на самом деле она будет одна.
Напоследок рекомендуем просмотреть еще одно полезное видео по теме:
Вот и все, что хотелось рассказать Вам о такой неисправности проводки. Обращаем Ваше внимание на то, что последствия появления такого рода поломки могут быть весьма ощутимыми – если в Вашей квартире использовалось зануление, напряжение может перейти на корпус электроприборов, что крайне опасно. Надеемся, теперь Вы знаете, что делать, если в розетке две фазы, как устранить повреждение и почему такое случается!
Объяснение трехфазного питания| Объяснение трехфазного питания
В этом видео подробно рассматривается трехфазное питание и объясняется, как оно работает. Трехфазную мощность можно определить как общий метод производства, передачи и распределения электроэнергии переменного тока. Это разновидность многофазной системы, которая является наиболее распространенным методом передачи электроэнергии в электрических сетях по всему миру.
Дополнительные ресурсы Raritan
Расшифровка:
Добро пожаловать в это анимированное видео, в котором быстро объясняется трехфазное питание.Я также объясню загадку того, почему 3 линии электропередачи разнесены на 120 градусов, потому что это очень важный момент для понимания трехфазного питания.
Питание, которое поступает в центр обработки данных, обычно представляет собой трехфазное питание переменного тока, что означает трехфазное питание переменного тока.
Давайте посмотрим на упрощенный пример того, как генерируется трехфазная мощность.
Этот пример отличается от того, что я использовал бы для описания того, как трехфазный двигатель использует мощность. В видео с переменным током мы показали, как вращение магнита мимо одного провода заставляет ток течь вперед и назад.Теперь мы собираемся повернуть магнит мимо трех проводов и посмотреть, как он влияет на ток в каждом проводе.
В этом примере с тремя фазами северный положительный конец магнита направлен прямо вверх по линии один.
Чтобы облегчить объяснение концепции, давайте воспользуемся циферблатом и скажем, что первая линия находится в позиции двенадцати часов. Электроны в строке 1 будут течь к северному полюсу магнита. Что происходит, когда магнит теперь поворачивается на 90 градусов?
Как мы видели на видео с переменным током, поскольку магнит перпендикулярен линии 1, электроны в линии 1 перестанут двигаться.Затем, когда магнит поворачивается более чем на 90 градусов, южный полюс магнита приближается к линии один, и электроны меняют направление, что означает, что направление тока изменится на противоположное. Это было подробно описано в видео по переменному току. Если вы нажали на это видео, не понимая, что такое переменный ток, сначала просмотрите это видео.
Глядя на диаграмму, вы можете понять, почему я выбрал аналоговый циферблат. Круг составляет 360 градусов, и часы делят круг на 12 частей, так что каждый час покрывает 30 градусов круга.Переход от 12 к 3 составляет 90 градусов, а переход от 12 к 4 — 120 градусов.
При генерации 3-х фазного питания медные провода расположены на расстоянии 120 градусов друг от друга. Итак, когда вы находитесь в позиции «четыре часа» в нашем примере, это 120 градусов от первой линии. А в положении «восемь часов» он находится на 120 градусах от обоих положений: «4 часа» и «12 часов». Три линии равномерно расположены по кругу.
Если северный полюс находится ближе к одному из трех проводов, электроны движутся в этом направлении.Чем ближе южный полюс подходит к каждому проводу, тем больше электроны удаляются от южного полюса. В каждой из трех линий электроны движутся вперед и назад, и они не всегда движутся в том же направлении или с той же скоростью, что и две другие линии.
Давайте еще раз посмотрим на пример. Когда магнит вращается, когда северный полюс находится в положении 1 часа, он становится перпендикулярным линии 2, поэтому, конечно, электроны перестают двигаться по линии 2. Но они все еще движутся по линии 1, привлеченные более близким северным полюсом, и они движутся по линии 3, которую отталкивает южный полюс.Когда северный полюс магнита смотрит на 2 часа, тогда на линии 1 и [линию] 2 воздействует северный полюс, но южный полюс находится прямо напротив линии 3, так что теперь у него пиковый ток. В 3 часа магнит перпендикулярен линии 1, поэтому электроны перестают двигаться, но на линию 2 влияет северный полюс, а на линию 3 — южный полюс, поэтому ток течет по линиям 2 и 3.
Надеюсь, , этот пример показывает вам, как в любое время ток всегда течет как минимум по 2 линиям. Он также показывает взаимосвязь между 3 линиями при вращении магнита по кругу.Когда магнит вращается вокруг циферблата, на каждую из трех линий будет воздействовать либо северный, либо южный полюс, за исключением случаев, когда магнит перпендикулярен линии.
Давайте сосредоточимся на линии 1. Это пик тока, когда северный полюс указывает на 12 и 6 часов. Это при нулевом токе, когда северный полюс указывает на 3 и 9 часов. Только 1 из 3 линий всегда находится на пике, но поскольку есть 3 линии, есть 3 положительных пика и 3 отрицательных пика для каждого цикла.В 6 различных положениях на циферблате одна из линий находится на пике. Позиции 12 и 6 — это чередующиеся пики линии 1, позиции 2 и 8 — чередующиеся пики линии 3, а позиции 4 и 10 — чередующиеся пики линии 2.
Теперь давайте объясним те запутанные формы сигналов, которые часто используются для изображения трех фаз. Если вы посмотрите на пример формы сигнала, вы увидите первую строку синего цвета, которая начинается с нуля. Это означает, что магнит перпендикулярен этой линии. По мере движения магнита вы можете видеть, как ток достигает своего пика.Затем, когда положительный полюс вращается мимо этого провода, ток начинает ослабевать, пока магнит снова не станет перпендикулярным, что приводит к нулевому току. Когда отрицательный полюс начинает приближаться, ток меняет направление и движется в другом направлении к другому пику, прежде чем вернуться к нулевому току. Это завершает 1 полный цикл для этой линии.
Для того, чтобы двухмерная диаграмма показывала взаимосвязь между линиями, теперь на ней отображается зазор, который означает время, за которое магнит вращается на 120 градусов.Это когда красная линия имеет нулевой ток. По мере того как магнит продолжает вращаться, красная линия будет двигаться в сторону своего пикового положительного тока, затем вернется к нулю, после чего ток изменит направление. График также показывает, что третья линия начнется при нулевом токе через 120 градусов после второй строки. Итак, если вы посмотрите на эти 3 линии, вы увидите, что, когда одна линия находится на пике, другие 2 линии все еще генерируют ток, но они не на полную мощность, то есть они не на пике. Таким образом, когда электроны текут от положительного пика к отрицательному, ток отображается как текущий от положительных значений к отрицательным.Помните, что положительные и отрицательные стороны не отменяют друг друга. Положительный и отрицательный оттенки используются только для описания чередования тока.
В трехфазной цепи вы обычно берете одну из трех токоведущих линий и подключаете ее к другой из трех токоведущих линий. Одно исключение из этого описано в видео «Дельта-звезда».
В качестве примера возьмем трехфазную линию на 208 В. Каждая из 3 линий будет передавать 120 вольт. Если вы посмотрите на диаграмму, вы легко увидите выходную мощность любых двух линий.Если одна линия на пике, другая линия не на пике. Вот почему в трехфазной цепи неправильно умножать 120 вольт на 2, чтобы получить 240 вольт.
Итак, если вам интересно, почему у вас дома есть 110/120 вольт для обычных розеток, но у вас также есть приборы на 220/240 вольт, что дает? Что ж, это не трехфазное питание. Фактически это 2 однофазные линии.
Итак, как вы рассчитываете мощность объединения двух линий в трехфазную цепь? Формула рассчитывается как умножение вольт на квадратный корень из 3, который округляется до 1.732. Для 2 линий, каждая на 120 вольт, вычисление для этого составляет 120 вольт, умноженное на 1,732, и результат округляется до 208 вольт.
Вот почему мы называем это трехфазной цепью на 208 вольт или трехфазной линией на 208 вольт. Трехфазная цепь на 400 вольт означает, что на каждую из трех линий подается 230 вольт.
Последняя тема, о которой я расскажу в этом видео: почему компании и центры обработки данных используют 3 фазы?
А сейчас позвольте дать вам простой обзор. Для трехфазного подключения вы подключаете линию 1 к линии 2 и получаете 208 вольт.В то же время вы [можете] подключить линию 2 к линии 3 и получить 208 вольт. И вы [можете] соединить линию 3 с линией 1 и получить 208 вольт. Если провод может выдавать 30 ампер, то передаваемая мощность составляет 208 вольт, умноженное на 30 ампер, умноженное на 1,732, при общей доступной мощности 10,8 кВА.
Для сравнения, для однофазной 30-амперной цепи с напряжением 208 В вы получите только 6,2 кВА. Обычно 3 фазы обеспечивают большую мощность.
Существуют и другие факторы, по которым гораздо лучше подавать трехфазное питание в стойку центра обработки данных, чем использовать однофазное питание, и эти факторы обсуждаются в видео в зависимости от напряжения и силы тока, а также в видео с напряжением 208 и 400 вольт.
Унифицированные методы перехода через нулевой ток для мощных трехфазных инверторов с ШИМ
Абстрактные
Эта диссертация посвящена унифицированному и всестороннему исследованию методов мягкой коммутации при нулевом токе (ZCT) для мощных трехфазных инверторов с ШИМ. Основные усилия в этом исследовании заключаются в следующем: 1) Концепция одной новой схемы ZCT и одной новой топологии ZCT; 2) Систематическое сравнение семейства инверторов ZCT; 3) Разработка, внедрение и экспериментальная оценка двух прототипов инверторов мощностью 55 кВт для моторных приводов электромобилей (EV), разработанных на основе предложенных концепций ZCT; и 4) Исследование концепций ZCT в преобразовании энергии высокой частоты мегаватт.Предлагаемые методы ZCT также применимы к трехфазным выпрямителям с коррекцией коэффициента мощности (PFC). Чтобы минимизировать коммутационные потери, в этой работе сначала предлагается новая схема управления для существующей схемы трехфазного инвертора ZCT, в которой используются шесть вспомогательных переключателей. Предлагаемая схема, получившая название ZV / ZCT с шестью переключателями, позволяет отключать все главные переключатели, диоды и вспомогательные переключатели в условиях нулевого тока, и в то же время дает возможность добиться включения нулевого напряжения для основной сети. переключатели.Между тем, он не требует модификации обычных алгоритмов ШИМ. По сравнению с существующими схемами ZCT, ток обратного восстановления диода значительно снижен, коммутационные потери при включении уменьшены на 50%, напряжение резонансного конденсатора снижено на 30%, а ток и тепловые напряжения во вспомогательных переключателях уменьшены. равномерно распределены. Однако большим недостатком топологии ZV / ZCT с шестью переключателями, а также других типов топологий мягкой коммутации с использованием шести вспомогательных переключателей является высокая стоимость и большое пространство, связанное с вспомогательными переключателями.Чтобы преодолеть этот недостаток, в данной работе предлагается новая топология трехфазного инвертора ZCT, в которой используются только три вспомогательных переключателя — ZCT с тремя переключателями. Важность предложенной топологии ZCT с тремя переключателями заключается в том, что среди разработанных к настоящему времени трехфазных инверторов с мягким переключением это единственный, в котором используется менее шести вспомогательных переключателей, и при этом сохраняются следующие три особенности: 1) мягкая коммутация для все главные выключатели, диоды и вспомогательные выключатели во всех режимах работы; 2) никаких модификаций обычных алгоритмов ШИМ; и 3) в практических реализациях нет необходимости в дополнительном измерении резонансного тока, насыщаемых сердечниках или демпферах для защиты вспомогательных переключателей.Предлагаемые инверторы ZV / ZCT с шестью переключателями и инверторы ZCT с тремя переключателями вместе с существующими инверторами ZCT составляют семейство трехфазных инверторов ZCT. Для изучения основных свойств этих инверторов проводится систематическое сравнительное исследование. Упрощенная эквивалентная схема разработана для унификации общих характеристик коммутации ZCT. С помощью наглядных пособий по плоскостям состояний рассмотрено развитие семейства инверторов ZCT, выявлены их отличия и связи. Сравнивается поведение отдельных инверторов, в том числе условия переключения, циркулирующая энергия и нагрузки на устройства / компоненты.На основе предложенных методов ZV / ZCT с шестью переключателями и ZCT с тремя переключателями были построены два прототипа инвертора мощностью 55 кВт для приводов тяговых электродвигателей электромобилей, которые были испытаны на полную мощность с динамометрическим стендом с асинхронным двигателем с замкнутым контуром. Желаемые функции плавного переключения ZCT реализуются вместе с функциями привода двигателя. Проводятся исследовательские работы по разработке систематической и практической методологии проектирования инверторов ZCT, а также проводится экспериментальная оценка методов ZCT в применении электродвигателей электромобилей.Подход к проектированию объединяет оптимизацию системы с характеристиками основного устройства IGBT в условиях ZCT, выбор, тестирование и определение характеристик вспомогательных устройств, проектирование и выбор резонансных катушек индуктивности и конденсаторов, моделирование потерь инвертора и численный анализ, аспекты работы на уровне системы. , а также компоновка и паразитные соображения. Сравниваются и уточняются различные аспекты конструкции этих двух инверторов ZCT. Также сравнивается сложность реализации прототипа мощностью 55 кВт.Эффективность измеряется и сравнивается по группе точек крутящего момента / скорости для типичных ездовых циклов электромобиля. Высокочастотное преобразование мощности в мегаватты — еще одно потенциальное применение методов ZCT. Интегрированное затворно-коммутируемое тиристорное устройство (IGCT) испытано и охарактеризовано в соответствии с предложенным условием ZV / ZCT с шестью переключателями, и испытание показывает многообещающие результаты в снижении коммутационных потерь и напряжений. Обсуждаются улучшения в частоте переключения IGCT и упрощение требований к охлаждению при операциях ZCT.Кроме того, на основе предложенной топологии ZCT с тремя переключателями разработана обобщенная концепция ячейки ZCT. Эта концепция привела к открытию семейства упрощенных многоуровневых инверторов с мягким переключением, которые уменьшают количество вспомогательных переключателей вдвое, но при этом сохраняют желаемые характеристики.
Динамическая фазовая компенсация
Наша eSTS ждет идеального момента для перевода
LayerZero Power Systems является запатентованной технологией изобретения переключения источника, используемой статическими переключателями передачи компании, для автоматической компенсации разницы в фазах между источниками, устраняя броски тока нижестоящего трансформатора из-за несинфазных переключений.Новаторское изобретение работает путем введения соответствующей временной задержки во время передачи, длительность задержки является функцией фазового угла между двумя источниками в момент передачи.
Фаза формы волны напряжения от каждого источника питания измеряется непрерывно, а разность фаз известна в любое время, так что ее можно использовать при необходимости переключения. Способ и устройство контролируют напряжение от первого источника питания и инициируют передачу от первого источника питания ко второму источнику питания в ответ на неприемлемые условия от первого источника питания.Второй источник питания подключается только после ожидания в течение периода времени, соответствующего соответствующей временной задержке.
Когда Источники 1 и Источники 2 находятся в противофазе, а передаточный переключатель выполняет передачу ¼ цикла, трансформатор уже намагничен.
Магнитный поток трансформатора должен быть сбалансирован при переходе от одного источника к другому. Нет ничего проще, чем временная задержка, которая остается внутри кривой CBEMA.
Влияние уставки пониженного напряжения на броски трансформатора
Динамический перенос фазовой компенсации Введение
Динамический перенос с фазовой компенсацией — это метод, изобретенный LayerZero Power Systems для минимизации тока насыщения трансформатора во время сдвинутых по фазе статических переходов на первичной стороне трансформаторов.В этом обзоре описывается влияние изменения уставки пониженного напряжения на величину тока насыщения, потребляемого распределением ниже по потоку.
Фон
Статические переключателиэффективно используются для обеспечения резервирования каналов распределения питания, питающих критически важные нагрузки. Статические переключатели (STS) могут быть установлены на стороне линии или на стороне нагрузки распределительных трансформаторов; каждая топология имеет свои преимущества и потенциальные недостатки.STS со стороны линии дешевле и занимает меньше места на полу, ватт на ватт. Однако, если она не спроектирована и не скоординирована должным образом, STS на стороне линии может иметь собственные пагубные последствия во время событий передачи вне фазы.
С 2001 года LayerZero является сторонником использования распределительных трансформаторов с низким пусковым током в критических распределительных системах.
В 2004-05 годах LayerZero изобрел и усовершенствовал метод передачи с динамической фазовой компенсацией, чтобы минимизировать ток насыщения (обычно называемый пусковым током) из-за сдвигов фазы.Этот метод уже установлен и протестирован в более чем тысяче систем STS на критических объектах.
В зависимости от напряжения системы бесперебойного питания (ИБП), установленного в качестве источника питания на каждой стороне STS, заказчики и их инженеры изменили критерии уставки пониженного напряжения (УФ). Уставка УФ определяет процент (ниже номинального напряжения), при котором начинается переключение (от неисправного источника к альтернативному доступному источнику).В данной статье рассматривается влияние этих уставок на ток насыщения выходного трансформатора.
Испытательное оборудование и метод
Арт. | Рейтинг |
---|---|
СТС | 600A (модель LayerZero eSTS, с включенным динамическим переносом фазовой компенсации) 480 В, 2 источника |
Трансформатор | 216кВА; 5.Сопротивление 3%; 5-кратный рейтинг пускового тока; 480 В: 120/208 В |
Источник 1 | Утилита, 60,0 Гц |
Источник 2 | Генератор, 59,9 Гц |
Нагрузка | Банк резистивной нагрузки; работает 216кВА (100% нагрузка трансформатора) 260A первичный ток (100% нагрузка) |
Частота генератора была установлена на 59.9 Гц. Это создало переменный фазовый угол между двумя источниками. При определенных фазовых углах (0 °, 90 °, 150 °, 180 °, 210 °, 270 °), если смотреть на внешний синхроскоп, источник 1 не работал из-за размыкания прерывателя фидера на STS. STS перешел от источника 1 к источнику 2. Заданное значение пониженного напряжения (УФ) для начала переноса изменялось от 80% от номинального; до 85%; до 90%; до 93%. Форма сигнала, связанная с передачей, была записана с помощью стандартного инструмента захвата формы сигнала в продукте LayerZero eSTS.
Размер eSTS был увеличен, чтобы можно было увидеть полное влияние броска тока на захват сигнала. Номинальные параметры трансформаторов тока eSTS и масштаб графика формы сигнала позволяют отображать отклонения тока до 3-х раз больше номинальной полной нагрузки трансформатора.
Обзор результатов
Эскизы сигналов передачи для каждой передачи приведены ниже. Результаты упорядочены по фазовому углу. В пределах каждой категории фазового угла отображаются формы сигналов, связанные с каждой из четырех уставок, чтобы можно было легко изучить влияние изменения уставки УФ-излучения на ток насыщения.
Выбор фазового угла
Фазовый угол 0 °
Фазовый угол 90 °
Фазовый угол 150 °
Фазовый угол 180 °
Фазовый угол 210 °
Фазовый угол 270 °
Резюме и заключение
Из просмотра эскизов очевидно, что по мере того, как заданное значение УФ становится более жестким (ближе к номинальному), величина тока насыщения уменьшается для всех значений разности фазовых углов между источниками.
Новый трехфазный шестиконтактный выпрямитель PFC с переключением при нулевом напряжении и нулевом токе
Автор
Включено в список:- Chun-Wei Lin
(Департамент электронной и вычислительной техники, Национальный Тайваньский университет науки и технологий, Тайбэй 10607, Тайвань)
- Chang-Yi Peng
(Кафедра электротехники, Христианский университет Чжун-Юань, Таоюань 32023, Тайвань)
- Huang-Jen Chiu
(Департамент электронной и вычислительной техники, Национальный Тайваньский университет науки и технологий, Тайбэй 10607, Тайвань)
Abstract
Предложен, проанализирован и проанализирован новый трехфазный выпрямитель с коррекцией коэффициента мощности (PFC) с переключением при нулевом напряжении (ZVS) в шести основных переключателях и переключением при нулевом токе (ZCS) во вспомогательном переключателе. экспериментально подтверждено.Основная особенность предлагаемой вспомогательной схемы заключается в уменьшении потерь при переключении, когда шесть основных переключателей включены, а один вспомогательный переключатель выключен. В данной статье дается подробный анализ работы предложенной схемы. Моделирование и анализ подтверждены экспериментальными результатами на основе трехфазного выпрямителя мощностью 7 кВт. Выпрямитель с коррекцией коэффициента мощности с мягкой коммутацией показывает повышение эффективности на 2,25% по сравнению с его аналогом с жесткой коммутацией при 220 В при полной нагрузке.
Рекомендуемое цитирование
Скачать полный текст от издателя
Исправления
Все материалы на этом сайте предоставлены соответствующими издателями и авторами. Вы можете помочь исправить ошибки и упущения.При запросе исправления укажите дескриптор этого элемента: RePEc: gam: jeners: v: 12: y: 2019: i: 6: p: 1119-: d: 216307 . См. Общую информацию о том, как исправить материал в RePEc.
По техническим вопросам, касающимся этого элемента, или для исправления его авторов, названия, аннотации, библиографической информации или информации для загрузки, обращайтесь:. Общие контактные данные провайдера: https://www.mdpi.com/ .
Если вы создали этот элемент и еще не зарегистрированы в RePEc, мы рекомендуем вам сделать это здесь.Это позволяет связать ваш профиль с этим элементом. Это также позволяет вам принимать потенциальные ссылки на этот элемент, в отношении которых мы не уверены.
У нас нет библиографических ссылок на этот товар. Вы можете помочь добавить их, используя эту форму .
Если вам известно об отсутствующих элементах, цитирующих этот элемент, вы можете помочь нам создать эти ссылки, добавив соответствующие ссылки таким же образом, как указано выше, для каждого ссылочного элемента. Если вы являетесь зарегистрированным автором этого элемента, вы также можете проверить вкладку «Цитаты» в своем профиле RePEc Author Service, поскольку там могут быть некоторые цитаты, ожидающие подтверждения.
По техническим вопросам, касающимся этого элемента, или для исправления его авторов, заголовка, аннотации, библиографической информации или информации для загрузки, обращайтесь: в группу преобразования XML (адрес электронной почты указан ниже). Общие контактные данные провайдера: https://www.mdpi.com/ .
Обратите внимание, что исправления могут занять пару недель, чтобы отфильтровать различные сервисы RePEc.
Трехфазный переключатель мощности POW-12 для нагревателя с переходом через ноль, промышленное использование, 12500 рупий / единица
О компании
Год основания 1991
Юридический статус компании с ограниченной ответственностью (Ltd./Pvt.Ltd.)
Характер бизнеса Производитель
Количество сотрудников От 51 до 100 человек
Годовой оборот2008-09 рупий. 2–5 крор Прибл.
2009-10 руп. 2–5 крор Прибл.
2010-11 рупий. 2–5 крор Прибл.
IndiaMART Участник с ноября 2003 г.
GST27AABCL1732A1Z5
Код импорта и экспорта (IEC) 03070 *****
Libratherm Instruments является одним из производителей, поставщиков и экспортеров цифровых и микропроцессорных электронных приборов управления процессами , таких как цифровые контроллеры температуры , цифровые индикаторы температуры, контроллеры температуры pid, контроллеры pid, индикаторы температуры, тиристорные регуляторы мощности и датчики температуры. с момента создания в 1991 году.Продукция компании отличается доступной ценой, элегантным внешним видом, надежной и отличной по качеству. Благодаря непревзойденному качеству продукции компания за короткий промежуток времени добилась всемирного признания.
Наши основные сильные стороны — это адаптация к потребностям клиентов. Мы понимаем требования приложения для управления технологическим процессом и предлагаем подходящее экономичное решение с использованием нашей электронной продукции. Если возникает необходимость, мы проектируем и разрабатываем новый продукт, чтобы удовлетворить потребности клиентов на 100%.Мы известны в отрасли как поставщик решений для повышения производительности и производительности в соответствии с требованиями клиентов.
За последние 25 лет мы обслуживаем различных клиентов из различных промышленных вертикалей.
Для сталелитейной промышленности Мы предлагаем системы измерения температуры расплавленного металла и индикаторы размером 4 или 8 дюймов.
Фармацевтическая промышленность для контроля T + RH + DP в чистых помещениях, а также подходящие тиристорные регуляторы мощности для нагревателей и контроллеры T + RH PID для управления AHU.
Для автомобильной промышленности Мы специально разработали панели управления температурой на основе тиристоров и ПИД-регуляторов для систем литья алюминия под давлением.
Для стекольной промышленности Мы предлагаем панели контроля температуры на основе тиристоров для предварительного нагрева стекловаренного масла.
Для пластмассовой промышленности Мы поставляем панели контроля температуры для литья под давлением, экструзионных линий и выдувных машин.
Для термообработки после сварки и термической обработки для снятия напряжений мы специально разработали контроллер профиля и многозональные системы управления на основе тиристоров, которые широко используются в промышленности.
Для керамической промышленности мы предлагаем наши двухфазные тиристорные регуляторы мощности и программатор температуры профиля изменения / выдержки для высокотемпературных печей, использующих термопары типа R, S или B.
Для производителей украшений с бриллиантами мы предлагаем программатор профиля рампы / выдержки и готовые к использованию панели контроля температуры для печей для выжигания парафина и литья по выплавляемым моделям.
Для получения дополнительной информации посетите
Видео компании
Полностью оптический контроль фазы в нанофотонных кремниевых волноводах с эпсилон-нанонагревателями, близкими к нулю
Bogaerts, W. et al. Программируемые фотонные схемы. Природа 586 , 207–216. https://doi.org/10.1038/s41586-020-2764-0 (2020).
ADS CAS Статья PubMed Google Scholar
Сан, Дж., Тимурдоган, Э., Яакоби, А., Хоссейни, Э. С. и Уоттс, М. Р. Крупномасштабная нанофотонная фазированная решетка. Природа 493 , 195–199. https://doi.org/10.1038/nature11727 (2013).
ADS CAS Статья PubMed Google Scholar
Шен, Ю. и др. Глубокое обучение с когерентными нанофотонными схемами. Нат. Фотон. 11 , 441–446. https://doi.org/10.1038/nphoton.2017.93 (2017).
ADS CAS Статья Google Scholar
Qiang, X. et al. Крупномасштабная кремниевая квантовая фотоника, реализующая произвольную обработку двух кубитов. Нат. Фотон. 12 , 534–539. https://doi.org/10.1038/s41566-018-0236-y (2018).
ADS CAS Статья Google Scholar
Атабаки А. Х., Шах Хоссейни Э., Эфтехар А. А., Егнанараянан С. и Адиби А. Оптимизация металлических микронагревателей для высокоскоростной реконфигурируемой кремниевой фотоники. Опт. Экспресс 18 , 18312. https://doi.org/10.1364/OE.18.018312 (2010).
ADS CAS Статья PubMed Google Scholar
Deng, H. & Bogaerts, W. Чистая фазовая модуляция на основе кремниевого плазменного модулятора дисперсии. Опт. Экспресс 27 , 27191. https://doi.org/10.1364/oe.27.027191 (2019).
ADS CAS Статья PubMed Google Scholar
Jacobsen, R. S. et al. Напряженный кремний как новый электрооптический материал. Природа 441 , 199–202. https://doi.org/10.1038/nature04706 (2006).
ADS CAS Статья PubMed Google Scholar
Berciano, M. et al. Быстрый линейный электрооптический эффект в центросимметричном полупроводнике. Commun. Phys. 1 , 64. https://doi.org/10.1038/s42005-018-0064-x (2018).
CAS Статья Google Scholar
Тимурдоган, Э., Поултон, К. В., Берд, М. Дж. И Уоттс, М. Р. Нелинейно-оптические эффекты второго порядка, индуцированные электрическим полем, в кремниевых волноводах. Нат. Фотон. 11 , 200–206. https://doi.org/10.1038/nphoton.2017.14 (2017).
ADS CAS Статья Google Scholar
Castellan, C. et al. Нелинейности, индуцированные полем в кремниевых волноводах, встроенных в боковые p-n-переходы. Фронт. Phys. 7 , 1–9. https://doi.org/10.3389/fphy.2019.00104 (2019).
Артикул Google Scholar
Abel, S. et al. Большой эффект Поккельса в микро- и наноструктурированном титанате бария, интегрированный в кремний. Нат. Матер. 18 , 42–47. https://doi.org/10.1038/s41563-018-0208-0 (2019).
ADS CAS Статья PubMed Google Scholar
Datta, I. et al. Композитная фотонная платформа с малыми потерями на основе двумерных полупроводниковых монослоев. Нат. Фотон. 14 , 256–262. https://doi.org/10.1038/s41566-020-0590-4 (2020).
ADS CAS Статья Google Scholar
Алмейда, В. Р., Барриос, К. А., Панепуччи, Р. Р. и Липсон, М. Полностью оптическое управление светом на кремниевом кристалле. Природа 431 , 1081–1084.https://doi.org/10.1038/nature02921 (2004).
ADS CAS Статья PubMed Google Scholar
Танабе, Т., Нотоми, М., Мицуги, С., Шинья, А. и Курамочи, Э. Полностью оптические переключатели на кремниевом чипе, реализованные с использованием нанополостей фотонного кристалла. Заявл. Phys. Lett. 87 , 1–3. https://doi.org/10.1063/1.2089185 (2005).
CAS Статья Google Scholar
Власов Ю., Грин, В. М. Дж. И Ся, Ф. Кремниевый нанофотонный нечувствительный к длине волны высокопроизводительный кремниевый переключатель для оптических сетей на кристалле. Нат. Фотон. 2 , 242–246. https://doi.org/10.1038/nphoton.2008.31 (2008).
CAS Статья Google Scholar
Martínez, A. et al. Сверхбыстрая полностью оптическая коммутация в щелевом волноводе из кремния на основе нанокристаллов на телекоммуникационных длинах волн. Nano Lett. 10 , 1506–1511. https://doi.org/10.1021/nl17 (2010).
ADS CAS Статья PubMed Google Scholar
Liu, L. et al. Ультра-маленький, малопотребляющий, полностью оптический триггер памяти на кремниевом кристалле. Нат. Фотон. 4 , 182–187. https://doi.org/10.1038/nphoton.2009.268 (2010).
ADS CAS Статья Google Scholar
Nozaki, K. et al. Субфемтоджоульное полностью оптическое переключение с использованием фотонно-кристаллической нанополости. Нат. Фотон. 4 , 477–483. https://doi.org/10.1038/nphoton.2010.89 (2010).
ADS CAS Статья Google Scholar
Bruck, R. et al. Полностью оптический пространственный модулятор света для реконфигурируемых кремниевых фотонных схем. Optica 3 , 396. https: // doi.org / 10.1364 / OPTICA.3.000396 (2016).
ADS CAS Статья Google Scholar
Gil-Molina, A. et al. Генерация оптических свободных носителей в кремниевых нановолноводах на длине волны 1550 нм. Заявл. Phys. Lett. 112 , 251104. https://doi.org/10.1063/1.5023589 (2018).
ADS CAS Статья Google Scholar
Niu, X., Ху, X., Чу, С. и Гонг, Q. Фотоника с близким к нулю эпсилоном: новая платформа для интегрированных устройств. Adv. Опт. Матер. 6 , 1–36. https://doi.org/10.1002/adom.201701292 (2018).
CAS Статья Google Scholar
Wood, M. G. et al. Эксплуатация кремниевых фотонных модуляторов на эпсилон-околонулевых скоростях гигагерца. Optica 5 , 233. https://doi.org/10.1364/OPTICA.5.000233 (2018).
ADS CAS Статья Google Scholar
Чжоу, Б., Ли, Э., Бо, Й. и Ван, А. X. Высокоскоростной плазмонно-кремниевый модулятор, управляемый эпсилон-оксидом с почти нулевой проводимостью. J. Lightwave Technol. 38 , 3338–3345. https://doi.org/10.1109/JLT.2020.2979192 (2020).
ADS CAS Статья Google Scholar
Amin, R. et al. Быстродействующий широкополосный модулятор ITO Маха-Цендера на субволновой частоте ГГц на кремниевой фотонике. Optica 7 , 333. https://doi.org/10.1364/OPTICA.389437 (2020).
ADS CAS Статья Google Scholar
Парра, Дж., Оливарес, И., Бримон, А., Санчис, П. Энергонезависимая эпсилон-память, близкая к нулю. Опт. Lett. 44 , 3932. https://doi.org/10.1364 / OL.44.003932 (2019).
ADS CAS Статья PubMed Google Scholar
Парра, Дж., Оливарес, И., Рамос, Ф. и Санчис, П. Ультракомпактный энергонезависимый переключатель Маха-Цендера, работающий на прозрачном проводящем оксиде с высокой подвижностью. Опт. Lett. 45 , 1503. https://doi.org/10.1364/OL.388363 (2020).
ADS Статья PubMed Google Scholar
Li, E. & Wang, A. X. Полностью оптическая фемто-джоулева коммутация с использованием эпсилон-близкого к нулю высокоподвижного проводящего оксида. IEEE J. Select. Вершина. Quant. Электрон. 27 , 1–9. https://doi.org/10.1109/JSTQE.2020.3018104 (2021 г.).
Артикул Google Scholar
Modest, M. F. Radiation Heat Transfer 3-е изд. (Elsevier Inc., 2013).
Google Scholar
Ву К., Ван Ю., Цю К. и Чен Дж. Термооптические полностью оптические устройства на основе двумерных материалов. Фотон. Res. 6 , С22. https://doi.org/10.1364/PRJ.6.000C22 (2018).
CAS Статья Google Scholar
Стурлези Б., Граджовер М., Мазурски Н. и Леви У. Интегрированные аморфные кремний-алюминиевые дальнодействующие поверхностные плазмон-поляритонные волноводы (LR-SPP). APL Photon. 3 , 036103.https://doi.org/10.1063/1.5013662 (2018).
ADS CAS Статья Google Scholar
Клири, Дж. У., Смит, Э. М., Лиди, К. Д., Гржибовски, Г. и Го, Дж. Оптические и электрические свойства ультратонких нанопленок оксида индия и олова на кремнии для инфракрасной фотоники. Опт. Матер. Экспресс 8 , 1231. https://doi.org/10.1364/OME.8.001231 (2018).
ADS CAS Статья Google Scholar
Xian, S. et al. Влияние кислородной стехиометрии на структуру, оптические и эпсилон-близкие к нулю свойства пленок оксида индия и олова. Опт. Экспресс 27 , 28618. https://doi.org/10.1364/OE.27.028618 (2019).
ADS CAS Статья PubMed Google Scholar
Gui, Y. et al. На пути к интегрированной метатронике: целостный подход к точным оптическим и электрическим свойствам оксида индия и олова. Sci. Реп. 9 , 11279. https://doi.org/10.1038/s41598-019-47631-5 (2019).
ADS CAS Статья PubMed PubMed Central Google Scholar
Като, К., Кувахара, М., Кавашима, Х., Цуруока, Т. и Цуда, Х. Управляемый током оптический переключатель фазового затвора с использованием нагревателя на основе оксида индия и олова. Заявл. Phys. Экспресс 10 , 072201. https://doi.org/10.7567/APEX.10.072201 (2017).
ADS Статья Google Scholar
Parra, J., Hurtado, J., Griol, A. & Sanchis, P. Гибридный термооптический фазовращатель ITO / Si со сверхнизкими потерями и оптимизированным энергопотреблением. Опт. Экспресс 28 , 9393. https://doi.org/10.1364/OE.386959 (2020).
ADS Статья PubMed Google Scholar
Сан, П. и Реано, Р.Термооптические переключатели M. Submilliwatt, использующие отдельно стоящие ленточные волноводы из кремния на изоляторе. Опт. Экспресс 18 , 1315–1320. https://doi.org/10.1364/oe.18.008406 (2010).
Артикул Google Scholar
Кокорулло Г. и Рендина И. Термооптическая модуляция на 1,5 мкм в кремниевом эталоне. Электрон. Lett. 28 , 83–85. https://doi.org/10.1049/el:19920051 (1992).
ADS Статья Google Scholar
Трехфазное электрическое питание | Передача электроэнергии
Трехфазная электроэнергия — распространенный метод передачи электроэнергии.Это тип многофазной системы, которая в основном используется для питания двигателей и многих других устройств. Трехфазная система использует меньше проводящего материала для передачи электроэнергии, чем эквивалентные однофазные, двухфазные системы или системы постоянного тока при том же напряжении.
В трехфазной системе три проводника цепи несут три переменных тока (одинаковой частоты), которые достигают своих мгновенных пиковых значений в разное время. Если взять за основу один проводник, то два других тока задерживаются во времени на одну треть и две трети одного цикла электрического тока.Эта задержка между «фазами» обеспечивает постоянную передачу мощности в течение каждого цикла тока, а также позволяет создавать вращающееся магнитное поле в электродвигателе.
Трехфазные системы могут иметь или не иметь нейтральный провод. Нейтральный провод позволяет трехфазной системе использовать более высокое напряжение, поддерживая при этом однофазные приборы с более низким напряжением. В ситуациях распределения высокого напряжения обычно не бывает нейтрального провода, поскольку нагрузки можно просто подключить между фазами (соединение фаза-фаза).
Трехфазный имеет свойства, которые делают его очень востребованным в электроэнергетических системах. Во-первых, фазные токи имеют тенденцию нейтрализовать друг друга, суммируясь до нуля в случае линейной сбалансированной нагрузки. Это позволяет исключить нейтральный провод на некоторых линиях; все фазные проводники проходят одинаковый ток и поэтому могут иметь одинаковый размер для сбалансированной нагрузки. Во-вторых, передача мощности на линейную сбалансированную нагрузку является постоянной, что помогает снизить вибрации генератора и двигателя.Наконец, трехфазные системы могут создавать магнитное поле, вращающееся в заданном направлении, что упрощает конструкцию электродвигателей. Три — это самый низкий фазовый порядок, демонстрирующий все эти свойства.
Большинство бытовых нагрузок однофазные. Обычно трехфазное питание либо вообще не поступает в жилые дома, либо там, где оно поступает, оно распределяется на главном распределительном щите.
На электростанции электрический генератор преобразует механическую энергию в набор переменных электрических токов, по одному от каждой электромагнитной катушки или обмотки генератора.Токи являются синусоидальными функциями времени, все с одной и той же частотой, но смещены во времени, чтобы получить разные фазы. В трехфазной системе фазы расположены равномерно, что дает разделение фаз на одну треть цикла. Частота сети обычно составляет 50 Гц в Азии, Европе, Южной Америке и Австралии и 60 Гц в США и Канаде (но более подробную информацию см. В разделе «Системы электроснабжения»).
Генераторы выдают напряжение в диапазоне от сотен вольт до 30 000 вольт. На электростанции трансформаторы «повышают» это напряжение до другого, пригодного для передачи.
После многочисленных дополнительных преобразований в сети передачи и распределения мощность окончательно преобразуется в стандартное сетевое напряжение (, т.е. «домашнее» напряжение). Электропитание может быть уже разделено на одну фазу на этом этапе или все еще может быть трехфазным. При трехфазном понижении выход этого трансформатора обычно соединяется звездой со стандартным напряжением сети (120 В в Северной Америке и 230 В в Европе и Австралии), являющимся фазным напряжением.Другая система, обычно встречающаяся в Северной Америке, — это соединение вторичной обмотки треугольником с центральным ответвлением на одной из обмоток, питающих землю и нейтраль. Это позволяет использовать трехфазное напряжение 240 В, а также три различных однофазных напряжения (120 В между двумя фазами и нейтралью, 208 В между третьей фазой (известной как верхняя ветвь) и нейтралью и 240 В между любыми двумя фазами). быть доступным из того же источника.
Большой кондиционер и т. Д.оборудование использует трехфазные двигатели из соображений эффективности, экономии и долговечности.
Нагревательные нагрузки сопротивления, такие как электрические котлы или отопление помещений, могут быть подключены к трехфазным системам. Аналогичным образом может быть подключено электрическое освещение. Эти типы нагрузок не требуют вращающегося магнитного поля, характерного для трехфазных двигателей, но используют более высокий уровень напряжения и мощности, обычно связанный с трехфазным распределением. Системы люминесцентного освещения также выигрывают от уменьшения мерцания, если соседние светильники получают питание от разных фаз.
Большие выпрямительные системы могут иметь трехфазные входы; Результирующий постоянный ток легче фильтровать (сглаживать), чем выходной сигнал однофазного выпрямителя. Такие выпрямители могут использоваться для зарядки аккумуляторов, процессов электролиза, таких как производство алюминия, или для работы двигателей постоянного тока.
Интересным примером трехфазной нагрузки является электродуговая печь, используемая в сталеплавильном производстве и при переработке руд.
В большинстве стран Европы печи рассчитаны на трехфазное питание.Обычно отдельные нагревательные элементы подключаются между фазой и нейтралью, чтобы обеспечить подключение к однофазной сети. Во многих регионах Европы единственным доступным источником является однофазное питание.
Иногда преимущества трехфазных двигателей делают целесообразным преобразование однофазной мощности в трехфазную. Мелкие клиенты, например, жилые или фермерские хозяйства, могут не иметь доступа к трехфазному питанию или могут не захотеть оплачивать дополнительную стоимость трехфазного обслуживания, но все же могут пожелать использовать трехфазное оборудование.Такие преобразователи также могут позволять изменять частоту, позволяя регулировать скорость. Некоторые локомотивы переходят на многофазные двигатели, приводимые в действие такими системами, даже несмотря на то, что поступающее питание на локомотив почти всегда либо постоянное, либо однофазное переменное.
Поскольку однофазная мощность стремится к нулю в каждый момент, когда напряжение пересекает ноль, но трехфазная подает мощность непрерывно, любой такой преобразователь должен иметь способ накапливать энергию в течение необходимой доли секунды.
Один из методов использования трехфазного оборудования в однофазной сети — это вращающийся фазовый преобразователь, по сути, трехфазный двигатель со специальными пусковыми устройствами и коррекцией коэффициента мощности, которые создают сбалансированные трехфазные напряжения.При правильной конструкции эти вращающиеся преобразователи могут обеспечить удовлетворительную работу трехфазного оборудования, такого как станки, от однофазного источника питания. В таком устройстве накопление энергии осуществляется за счет механической инерции (эффект маховика) вращающихся компонентов. Внешний маховик иногда находится на одном или обоих концах вала.
Второй метод, который был популярен в 1940-х и 50-х годах, был методом, который назывался «методом трансформатора». В то время конденсаторы были дороже трансформаторов.Таким образом, автотрансформатор использовался для подачи большей мощности через меньшее количество конденсаторов. Этот метод работает хорошо и имеет сторонников даже сегодня. Использование метода преобразования имени отделяет его от другого распространенного метода, статического преобразователя, поскольку оба метода не имеют движущихся частей, что отделяет их от вращающихся преобразователей.
Другой часто применяемый метод — использование устройства, называемого статическим преобразователем фазы. Этот метод работы трехфазного оборудования обычно используется с нагрузками двигателя, хотя он обеспечивает только 2/3 мощности и может вызвать перегрев нагрузок двигателя, а в некоторых случаях и перегрев.Этот метод не будет работать, когда задействованы чувствительные схемы, такие как устройства ЧПУ, или в нагрузках индукционного или выпрямительного типа.
Производятся некоторые устройства, имитирующие трехфазное питание от однофазного трехпроводного источника питания. Это достигается за счет создания третьей «субфазы» между двумя токоведущими проводниками, в результате чего разделение фаз составляет 180 ° — 90 ° = 90 °. Многие трехфазные устройства будут работать в этой конфигурации, но с меньшей эффективностью.
Преобразователи частоты (также известные как твердотельные инверторы) используются для точного управления скоростью и крутящим моментом трехфазных двигателей.Некоторые модели могут питаться от однофазной сети. Преобразователи частоты работают путем преобразования напряжения питания в постоянный ток, а затем преобразования постоянного тока в подходящий трехфазный источник для двигателя.
Цифровые фазовые преобразователи — это последняя разработка в технологии фазовых преобразователей, которая использует программное обеспечение в мощном микропроцессоре для управления твердотельными компонентами переключения питания. Этот микропроцессор, называемый процессором цифровых сигналов (DSP), контролирует процесс преобразования фазы, непрерывно регулируя модули ввода и вывода преобразователя для поддержания сбалансированной трехфазной мощности при любых условиях нагрузки.
- Трехпроводное однофазное распределение полезно, когда трехфазное питание недоступно, и позволяет удвоить нормальное рабочее напряжение для мощных нагрузок.
- Двухфазное питание, как и трехфазное, обеспечивает постоянную передачу мощности линейной нагрузке. Для нагрузок, которые соединяют каждую фазу с нейтралью, при условии, что нагрузка имеет одинаковую потребляемую мощность, двухпроводная система имеет ток нейтрали, который превышает ток нейтрали в трехфазной системе.Кроме того, двигатели не являются полностью линейными, что означает, что вопреки теории двигатели, работающие на трех фазах, имеют тенденцию работать более плавно, чем на двухфазных. Генераторы на Ниагарском водопаде, установленные в 1895 году, были крупнейшими генераторами в мире в то время и были двухфазными машинами. Истинное двухфазное распределение энергии по существу устарело. В системах специального назначения для управления может использоваться двухфазная система. Двухфазное питание может быть получено от трехфазной системы с использованием трансформаторов, называемых трансформатором Скотта-Т.
- Моноциклическая мощность — это название асимметричной модифицированной двухфазной системы питания, используемой General Electric около 1897 года (отстаивавшей Чарльз Протеус Стейнмец и Элиху Томсон; это использование, как сообщается, было предпринято, чтобы избежать нарушения патентных прав). В этой системе генератор был намотан с однофазной обмоткой полного напряжения, предназначенной для освещения нагрузок, и с небольшой (обычно линейного напряжения) обмоткой, которая вырабатывала напряжение в квадратуре с основными обмотками. Намерение состояло в том, чтобы использовать эту дополнительную обмотку «силового провода» для обеспечения пускового момента для асинхронных двигателей, при этом основная обмотка обеспечивает питание осветительных нагрузок.После истечения срока действия патентов Westinghouse на симметричные двухфазные и трехфазные системы распределения электроэнергии моноциклическая система вышла из употребления; его было трудно анализировать, и его хватило на недостаточное время для разработки удовлетворительного учета энергии.
- Созданы и испытаны системы высокого порядка фаз для передачи энергии. Такие линии передачи используют 6 или 12 фаз и конструктивные решения, характерные для линий передачи сверхвысокого напряжения. Линии передачи высокого фазового порядка могут позволить передачу большей мощности через данную линию передачи на полосе отчуждения без затрат на преобразователь HVDC на каждом конце линии.
Многофазная система — это средство распределения электроэнергии переменного тока. Многофазные системы имеют три или более электрических проводника, находящихся под напряжением, по которым проходят переменные токи с определенным временным сдвигом между волнами напряжения в каждом проводнике. Полифазные системы особенно полезны для передачи энергии электродвигателям. Самый распространенный пример — трехфазная система питания, используемая в большинстве промышленных приложений.
Один цикл напряжения трехфазной системы
На заре коммерческой электроэнергетики на некоторых установках для двигателей использовались двухфазные четырехпроводные системы.Основным преимуществом этого было то, что конфигурация обмотки была такой же, как у однофазного двигателя с конденсаторным пуском, а при использовании четырехпроводной системы концептуально фазы были независимыми и легко анализировались с помощью математических инструментов, доступных в то время. . Двухфазные системы заменены трехфазными. Двухфазное питание с углом между фазами 90 градусов может быть получено из трехфазной системы с использованием трансформатора, подключенного по Скотту.
Многофазная система должна обеспечивать определенное направление вращения фаз, поэтому напряжения зеркального отображения не учитываются при определении порядка фаз.Трехпроводная система с двумя фазными проводниками, разнесенными на 180 градусов, по-прежнему остается только однофазной. Такие системы иногда называют разделенной фазой.
Полифазное питание особенно полезно в двигателях переменного тока, таких как асинхронный двигатель, где оно генерирует вращающееся магнитное поле. Когда трехфазный источник питания завершает один полный цикл, магнитное поле двухполюсного двигателя вращается на 360 ° в физическом пространстве; Двигатели с большим количеством пар полюсов требуют большего количества циклов питания, чтобы совершить один физический оборот магнитного поля, поэтому эти двигатели работают медленнее.Никола Тесла и Михаил Доливо-Добровольский изобрели первые практические асинхронные двигатели, использующие вращающееся магнитное поле — ранее все коммерческие двигатели были постоянного тока, с дорогими коммутаторами, щетками, требующими большого технического обслуживания, и характеристиками, непригодными для работы в сети переменного тока. Многофазные двигатели просты в сборке, они самозапускаются и мало вибрируют.
Были использованы более высокие номера фаз, чем три. Обычной практикой для выпрямительных установок и преобразователей HVDC является обеспечение шести фаз с шагом между фазами 60 градусов, чтобы уменьшить генерацию гармоник в системе питания переменного тока и обеспечить более плавный постоянный ток.Построены экспериментальные линии передачи высокого фазового порядка, содержащие до 12 фаз. Они позволяют применять правила проектирования сверхвысокого напряжения (СВН) при более низких напряжениях и позволяют увеличить передачу мощности в коридоре той же ширины линии электропередачи.
Жилые дома и малые предприятия обычно снабжаются одной фазой, взятой из одной из трех фаз коммунального обслуживания. Индивидуальные клиенты распределяются по трем фазам, чтобы сбалансировать нагрузки. Однофазные нагрузки, такие как освещение, могут быть подключены от фазы под напряжением к нейтрали цепи, что позволяет сбалансировать нагрузку в большом здании по трем фазам питания.Сдвиг фаз линейных напряжений составляет 120 градусов; Напряжение между любыми двумя живыми проводами всегда в 3 раза больше между живым и нулевым проводом. См. Статью Системы электроснабжения для получения списка однофазных распределительных напряжений по всему миру; трехфазное линейное напряжение будет в 3 раза больше этих значений.
В Северной Америке в многоквартирных домах может быть распределено напряжение 120 В (между фазой и нейтралью) и 208 В (между фазой). Основные однофазные приборы, такие как духовки или варочные панели, предназначенные для системы с разделением фаз на 240 вольт, обычно используемой в односемейных домах, могут не работать должным образом при подключении к 208 вольт; нагревательные приборы будут развивать только 3/4 своей номинальной мощности, а электродвигатели не будут правильно работать при подаче напряжения на 13% ниже.
.