Как определить фазу в розетке: Как найти фазу: простые и действенные способы

Содержание

Как определить фазу и ноль в розетке

Как известно, электричество, которое поставляется к нам в дом, является трёхфазным. Напряжение между любыми двумя выходами составляет 380 В. В то же время, мы знаем, что используемое в бытовых приборах напряжение, равно 220 В. Как одно преобразуется в другое?

Важную роль здесь играет нулевой провод. Если замерять напряжение между одной из фаз и этим проводом, то оно как раз и будет равно 220 В. В более современных розетках, предусмотрен дополнительно ещё один нулевой выход — это так называемый защитный ноль.

Возникает естественный вопрос о том, какова разница между двумя упомянутыми нулями? Первый из них, «рабочий ноль» (его мы стараемся определить) — это нейтральный контакт на трёхфазной установке генераторной подстанции, подключённый к нейтральному контакту трёхфазной установке в доме или отдельном подъезде.

Он может быть при этом, вообще не заземлён. Основное назначение состоит в создании замкнутой электрической цепи при питании бытовых приборов. Во втором случае, речь идёт именно о заземлении. Его обычно называют «защитное заземление».

В связи с достаточно сложной природой переменного тока, есть некоторые типичные взгляды на нулевой провод и на заземление, которые могут не соответствовать реальному положению вещей:

  1. «На нулевом вообще нет напряжения.» Это не так. Он подключён к нулевому разъёму на подстанции и предназначен для создания разности потенциалов на выходе. Иногда он находится под напряжением.
  2. «Если есть заземление, то короткого замыкания точно не будет.» В большинстве случаев, это так. Но при слишком быстром нарастании тока, он может не успеть вовремя уйти через заземление.
  3. «Если в кабеле две жилы одинаковые, а третья отличается, то это наверняка земля.» Так должно быть, но иногда это не так.

Способы определения

Цифровой мультиметр

Определение нуля и фазы путём использования мультиметра. Этот прибор очень полезен для работ с электричеством. Он включает в себя различные возможности. Он может быть и амперметром и вольтметром или омметром.

Также, могут быть, в зависимости от конкретного типа, и другие возможности (например, измерение частоты). Эти приборы могут быть как аналоговыми, так и цифровыми.

Использование индикаторной отвёртки. В этой отвёртке имеется прозрачная ручка. Если вставить её в розетку определённым образом, то при попадании на фазу загорится лампочка.

Есть несколько конструкций таких отвёрток. В самом простом случае, при тестировании нужно прикоснуться к концу ручки. Без этого огонёк не загорится.

При визуальном тестировании, назначение проводов можно определить по их расцветке.

Использование специального фазового тестера. Это небольшой цифровой прибор, который помещается в ладони. Один из проводов нужно держать в руке, другим проверяют фазу.

Пошаговые инструкции

Расскажем более подробно о том, как производить такие работы.

При использовании мультиметра, нужно правильно установить его рабочий диапазон. Он должен составлять 220 В для переменного напряжения.

С его помощью можно решить две задачи:

  1. Определить, где фаза, а где «рабочий ноль» или заземление.
  2. Определить, где, собственно, заземление, а где нулевой выход.

Расскажем сначала о том, как выполнить первую задачу. Перед началом, нужно правильно выставить рабочий диапазон прибора. Сделаем его больше, чем 220 В.  Два щупа подключены к гнёздам «COM» и «V».

Берём второй из них и прикасаемся к тестируемому отверстию розетки. Если там фаза, то на мультиметре высветится небольшое напряжение. Если фазы там нет, то будет показано нулевое напряжение.

Во втором случае, рабочее напряжение должно составлять 220В. Один провод вставляем туда, где есть фаза. Другим тестируем остальные. При попадании на заземление, будет показано ровно 220 В, в другом случае, напряжение будет немного меньше.

Использование фазового тестера

Один провод держим аккуратно пальцами, другой используем для тестирования. Если в розетке попадаем на фазу, то цифры на индикаторе будут гораздо больше нуля. При попадании на ноль, на экране также будет показан ноль или незначительная величина напряжения.

Это устройство удобно как общедоступностью на рынке радиоизмерительного оборудования, так и тем, что измерения производятся с достаточно высокой точностью.

Использование индикаторной отвёртки

Она представляет собой на вид обычную отвёртку, но с небольшим отличием. У неё прозрачная ручка с маленькой лампочкой внутри. Это, на первый взгляд, достаточно примитивное устройство, на самом деле очень удобно.

Его достаточно просто вставить в отверстие розетки, прикоснувшись при этом пальцем к противоположному концу отвёртки. Если есть фаза, то лампочка загорится. Если там нулевой провод или заземление, то она гореть не будет. Важно помнить, что категорически запрещено в процессе измерения прикасаться к металлической части отвёртки. Это может привести к удару током.

В некоторых случаях, фазу и нулевой провод можно определить без каких-либо приборов или приспособлений. Это можно сделать, если правильно прочесть маркировку. Это ненадёжный способ, но в некоторых случаях он может оказаться полезным.

При работе в современных домах, правила такой маркировки обычно соблюдаются.

Итак, в чём же они состоят:

  1. Тот провод, где находится фаза, обычно имеет коричневый или чёрный цвет.
  2. Нулевой, принято обозначать проводом, имеющим голубой цвет.
  3. Зелёным или жёлтым цветом обозначается провод, который служит для заземления.

Эти правила могли быть другими в предыдущие периоды времени. Также, в последующем они могут измениться. Поэтому, описанный способ годится только для предварительного тестирования назначения проводов.

Как различить заземление и нулевой провод при отключённой фазе?

Предположим, что ток в сети отсутствует. Есть ли какое-нибудь различие в этом случае между заземлением и нулевым проводом?  На первый взгляд может показаться что они очень похожи друг на друга.

На самом деле, их функции всё же различаются. Заземление предназначено для аварийных ситуаций. Через него электрический заряд уходит в землю. Нулевой провод — это часть электрической цепи для питания бытовых электроприборов в доме.

Здесь, ток, в отличие от заземления, присутствует. Как же можно различить их? При отключённой фазе нужно просто измерить ток между этим проводом и точно известным заземлением. Если это нулевой провод, то ток, хотя и небольшой, в этом случае будет. Если же тут заземление, то никакого тока здесь быть не может.

В каких случаях может понадобиться?

При огромном разнообразии существующих электрических приборов, существует разница в том, какое электрическое питание им нужно. В различных случаях, такие вопросы решаются по-разному.

Иногда, для этого используются специальные устройства – переходники. В некоторых случаях, является необходимым просто правильно сделанное подключение к розетке. В частности, при подключении электрической кухонной плиты, есть необходимость при подключении правильно определить, где в розетке фаза, а где «рабочий ноль».

В этом, и в аналогичных случаях, без такой информации обойтись невозможно.

Другая ситуация, где это необходимо — это разного рода ремонтные работы. При их проведении, нужно знать точно, какой провод под напряжением (он должен или быть отключён или надёжно заизолирован), а какой — нет.

При подключении многих бытовых приборов, действительно не важно с какой стороны будет фаза, а вот для выключателя люстры это может иметь значение. Поясним это.«Фаза» должна подаваться на выключатель, а «ноль» пусть будет подключён напрямую к лампам в люстре.

При этом, в процессе замены лампы в люстре, при выключенном выключателе, человека не ударит током даже в том случае, когда он случайно прикоснётся к патрону люстры.

Статья была полезна?

0,00 (оценок: 0)

Как найти фазу и ноль

Выполняя работы по дому, часто возникает необходимость отремонтировать розетку или выключатель, перевесить люстру или установить новую розетку. Для подключения дополнительного электрооборудования необходимо уметь отличить фазу от нуля. Это довольно просто, если дом построен недавно, а электропроводку делали квалифицированные специалисты.

Простой способ определения

Для того чтобы самому найти назначение каждого проводника достаточно знать правила цветового обозначения электропроводов. Современные коттеджи должны иметь контур заземления. А это значит, что разводка выполнена трехпроводным кабелем, а цвета должны соответствовать:

  • Желто-зеленая оплетка обозначает подключение жилы к контуру заземления;
  • Синий или голубой цвет говорит, что это нулевая жила;
  • Фазный провод обозначают любым другим цветом. Он может быть красным, белым, коричневым, фиолетовым и т. п.

Таким образом, в идеале должна маркироваться вся электропроводка. Однако нет гарантии, что ее монтаж производил действительно специалист или на вводе не переключались электропровода.

ВАЖНО! Никогда не доверяйте цветовому обозначению кабеля, если не вы производили монтаж электропроводки.

Инструменты и материалы для выполнения работы

Прежде чем приступить к работе, необходимо приготовить инструменты и материалы, которые могут потребоваться во время ремонта:

  • индикаторная отвертка для определения фазы и нуля;
  • тестер или мультиметр, но ими нужно знать, как определить фазу ноль или землю;
  • плоскогубцы и кусачки — бокарезы;
  • маркировочный материал. Это могут быть цветной термоусадочный кембрик или маркировочные клипсы.

Всегда перед началом работы необходимо определить ноль и фазу.

Как с помощью индикаторной отвертки определить фазную жилу кабеля

Для того чтобы узнать, где ноль, а где фаза пользуются как индикаторной отверткой, так и мультиметром. Если ремонт производит не специалист, у которого нет соответствующих приборов, то для определения, где фазовый провод достаточно иметь индикатор.

Его можно купить в магазине за символическую плату. Методика определения очень проста, достаточно вставить жало индикаторной отвертки в розетку, а пальцем руки дотронуться до контакта на ее ручке. Если загорелся индикатор, то это и есть фазная жила.

Если проводка в доме двухжильная, то второй проводник будет нулевым. Сейчас уже не выполняют электропроводку в квартирах и домах двухжильным кабелем.

Если проводка старая, бывают случаи, когда индикатор определяет фазу в розетке на обоих контактах. Аналогичная ситуация может быть и при монтаже новой электропроводки.

В этом случае определение фазы будет затруднено, такая ситуация возникает, если нулевой проводник в щитке не подключен. Достаточно подсоединить его в щитке или распределительной коробке.

Все работы, связанные с монтажом, переключением или подключением проводов, следует производить при отключенных автоматах, т. е. проводка должна быть обесточена. Подробнее про индикаторы напряжения можно узнать тут.

Работа с мультиметром

Специалист, выполняющий работы должен иметь понятие, как проверить мультиметром напряжение в сети. Для этого достаточно вставить щупы в розетку, предел измерений устанавливают на напряжение больше измеряемого.

А измерения производиться на переменном напряжении. Показания должны соответствовать напряжению сети 220 вольт. Электрик, производящий монтаж электропроводки, обязан уметь пользоваться измерительными приборами.

Он должен иметь понятие, как с помощью мультиметра определить фазу или ноль. Специалист, который умеет работать с тестером, знает не только как можно определить фазу или ноль. Но и сможет проверить целостность электропроводки.

При монтаже осветительных приборов возникает необходимость в проверке исправности лампочек. Важно не только иметь знания, как проверить лампочку мультимтером, но и учитывать, что энергосберегающие и светодиодные лампы таким прибором проверить невозможно.

Определение напряжения без индикатора и мультиметра

Если у электрика нет под рукой мультиметра или измерительной отвертки, он должен понимать, как определить фазу с помощью контрольной лампы.

ВАЖНО! Пользоваться контрольной лампой могут только профессиональные электрики, знакомые с техникой безопасности и имеющие специальный допуск работы в электроустановках.

Что необходимо знать перед началом ремонта

Прежде чем приступать к ремонту электропроводки необходимо иметь ввиду:

  • некоторые специалисты утверждают, что на нулевом проводе отсутствует напряжение. Эти утверждения ошибочные;
  • в розетке не обязательно знать, где фазный контакт, а где нулевой, что в корне неправильно. Существует оборудование, которое при подключении требует строгого соблюдения полярности;
  • в целях соблюдения техники безопасности, следует понимать, как правильно подключить выключатель света, что подключается к светильнику — ноль или фаза.

Трехпроводная электропроводка

Если электропроводка выполнена трехпроводным кабелем, то у электрика не должно возникнуть затруднений, как определить заземление. Согласно нормам желто-зеленый провод всегда подсоединяют к контуру заземления.

Иногда проводку выполняют отдельными проводами без учета цветового обозначения. Используют провода, какие есть под рукой. В этом случае необходимо воспользоваться тестером или мультиметром.

Прежде всего, определяют, на какой провод подводится фаза. Для этого проще всего воспользоваться индикаторной отверткой. Применяя следующий алгоритм проверки можно узнать назначение двух других проводов.

Измеряя напряжение на жилах кабеля, можно понять, где земля. Между фазной и нулевой жилами  напряжение всегда будет выше, чем между фазной и землей.

Данная методика применима только в коттеджах или индивидуальных домах. Где имеется отдельный контур заземления. В многоквартирных домах применяют схему с глухо заземленной нейтралью. В этом случае показания прибора будут одинаковыми.

Существует еще один способ как определить провод заземления. Он справедлив только при условии, если подводящие в дом провода промаркированы.

Для того чтобы знать как определить где фаза, а где ноль достаточно прозвонить прибором все провода и таким образом довольно легко определяется назначение электропроводов.

Если у вас нет опыта или не знаете как с помощью индикаторной отвертки или с помощью мультиметра определить ноль или фазу в проводах. Следует обратиться за помощью к профессиональному электрику.

Перед началом самостоятельного ремонта электропроводки необходимо изучить технику безопасности при работе с электроустановками. Не стоит слушать советы как проверить фазу или ноль без приборов, даже если проверенный способ кажется достоверным.

Всегда нужно помнить, что электричество не определяется нашими органами чувств. У него нет звука, запаха или цвета. Поэтому люди, не имеющие опыта работы с электричеством, чаще всего получают травмы от электричества. Если вы не знаете, как определить фазу ноль и землю, как проверить напряжение в розетке, лучше доверить эти работы профессионалам.

Как определить фазу и ноль мультиметром, индикаторной отверткой и без приборов

Проведение ремонтных работ в любом помещении, важным моментом является оснащение этого помещения электричеством. Помимо электропроводки, не стоит забывать о необходимости установки розеток и выключателей, при помощи которых будет происходить регулирование освещения. Тут достаточно важным моментом будет найти фазу, ноль и заземляющего проводника системы.

Для профессиональных монтажников данная задача является очень простой, чего не скажешь о простых обывателях, которые далеко не всегда могут справиться с подобной задачей. Тем не менее, поиск фазы и нуля является процессом не настолько сложным, как может показаться изначально, при этом включает в себя несколько способов определения.

Следует понимать, что проводка в квартире обычно имеет напряжение в 220В, поскольку она предусматривает подключение к нулевому проводнику и к одной из фаз. При этом обязательным является заземление, что делает электрификацию помещения безопасной для обитателей.

Что такое фаза и ноль в электричестве для новичка

Чтобы уловить принцип нахождения фазы и нуля в сети, следует для начала определить для себя, что означают данные термины, которые для простого обывателя могут звучать как совершенно непонятные понятия. Любая система, независимо от ее протяженности, состоит из трех фаз, причем касается также и низковольтных линей, задачей которых является питание жилых домов.

Между двумя любыми фазами возникает линейное напряжение, составляющее 380В. Однако напряжение бытовой сети составляет 220В, главной задачей является появление требуемого для сети напряжения. Для этой цели в любой сети присутствует нулевой провод, которой в сочетании с любой фазой образует разность потенциалов в 200В, которая и будет представлять собой фазное напряжение.

Нулем в электрической цепи называется проводник, который соединяется с контуром земли и используется для создания нагрузки от фазы. Фаза эта подключена к противоположному концу обмотки на ТП. Таким образом, в стандартной розетке, для наглядности, один вход принимается за фазу, а второй за ноль.

Если говорить более простым языком, то фаза представляет собой провод, по которому поступает ток. По нулевому проводу ток возвращается обратно к источнику. В зависимости от количества фаз, система имеет несколько проводов. Допустим, в трехфазовой цепи имеются три фазовых провода и один обратный, нулевой.

Цветовое обозначение. Не редко многих интересует вопрос, какого цвета провода фаза ноль земля, как определить, где какой провод, часто предоставляется возможным при помощи используемых в электрике цветовых разграничений. Однако сработает данный метод только в случае, если проводка действительно выполнена по всем правилам. Изоляция нулевого провода обычно обозначается синим или голубым цветом, земля сочетает в себе сразу две окраски – зеленую и желтую. Провод фазы по правилам обозначается в коричневый, белый или черный цвет.

Обозначение фазы и нуля буквы. Помимо цветовых обозначений, возможной является также буквенная маркировка проводов. Фаза обычно обозначается латинской буквой “L” а нулевой провод принято маркировать буквой “N”. Кроме того, свое обозначение имеет и заземление, обозначать которое принято буквой “G”.

Как определить фазу и ноль индикаторной отверткой

Для нахождение фазы и нуля в сети можно использовать различные инструменты. Наиболее удачным изобретением в помощь начинающим электрикам считается индикаторная отвертка, имеющая специальные чувствительные элементы и индикатор-отражатель.

Осуществлять проверку фазу и нуля в сети при помощи отвертки проще простого. Отвертку следует зажать между большим и средним пальцем. Касаться неизолированной части жала отвертки не разрешается. Палец указательный следует поставить на металлический круглый выступ в конце рукоятки.

Далее жало прикладывают к оголенным концам проводов. В том случае, если произошло касание с фазным проводником, в отвертке загорается соответствующий светодиод.

Определить принцип действия индикаторной отвертки нетрудно, внутри нее расположена специальная лампа, а также резистор, представляющий собой сопротивление. Лампа загорается, если замыкается цепь. Благодаря сопротивлению, можно не бояться поражения током во время проверки, поскольку оно снимает его значение до минимального показателя.

Как узнать где фаза а где ноль в розетке индикаторным пробником видео

Найти ноль такой отверткой, соответственно, не получится. Кроме того, подобный способ нередко дает сбой из-за не слишком хорошей чувствительности. В итоге индикаторная отвертка, реагируя на наводки, может выдать напряжение там, где его совершенно нет.

Как определить фазу и ноль мультиметром

Помимо применения индикаторной отвертки, возможным является использование мультиметра, который также позволит узнать где фаза а где ноль в сети. Обязательным условием для его использования является предварительная зачистка проводов.

На приборе перед использованием требуется установить значение предела измерения переменного тока, величина которого должна превышать 220В. Ориентироваться также следует по маркировке гнезд, куда включены щупы прибора. Для данного типа проверки потребуется щуп, включенный в гнездо с маркировкой «V».

Сама проверка заключается в прикосновении щупа к одному из проводов, следя при этом за показаниями прибора. Если мультиметр идентифицирует какое либо напряжение, то данный провод является фазным. Если другой провод покажет нулевое значение, то это, соответственно, нулевой провод.

Прибор для работы может использоваться любого типа – стрелочный или с цифровым индикатором. В любом случае, важным моментом будет соблюдение мер безопасности, а также правильная индикация прибором показаний с проводов. Точность этого прибора обычно выше индикаторной отвертки.

Главным правилом при использовании мультиметра является запрет на одновременное касание фазы и заземляющего контура. Такая халатность может привести к короткому замыканию и, как следствие, к травматическим ожогам.

Как определить фазу и ноль без приборов

Несмотря на столь широкое распространение приборных способов определения фазы и нуля в сети, далеко не всегда под рукой может оказаться нужное устройство, которое позволит сделать верное заключение. При этом неправильное выявление проводов в сети «на глаз» может привести к достаточно опасным последствиям.

Первый метод, позволяющий справиться с данной задачей, был описан в одном из разделов выше. Заключается он в нахождении проводов, в зависимости от цвета их изоляции, а также от маркировки. Однако это окажется верным только в том случае, если проводка была выполнена по всем правилам.

Второй способ определить их – это сделать так называемую контрольную лампочку, применяя при этом подручные средства. Для этого потребуется простая лампа накаливания и два отрезка провода, длиной примерно 50 сантиметров. Жилы проводов следует присоединить к лампочке, при этом вторым концом одного из проводов следует прикоснуться к трубам отопления (зачищенным), а вторым прикоснуться к «прозваниваемым» проводам. Тот провод, при прикосновении к которому загорается лампочка, является фазным.

Определение фазы без индикатора и прибора видео

Стоит обратить внимание, что описанный способ является очень опасным и может привести к поражению током во время его использования. Ни в коем случае не рекомендуется применять его в случае наличия предельного напряжения в сети, а также нельзя касаться оголенных проводов.

Альтернативной лампочки накаливания может стать лампочка неоновая, которая позволит найти полярность системы.

В заключении следует отметить, что ответ на вопрос: как определить фазу и ноль имеет несколько решений. А именно: индикаторной отверткой, мультиметром, а также можно без приборов. Все зависит от возможностей и наличия приборов под рукой. Обязательным является соблюдение всех мер безопасности при работе с электричеством.

с какой стороны и как ее определить?

На сегодняшний день в электроэнергетике существует несколько разновидностей проводов. Электрики различают провода для питания и защиты. При подключении розеток или других приборов, вам нужно знать, где какой провод. В ином случае может возникнуть короткое замыкание.

Где в розетке фаза и ноль

В этой статье мы постарались разобраться, что такой фаза и ноль в розетке на примере обычного устройства. После изучения статьи у вас больше не возникнет вопрос о том, как найти фазу и ноль в розетке.

Фаза и ноль в старой розетке

Если рассмотреть обычную старую розетку, тогда можно сразу заметить, что розетка подключается всего при помощи двух проводов. Если присмотреться, тогда вы наверняка сможете заметить, что один из этих проводов имеет синий цвет. Именно так и определяется рабочий нулевой проводник. По нему будет проходить ток от источника питания к вашему устройству или наоборот. Если вы за него схватитесь, но не дотронетесь до второго провода, то ничего не произойдет. Он считается вполне безобидным.

Как распознать фазу и ноль?

На фото выше мы представили обозначение ноля и фазы на розетке. Фаза в розетке— это второй кабель. Обычно фазный провод выполнен в коричневом цвете. Угловые розетки на кухне также имеют разноцветные провода. Этот провод всегда находится под напряжением, так как по нему всегда поступают заряженные частицы. Если вы дотронетесь до него, тогда, несомненно, получите удар током. Помните, что любое напряжение выше 50 вольт может убить человека. Поэтому определиться, где в розетке фаза и ноль лучше всего заранее.

Индикаторы для определения напряжения

Чтобы определить, где в розетке фазный провод нужно воспользоваться индикатором напряжения. Их внешний вид напоминает отвертку или лопатку. Рукоятка индикаторной отвертки обычно изготавливается из специального прозрачного пластика, внутри которого находится диод.

Проверка фазы и ноля с помощью индикатора

Верхняя часть рукоятки металлическая. Если напряжение пройдет, тогда лампочка индикатора загорится. В этом случае провод лучше не трогать.

Важно знать! Если вы дотронетесь до нулевого проводника, тогда свечение диода не произойдет. Это связано с тем, что пока нулевой провод не соприкасается с фазным в нем нет напряжения.

Для определения фазы в розетке также можно воспользоваться мультиметром. У нас есть статья, как определить фазу мультиметром.

Фаза и ноль в современной розетке

Обычно современные розетки имеют три провода. Кроме фазного и нулевого провода здесь присутствует заземление. Этот проводник чаще всего имеет желто-зеленую окраску. При возникновении короткого замыкания этот заземляющий проводник забирает лишний ток и направляет его в землю. Конечно, он правильно будет выполнять свои функции только в том случае, если в квартире или доме присутствует система заземления.

Фаза ноль и заземление в современной розетке

Даже если вы прикоснетесь к оборудованию, то не ощутите удара электрическим током. Электрическая розетка с заземлением подключается с помощью фазы, ноля и заземляющего провода. Дело в том, что ток не ищет легких путей. Он выберет путь, где будет наименьшее сопротивление. Сопротивление тела человек составляет 1000 Ом, а нулевого проводника всего 0,1 Ом.

Чтобы обеспечить безопасность в своем доме нужно использовать только современные устройства. Теперь вы знаете куда в розетке подключать фазу и ноль. При подключении нужно действовать осторожно, так как если провода подключены неправильно произойдет короткое замыкание.

Прочтите также: vse-elektrichestvo.ru/rozetki/oboznachenie-rozetok-i-vyklyuchatelej.html.

Как определить фазу и ноль индикаторной отверткой и мультиметром

При монтаже розеток, выключателей, бытовых потребителей приходится сталкиваться с определением фазы и нуля в электропроводке. Если для электромонтажников с опытом эта задача не является проблемой, то у тех, кто впервые коснулся этого вопроса, возникает много непонятных моментов. Поэтому следует разобраться, как и чем можно выявить фазу и ноль в розетке, каково назначение жил электропроводки и можно ли обойтись без специального оснащения.

Понятия ноля и фазы

Электрическая энергия в жилой дом поступает от трансформаторной подстанции, основное назначение которой — преобразование высокого напряжения чаще всего в 380 В. К домам электроэнергия подземным или воздушным способом подводится на вводной распределительный щит. Затем напряжение подается к щиткам каждого подъезда. В квартиру от него заходит только одна фаза с нулем, т.е. 220 В и защитный проводник (зависит от конструкции электрической проводки).

Таким образом, проводник, обеспечивающий подачу тока к потребителю, называется фазным. Внутри трансформатора обмотки соединены в звезду с общей точкой (нейтраль), заземленной на подстанции. К нагрузке она подводится отдельным проводом. Ноль, представляющий собой общий проводник, предназначен для обратного протекания тока к источнику электроэнергии. Кроме этого, нулевой провод выравнивает фазное напряжение, т.е. значение между нулем и фазой.

Заземление, которое часто называют просто землей, не подключается к напряжению. Его назначение — защита человека от воздействия электрического тока в момент возникновения неполадок с потребителем, т.е. при пробое на корпус. Это может происходить при повреждении изоляции проводников и касании поврежденного участка корпуса прибора. Но поскольку потребители заземляются, при возникновении опасного напряжения на корпусе заземление притягивает опасный потенциал к безопасному потенциалу земли.

Как определить фазу и ноль индикаторной отверткой

Один из способов выявить, где фаза и ноль в розетке либо в силовом кабеле, — использовать индикаторную отвертку. Инструмент внешне напоминает отвертку, но внутри у него есть специальная начинка со светодиодом. Прежде чем приступить к измерениям, нужно отключить рубильник, через который напряжение подается в помещение. После этого требуется зачистить концы проверяемых проводов, для чего снимают 1,5 см изолирующего материала.

Во избежание короткого замыкания между проводами после включения автомата их следует направить в разные стороны. Когда все подготовительные мероприятия будут выполнены, необходимо включить автомат для подачи напряжения. Чтобы понять, как найти фазу и ноль, необходимо выполнить следующие действия:

  1. Отвертку зажимают между двумя пальцами — средним и большим, избегая касания оголенной части жала инструмента.
  2. Указательным пальцем касаются металлического наконечника с противоположной стороны отвертки.
  3. Плоским концом индикатора поочередно дотрагиваются до зачищенных проводников.
  4. При касании тестером фазы светодиод загорится. Второй провод будет соответствовать нулевому. При отсутствии индикации изначально проводник будет являться нулевым.

Как определить фазу и ноль мультиметром

Прибор, которым измеряют напряжение, ток и сопротивление, называется мультиметром. Чтобы выявить фазный и нулевой провод с его помощью, сперва нужно настроить устройство, для чего выбирают необходимый предел измерений. В случае с цифровыми приборами устанавливают 600, 750 или 1000 «~V» или «ACV».

Определение фазы производится следующим образом: один из щупов прибора подключают к контакту розетки или кабеля, а до второго щупа дотрагиваются рукой. При отображении на дисплее значения около 200 В это будет указывать на наличие фазы. Показания могут отличаться, что зависит от отделки пола, обуви и т.п. Если прибор отображает нули либо напряжение в пределах 5-20 В, значит, контакт соответствует нолю.

Как определить фазу и ноль без приборов

Иногда бывают ситуации, когда отвертки для определения фазы либо мультиметра под рукой нет, но нужно выяснить, какой провод чему соответствует. Поэтому следует ориентироваться по цветовой маркировке проводов силового кабеля. В отношении маркировки проводов существует стандарт IEC 60446-2004, которого должны придерживаться производители кабелей, а также электромонтажники, выполняющие подключение той или иной электроарматуры.

Чтобы определить по цвету провода, какому проводнику он соответствует, нужно придерживаться следующей маркировки:

  • синий или голубой — ноль;
  • коричневый — фаза;
  • заземление — зелено-желтый.

Однако фазный провод бывает не только коричневым. Часто встречаются и другие расцветки, например белая или черная, но она будет отличной от земли и нуля. Визуально определить провода можно в распределительной коробке, люстре и других точках запитки.

Есть еще один вариант, как определить, где фаза и ноль при отсутствии приборов. Для этого потребуется лампа накаливания с патроном и двумя небольшими отрезками проводов. После подсоединения проводников к патрону можно начинать работу. Краем одного провода касаются трубы отопительной системы, другим — проверяемых проводников. Если в момент контакта лампа зажигается, то это указывает на наличие фазы. Труба для проведения подобного мероприятия должна быть металлической, поскольку пластиковая не проводит ток.

Нужно учитывать, что этот способ хоть и позволяет выявить фазу и ноль, но является опасным, поскольку велика вероятность получить удар электрическим током. Поэтому более безопасно для рассматриваемых целей использовать неоновые лампочки.

Как тестером определить фазу ноль и землю

При монтаже розеток и выключателей освещения, подключении бытовых электроприборов возникает необходимость в определении назначения жил проводки. Как определить фазу и «ноль», а также заземляющий проводник? Эта несложная для профессиональных электромонтеров задача порой ставит в тупик тех, кто мало знаком с правилами устройства электрических сетей. Попробуем разобраться в этом вопросе.

Устройство бытовых электрических сетей

Бытовые электрические сети на входе в распределительный щиток имеют линейное напряжение 380В трехфазного переменного тока. Проводка в квартирах, за редким исключением, имеет напряжение 220В, так как она подключена к одной из фаз и нулевому проводнику. Кроме того, правильно смонтированная бытовая проводка должна быть обязательно заземлена. В домах старой застройки заземляющего проводника может не быть. Таким образом, при монтаже проводки и электроприборов необходимо знать назначение каждого из двух или трех проводов.

Также следует знать правила подключения различных приборов. При монтаже обычной розетки подключение фазного и нулевого проводника производится к клеммам в произвольном порядке, а заземляющий провод, при его наличии, подключают к медной или латунной шине. Выключатель подключают в фазный провод, чтобы при его отключении в патроне осветительного прибора не было напряжения – это обеспечит безопасность при смене ламп. Сложные бытовые приборы в металлическом корпусе необходимо подключать в обязательном соответствии с маркировкой проводов, в противном случае безопасность их использования не гарантирована.

Приборы и инструменты

Прежде чем приступить к электромонтажным работам и определить фазу и ноль в проводке, необходимо подготовить необходимые приборы и инструмент:

  • Мультиметр стрелочный или цифровой;
  • Индикаторную отвертку или тестер;
  • Маркер;
  • Пассатижи;
  • Нож для зачистки изоляции.

Также вам необходимо выяснить, где расположена защитная аппаратура: автоматические выключатели или пробки, УЗО. Обычно их устанавливают в распределительном щитке на площадке или у входа в квартиру. Все операции по подключению электроаппаратуры и зачистку проводов необходимо проводить при отключенных автоматах!

Правила работы с тестером и мультиметром

Проверку фазы с помощью индикаторной отвертки проводят так: отвертку зажимают между большим и средним пальцем руки, не касаясь неизолированной части жала. Указательный палец ставят на металлическийпятачок с торца рукоятки. Жалом задевают оголенные концы проводов, при касании к фазному проводнику загорается светодиод.

Мультиметром измеряют напряжение между проводниками. Для этого прибор устанавливают на предел измерения переменного тока со значком «

V» или «ACV» и значением больше 250 В (обычно у цифровых приборов выбирают предел 600, 750 или 1000 В). Щупами одновременно прикасаются к двум проводникам и определяют напряжение между ними. В бытовых электросетях оно должно быть 220В±10%.

Иногда для определения заземляющего проводника необходимо бывает измерить сопротивление. Для этого на мультиметре выставляют предел измерения «Ω» или со значком звонка.

Внимание! В режиме измерения сопротивления прикосновение к фазному проводу и заземляющему контуру вызовет короткое замыкание! При этом возможны электротравмы и ожоги!

Визуальный метод определения

Если проводка выполнена по всем правилам, определить фазу, ноль и заземляющий проводник можно по цвету изоляции. Заземление имеет двухцветную желто-зеленую окраску, изоляция нулевого провода бывает синей или голубой, а фазный провод может быть белым, черным или коричневым. Убедиться в правильности подключения можно с помощью визуального осмотра, при этом необходимо проверить соответствие цвета изоляции не только в щитке, но и в распределительных коробках.

Последовательность визуального осмотра

  1. Откройте щиток и осмотрите автоматические выключатели. В зависимости от расчетной нагрузки их количество может быть разным. Через автоматы могут быть подключены только фазный или фазный и нулевой провод. Заземляющий проводник подключают всегда сразу к шине. Проверьте соответствие цветовой маркировки всех проводов.
  2. Если в щитке цвет изоляции кабеля, уходящего в квартиру, соответствует правилам, вскройте все распределительные коробки и осмотрите скрутки. В них цвета изоляции нуля и заземляющего провода также не должны быть перепутаны.
  3. К фазе в распределительных коробках бывают подключены выключатели. Часто монтаж выполняют двужильным проводом, имеющим другие цвета изоляции, например, белый и бело-голубой. Это не должно вас смутить.
  4. Если монтаж выполнен с полным соответствием цвета изоляции, достаточно проверить фазный провод с помощью индикаторной отвертки.

Определение фазы и нуля в двухпроводной сети

Если ваша проводка выполнена без заземляющего проводника, вам необходимо найти только фазный провод. Сделать это проще всего с помощью индикаторной отвертки.

  1. Отключите автоматический выключатель и зачистите изоляцию проводов на расстоянии 1-1,5 см с помощью ножа. Разведите их на расстояние, исключающее случайное касание проводов.
  2. Включите автоматический выключатель. Индикаторной отверткой поочередно касайтесь зачищенных концов проводов. Светящийся диод укажет на фазный провод.
  3. Отметьте его маркером или цветной изолентой, отключите автоматический выключатель и выполните необходимые подключения.
  4. При подключении осветительных приборов необходимо также убедиться, что выключатель подключен к фазному проводу, в противном случае при смене лампочек недостаточно будет отключить выключатель, придется каждый раз полностью обесточивать квартиру отключением автомата.

Определение фазы, нуля и заземляющего провода

Если сеть трехпроводная, но выполнена проводом одного цвета, либо вы не уверены в правильности их подключения, необходимо определять назначение проводников перед установкой каждого элемента сети.

  1. Определите описанным выше способом фазный провод с помощью индикаторной отвертки и отметьте его маркером.
  2. Для определения нулевого и заземляющего провода понадобится мультиметр. Как известно, из-за перекоса фаз в нулевом проводе может появиться напряжение. Его величина обычно не превышает 30В. Установите мультиметр в режим измерения напряжения переменного тока. Одним щупом прикоснитесь к фазному проводу, вторым поочередно к двум другим проводам. Там, где значение напряжения окажется меньше, вторым проводом будет являться нулевой проводник.
  3. Если значение напряжения одинаково, необходимо измерить сопротивление заземляющего провода. Для этого уже определенный фазный провод лучше изолировать, чтобы избежать случайного прикосновения к нему. Мультиметр ставят в режим измерения сопротивления. Находят заведомо заземленный элемент, например, трубу или батарею. Зачищают при необходимости краску и прикасаются одним щупом мультиметра к металлу, а другим поочередно к проводникам, назначение которых неясно. Сопротивление заземляющего провода по отношению к заземленным элементам не должно превышать 4 Ом, сопротивление нулевого провода будет больше.
  4. Измерение сопротивления может также быть недостоверным, если нейтраль заземлена в щитке. В этом случае вам нужно найти заземляющий проводник, присоединенный к шине внутри щитка, и отключить его. После этой операции необходимо взять патрон с лампой и подключенными проводами, зачистить их концы и подключить один провод лампы к фазному проводу, а второй – поочередно к двум другим. Лампа загорится при касании нулевого проводника.

Если все указанные мероприятия не привели к желаемому результату, лучше обратиться к профессиональным электрикам, которые с помощью специальных приборов произведут вызвонку всех цепей. Не забывайте, что речь идет, прежде всего, о безопасности.

Для отыскания фазного провода или клеммы в розетке, вам понадобится один из приборов — индикаторная отвертка или мультиметр.

Определение фазы индикаторной отверткой

Наиболее простой метод определения фазы, который подойдет для любого обывателя — это использование индикаторной отвертки, или как ее еще называют «контрольки».

Контрольная отвертка по внешнему виду очень похожа на обычную, за исключением своей внутренней начинки. Не советую использовать жало отвертки для откручивания или завинчивания винтов. Именно это чаще всего и приводит ее к выходу из строя.

Как определить фазу и ноль этой отверткой? Все очень просто:

  • ⚡жалом отвертки прикасаетесь к контакту
  • ⚡нажимаете или дотрагиваетесь пальцем до металлической кнопки в верхней части отвертки
  • ⚡если светодиод внутри отвертки загорелся — это фазный проводник, если нет — нулевой

Не перепутайте индикаторную отвертку с отверткой для прозвонки. Последняя в своей конструкции имеет батарейки. Здесь для того, чтобы определить фазу и ноль, при касании жалом контактов, не нужно дотрагиваться пальцем до металлической площадки на конце. Иначе отвертка будет светиться в любом случае.

По правилам, лампочка индикатора рассчитанного на 220-380В, должна светиться при напряжении от 50В и более.

Аналогичным образом определяется фаза в розетке, выключателе и любом другом оборудовании.

Меры безопасности при работе с «пробником»

  • ⚡никогда не дотрагивайтесь до нижней части отвертки при замерах
  • ⚡отвертка перед измерением должна быть чистой, иначе может произойти пробой изоляции
  • ⚡если индикаторной отверткой необходимо определить отсутствие напряжения, а не его наличие, для того чтобы безопасно можно было работать с проводкой, сначала проверьте работоспособность прибора на оборудовании заведомо находящегося под напряжением.

Как определить фазу и ноль мультиметром или тестером

Здесь в первую очередь переключите тестер в режим измерения переменного напряжения. Далее замер можно сделать несколькими способами:

  • ⚡зажимаете один из щупов двумя пальцами. Второй щуп подводите к контакту в розетке или выключателе. Если показания на табло мультиметра будут незначительными (до 10 Вольт) — это говорит о том, что вы коснулись нулевого проводника. Если коснуться другого контакта — показания изменятся. В зависимости от качества вашего прибора, это может быть несколько десятков вольт, а также от 100В и выше. Делаем вывод, что в данном контакте фаза.
  • ⚡если вы боитесь в любом случае прикасаться руками к щупу, можно попробовать по другому. Один стержень вставляете в розетку, а другим просто дотрагиваетесь до стенки рядом с розеткой. Если у вас штукатурка, результат будет похожим с первым измерением.
  • ⚡еще один способ — одним из щупов прикасаетесь к заведомо заземленной поверхности (корпус щита или оборудования), а вторым прикасаетесь к измеряемому проводу. Если он будет фазным, тестер покажет наличие напряжения 220В.

Меры безопасности при работе с мультиметром:

    ⚡обязательно перед определением фазы по первому способу (когда зажимаете пальцами щуп) убедитесь, что мультиметр включен в положение «замер напряжения» — значок

V или ACV. Иначе может ударить током.

  • ⚡некоторые «опытные » электрики для определения фазы, используют так называемую контрольную лампочку. Не рекомендую рядовым пользователям такой метод, тем более он запрещен правилами. Используйте только исправные и проверенные измерительные приборы.
  • В современных квартирах в розетки и распредкоробки заходят трехжильные провода. Фазный, рабочий нулевой и защитный. Как отличить их между собой можно узнать из статьи 4 способа отличить заземляющий проводник от нулевого.

    Современные отвертки-индикаторы избавят от головной боли человека, пытающегося осмыслить, как определить фазу, ноль, землю. Замечены сложности, расскажем ниже. Для тестирования применяется сигнал, генерируемый отверткой. Понятно, внутри стоят батарейки. Старая советская отвертка-индикатор на базе единственной газоразрядной лампочки негодна. Позволит безошибочно определить фазу. Следовательно, другая цепь — ноль или земля.

    Правильно определить фазу

    Начнем терминами. Слова ноль русский язык лишен. Зато употреблялось обиходом за счет легкого произношения. Ноль — искаженный нуль, восходящий корнями к латинскому языку. Программист знает: под термином NULL принято подразумевать пустые, неопределенные переменные (лишенные типа). Иногда вид данных удобен для составления алгоритмов (при передаче значений функции).

    Теперь попробуем найти фазу. Типичная отвертка-индикатор образована стальным щупом, вслед идет высокоомное сопротивление (к примеру, углерода), ограничивающее ток, источником света выступает газоразрядная лампочка малого размера. Мелочи, но незнающие термина контактная кнопка, определить ноль бессильны. На конце ручки отвертки-индикатора металлическая площадка. Это контактная кнопка, которую потрудитесь касаться пальцем. Иначе лампочка при прикосновении к фазе светиться откажется.

    Объясним происходящее. Тело человека наделено емкостью. Не столь велика, хватает пропустить мизерный ток. Фаза начинает колебания, электроны идут в сеть и обратно. Создается небольшой ток. Размер сильно ограничен резистором, убиться, взявшись рукой за контактную площадку отвертки-индикатора, другой за трубу снабжения водой непросто. Обнаружить при помощи инструмента непосредственно землю невозможно.

    Обнаружение фазы имеет основополагающее значение, напряжение не должно выходить на патрон люстры при выключенном выключателе. В противном случае обычный процесс замены лампочки может стать опасным, последним. По нормативам, фаза розетки слева. Если выключатели стоят, как принято (включается нажатием вверх), способы определения фазы вырождаются умением найти левую руку, понять, где находится низ:

      В розетке фаза занимает левое гнездо. Соответственно, правое считается нулем. Остается провод, изоляция желто-зеленая — земля (в противном случае — резервный провод питания напряжением 220 вольт).

    Неверное положение нуля и фазы евророзетки

    Определение положения фазы по цвету изоляции жил провода

    Нулевой рабочий провод снабжен синей изоляцией, земля желто-зеленая. Соответственно, на фазу приходится красный (коричневый) цвет. Правило может грубо нарушаться. Дома старой застройки часто оснащались проводами двух жил. Цвет изоляции в каждом случае белый. Отдельные устройства, наподобие датчиков освещенности или движения, имеют другую раскладку. К примеру, нулевой провод черный. Здесь приготовьтесь смотреть руководство по эксплуатации, вариантов раскладки бесчисленное количество.

    Найти нулевой провод в квартире

    По правилам, корпус подъездного щитка заземлен. Выполняется при помощи солидных размеров клеммы, затянутой мощным болтом в домах старой постройки, жителям современных зданий проще ориентироваться количеством жил. Нулевая шина имеет самое большое число подключений, фазы разводятся по квартирам (добрые электрики вешают стикеры А, В, С; злые — не вешают). Легко проследим по раскладке автоматов защиты, счетчиков.

    Штекер 230 вольт Великобритании

    В каждом случае общий провод будет нулевым. Цвет не играет решающей роли. Хотя по нормам современные кабели снабжены разукрашенной изоляцией. Обратите внимание – если в доме обустроено заземление, жил на входе минимум 5. Корпус щитка сажается на желто-зеленую. Нулевой провод послужит отводу рабочего тока от приборов (замыкает цепь). Объединение ветвей на стороне потребителя запрещено. Вот тройка правил, помогающих разобраться в подъездном щитке (обратите внимание, по правилам, жилец туда не должен казать носу вовсе – предупредили):

    • Автомат защиты рвет фазу. Встречаются двухполюсные модели, используются сравнительно редко для помещений с особой опасностью (санузел). Поэтому по положению провода удастся сказать: это фаза. Потом стоит автомат вырубить, жилу прозвонить на стороне квартиры. Однозначно даст положение фазы.
    • Напряжение меж нулевым проводом, любой фазой составляет 230 вольт. По ключевому признаку выделим жилу, на другую дающая указанную разницу. Разброс меж фазами составляет 400 вольт. Значения процентов на 10 выше, российские сети стараются соответствовать европейским стандартам.
    • Токовыми клещами измерим значения на жилах. По каждой фазе проявится значение, сумма которых (по трем) должна течь обратно в сеть по нулевому (либо подходящему фазному). Заземление редко используется, ток здесь близкий нулевому при равномерной загрузке веток. Место, где значение больше всего, традиционно является нулевым проводником.
    • Клемма заземления распределительного щитка на виду. Признаку поможет найти нулевой провод в домах с NT-C-S. В других случаях сюда подводится заземление.

    Дополнительные сведения о нахождении земли, фазы, нулевого провода

    Напоминаем, рассматривались случаи, когда под рукой нет отвертки-индикатора, зато присутствуют токовые клещи, мультиметр. Затем до входа в квартиру обнаруживают землю, фазу, нулевой провод, домашняя сеть прозванивается. Жилы три, методика лежит на поверхности: меж фазой и другим проводом разность потенциалов составит 230 вольт. Обратите внимание, методика непригодна в других случаях. К примеру, разница напряжений меж двумя одинаковыми фазными жилами составляет круглый нуль. Тестером измерить и определить сложно.

    Добавим другой способ — промышленностью запрещен. Лампочка в патроне с двумя оголенными проводами. При помощи инструмента находят фазу, возможно жилу замыкать на заземление. Нельзя использовать водопроводные, газовые, канализационные трубы, прочие инженерные конструкции. По правилам, оплетка кабельной антенны снабжена занулением (заземлением). Относительно нее допустимо тестером (запрещенной стандартами лампочкой в патроне) находить фазу.

    Для решительных людей порекомендуем пожарные лестницы, стальные шины громоотводов. Нужно зачистить металл до блеска, звонить на участок фазу. Обратите внимание, далеко не все пожарные лестницы заземлены (хотя обязаны быть), шины громоотводов 100%. Если обнаружите столь вопиющий произвол, обратитесь в управляющие организации, при отсутствии реакции – сообщите государственным инстанциям. Указывайте нарушение правил защитного зануления зданий.

    Современные отвертки-индикаторы определения фазы, нулевого провода, земли

    Когда нельзя понять, какого цвета провода, полезно пользоваться отверткой-индикатором. Инструкция диковинки на батарейках говорит: удастся при помощи щупа найти землю. Спешим огорчить читателей – любой длинный проводник определяется ложно. Разорванная в области пробок фаза, нулевой провод, настоящая земля – ответ один. Не каждая отвертка-индикатор способна выполнять функции одинаково эффективно. Смысл операции следующий:

    • Активная отвертка-индикатор способна обнаружить длинный проводник путем излучения туда сигнала, ловли отклика.
    • На практике при плохом качестве контактов волна быстро затухает. Отвертка-индикатор показывает наличие земли на разомкнутой пробке фазы.
    • Для определения земли существует условие – нужно пальцем коснуться контактной площадки. В этом разница меж активной и пассивной отвертками-индикаторами. В первой возможно по этому принципу найти фазу, во второй правильное определение происходит при условии отсутствия контакта с данной областью.

    Современная отвертка-индикатор на расстоянии позволит судить, течет ли по проводу ток. Существует специальный дистанционный режим. Обычно даже два: повышенной и пониженной чувствительности. Позволит отсеять неиспользуемую часть проводки. Допустим, известны случаи: строители заводили в дом две фазы вместо одной, путали местами. Пользоваться проводкой нужно с большой осторожностью.

    Хочется отметить, на практике измерить сопротивление проводки, прозвонить непросто. Гораздо удобнее определять наличие фазы. Нет опасности сжечь китайский тестер (бывает временами при попытках измерить сопротивление жилы под током). Следует также знать, низкоомные цепи определяются с ошибкой. К примеру, большинство тестеров при прямом замыкании щупов не дают нуль шкалы. Зато если не получится определить землю при помощи активной отвертки-индикатора, плохие контакты – запросто. Если при выключенных пробках огонек горит с пальцем, прижатым к контактной площадке, время задуматься о покупке нового автомата распределительной коробки, скрутки замените современными колпачками.

    Часто занимающимся ремонтом рекомендуем выход из положения: маркировка проводов. Лучше делать краской принтера, цвета примерно совпадают:

    1. Красный – фаза.
    2. Синий – нулевой провод.
    3. Желтый – земля.

    Обычно водорастворимая краска смывается с трудом. Цвета электрических проводов допустимо проставить колерами принтеров. Приведенная выше система не одинока, часто встречается. В продаже найдем черный цвет. Можете использовать, как заблагорассудится. Обозначение проводов выполняется один раз навсегда. Смыть маркировку проще концентрированной уксусной кислотой, вещество понадобится вознамерившимся отчистить руки (не всегда просто выходит на практике). Напоследок – старайтесь не заляпать одежду.

    Есть ли разница, где в розетке фаза, справа или слева?

    Самый ответственный момент при установке штепсельной розетки – подсоединение проводов к контактам. Как минимум нужно подсоединить к клеммам фазу и ноль, а если проложена современная проводка с заземлением, то проводов 3. Часто возникает вопрос, к каким контактам подводить провода, с какой стороны находится фаза, с какой ноль. В быту не имеет особого значения, находится фаза в розетке слева или наоборот, слева ноль, но лучше знать их расположение.

    Имеет ли значение расположение нуля и фазы?

    Прежде чем выяснять, как найти фазу в розетке, следует разобраться, зачем это нужно. Многие слабо знакомые с электроустановочными изделиями люди считают, что перепутать фазу и ноль при включении в сеть электроприбора так же опасно, как перепутать полярность батареек. На самом деле штепсельные розетки, которые используются в России, неполяризованные, а многие вилки имеют симметричную конструкцию. Так что при включении слева оказывается то один, то другой штырь, и ничего страшного не происходит.

    Иногда на форумах и других интернет-ресурсах можно встретить утверждения, что качество работы компьютера, аудиоаппаратуры снижается, если неправильно совместить фазу и ноль вилки и розетки. Но это миф.

    Существуют электроприборы, при подключении которых расположение фазного, нулевого проводов и заземления принципиально важно, это оговаривается в инструкции. Но их подключением должны заниматься профессионалы, иначе прибор снимут с гарантийного обслуживания. К таким приборам относятся газовые котлы с электроконтроллером, но они не имеют вилки, которая включаются в розетку, а подключаются к сети стационарно. Если вы устанавливаете розетку для простых бытовых электроприборов у себя дома, особой разницы, с какой стороны подсоединить фазный провод, с какой нулевой, нет.

    Но профессиональные электрики на вопрос где должна быть фаза в розетк отвечают: справа. Это неписаное правило, ПУЭ (правила устройства электроустановок) не регламентируют, с какой стороны должны быть нулевой и фазный контакты в бытовой розетке. Но удобнее, если все придерживаются единого стандарта, чтоб тому же электрику не пришлось гадать, фаза в розетке слева или с противоположной стороны. В странах, где розетки поляризованные, тоже соблюдается именно такойпринцип. И если вы хотите все сделать «по науке», фазный провод подсоединить к правой клемме, а нулевой – к левой, встает вопрос, как определить фазу в проводке.

    Определение фазного и нулевого провода

    Проще всего разобраться с назначением проводов, ориентируясь на маркировку. В РФ и ряде европейских стран действует такой стандарт:
    ноль, или нейтраль (рабочий ноль) – жила синего, реже сине-белого цвета
    земля (заземление, защитный ноль) – желто-зеленый;
    фаза – любой другой цвет, часто коричневый, черный.

    Но маркировка по цвету может отсутствовать или не соответствовать стандарту. В этом случае используют индикаторную отвертку (пробник) или тестер.

    Проверка пробником:

    Зажать корпус отвертки в руке, не касаясь пальцами металлического жала.
    Поместить указательный палец на торец отвертки, где есть металлический контакт.
    Поочередно прикоснуться жалом к проводам, светодиодный индикатор светится при контакте с фазным проводом.

    Если перед вами всего 2 жилы, и вы разобрались, где фаза в проводке, задача решена. Если их 3, нужно отличить рабочий ноль от защитного, то есть заземления. Для этого понадобится тестер (мультиметр). Фазный провод метят маркером. На мультиметре нужно выбрать режим измерения переменного тока и задать предел измерения, превышающий 250 В. Один щуп прижимают к фазной жиле, вторым касаются по очереди двух остальных. На дисплее будет высвечиваться значение напряжения. При замере напряжения между фазой и землей этот показатель больше, между фазой и нейтралью меньше.

    Иногда при обоих замерах получается одинаковый результат. В таком случае проверить, где заземление, можно путем измерения сопротивления. Зачищенную жилу фазного провода предварительно обязательно нужно заизолировать. Прибор переключается в режим измерения сопротивления, одним щупом прикасаются к объекту, который точно заземлен, например, металлической трубе, радиатору отопления или водопроводному крану. Прикасаясь вторым щупом попеременно к двум проводам, замеряют сопротивление. Между заземленным объектом и проводом земля сопротивление в пределах 4 Ом, при проверке нулевого провода оно выше.

    При отсутствии индикаторной отвертки разобраться, где у проводки какая жила, поможет мультиметр. Выбрав режим измерения переменного тока, касаются заземленного объекта одним щупом, вторым проверяют провода. Прибор покажет такие значения напряжения между заземленной трубой и проводами:

    фаза 150-220 В;
    ноль (нейтраль) – 5-10 В;
    земля – 0 В.

    Определение фазы и ноля в розетке

    Вы можете точно знать, где фаза и ноль в розетке, если установили ее своими руками, предварительно проверив проводку. Но если вы снимаете или купили на вторичном рынке квартиру, неизвестно, кто занимался монтажом электроустановочных изделий и придерживался ли он правила «фаза справа». Как в такой ситуации разобраться, где в розетке ноль и фаза? Придут на помощь те же самые приборы. Индикаторная отвертка используется точно так же, как при проверке проводки, только жало вставляется поочередно в оба разъема розетки.

    При использовании мультиметра выбирается измерение напряжения переменного тока, один щуп (любой) вставляется в отверстие розетки, вторым нужно прикоснуться к собственному телу. Если вы попали в розетке на фазу, прибор покажет больше сотни вольт, если на ноль – всего несколько вольт. Поражения током при этом можно не опасаться, если только по ошибке не выбрать режим измерения силы тока. Иногда индикаторная отвертка показывает, что в розетке 2 фазы, а судя по показаниям мультиметра, напряжение отсутствует. Такая ситуация указывает на обрыв нулевого провода, при проведении ремонтных работ нужно учитывать, что на самом деле напряжение в сети есть.

    Существуют и более экзотические способы, как определить фазу без специальных приборов. Вместо мультиметра используют вкрученную в патрон лампу накаливания, от которой отходит двужильный провод, одну из жил закрепляют к трубе, батарее, второй проверяют провода. Загоревшаяся лампочка указывает на фазу. Аналогичным способом замеряют напряжение между заземленным объектом и жилами проводки, используя в качестве индикатора разрезанную картошку. В месте контакта с фазой она темнеет. Оба способа подходят для проверки как проводки, так и уже смонтированной розетки, но являются довольно опасными – велик риск поражения током.

    Подведем итоги. Определение нуля и фазы принципиально важно при монтаже выключателей, а для бытовых розеток особого значения не имеет. Разбираться с назначением проводов приходится при ремонте, когда розетка демонтируется и обнажаются концы жил. Фазный провод необходимо на период ремонтных работ заизолировать, хотя для подстраховки можно обмотать изолентой обе жилы. Желательно при монтаже розетки придерживаться неофициального, но общепринятого в среде электриков стандарта, и подключать фазу к правой клемме. Отличить ноль от фазы поможет цветовая маркировка, индикаторная отвертка, если проводка трехжильная, понадобится мультиметр. Проверку контактов в установленной розетке можно осуществлять с помощью обоих приборов.


    электрическая — Как определить фазу и нейтраль на розетке?

    Вам не обязательно нужна активная земля, но в противном случае вам потребуется немного внимания.

    По сути, вы — один большой конденсатор с большой поверхностью для распределенной земли вокруг вас, в 9 из 10 мест ваше тело будет работать как земля. Наверное, даже гораздо чаще. Только в очень старых зданиях с проводной индукцией или в деревянных высотках ваша личная земля может быть слишком далеко от реальной земли, чтобы что-то изменить.

    Эта концепция используется ручкой тестера напряжения, в ней есть резистор от 220 кОм до 510 кОм и неоновый свет, и вы касаетесь другой стороны неонового света. Таким образом, максимум 1 мА проходит от фазы через неоновый свет к вашему телу, который затем передает его в окружающую среду через вашу «личную емкость». Если вы прикоснетесь к нейтрали ручкой, не загорится никакой свет, потому что нейтраль находится слишком близко к земле, которая, по-видимому, есть у вашего тела, и ток не течет.

    Плавающий ток 1 мА в вашу руку почти незаметен и совсем не дотягивает до груди, поэтому это безопасно, если вы не используете его под струей душа и знаете, что всегда нужно касаться только того конца, на котором есть резистор и свет между вами и живой силой.


    Теперь, когда я ответил на этот вопрос в меру своих возможностей, мне очень любопытно, почему EVM интересуется фазой. Связан ли он каким-то образом с внешним миром? В принципе, цепи переменного тока не замечают фазу и нейтраль, потому что, как говорится в этом термине, ток меняется. Схема, подключенная только к этим двум проводам, всегда будет видеть текущую съемку «влево и вправо» с частотой 50 Гц, независимо от того, является ли «левый» фазовым или нейтральным.

    Риск становится очевидным только тогда, когда есть какое-то взаимодействие с внешним миром, которое не имеет предсказуемой связи ни с одним из проводов.Например, когда пользователь что-то делает со схемой или подключается другая электроника, внутренняя маршрутизация которой неизвестна. Но в этом случае я бы категорически возражал против уменьшения мощности RC по соображениям безопасности.

    (в качестве примечания: срабатывание симистора в фазной линии все же в этом смысле не является непредсказуемым, поскольку он является частью той же самой цепи тока).

    Возможно ли, что техническое описание означает только вашу безопасность? Если большой резистор находится в фазовой линии, вы не так рискуете убить себя, если возитесь с чем-то во время экспериментов?

    Объяснение основных измерений трехфазной мощности

    Хотя однофазное электричество используется для питания обычных бытовых и офисных электроприборов, системы трехфазного переменного тока почти повсеместно используются для распределения электроэнергии и подачи электричества непосредственно на оборудование с более высокой мощностью.

    В этой технической статье описываются основные принципы работы трехфазных систем и различие между различными возможными соединениями для измерения.

    • Трехфазные системы
    • Соединение звездой или звездой
    • Соединение треугольником
    • Сравнение звезды и дельты
    • Измерения мощности
    • Подключение однофазного ваттметра
    • Однофазное трехпроводное соединение
    • Трехфазное трехпроводное соединение (метод двух ваттметров)
    • Трехфазное трехпроводное соединение (метод трех ваттметров)
    • Теорема Блонделя: необходимое количество ваттметров
    • Трехфазное, четырехпроводное подключение
    • Настройка измерительного оборудования

    Трехфазные системы

    Трехфазное электричество состоит из трех напряжений переменного тока одинаковой частоты и одинаковой амплитуды.Каждая фаза переменного напряжения отделена от другой на 120 ° (Рисунок 1).

    Рис. 1. Форма сигнала трехфазного напряжения

    Эту систему можно схематично представить как осциллограммами, так и векторной диаграммой (рис. 2).

    Рисунок 2. Векторы трехфазного напряжения

    Зачем нужны трехфазные системы? По двум причинам:

    1. Три разнесенных вектора напряжения могут использоваться для создания вращающегося поля в двигателе. Таким образом, двигатели можно запускать без дополнительных обмоток.
    2. Трехфазная система может быть подключена к нагрузке таким образом, чтобы количество необходимых медных соединений (и, следовательно, потери при передаче) было вдвое меньше, чем они были бы в противном случае.

    Рассмотрим три однофазные системы, каждая из которых выдает 100 Вт на нагрузку (рисунок 3). Общая нагрузка составляет 3 × 100 Вт = 300 Вт. Для подачи питания 1 ампер протекает через 6 проводов, и, таким образом, возникают 6 единиц потерь.

    Рисунок 3. Три однофазных источника питания — шесть единиц потерь

    В качестве альтернативы, три источника могут быть подключены к общей обратной линии, как показано на рисунке 4. Когда ток нагрузки в каждой фазе одинаков, нагрузка считается равной. сбалансированный. При сбалансированной нагрузке и трех токах, сдвинутых по фазе на 120 ° друг от друга, сумма тока в любой момент равна нулю, и ток в обратной линии отсутствует.

    Рис. 4. Трехфазное питание, сбалансированная нагрузка — 3 единицы потерь

    В трехфазной системе под углом 120 ° требуется только 3 провода для передачи энергии, для которой в противном случае потребовалось бы 6 проводов. Требуется половина меди, и потери при передаче по проводу уменьшатся вдвое.

    Соединение звездой или звездой

    Трехфазная система с общим подключением обычно изображается, как показано на Рисунке 5, и называется соединением «звезда» или «звезда».

    Рисунок 5. Соединение звездой или звездой — три фазы, четыре провода

    Общая точка называется нейтральной точкой.Эта точка часто заземляется на источнике питания из соображений безопасности. На практике нагрузки не сбалансированы идеально, и четвертый нейтральный провод используется для передачи результирующего тока.

    Нейтральный проводник может быть значительно меньше трех основных проводов, если это разрешено местными правилами и стандартами.

    Рисунок 6. Сумма мгновенных напряжений в любой момент времени равна нулю.

    Соединение треугольником

    Три однофазных источника питания, о которых говорилось ранее, также могут быть подключены последовательно.Сумма трех сдвинутых по фазе напряжений на 120 ° в любой момент равна нулю. Если сумма равна нулю, то обе конечные точки имеют одинаковый потенциал и могут быть соединены вместе.

    Соединение обычно выполняется, как показано на Рисунке 7, и называется соединением «треугольник» по форме греческой буквы «дельта», Δ.

    Рисунок 7. Соединение треугольником — трехфазное, трехпроводное соединение

    , звезда и треугольник, сравнение

    Конфигурация «звезда» используется для распределения питания между однофазными бытовыми приборами в доме и офисе.Однофазные нагрузки подключаются к одной ветви звезды между линией и нейтралью. Общая нагрузка на каждую фазу распределяется в максимально возможной степени, чтобы обеспечить сбалансированную нагрузку на первичное трехфазное питание.

    Конфигурация «звезда» также может подавать одно- или трехфазное питание на более мощные нагрузки при более высоком напряжении. Однофазные напряжения — это напряжения между фазой и нейтралью. Также доступно более высокое межфазное напряжение, как показано черным вектором на Рисунке 8.

    Рисунок 8. Напряжение (фаза-фаза)

    Конфигурация «треугольник» чаще всего используется для питания трехфазных промышленных нагрузок большей мощности.Различные комбинации напряжений могут быть получены от одного трехфазного источника питания по схеме «треугольник», однако путем подключения или «ответвлений» вдоль обмоток питающих трансформаторов.

    В США, например, система с треугольником 240 В может иметь обмотку с расщепленной фазой или обмотку с центральным отводом для обеспечения двух источников питания 120 В (рисунок 9).

    Рис. 9. Конфигурация треугольником с обмоткой «расщепленная фаза» или «отвод от средней точки»

    Из соображений безопасности центральный отвод может быть заземлен на трансформаторе. 208 В также имеется между центральным ответвлением и третьей «верхней ветвью» соединения треугольником.

    Измерения мощности

    Мощность в системах переменного тока измеряется с помощью ваттметров. Современный цифровой ваттметр с выборкой, такой как любой из анализаторов мощности Tektronix, умножает мгновенные выборки напряжения и тока вместе для расчета мгновенных ватт, а затем берет среднее значение мгновенных ватт за один цикл для отображения истинной мощности.

    Ваттметр обеспечивает точные измерения истинной мощности, полной мощности, реактивной мощности вольт-ампер, коэффициента мощности, гармоник и многих других параметров в широком диапазоне форм волн, частот и коэффициента мощности.

    Чтобы анализатор мощности дал хорошие результаты, вы должны уметь правильно определять конфигурацию проводки и правильно подключать ваттметры анализатора.

    Подключение однофазного ваттметра

    Рисунок 10. Однофазные, двухпроводные измерения и измерения постоянного тока

    Требуется только один ваттметр, как показано на рисунке 10. Системное подключение к клеммам напряжения и тока ваттметра несложно. Клеммы напряжения ваттметра подключены параллельно к нагрузке, и ток проходит через клеммы тока, которые включены последовательно с нагрузкой.

    Однофазное трехпроводное соединение

    В этой системе, показанной на рисунке 11, напряжения вырабатываются одной обмоткой трансформатора с центральным отводом, и все напряжения синфазны. Эта система широко распространена в жилых домах Северной Америки, где доступны один источник питания 240 В и два источника питания 120 В, которые могут иметь разную нагрузку на каждую ногу.

    Для измерения общей мощности и других величин подключите два ваттметра, как показано на Рисунке 11 ниже.

    Рисунок 11. Однофазный трехпроводной метод измерения ваттметра

    Трехфазное трехпроводное соединение (метод двух ваттметров)

    При наличии трех проводов требуются два ваттметра для измерения общей мощности.Подключите ваттметры, как показано на рисунке 12. Клеммы напряжения ваттметров соединены фаза с фазой.

    Рис. 12. Трехфазный, трехпроводной, метод 2 ваттметра

    Трехфазное трехпроводное соединение (метод трех ваттметров)

    Хотя для измерения общей мощности в трехпроводной системе требуются только два ваттметра, как показано ранее, иногда удобно использовать три ваттметра. В соединении, показанном на Рисунке 13, ложная нейтраль была создана путем соединения клемм низкого напряжения всех трех ваттметров вместе.

    Рисунок 13. Трехфазное, трехпроводное (метод трех ваттметров: установите анализатор в трехфазный, четырехпроводной режим).

    Трехпроводное трехпроводное соединение имеет преимущества индикации мощности в каждой фазе (не возможно при подключении двух ваттметров) и фазных напряжений.

    Теорема Блонделя: необходимое количество ваттметров

    В однофазной системе всего два провода. Мощность измеряется одним ваттметром. В трехпроводной системе требуется два ваттметра, как показано на рисунке 14.

    Рисунок 14. Доказательство для трехпроводной системы «звезда»

    В общем, количество требуемых ваттметров равно количеству проводов минус один.

    Проба для трехпроводной системы звездой

    Мгновенная мощность, измеренная ваттметром, является произведением мгновенных значений напряжения и тока.

    • Ваттметр 1 показание = i1 (v1 — v3)
    • Показание ваттметра 2 = i2 (v2 — v3)
    • Сумма показаний W1 + W2 = i1v1 — i1v3 + i2v2 — i2v3 = i1v1 + i2v2 — (i1 + i2) v3
    • (Из закона Кирхгофа: i1 + i2 + i3 = 0, поэтому i1 + i2 = -i3)
    • 2 показания W1 + W2 = i1v1 + i2v2 + i3v3 = общая мгновенная мощность в ваттах.

    Трехфазное, четырехпроводное соединение

    Три ваттметра необходимы для измерения общей мощности в четырехпроводной системе. Измеренные напряжения представляют собой истинные напряжения между фазой и нейтралью. Междуфазные напряжения могут быть точно рассчитаны по амплитуде и фазе межфазных напряжений с использованием векторной математики.

    Современный анализатор мощности также будет использовать закон Кирхгофа для расчета тока, протекающего в нейтральной линии.

    Настройка измерительного оборудования

    Для заданного количества проводов требуются N, N-1 ваттметров для измерения общих величин, таких как мощность.Вы должны убедиться, что у вас достаточно количества каналов (метод 3 ваттметра), и правильно их подключить.

    Современные многоканальные анализаторы мощности вычисляют общие или суммарные величины, такие как ватты, вольты, амперы, вольт-амперы и коэффициент мощности, напрямую с использованием соответствующих встроенных формул. Формулы выбираются в зависимости от конфигурации проводки, поэтому настройка проводки имеет решающее значение для получения точных измерений общей мощности. Анализатор мощности с функцией векторной математики также преобразует величины между фазой и нейтралью (или звездой) в величины фаза-фаза (или дельта).

    Коэффициент √3 может использоваться только для преобразования между системами или масштабирования измерений только одного ваттметра в сбалансированных линейных системах.

    Понимание конфигурации проводки и выполнение правильных соединений имеет решающее значение для выполнения измерений мощности. Знакомство с обычными системами электропроводки и запоминание теоремы Блонделя поможет вам установить правильные соединения и получить результаты, на которые вы можете положиться.

    Список литературы

    Основы измерения трехфазной мощности — инструкция по применению от Tektronix

    Ваттметр — это прибор для измерения электрической мощности (или скорости подачи электрической энергии) в ваттах любой данной цепи.Электромагнитные ваттметры используются для измерения полезной частоты и мощности звуковой частоты; другие типы требуются для радиочастотных измерений. Источник: Википедия

    Источник: Портал электротехники

    Розетки на 240 В I Что такое розетка на 240 В?

    Что такое розетка на 240 вольт?

    Одна стандартная электрическая розетка содержит провод на 120 В и нейтральный провод, которые обеспечивают питание, используя одну фазу вашей электросети. В розетках на 240 В одновременно используются два провода на 120 В и нейтральный провод для питания одной розетки.

    В старых домах и бытовой технике можно использовать трехконтактные розетки на 240 вольт. Однако современные розетки и бытовая техника также используют заземляющий провод, что означает, что современные вилки на 240 вольт имеют четыре контакта.

    Какие устройства используют розетки на 240 вольт?

    Многие крупные электроприборы с электроприводом работают более эффективно при напряжении питания 240 вольт. Розетки на 240 В предназначены для использования с более тяжелыми приборами, которым для работы требуется больше электроэнергии. Возможно, вам потребуется установить розетку на 240 В, если вы приобретете один из следующих предметов:

    Определение розеток на 240 В

    По сравнению со стандартными розетками на 120 В, розетки на 240 В больше, с закругленными вершинами и тремя или четырьмя отверстиями в зависимости от возраста розетки.У более старых трехштырьковых розеток есть отверстие в виде задней буквы «L» наверху и два диагональных отверстия по бокам. Новые четырехконтактные розетки имеют букву «L» наверху, два вертикальных боковых отверстия и одно полукруглое отверстие внизу для заземляющего провода.

    Трехконтактные и четырехконтактные розетки на 240 В

    Недавно розетки на 240 В перешли с трехконтактных на четырехконтактные. Старые трехконтактные розетки были спроектированы так, чтобы содержать два провода под напряжением и одну нейтраль. Дополнительный контакт на четырехконтактных розетках добавляет провод заземления, обеспечивая дополнительную защиту от поражения электрическим током.Повторное подключение вашей техники к четырехпроводной вилке и установка четырехконтактных розеток на 240 вольт решат любые проблемы с безопасностью или совместимостью.

    Положитесь на компанию Mr. Electric при установке розеток на 240 В

    Если вы хотите, чтобы у вас дома были установлены розетки на 240 В, в том числе для электромобиля, свяжитесь с Mr. Electric®. Мы также можем повторно подключить ваши старые приборы к четырехконтактным вилкам, чтобы они идеально работали с вашими новыми розетками. Запишитесь на прием онлайн или позвоните нам сегодня по телефону (844) 866-1367.

    Мощность в цепи переменного тока — Университетская физика, том 2

    Цели обучения

    К концу раздела вы сможете:

    • Опишите, как можно записать среднюю мощность от цепи переменного тока в терминах пикового тока и напряжения, а также среднеквадратичных значений тока и напряжения
    • Определите соотношение между фазовым углом тока и напряжения и средней мощностью, известное как коэффициент мощности

    Элемент схемы рассеивает или вырабатывает мощность в зависимости от того, где I — ток через элемент, а В — напряжение на нем.Поскольку ток и напряжение в цепи переменного тока зависят от времени, мгновенная мощность также зависит от времени. График p ( t ) для различных элементов схемы показан на (Рисунок). Для резистора i ( t ) и v ( t ) синфазны и поэтому всегда имеют один и тот же знак (см. (Рисунок)). Для конденсатора или катушки индуктивности относительные знаки i ( t ) и v ( t ) меняются в течение цикла из-за разницы фаз (см. (Рисунок) и (Рисунок)).Следовательно, p ( t ) в некоторые моменты является положительным, а в другие — отрицательным, что указывает на то, что емкостные и индуктивные элементы вырабатывают энергию в одни моменты и поглощают ее в другие.

    Поскольку мгновенная мощность изменяется как по величине, так и по знаку в течение цикла, она редко имеет какое-либо практическое значение. Что нас почти всегда интересует, так это усредненная по времени мощность, которую мы называем средней мощностью. Он определяется средним по времени мгновенной мощностью за один цикл:

    где — период колебаний.С заменами и этот интеграл становится

    Используя тригонометрическое соотношение, получаем

    Вычисление этих двух интегралов дает

    и

    Следовательно, средняя мощность, связанная с элементом схемы, равна

    .

    В технических приложениях известен как коэффициент мощности, который представляет собой величину, на которую мощность, передаваемая в цепи, меньше теоретического максимума цепи из-за того, что напряжение и ток не совпадают по фазе.Для резистора, поэтому средняя рассеиваемая мощность составляет

    Сравнение p ( t ) и показано на (Рисунок) (d). Чтобы выглядеть как его аналог постоянного тока, мы используем среднеквадратичные значения тока и напряжения. По определению это

    где

    С получаем

    Тогда мы можем написать для средней мощности, рассеиваемой резистором,

    Это уравнение дополнительно подчеркивает, почему при обсуждении выбирается среднеквадратичное значение, а не пиковые значения.Оба уравнения для средней мощности верны для (рисунок), но среднеквадратичные значения в формуле дают более четкое представление, поэтому дополнительный коэффициент 1/2 не требуется.

    Переменные напряжения и токи обычно описываются их действующими значениями. Например, напряжение 110 В от бытовой розетки является среднеквадратичным значением. Амплитуда этого источника равна. Поскольку большинство измерителей переменного тока откалиброваны по среднеквадратичным значениям, типичный вольтметр переменного тока, помещенный в бытовую розетку, будет показывать 110 В.

    Для конденсатора и катушки индуктивности соответственно. Поскольку мы находим из (Рисунок), что средняя мощность, рассеиваемая любым из этих элементов, равна Конденсаторам, а катушки индуктивности поглощают энергию из цепи в течение одного полупериода, а затем разряжают ее обратно в цепь в течение другого полупериода. Это поведение проиллюстрировано на графиках (Рисунок), (b) и (c), которые показывают, что p ( t) колеблется синусоидально около нуля.

    Фазовый угол генератора переменного тока может иметь любое значение.Если генератор выдает мощность; если он поглощает энергию. В терминах среднеквадратичных значений средняя мощность генератора переменного тока записывается как

    .

    Для генератора в цепи RLC ,

    и

    Отсюда средняя мощность генератора

    Это также можно записать как

    , который означает, что мощность, производимая генератором, рассеивается в резисторе. Как мы видим, закон Ома для среднеквадратичного значения переменного тока находится делением среднеквадратичного напряжения на импеданс.

    Проверьте свое понимание Вольтметр переменного тока, подключенный к клеммам генератора переменного тока 45 Гц, показывает 7,07 В. Напишите выражение для ЭДС генератора.

    Проверьте свое понимание Покажите, что среднеквадратичные значения напряжения на резисторе, конденсаторе и катушке индуктивности в цепи переменного тока, где среднеквадратичный ток выражается соответственно. Определите эти значения для компонентов цепи RLC (рисунок).

    Сводка

    • Средняя мощность переменного тока определяется путем умножения среднеквадратичных значений тока и напряжения.
    • Закон
    • Ома для среднеквадратичного значения переменного тока находится делением среднеквадратичного напряжения на полное сопротивление.
    • В цепи переменного тока существует фазовый угол между напряжением источника и током, который можно найти, разделив сопротивление на полное сопротивление.
    • Средняя мощность, подаваемая в цепь RLC , зависит от фазового угла.
    • Коэффициент мощности находится в диапазоне от –1 до 1.

    Концептуальные вопросы

    При каком значении фазового угла между выходным напряжением источника переменного тока и током средняя выходная мощность источника является максимальной?

    Обсудите разницу между средней мощностью и мгновенной мощностью.

    Мгновенная мощность — это мощность в данный момент. Средняя мощность — это мощность, усредненная за цикл или количество циклов.

    Средний переменный ток, подаваемый в цепь, равен нулю.Несмотря на это, мощность в цепи рассеивается. Объяснять.

    Может ли мгновенная выходная мощность источника переменного тока быть отрицательной? Может ли средняя выходная мощность быть отрицательной?

    Мгновенная мощность может быть отрицательной, но выходная мощность не может быть отрицательной.

    Номинальная мощность резистора, используемого в цепях переменного тока, относится к максимальной средней мощности, рассеиваемой в резисторе. Как это соотносится с максимальной мгновенной мощностью, рассеиваемой на резисторе?

    Глоссарий

    средняя мощность
    среднее время мгновенной мощности за один цикл
    коэффициент мощности
    величина, на которую мощность, передаваемая в цепи, меньше теоретического максимума цепи из-за того, что напряжение и ток не совпадают по фазе

    От того, как это работает и почему это помогает, к самопроверке и преимуществам

    Содержание

    1. Что такое выход GFCI?
    2. Как работает выход GFCI?
    3. Где нужен выход GFCI?
    4. Почему срабатывает розетка GFCI и что делать, когда она срабатывает
    5. Самопроверка прерывателя цепи замыкания на землю
    6. Как установить розетку GFCI
    7. Преимущества установки розетки GFCI

    Что такое выход GFCI?

    Прерыватель цепи замыкания на землю — это защитное устройство, специально разработанное для размыкания цепи каждый раз, когда возникает дисбаланс между входящим и исходящим токами.Розетка GFCI защищает электропроводку и розетки от перегрева и возможного возгорания, что значительно снижает риск поражения электрическим током и смертельных ожогов. Он также обнаруживает замыкания на землю и нарушает прохождение тока, но не должен использоваться для замены предохранителя, так как он не обеспечивает защиты от короткого замыкания и перегрузки.

    Как работает выход GFCI?

    GFCI интегрирован в электрическую розетку и постоянно отслеживает ток, протекающий в цепи, чтобы определять колебания в реальном времени.Он имеет три отверстия: два из них предназначены для нейтрального и горячего провода, а третье отверстие в середине розетки служит заземляющим проводом. Если он обнаружит какое-либо изменение электрического потока в цепи, он немедленно отключит поток электричества. Итак, если вы, например, используете фен, и он скользит в раковину, наполненную водой, розетка GFCI немедленно обнаружит прерывание и отключит питание, чтобы обеспечить электробезопасность в ванной и за ее пределами.

    Где нужен выход GFCI?

    Розетки

    GFCI важны, особенно когда электрические розетки расположены близко к воде.Установка розеток GFCI на вашей кухне, в ванных комнатах, прачечных, у бассейна и т. Д. — хорошая идея. Помимо того, что это важная превентивная мера, закон также требует, чтобы в вашем доме были установлены розетки GFCI. Согласно Национальному электротехническому кодексу (NEC), все дома должны быть оборудованы защитой GFCI. Первоначально от вас требовалось только установить розетки GFCI рядом с водой, но в последние годы это требование было распространено на все однофазные розетки на 125 вольт.Розетки GFCI также следует устанавливать на временных системах электропроводки во время строительства, ремонта или обслуживания конструкций, которые временно используют электроэнергию.

    Почему срабатывает розетка GFCI и что делать, когда она срабатывает

    Прерыватель цепи замыкания на землю по существу предназначен для предотвращения замыканий на землю, немедленно прерывая ток от розетки. Вот почему периодическое тестирование очень важно, чтобы гарантировать постоянную работоспособность розетки GFCI.Если розетка GFCI часто отключается, вероятно, потребуется дополнительное обследование сертифицированным электриком, так как это также может быть результатом изношенной изоляции, скопившейся пыли или плохой проводки.

    Самопроверка вашего прерывателя цепи замыкания на землю

    Розетку GFCI рекомендуется проверять каждый месяц и заменять каждые десять лет. Вы можете выполнить следующие простые шаги, чтобы проверить, правильно ли работает прерыватель цепи:

    1. На лицевой стороне розетки GFCI есть две маленькие кнопки с надписью test и reset.Просто нажмите кнопку тестирования, и это вызовет щелчок, указывающий на срабатывание розетки.
    2. После отключения питания вы можете проверить эффективность блока GFCI с помощью вольтметра.
    3. Теперь подключите устройство к розетке и, когда оно перестанет работать, нажмите кнопку тестирования, чтобы убедиться в надежности механизма безопасности.
    4. Как только вы узнаете, что розетка CFGI работает с максимальной эффективностью, вы можете нажать кнопку сброса, и прерыватель цепи снова включится.

    Несмотря на то, что эти инструкции «сделай сам» просты в использовании, они требуют, чтобы вы знали и понимали, как работает электрическая система вашего дома. Всегда рекомендуется работать с сертифицированным электриком, который может убедиться, что ваша система соответствует соответствующим нормам, чтобы ваш дом оставался защищенным от электрического пожара.



    Как установить розетку GFCI

    Шаг 1. Проверьте наличие защиты GFCI в вашем доме

    В большинстве штатов строительные нормы и правила теперь требуют установки вилок GFCI во влажных помещениях домов, таких как прачечные, ванны, кухни, гаражи и другие места, которые могут быть подвержены поражению электрическим током из-за влаги.Итак, проверьте свой дом, чтобы увидеть, установлены ли в нем какие-либо розетки GFCI.

    Шаг 2: Выключите питание

    a) Отключите питание предохранителем или автоматическим выключателем.
    b) Снимите настенную пластину и с помощью тестера убедитесь, что питание отключено.

    Шаг 3: Снимите старую розетку

    a) Удалите существующую розетку, которую заменит вилка GFCI, и вытащите ее из монтажной коробки.
    б) Это обнажит 2 или более проводов. Убедитесь, что провода не касаются друг друга, а затем включите переключатель.
    c) Используйте тестер, чтобы определить провода, по которым идет питание.
    d) Пометьте эти провода и снова выключите питание.

    Шаг 4. Установите розетку GFCI

    Розетка GFCI состоит из 2 комплектов проводов, помеченных как «линия» и «нагрузка». Линейный комплект передает входящую мощность, а комплект нагрузки распределяет мощность между дополнительными розетками, а также обеспечивает защиту от ударов. Подключите провод питания (черный) к линейному набору, а белый провод к нагрузке, установленной на розетке GFCI.Закрепите соединения проволочной гайкой и оберните их изолентой для дополнительной безопасности. Теперь подключите заземляющий провод к зеленому винту на штекере GFCI.

    После этого вставьте вилку GFCI обратно в коробку и снова закройте ее настенной пластиной.

    Преимущества установки розетки GFCI

    Помимо уверенности в том, что вы и ваша семья защищены от поражения электрическим током, установка розеток GFCI поможет вам:


    1. Предотвращение ударов

      Поражение электрическим током и поражение электрическим током являются основными рисками, которым вы можете подвергнуться через электрические устройства в вашем доме.Это становится более серьезной проблемой, если у вас есть дети, которые могут неосознанно прикоснуться к приборам и получить шок. Розетка GFCI помогает предотвратить удары током и поражение электрическим током, поскольку она имеет встроенный датчик, который контролирует приток и отток электричества от любого устройства. Если провод под напряжением внутри устройства соприкасается с металлической поверхностью устройства, вы получите удар при прикосновении к нему. Однако, если вы подключите устройство к розетке GFCI, он заметит, если есть какие-либо изменения в электрический ток, который может возникнуть из-за ослабленного провода, мгновенно отключит питание.Они будут тяжелее в ваших карманах по сравнению с обычными торговыми точками, но преимущество в безопасности определенно перевесит недостаток стоимости в долгосрочной перспективе.

    2. Предотвратить смертельные электрические пожары

      Одной из основных функций розетки GFCI является обнаружение замыканий на землю, которые возникают, когда электрический ток выходит из цепи. Они несут ответственность за возникновение электрических пожаров. Устанавливая розетки GFCI, вы эффективно предотвращаете возникновение электрических пожаров.Вы можете утверждать, что электрические предохранители также обеспечивают базовую защиту от электрических пожаров, однако, когда вы объедините их с розетками GFCI, вероятность возникновения электрических пожаров и причинения вреда вам и вашим близким почти сведется к нулю.

    3. Избегайте повреждения техники

      Существует большая вероятность того, что изоляция прибора со временем сломается. Если не обрыв, то в утеплителе обязательно будет несколько трещин. Некоторое количество электрического тока начинает течь через эти трещины в приборы и другие электронные устройства.Если внешний корпус прибора не металлический, то вы не получите удара током, но постоянная утечка тока приведет к повреждению оборудования в долгосрочной перспективе. Если он имеет металлический корпус, вы также испытаете поражение электрическим током. Однако, когда у вас есть устройство, подключенное к розетке GFCI, вы можете не беспокоиться о том, что ваши устройства будут повреждены из-за утечки тока. Цепь GFCI обнаружит утечку и отключит цепь, предотвращая повреждение дорогостоящего оборудования и приборов в результате утечки электричества.Вы можете сэкономить много денег, избавившись от необходимости постоянно ремонтировать или заменять поврежденные электрические устройства.

    Установите розетки GFCI как дома, так и на рабочем месте, прежде всего из соображений безопасности. Не забывайте устанавливать их только у лицензированных электриков и профессионалов. Вы не можете назначить цену за безопасность своих близких, и магазины GFCI предложат вам душевное спокойствие в этом аспекте.

    У нас, в D&F Liquidators , есть высококачественные розетки GFCI, которые вы можете установить у себя дома по конкурентоспособным ценам.Свяжитесь с нами, чтобы узнать больше.

    D&F Liquidators обслуживает потребности в строительных материалах для электротехники более 30 лет. Это международная информационная служба площадью 180 000 квадратных метров, расположенная в Хейворде, Калифорния. Он хранит обширный инвентарь электрических разъемов, кабелепроводов, автоматических выключателей, распределительных коробок, проводов, предохранительных выключателей и т. Д. Он закупает электрические материалы у ведущих компаний по всему миру. Компания также ведет обширный инвентарь взрывозащищенной электротехнической продукции и современных решений в области электрического освещения.Поскольку компания D&F закупает материалы оптом, она имеет уникальную возможность предложить конкурентоспособную структуру ценообразования. Кроме того, он может удовлетворить самые взыскательные запросы и отгрузить материал в тот же день.

    Расчет падения напряжения

    Общеизвестно, что потребители электроэнергии должны платить за общее количество киловатт-часов, поставленных электроэнергетической компанией, измеренное соответствующим счетчиком мощности. Однако, поскольку ни один электрический проводник не является идеальным и даже самая качественная проводка имеет сопротивление, часть этого электричества теряется между измерителем мощности и точкой использования.

    Что такое падение напряжения?

    Одним из основных принципов электротехники является закон Ома, который гласит, что падение напряжения на проводнике или нагрузке эквивалентно произведению тока и сопротивления (V = I x R). Электрический ток определяется нагрузкой в ​​цепи, а сопротивление определяется физическими свойствами проводника.


    Получите профессиональный электротехнический проект для своего здания и избежите проблем с напряжением.


    Понятие падения напряжения используется для описания разницы между напряжением, подаваемым на источник, и напряжением, измеренным на нагрузке.Факторы, определяющие падение напряжения, приведены в следующей таблице:

    КОЭФФИЦИЕНТЫ ПАДЕНИЯ НАПРЯЖЕНИЯ

    ОПИСАНИЕ

    A. Материал проводника

    Некоторые материалы являются лучшими электрическими проводниками, чем другие. Например, медь более проводящая, чем алюминий.

    B. Диаметр жилы

    Более широкий проводник имеет лучшую проводимость, потому что больше материала для переноса электрического тока.

    C. Длина проводника

    Более длинные проводники имеют более высокое сопротивление, потому что ток должен проходить большее расстояние между источником и нагрузкой.

    D. Температура проводника

    Температура влияет на проводимость материалов. В зависимости от материала и фактической температуры проводимость может увеличиваться или уменьшаться при дальнейшем повышении температуры.

    E.Ток, проводимый проводником

    Ток прямо пропорционален падению напряжения. Если ток удваивается, а сопротивление остается неизменным, падение напряжения также удваивается.

    F. Соединения в цепи

    Соединение представляет собой разрыв материала проводника, и с этим связано контактное сопротивление. Неудовлетворительные соединения связаны с повышенным падением напряжения.

    Как можно контролировать падение напряжения?

    Поскольку идеального проводника не существует и все материалы обладают электрическим сопротивлением, полностью устранить падение напряжения невозможно.Однако есть много способов минимизировать его:

    1. Повышение эффективности системы
      При неизменной нагрузке повышение эффективности электрического оборудования снижает потребление энергии. Поскольку напряжение питания постоянно, повышенная эффективность приводит к меньшему току и снижению падения напряжения.
    2. Поиск и устранение неисправностей
      Некоторые электрические проблемы вызывают ненужное увеличение тока или сопротивления, что приводит к более высокому падению напряжения. Как только эти проблемы будут решены, падение напряжения вернется в норму.
    3. Корректировка сечения проводов
      Если проводники в цепи были выбраны неправильно, на них может наблюдаться значительное падение напряжения. При выборе проводов важно учитывать такие факторы, как ток полной нагрузки, температура окружающей среды и количество проводников в кабелепроводе.
    4. Централизованное электрическое распределение
      Если главный электрический вал и распределительные щиты расположены близко к центру здания, проводка должна проходить меньшие расстояния, чтобы охватить различные нагрузки.Такой тип компоновки сводит к минимуму падение напряжения. С другой стороны, когда электрический вал и панели расположены на одном конце здания, цепи должны пересекать всю конструкцию, чтобы достичь нагрузок на противоположной стороне.
    5. Сбалансированное распределение нагрузки
      В больших коммерческих зданиях обычно используются трехфазные цепи с тремя токоведущими проводниками, как следует из их названия. Если одна фаза слишком нагружена, она также будет испытывать больший ток и большее падение напряжения по сравнению с другими фазами.

    Это особые меры, которые могут быть применены для уменьшения падения напряжения. В общем, любая мера, которая обеспечивает любой из следующих эффектов, является жизнеспособной, если это разрешено Электрическим кодексом Нью-Йорка:

    • Уменьшение тока нагрузки
    • Увеличение диаметра жилы
    • Увеличение количества параллельных проводов
    • Уменьшение длины проводника
    • Понижение температуры проводника

    Допустимое падение напряжения в соответствии с NEC, издание 2011 г.

    Национальный электротехнический кодекс NFPA (NEC), который является основой Электротехнического кодекса Нью-Йорка, устанавливает два условия для допустимого падения напряжения в электрических установках:

    • Максимально допустимое напряжение в ответвленной цепи составляет 3 процента, измеренное между соответствующей электрической панелью и самой дальней розеткой, обеспечивающей питание, обогрев, освещение или любую комбинацию таких нагрузок.
    • Максимальное суммарное падение напряжения на главных фидерах и ответвленных цепях составляет 5 процентов, измеренное от служебного подключения до самой дальней розетки.

    Считается, что эти уровни падения напряжения обеспечивают разумную эффективность работы. Важно отметить, что при увеличении размеров проводников цепи для компенсации падения напряжения необходимо соответственно увеличить провод заземления оборудования.

    Как рассчитать падение напряжения

    Важно отметить, что формула падения напряжения меняется в зависимости от количества фаз в цепи (однофазные или трехфазные).В следующих уравнениях используются следующие переменные:

    • Z = полное сопротивление проводника (Ом на 1000 футов или Ом / км)
    • I = ток нагрузки (амперы)
    • L = длина (фут)
    ТИП УСТАНОВКИ ФОРМУЛА ПАДЕНИЯ НАПРЯЖЕНИЯ

    Однофазная система

    Трехфазная система

    В Падение = 2 x Z x I x L / 1000

    Падение В = 1,73 x Z x I X L / 1000

    Формулы делятся на 1000, поскольку стандартные значения импеданса предоставляются для каждых 1000 футов.Таким образом, они преобразуются в Ом на фут. В главе 9 NEC приведены свойства проводников, рассчитанные на номинальную температуру 75 ° C.

    Для демонстрации процедуры предположим, что по однофазной цепи на 120 В проходит ток 22 А, где полное сопротивление проводника составляет 1,29 Ом на 1000 футов, а длина цепи составляет 50 футов. Падение напряжения будет:

    • Падение напряжения = (2 x 1,29 Ом / kft x 22A x 50 футов) / 1000 = 2,84 В
    • Падение напряжения в процентах = 2,84 В / 120 В = 0.0237 = 2,37%

    Если имеется более одного проводника на фазу, приведенный выше расчет необходимо разделить на количество проводов на фазу, поскольку сопротивление уменьшается. Например, если в приведенном выше примере на каждую фазу приходится два проводника, сопротивление уменьшается вдвое, и падение напряжения будет 1,42 В (1,18%).

    Как выбрать размер провода?

    Процедура, описанная выше, может быть изменена для выбора сечения проводника в зависимости от допустимого падения напряжения. Предположим, что цепь соответствует следующим условиям:

    • Рабочее напряжение = 120 В
    • Конфигурация: однофазный
    • Ток = 25 А
    • Длина = 100 футов

    Формула падения напряжения может быть изменена следующим образом для расчета необходимого импеданса.

    • Падение напряжения = 2 x Z x I x L / 1000
    • Z = (1000 x падение напряжения) / (2 x I x L)

    Подставляя указанные выше значения в формулу, получаем следующий результат:

    • Допустимое падение напряжения = 120 В x 3% = 3,6 В
    • Z = (1000 x 3,6 В) / (2 x 25 A x 100 футов) = 0,72 Ом / кВт

    В соответствии с требованиями NEC, приведенными в таблице 8 главы 9, для удержания падения напряжения ниже 3% требуется сечение проводника AWG №6 (0,510 Ом / kft). Следующий размер — AWG # 8, но его сопротивление слишком велико (0.809 Ом / kft), а падение напряжения превысит 3%.

    Установка нескольких проводников в кабелепровод, кабель или кабельную коробку

    Таблицы NEC с 310.16 по 310.19 предоставляют допустимые значения силы тока максимум для трех проводов в кабелепроводе, кабеле или кабелепроводе. Когда количество проводников равно четырем или более, допустимая допустимая нагрузка снижается, как показано в следующей таблице:

    КОЛИЧЕСТВО ТОКОПРОВОДНИКОВ

    ЗНАЧЕНИЕ ПРОЦЕНТНОЙ МОЩНОСТИ

    4-6

    7-9

    10-20

    21-30

    31-40

    41 или более

    80%

    70%

    50%

    45%

    40%

    35%

    Проводники должны иметь достаточную допустимую силу тока для нагрузки в соответствии с таблицами 310.От 16 до 310,19, при этом также имеет падение напряжения ниже максимально допустимого значения 3%. Также обратите внимание, что номинальная допустимая нагрузка снижается, когда несколько проводов проложены вместе. Чтобы электрическая установка соответствовала нормам, необходимо проверить все три фактора.

    Сводка

    NEC рекомендует максимальное падение напряжения 5% на фидерах и ответвленных цепях и 3% только на ответвленных цепях. Считается, что такой уровень падения напряжения обеспечивает правильные условия для оптимальной работы оборудования.Обратите внимание, что максимально допустимый уровень падения напряжения — это не мера безопасности, а мера производительности.

    Расчет жилых помещений: оценка элементов электрической системы

    Оценщик спросил, какой метод использовать для расчета вольт-ампер (ВА) жилища. Он надеялся использовать результаты в качестве руководства для оценки элементов электрической системы и хотел применить стандартный метод. Ниже я объясню свою интерпретацию этого метода для определения VA и использования его в качестве инструмента оценки.

    Группировка грузов

    Стандартный расчет требует, чтобы нагрузки были разделены следующим образом:

    • Нагрузка 1: Общее освещение, розетки и небольшие электроприборы
    • Загрузка 2: Загрузки оборудования для приготовления пищи
    • Нагрузка 3: Нагрузки специального оборудования
    • Загрузка 4: Загрузка сушилки
    • Нагрузка 5: Нагревательная нагрузка
    • Нагрузка 6: Самый большой двигатель

    Общее освещение и розетки

    Таблица 220.12 в Национальном электротехническом кодексе считает жилое помещение занесенным в список из расчета 3 ВА на квадратный фут; поэтому общая световая нагрузка определяется путем умножения площади в квадратных футах.Например, 2800 квадратных футов умножить на 3 ВА — это 8400 ВА. Используйте эту сумму, чтобы определить количество розеток для освещения и розеток общего назначения. При установке 20-амперной схемы с питанием от 120 вольт, 8400 ВА, разделенные на 2400 ВА (20 А × 120 В = 2400 ВА), составляют 3,5, при округлении в большую сторону требуется четыре 20-амперных схемы. Пять 15-амперных цепей — это минимум, необходимый для 15-амперной схемы.

    Малые нагрузки бытовой техники

    Необходимо установить не менее двух контуров малых электроприборов на 210,52 (A) для розеток питания на кухне, в зале для завтраков, кладовой и столовой.Один нужен для прачечной по 210,52 (B). Цепи малых устройств рассчитаны на 1500 ВА каждая. Таким образом, к общей осветительной нагрузке добавляется 4500 ВА. Эти розетки не должны подключаться к цепям, питаемым от цепей общего или специального прибора.

    К этим нагрузкам может применяться коэффициент потребности, разрешенный в таблице 220.42. В зависимости от ВА, первые 3000 ВА можно рассчитать на 100 процентов, а оставшуюся ВА — на 35 процентов.

    Специальная загрузка прибора

    Направленные цепи обычно питают цепи специальных устройств, которые не подключены к цепям общего назначения или малым устройствам.К таким нагрузкам относятся водонагреватели, нагревательные блоки, плиты, кондиционеры, кухонное оборудование, двигатели и т. Д. Например, 10 кВт переносится на 10 000 ВА и используется в расчетах для определения общей нагрузки в ВА.

    Для фиксированных нагрузок бытовых приборов, таких как посудомоечные машины, сливы, водонагреватели, уплотнители и т. Д., Разрешается применять коэффициент потребления 75% к их общей ВА.

    Приборы, которые не учитываются при использовании этого коэффициента спроса, — это нагревательные блоки, блоки кондиционирования воздуха, сушилки или кухонное оборудование.Когда эти устройства удаляются из расчета, все остальные устройства считаются фиксированными и соответствуют требованиям 75%.

    Фактор спроса

    Как уже упоминалось, в современном дизайне постоянно используется термин «коэффициент спроса», то есть отношение максимальной нагрузки системы (или части системы) к подключенной нагрузке на систему (или часть системы). Всегда меньше 1.

    Применение факторов спроса

    НАГРУЗКА 1:

    Таблицы 220.12 и 220.42 могут применяться следующим образом:

    Освещение общего назначения и розеточные нагрузки — 2 800 кв. Футов × 3 ВА = 8 400 ВА

    Малая бытовая техника и нагрузка для стирки — 1500 ВА × 3 = 4500 ВА

    ОТВЕТ : 8 400 ВА + 4500 ВА = 12 900 ВА

    Применение факторов спроса

    Первые 3000 ВА × 100% = 3000 ВА

    Следующие 9 900 ВА × 35% = 3465 ВА

    ОТВЕТ : 3000 ВА + 3465 ВА = 6465 ВА

    НАГРУЗКА 2:

    Таблица 220.55, столбец B (65 процентов) может применяться следующим образом:

    Варочная панель на 8,500 ВА и духовой шкаф на 8000 ВА

    Применение факторов спроса

    ОТВЕТ : 8 500 ВА + 8 000 ВА × 65% = 10 725 ВА

    НАГРУЗКА 3:

    Раздел 220.53 (правило 75 процентов) может применяться следующим образом:

    Фиксированная нагрузка устройства 13 200 ВА состоит из водонагревателя, водяного насоса, сливного устройства, уплотнителя, посудомоечной машины, микроволновой печи и электродвигателя вентилятора.

    Применение факторов спроса

    ОТВЕТ: 13 200 ВА × 75% = 9 900 ВА

    НАГРУЗКА 4:

    Таблица 220.54 позволяет рассчитать осушитель на 5000 ВА на 5000 ВА.

    НАГРУЗКА 5:

    Раздел 220.60 допускает самый большой блок отопления на 10 000 ВА и кондиционер на 5 500 ВА при меньшей падающей нагрузке.

    НАГРУЗКА 6:

    Раздел 220.50 требует 25 процентов для самого большого двигателя (водяной насос 2600 ВА), чтобы добавить к расчету при 650 ВА (25% от 2600 ВА = 650 ВА).

    ОПРЕДЕЛЕНИЕ ИТОГО VA

    Добавьте VA, равное 6 465; 10,725; 9 900; 5000; 10,000; и 650 вместе, и получается 42 740 ВА. Общий ток 178 (42,740 А / 240 В = 178 А)

    Эту процедуру можно использовать для получения ВА для определения ампер для выбора сервисных элементов и помощи в оценке методов подключения и оборудования.

    Добавить комментарий

    Ваш адрес email не будет опубликован.