Как определить модуль зубчатого колеса: Что такое модуль зубчатого колеса? Как вычислить модуль зубчатого колеса

Содержание

Что такое модуль зубчатого колеса? Как вычислить модуль зубчатого колеса

Содержание

  1. История
  2. Модуль зубьев зубчатого колеса
  3. Что такое модуль зубчатого колеса
  4. Чему равен модуль зубчатого колеса?
  5. Для чего нужен модуль зубчатого колеса?
  6. Как определить параметры шестерни?
  7. Как найти модуль шестерни?
  8. Как найти делительный диаметр шестерни?
  9. Как найти модуль зуба?
  10. Какие бывают модули зубчатых колес?
  11. Цилиндрические зубчатые колёса
  12. Продольная линия зуба
  13. Прямозубые колёса
  14. Косозубые колёса
  15. Шевронные колеса
  16. Колёса с круговыми зубьями
  17. Винтовые шестерни
  18. Секторные колёса
  19. Зубчатые колёса с внешним и внутренним зацеплением
  20. Звездочка
  21. Реечная передача (кремальера)
  22. Коронные колёса
  23. Конические зубчатые колёса
  24. Зубчатые передачи
  25. Типы зубчатых передач
  26. Эвольвентное зацепление
  27. Форма зубьев
  28. Коррегирование зубчатого зацепления
  29. Зубчатые передачи с точно заданным межосевым расстоянием
  30. Зубчатые передачи с изменяемым межосевым расстоянием
  31. Расчетные формулы для зубчатых передач
  32. Основные параметры зубчатых цилиндрических передач
  33. Межосевые расстояния
  34. Межосевые расстояния для двухступенчатых несоосных редукторов общего назначения
  35. Коэффициент запаса прочности при работе зуба двумя сторонами
  36. Межосевые расстояния для трехступенчатых несоосных редукторов общего назначения
  37. Номинальные передаточные числа
  38. Почему шестерни часто выполняют заодно с валом?

История

Сама по себе идея механической передачи восходит к идее колеса. Применяя систему из двух колёс разного диаметра, можно не только передавать, но и преобразовывать движение. Если ведомым будет большее колесо, то на выходе мы потеряем в скорости, но зато крутящий момент этой передачи увеличится. Эта передача удобна там, где требуется «усилить движение», например, при подъеме тяжестей. Но сцепление между передаточными колесами с гладким ободом недостаточно жесткое, колёса проскальзывают. Поэтому вместо гладких колес начали использовать зубчатые.

В Древнем Египте для орошения земель уже использовались приводимые в действие быками устройства, состоявшие из деревянной зубчатой передачи и колеса с большим числом ковшей.

Вместо зубьев первоначально использовали деревянные цилиндрические или прямоугольные пальцы, которые устанавливали по краю деревянных ободьев.

Изготовленный в I веке до н.э. Антикитерский механизм состоял из десятков металлических зубчатых колес [4] .

Модуль зубьев зубчатого колеса

Зубчатая передача впервые была освоена человеком в глубокой древности. Имя изобретателя осталось скрыто во тьме веков. Первоначально зубчатые передачи имели по шесть зубьев — отсюда и пошло название «шестерня». За многие тысячелетия технического прогресса передача многократно усовершенствовалась, и сегодня они применяются практически в любом транспортном средстве от велосипеда до космического корабля и подводной лодки. Используются они также в любом станке и механизме, больше всего шестеренок используется в механических часах.

Что такое модуль зубчатого колеса

Современные шестерни далеко ушли от своих деревянных шестизубых предков, изготавливаемых механиками с помощью воображения и мерной веревочки. Конструкция передач намного усложнилась, тысячекратно возросли скорость вращения и усилия, передаваемые через такие передачи. В связи с этим усложнились и методы их конструирования. Каждую шестеренку характеризует несколько основных параметров

  • диаметр;
  • число зубьев;
  • шаг;
  • высота зубца;
  • и некоторые другие.

Одним из самых универсальных характеристик является модуль зубчатого колеса. Существует для подвида — основной и торцевой.

В большинстве расчетов используется основной. Он рассчитывается применительно к делительной окружности и служит одним из важнейших параметров.

Для расчета этого параметра применяют следующие формулы:

Параметры зубчатых колес

Модуль зубчатого колеса можно рассчитать и следующим образом:

где h — высота зубца.

где De — диаметр окружности выступов,а z — число зубьев.

Чему равен модуль зубчатого колеса?

Модуль зубчатого колеса Модуль зубчатого колеса, геометрический параметр зубчатых колёс. Для прямозубых цилиндрических зубчатых колёс модуль m равен отношению диаметра делительной окружности dд к числу зубьев z или отношению шага t по делительной окружности к числу: m = dд/z = ts/p.

Для чего нужен модуль зубчатого колеса?

Что же такое модуль шестерни? это универсальная характеристика зубчатого колеса, связывающая воедино такие его важнейшие параметры, как шаг, высота зуба, число зубов и диаметр окружности выступов. Эта характеристика участвует во всех расчетах, связанных с конструированием систем передач.

Как определить параметры шестерни?

Чтобы определить параметры прямозубой шестеренки, потребуется выполнить некоторые предварительные вычисления. Длина начальной окружности равна π×D, где D — ее диаметр. Если разделить шаг на число пи, мы получим коэффициент, постоянный для данной детали зубчатой передачи. Он и называется модулем зацепления m.

Как найти модуль шестерни?

Как определить модуль косозубой шестерни.

Измеряем диаметр:

  1. Диаметр окружности выступов (De) равен 28,6 мм.
  2. Считаем количество зубьев. Z=25.
  3. Делительный диаметр (De) делим на количество зубьев 25 +2. Равно 28,6 разделить на 27=1,05925925925926.
  4. Округляем до ближнего модуля. Получается модуль 1.

Как найти делительный диаметр шестерни?

Диаметр делительной окружности d является одним из основных параметров, по которому производят расчет зубчатого колеса: d = m × z, где z – число зубьев; m – модуль.

Как найти модуль зуба?

Модуль = De/Z+2. То есть диаметр окружности выступов разделить на количество зубьев плюс 2. Измеряем диаметр: Диаметр окружности выступов (De) равен 28,6 мм.

Какие бывают модули зубчатых колес?

Модуль — это линейная величина, в π раз меньшая шага зубьев p (окружного pt, осевого рx, нормального рn и других шагов) эвольвентного зубчатого колеса m = р/π. Соответственно различают модули: окружной mt, осевой mx, нормальный mn и др.

Цилиндрические зубчатые колёса

Параметры зубчатого колеса

Профиль зубьев колёс как правило имеет эвольвентную боковую форму. Однако существуют передачи с круговой формой профиля зубьев (передача Новикова с одной и двумя линиями зацепления) и с циклоидальной. Кроме того, в храповых механизмах применяются зубчатые колёса с несимметричным профилем зуба.

Параметры эвольвентного зубчатого колеса:

  • m — модуль колеса. Модулем зацепления называется линейная величина в π раз меньшая окружного шага P или отношение шага по любой концентрической окружности зубчатого колеса к π, то есть модуль — число миллиметров диаметра делительной окружности приходящееся на один зуб.
    Тёмное и светлое колёсо имеют одинаковый модуль. Самый главный параметр, стандартизирован, определяется из прочностного расчёта зубчатых передач. Чем больше нагружена передача, тем выше значение модуля. Через него выражаются все остальные параметры. Модуль измеряется в миллиметрах, вычисляется по формуле:

    • z — число зубьев колеса
    • p — шаг зубьев (отмечен сиреневым цветом)
    • d — диаметр делительной окружности (отмечена жёлтым цветом)
    • da — диаметр окружности вершин тёмного колеса (отмечена красным цветом)
    • db — диаметр основной окружности — эвольвенты (отмечена зелёным цветом)
    • df — диаметр окружности впадин тёмного колеса (отмечена синим цветом)
    • haP+hfP — высота зуба тёмного колеса, x+haP+hfP — высота зуба светлого колеса

    Для целей стандартизации, удобства изготовления и замены зубчатых колёс в машиностроении приняты определённые значения модуля зубчатого колеса m, представляющие собой ряд из чисел на выбор: 0,050,060,080,10,120,150,20,250,30,40,50,60,811,251,522,534568101216253240506080100.

    Зубчатые колеса могут быть изготовлены с различным смещением режущей рейки: без смещения (нулевое зубчатое колесо или «с нулевыми зубцами»), с положительным смещением (смещение в сторону увеличения материала), с отрицательным смещением (смещение в сторону уменьшения материала).

    Высота головки зуба — haP и высота ножки зуба — hfP — в случае нулевого зубчатого колеса соотносятся с модулем m следующим образом: haP = m; hfP = 1,25 m, то есть:

    Отсюда получаем, что высота зуба h (на рисунке не обозначена):

    Вообще из рисунка ясно, что диаметр окружности вершин da больше диаметра окружности впадин df на двойную высоту зуба h. Исходя из всего этого, если требуется практически определить модуль m зубчатого колеса, не имея нужных данных для вычислений (кроме числа зубьев 

    z), то необходимо точно измерить его наружный диаметр da и результат разделить на число зубьев z плюс 2:

Продольная линия зуба

Цилиндрические зубчатые колеса классифицируются в зависимости от формы продольной линии зуба на:


ПРЯМОЗУБЫЕ

КОСОЗУБЫЕ

ШЕВРОННЫЕ

ЗУБЬЯ НОВИКОВА
Прямозубые колёса

Зубья расположены в радиальных плоскостях, а линия контакта зубьев обеих шестерён параллельна оси вращения. При этом оси обеих шестерён также должны располагаться строго параллельно. Прямозубые колеса имеют наименьшую стоимость, их работа имеет наивысший КПД, но, в то же время, предельный передаваемый крутящий момент таких колес ниже, чем косозубых и шевронных.

Косозубые колёса

Зубья располагаются под углом к оси вращения, а по форме образуют часть винтовой линии. Зацепление таких колёс происходит плавнее, чем у прямозубых, и с меньшим шумом. Также увеличена площадь контакта, что при тех же размерах с прямозубыми позволяет передавать больший крутящий момент. При работе косозубой пары зацепления возникает механическая осевая сила, направленная вдоль оси вращения каждого колеса и стремящаяся раздвинуть оба колеса в противоположные стороны от плоскости контакта, что обязательно требует применения упорных подшипников. Увеличенная площадь трения зубьев косозубого зацепления вызывает дополнительные потери мощности на нагрев. В целом, косозубые колёса применяются в механизмах, требующих передачи большого крутящего момента на высоких скоростях, либо имеющих жёсткие ограничения по шумности.

Шевронные колеса

Изобретение шевронного профиля зуба часто приписывают Андре Ситроену, однако на самом деле он лишь выкупил патент на более совершенную схему, которую придумал польский механик-самоучка [6] . Зубья таких колёс изготавливаются в виде буквы «V» (либо они получаются стыковкой двух косозубых колёс со встречным расположением зубьев). Шевронные колёса решают проблему осевой силы. Осевые силы обеих половин такого колеса взаимно компенсируются, поэтому отпадает необходимость в установке валов на упорные подшипники. При этом передача является самоустанавливающейся в осевом направлении, по причине чего в редукторах с шевронными колесами один из валов устанавливают на плавающих опорах (как правило — на подшипниках с короткими цилиндрическими роликами).

Колёса с круговыми зубьями

Передача на основе колёс с круговыми зубьями (Передача Новикова) имеет ещё более высокие ходовые качества, чем косозубые — высокую нагрузочную способность зацепления, высокую плавность и бесшумность работы. Однако они ограничены в применении сниженными, при тех же условиях, КПД и ресурсом работы, такие колёса заметно сложнее в производстве. Линия зубьев у них представляет собой окружность радиуса, подбираемого под определённые требования. Контакт поверхностей зубьев происходит в одной точке на линии зацепления, расположенной параллельно осям колёс.

Винтовые шестерни

Шестерни имеют форму цилиндра с расположенными на нем зубьями по винтовой линии. Эти шестеренки используются на непересекающихся валах, которые располагаются перпендикулярно друг друга, угол между ними 90°.

Секторные колёса

Секторное колесо представляет собой часть обычного цилиндрического колеса с зубьями любого типа. Такие колёса применяются в тех случаях, когда не требуется вращение звена на полный оборот, и поэтому можно сэкономить на его габаритах.

Зубчатые колёса с внешним и внутренним зацеплением


Пара зубчатых колёс с ВНЕШНИМ зацеплением.
Передаточное число — 3 (42/14).
Вращение колёс происходит противонаправлено.

Пара зубчатых колёс с ВНУТРЕННИМ зацеплением.
Передаточное число — 3 (42/14).
Вращение колёс происходит сонаправленно.

Звездочка

Шестерня-звезда – это основная деталь цепной передачи, которая используется совместно с гибким элементом – цепью для передачи механической энергии.

Реечная передача (кремальера)

Реечная передача (кремальера)

Реечная передача (кремальера) применяется в тех случаях, когда необходимо преобразовать вращательное движение в поступательное и обратно. Состоит из обычной прямозубой шестерни и зубчатой планки (рейки). Работа такого механизма показана на рисунке.

Зубчатая рейка представляет собой часть колеса с бесконечным радиусом делительной окружности. Поэтому делительная окружность, а также окружности вершин и впадин превращаются в параллельные прямые линии. Эвольвентный профиль рейки также принимает прямолинейное очертание. Такое свойство эвольвенты оказалось наиболее ценным при изготовлении зубчатых колёс.

Также реечная передача применяется в зубчатой железной дороге.

Цевочная передачаКоронная шестерня

Коронные колёса

Коронное колесо — особый вид колёс, зубья которых располагаются на боковой поверхности. Такое колесо, как правило, стыкуется с обычным прямозубым, либо с барабаном из стержней (цевочное колесо), как в башенных часах. Передачи с цевочным колесом — одни из самых ранних и просты в изготовлении, но характеризуются очень большими потерями на трение.

Конические зубчатые колёса

Главная передача в заднеприводном автомобиле

Во многих машинах осуществление требуемых движений механизма связано с необходимостью передать вращение с одного вала на другой при условии, что оси этих валов пересекаются. В таких случаях применяют коническую зубчатую передачу. Различают виды конических колёс, отличающихся по форме линий зубьев: с прямыми, тангенциальными, круговыми и криволинейными зубьями. Конические колёса с круговым зубом, например, применяются в автомобильных главных передачах коробки передач.

Зубчатые передачи


Зубчатые передачи — это механизм или часть механизма механической передачи, в состав которого входят зубчатые колёса. Зубчатые передачи служат для того, чтобы непрерывно передавать силу и крутящий момент двух валов, расположение которых определяет тип имеющейся зубчатой передачи. Вот о том, что представляют зубчатые передачи, мы и поговорим в этой статье.

Типы зубчатых передач

Эвольвентное зацепление

Все прямозубые цилиндрические передачи с одинаковым модулем зацепления могут из­готавливаться на одном оборудовании, не­зависимо от количества зубьев и размеров головки.

Модули зацепления цилиндрических и ко­нических зубчатых колес стандартизированы по DIN 780; модули зацепления червячных пе­редач по DIN 780; модули шлицевых соедине­ний по DIN 5480; модули зубчатого зацепле­ния нормального профиля для шестерен со спиральными зубьями по DIN 780.

Форма зубьев


Для прямозубых цилиндрических передач форма зубьев определяется DIN 867, DIN 58400; конических передач — DIN 3971; чер­вячных передач — DIN 3975; шлицевых соеди­нений — DIN 5480 (см. рис. «Прямые и косые зубья (наружное зацепление)» ).

Форма зубьев гипоидных передач регла­ментируется стандартом DIN 867. В допол­нение к стандартным углам зацепления (20° для зубчатых передач и 30° для шлицевых соединений) применяются также и углы заце­пления 12°, 14°30 15°, 17°30′| 22°30′ и 25°.

Коррегирование зубчатого зацепления


Коррегирование зубчатого зацепления (из­менение высоты головки зуба (см. рис. «Коррегирование зубчатого зацепления прямозубой цилиндрической передачи (циклоидное зацепление)» ) применяется для предотвращения подреза­ния у шестерен с малым количеством зубьев. Оно позволяет увеличить прочность ножки зуба и точно обеспечить межосевое расстояние.

Зубчатые передачи с точно заданным межосевым расстоянием

У зубчатых пар с точно заданным межосевым расстоянием изменение высоты головки зуба для шестерни и зубчатого колеса произво­дится на одинаковую величину, но в противо­положных направлениях, что позволяет сохранить межосевое расстояние неизменным. Такое решение применяется в гипоидных и косозубых передачах.

Зубчатые передачи с изменяемым межосевым расстоянием

Изменение высоты головки зуба для ше­стерни и зубчатого колеса производится независимо друг от друга, поэтому межосе­вое расстояние передачи может изменяться. Допускаемые отклонения линейных разме­ров зубчатых передач регламентированы. Для прямозубых цилиндрических передач — DIN 3960, DIN 58405; для конических передач — DIN 3971; червячных передач — DIN 3975.

Подставляя jη = 0 в приведенные ниже формулы, рассчитывают параметры за­цепления без зазора между зубьями. Для определения зазора между зубьями допу­скаемые отклонения толщины зубьев и зоны их зацепления принимают в соответствии со стандартами DIN 3967 и DIN 58405 в за­висимости от требуемой степени точности зубчатой передачи.

Следует отметить, что не обязательно стремиться к нулевому за­зору между зубьями. Для компенсации имею­щихся отклонений размеров зубьев и сборки шестерен достаточно иметь минимальный зазор, который, кроме того, предотвращает возможность заклинивания зубчатых колес.

Допускаемые отклонения других расчетных параметров (зазор между ножками двух смежных зубьев, межцентровое расстояние) приведены в стандартах DIN 3963, DIN 58405, DIN 3962 Т2, DIN 3967, DIN 3964.

Расчетные формулы для зубчатых передач

Основные параметры зубчатых цилиндрических передач

Стандарт распространяется на цилиндрические передачи внешнего зацепления для редукторов и ускорителей, в том числе и комбинированных (коническо-цилиндрических, цилиндро-червячных и др.), выполняемых в виде самостоятельных агрегатов. Стандарт не распространяется на передачи редукторов специального назначения и специальной конструкции Для встроенных передач стандарт является рекомендуемым

Межосевые расстояния

1 ряд40506380100125160200250315400
2 ряд140180225280355
1 ряд50063080010001250160020002500
2 ряд4505607109001120140018002240

1-й ряд следует предпочитать 2-му

Межосевые расстояния для двухступенчатых несоосных редукторов общего назначения
Быстроходная ступень40506380100125140160180200225250280315
Тихоходная ступень6380100125160200225250280315355400450500
Быстроходная ступень35540045050056063071080090010001120125014001600
Тихоходная ступень560630710800900100011201250140016001800200022402500

Коэффициент запаса прочности при работе зуба двумя сторонами

Например: зубья реверсивных передач или зубья сателлитов в планетарных передачах

Материал колес и термо- обработкаОтливки стальные и чугунные без термо- обработкиОтливки стальные и чугунные с термо- обработкойПоковки стальные нормали- зованные или улучшенныеПоковки и отливки стальные с поверх- ностной закалкой (сердцевина вязкая)Стальные, нормали- зованные или улучшенные, а также с поверх- ностной закалкойСтальные с объемной закалкойСтальные, подверг- нутые цементации, азоти- рованию, циани- рованию и др.
Чугунные и пласт- массовые колеса
Коэфф.1,91,71,52,21,4 — 1,61,81,21 — 1,2
Межосевые расстояния для трехступенчатых несоосных редукторов общего назначения
Быстроходная ступень40506380100125140160180200
Промежуточная ступень6380100125160200225250280315
Тихоходная ступень100125160200250315355400450500
Быстроходная ступень225250280315355
400
450500560630
Промежуточная ступень3554004505005606307108009001000
Тихоходная ступень56063071080090010001120125014001600

Номинальные передаточные числа

1 ряд1,01,251,62,02,53,15
2 ряд1,121,41,82,242,8
1 ряд4,05,06,38,01012,5
2 ряд3,554,55,67,19,011,2

1-й ряд следует предпочитать 2-му Фактические значения передаточных чисел не должны отличаться от номинальных более чем на 2,5% при номинальном меньше 4,5 и на 4% при номинальном больше 4,5

Коэффициент ширины зубчатых колес (отношение ширины зубчатого колеса к межосевому расстоянию) должен соответствовать: 0,100; 0,125; 0,160; 0,200; 0,315; 0,400; 0,500; 0,630; 0,800; 1,0; 1,25

Численные значения ширины зубчатых колес округляются до ближайшего числа из ряда Ra20 по ГОСТу 6636.

При различной ширине сопряженных зубчатых колес значение коэффициента ширины зубчатых колес относится к более узкому из них.

Почему шестерни часто выполняют заодно с валом?

Несмотря на это, в редукторах шестерню часто выполняют заодно с валом и даже при толщине, значительно превышающей указанные нормы. Это объясняется большей жесткостью и прочностью, а также технологичностью вала-шестерни, что в конечном итоге оправдывает ее стоимость.

Источники

  • https://ru.wikipedia.org/wiki/%D0%97%D1%83%D0%B1%D1%87%D0%B0%D1%82%D0%BE%D0%B5_%D0%BA%D0%BE%D0%BB%D0%B5%D1%81%D0%BE
  • https://doctordent.su/pulpit/kak-opredelit-modul-zuba-shesterni-po-diametru.html
  • https://novoe-info.ru/chto-takoe-modul-zubchatogo-kolesa/
  • https://novoe-info.ru/kak-nayti-modul-zubchatogo-kolesa/
  • https://morflot.su/kak-vychislit-modul-zubchatogo-kolesa/
  • https://wiki2.org/ru/%D0%97%D1%83%D0%B1%D1%87%D0%B0%D1%82%D0%BE%D0%B5_%D0%BA%D0%BE%D0%BB%D0%B5%D1%81%D0%BE
  • https://nzmetallspb. ru/prochee/modul-zubev-zubchatogo-kolesa-raschet-standartnye-opredelenie.html
  • https://armatool.ru/modul-zubev-zubcatogo-kolesa-rascet-standartnye-opredelenie/

Модуль зубьев зубчатого колеса: расчет, стандартные, определение

Зубчатая передача впервые была освоена человеком в глубокой древности. Имя изобретателя осталось скрыто во тьме веков. Первоначально зубчатые передачи имели по шесть зубьев — отсюда и пошло название «шестерня».

За многие тысячелетия технического прогресса передача многократно усовершенствовалась, и сегодня они применяются практически в любом транспортном средстве от велосипеда до космического корабля и подводной лодки. Используются они также в любом станке и механизме, больше всего шестеренок используется в механических часах.

Что такое модуль зубчатого колеса

Современные шестерни далеко ушли от своих деревянных шестизубых предков, изготавливаемых механиками с помощью воображения и мерной веревочки. Конструкция передач намного усложнилась, тысячекратно возросли скорость вращения и усилия, передаваемые через такие передачи. В связи с этим усложнились и методы их конструирования. Каждую шестеренку характеризует несколько основных параметров

  • диаметр;
  • число зубьев;
  • шаг;
  • высота зубца;
  • и некоторые другие.

Одним из самых универсальных характеристик является модуль зубчатого колеса. Существует для подвида — основной и торцевой.

Скачать ГОСТ 9563-60

В большинстве расчетов используется основной. Он рассчитывается применительно к делительной окружности и служит одним из важнейших параметров. Для расчета этого параметра применяют следующие формулы:

m=t/π,

где t — шаг. Модуль зубчатого колеса можно рассчитать и следующим образом:

m=h/2,25,

где h — высота зубца. И, наконец,

m=De/(z+2),

где De — диаметр окружности выступов,а z — число зубьев.

Что же такое модуль шестерни?

это универсальная характеристика зубчатого колеса, связывающая воедино такие его важнейшие параметры, как шаг, высота зуба, число зубов и диаметр окружности выступов. Эта характеристика участвует во всех расчетах, связанных с конструированием систем передач.

Формула расчета параметров прямозубой передачи

Чтобы определить параметры прямозубой шестеренки, потребуется выполнить некоторые предварительные вычисления. Длина начальной окружности равна π×D, где D — ее диаметр.Шаг зацепления t – это расстояние между смежными зубами, измеренное по начальной окружности. Если это расстояние умножить на число зубов z, то мы должны получить ее длину:

π×D=z,

проведя преобразование, получим:

D=(t /π)×z

Если разделить шаг на число пи, мы получим коэффициент, постоянный для данной детали зубчатой передачи. Он и называется модулем зацепления m.

t/π=m,

размерность модуля шестерни — миллиметры. Если подставить его в предыдущее выражение, то получится:

В=m×z;

выполнив преобразование, находим:

m=D / z.

Отсюда вытекает физический смысл модуля зацепления: он представляет собой длину дуги начальной окружности, соответствующей одному зубцу колеса. Диаметр окружности выступов De получается равным

De=d+2× h’,

где h’- высота головки. Высоту головки приравнивают к m:

 h’=m.

Проведя математические преобразования с подстановкой, получим:

De=m×z+2m = m(z+2),

откуда вытекает:

m=De/(z+2).

Диаметр окружности впадин Di соответствует De за вычетом двух высот основания зубца:

Di=D-2h“,

где h“- высота ножки зубца. Для колес цилиндрического типа h“ приравнивают к значению в 1,25m:

h’ = 1,25m.Выполнив подстановку в правой части равенства, имеем:

Di = m×z-2×1,25m = m×z-2,5m;

что соответствует формуле:

Di = m(z-2,5m).

Полная высота:

h = h’+h“,

и если выполнить подстановку, то получим:

h = 1m+1,25m=2,25m.

Иначе говоря, головка и ножка зубца относятся друг к другу по высоте как 1:1,25. Следующий важный размер, толщину зубца s принимают приблизительно равной:

  • для отлитых зубцов: 1,53m:
  • для выполненных путем фрезерования-1,57m, или 0,5×t

Поскольку шаг t приравнивается к суммарной толщине зубца s и впадины sв, получаем формулы для ширины впадины

  • для отлитых зубцов: sв=πm-1,53m=1,61m:
  • для выполненных путем фрезерования- sв= πm-1,57m = 1,57m

Характеристики конструкции оставшейся части зубчатой детали определяются следующими факторами:

  • усилия, прикладываемые к детали при эксплуатации;
  • конфигурация деталей, взаимодействующих с ней.

Детальные методики исчисления этих параметров приводятся в таких ВУЗовских курсах, как «Детали машин» и других. Модуль шестерни широко используется и в них как один из основных параметров.

Для отображения шестеренок методами инженерной графики используются упрощенные формулы. В инженерных справочниках и государственных стандартов можно найти значения характеристик, рассчитанные для типовых размеров зубчатых колес.

Исходные данные и замеры

На практике перед инженерами часто встает задача определения модуля реально существующей шестерни для ее ремонта или замены. При этом случается и так, что конструкторской документации на эту деталь, как и на весь механизм, в который она входит, обнаружить не удается. Самый простой метод — метод обкатки. Берут шестерню, для которой характеристики известны. Вставляют ее в зубья тестируемой детали и пробуют обкатать вокруг. Если пара вошла в зацепление — значит их шаг совпадает. Если нет — продолжают подбор. Для косозубой выбирают подходящую по шагу фрезу.

Такой эмпирический метод неплохо срабатывает для зубчатых колес малых размеров. Для крупных, весящих десятки, а то и сотни килограмм, такой способ физически нереализуем.

Результаты расчетов

Для более крупных потребуются измерения и вычисления. Как известно, модуль равен диаметру окружности выступов, отнесенному к числу зубов плюс два:

m=De/(z+2)

Последовательность действий следующая:

  • измерить диаметр штангенциркулем;
  • сосчитать зубцы;
  • разделить диаметр на z+2;
  • округлить результат до ближайшего целого числа.

Данный метод подходит как для прямозубых колес, так и для косозубых.

Расчет параметров колеса и шестерни косозубой передачи

Расчетные формулы для важнейших характеристик шестерни косозубой передачи совпадают с формулами для прямозубой. Существенные различия возникают лишь при прочностных расчетах.

Калькулятор размеров шестерни | Эвольвент Дизайн

Калькулятор шага зубчатого колеса: определение диаметра шага, внешнего диаметра заготовки зубчатого колеса (НД) и диаметра основания

Рассчитайте основные размеры для внешнего цилиндрического зубчатого колеса. Введите количество зубьев шестерни, шаг (или модуль) и угол давления, чтобы рассчитать диаметр делителя, диаметр основания и внешний диаметр. При этом также определяются размеры зуба: придаток, нижняя часть, рабочая глубина и общая глубина.

единицы мм (модуль) 1/дюйм (диаметральный шаг)

Тип Внешний Внутренний

Количество зубьев*

DP/модуль*Модуль в миллиметрах, DP в 1/дюйм

Угол давления*Обычные значения: 20, 14,5, 25

Количество знаков после запятой 4876543210

Коэффициент смещения производственного профиля по умолчанию равен 0. Положительные значения приводят к более толстым зубьям, как если бы ваш режущий инструмент не прорезал на полную глубину, а отрицательные значения приводят к более тонким зубьям. Ищете 3D-печать, фрезерование или лазерную резку цилиндрического зубчатого колеса? Используйте наш бесплатный генератор зубчатых колес для создания внутренних или внешних цилиндрических зубчатых колес и наборов реечных шестерен — все это с помощью готовых к загрузке файлов .DXF или .SVG.


Найдите, сравните и купите зубчатое колесо
Режущие инструменты, необходимые для фрезерования зубчатых колес

Эвольвентные фрезы

Калькулятор заготовок шестерен

Мы создали этот калькулятор прямозубых зубчатых колес, чтобы убедиться, что у нас есть правильные размеры для изготовления заготовок зубчатых колес в нашем цеху. Правильная заготовка шестерни является важной частью процесса изготовления шестерни и помогает гарантировать, что ваша шестерня находится в пределах допуска

Калькулятор внешнего диаметра шестерни

Вычисление наружного диаметра или наружного диаметра вашей шестерни важно для того, чтобы убедиться, что вы правильно изготовили шестерню и что она будет правильно зацепляться со своей парой. Многие процессы изготовления зубчатых колес (включая зубофрезерование, фрезерование и формообразование) зависят от точного касания детали оператором.

Во время касания оператор медленно вводит режущий инструмент в заготовку зубчатого колеса до тех пор, пока он не начнет касаться, затем набирается полная глубина относительно приземления. Если заготовка зубчатого колеса имеет неправильный размер, касание произойдет в неправильном положении, и рез будет либо слишком мелким, либо слишком глубоким

Калькулятор диаметра шага шестерни

Рассчитать диаметр шага шестерни можно путем деления числа зубьев шестерни на ее диаметральный шаг. Для имперских шестерен диаметральный шаг обычно представляет собой целое число в диапазоне от 3 (для очень больших шестерен) до 64 (для очень маленьких шестерен).

Как рассчитать делительный диаметр зубчатого колеса?

Короче говоря, разделите количество зубьев шестерни на диаметральный шаг шестерни, чтобы вычислить ее делительный диаметр. Единицами диаметрального шага являются 1/дюйм, поэтому единицы диаметра шага будут в дюймах.

Для быстрого приближения диаметр делителя находится примерно в центре зуба шестерни. Зубчатые колеса имеют приблизительно одинаковую длину от делительного диаметра до наружного диаметра (дополнение) и от делительного диаметра до диаметра основания (дедендум).

Калькулятор модуля редуктора

Расчет модуля зубчатого колеса можно произвести путем деления диаметра шага зубчатого колеса на количество зубьев на зубчатом колесе. Модуль зубчатого колеса почти обратно пропорционален его диаметральному шагу, однако модуль выражается в миллиметрах, а диаметральный шаг составляет 1/дюйм.

Как рассчитать модуль зубчатого колеса?

Разделите средний диаметр (в миллиметрах!) шестерни на количество ее зубьев, чтобы получить модуль шестерни. В качестве альтернативы, 25,4, деленное на диаметральный шаг шестерни, также даст вам ее модуль.

Как проверить размеры шестерни?

После нарезания зубьев шестерни необходимо измерить и осмотреть шестерни, чтобы убедиться, что они идеально подходят для своего применения. Используя Калькулятор измерения по штифтам, вы можете убедиться, что ваше снаряжение имеет правильный размер с помощью штифтов или проводов.

Калькулятор размера шестерни

› Параметры входной шестерни

› Размеры выходной шестерни

› Готов сделать заготовку для шестерни!

Используйте стрелки влево/вправо для навигации по слайд-шоу или проведите пальцем влево/вправо при использовании мобильного устройства

Gear Module | Производитель зубчатых колес KHK

  • ВЕРШИНА
  • >
  • org/ListItem»> Модуль шестерни

Модуль (м) — это единица размера зуба шестерни, определяемая ISO.
Шестерни будут зацепляться друг с другом только в том случае, если они имеют зубья одного и того же модуля.

Изображение 1. Значение модуля правильно зацепленной пары шестерен одинаковое
(На изображении показана пара шестерен с модулем 2)

Шаг (p) представляет собой расстояние между зубьями, и поскольку больший шаг означает больший размер зуба, а меньший шаг означает меньший размер зуба, шаг можно использовать для представления размера зуба.
Делительная окружность шестерни соответствует внешней окружности фрикционного колеса (шестерни можно рассматривать как фрикционные колеса с прикрепленными зубьями) и является эталонной окружностью для определения шага зубьев шестерни.

Длина окружности делительной окружности (πd) равна ее диаметру (диаметр делительной окружности = d), умноженному на число пи π. Шаг получается путем деления окружности делительной окружности на количество зубьев (z).

р = πd / z

Однако этот шаг включает в себя пи, π (3,1415 ….), что усложняет расчет.
Таким образом, шаг делится на π (без π), чтобы получить d/z, который называется модулем и используется в качестве единицы для выражения размера зуба.

м = д / г

Поскольку единицей диаметра делительной окружности является мм, единица модуля, полученная путем деления диаметра делительной окружности на количество зубьев, также равна мм, но на практике модули часто используются только с номером после символа m, например как m1, m2 или m4 вместо добавления мм к модулю.

Как и в случае с шагом, чем больше значение модуля, тем больше размер зуба.

Изображение 2. Сравнение размеров зубов модуля 0,8 (слева) и зубов модуля 2 (справа)

Стандарт JIS определяет стандартные значения модуля (таблица 1) для прямозубых и косозубых зубчатых колес общего и тяжелого машиностроения и рекомендует максимально использовать ряд I и максимально избегать модуля 6. 5.

Таблица 1 — Стандартные значения модуля (ед. мм)

Как упоминалось выше, ISO определяет модуль как единицу для выражения размера зубьев шестерни, но на практике DP (диаметральный шаг) часто используется в Соединенных Штатах и ​​​​других странах, которые используют дюйм в качестве единицы длины, и иногда также используется круговой шаг (CP).
(Сделав этот круговой шаг целым числом, легко сделать расстояние подачи в механизме подачи целым числом)

В таблице 2 сравниваются эквивалентные значения модуля (м), кругового шага (CP) и диаметрального шага (DP).

Модуль
м
Шаг
CP
Диаметральный шаг
DP
0,39688 1.24682 64
0,5 1.57080 50,8
0,52917 1,66243 48
0,6 1,88496 42.33333
0,79375 2,49364 32
0,79577 2,5 31,91858
0,8 2,51327 31,75
1 3. 14159 25,4
1.05833 3.32485 24
1,25 3,92699 20,32
1.27000 3,98982 20
1,5 4,71239 16.93333
1,59155 5 15,95929
1.58750 4,98728 16
2 6.28319 12,70
2.11667 6,64970 12
2,5 7,85398 10,16
2,54000 7,97965 10
3 9.42478 8.46667
3.17500 9,97456 8
3.18310 10 7,97965
4 12,56637 6,35
4.23333 13.29941 6
4,77465 15 5.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *