Как подключить электродвигатель треугольником: Звезда или треугольник. Оптимальное подключение асинхронного электродвигателя | RuAut

Содержание

Звезда или треугольник. Оптимальное подключение асинхронного электродвигателя | RuAut

Двигатели асинхронного типа имеют целый набор безусловных достоинств. Среди плюсов асинхронных двигателей в первую очередь хочется назвать высокую производительность и надежность их эксплуатации, совсем небольшую стоимость и неприхотливость ремонта и обслуживания двигателя, а также способность переносить достаточно высокие перегрузки механического типа. Все эти достоинства, которыми обладают асинхронные двигатели, обусловлена тем, что данный тип двигателей имеет очень простую конструкцию. Но, не смотря на большое число достоинств, асинхронным двигателям присущи и их определенные отрицательные моменты.

В практической работе принято использовать два основных способа подключения трёхфазных электродвигателей к электросети. Эти способы подключения носят названия: «подключение методом звезды» и «подключение методом треугольника».

Когда выполняется соединение трёхфазного электродвигателя по типу подключения «звезда», тогда соединение концов обмоток статора электродвигателя происходит в одной точке. При этом трехфазное напряжение подают на начала обмоток. Ниже, на рисунке 1, наглядно проиллюстрирована схема подключения асинхронного двигателя «звездой».

Когда выполняется соединение трёхфазного электродвигателя по типу подключения «треугольник», тогда обмотки статора электродвигателя присоединяются последовательно друг за другом. При этом начало последующей обмотки соединяется с концом предыдущей обмотки и так далее. Ниже, на рисунке 2, наглядно проиллюстрирована схема подключения асинхронного двигателя «треугольником».



Если не вдаваться в теоретические и технические основы электротехники, то можно принять на веру тот факт, что работа тех электродвигателей, у которых обмотки подключены по схеме «звезда», является более мягкой и плавной, чем у электродвигателей, обмотки которых соединены по схеме «треугольник». Но тут же стоит обратить внимание на ту особенность, что электродвигатели, обмотки которых подключены по схеме «звезда», не способны развить полную мощность, заявленную в паспортных характеристиках. В том случае, если соединение обмоток выполнено по схеме «треугольник», то электродвигатель работает на максимальную мощность, которая заявлена в техническом паспорте, но при этом имеют место быть очень высокие значения пусковых токов. Если произвести сравнение по мощности, то электродвигатели, чьи обмотки будут соединены по схеме «треугольник», способны выдавать мощность в полтора раза выше, чем те электродвигатели, обмотки которых подключены по схеме «звезда».

Основываясь на всем вышеописанном, для того, чтобы снизить токи при запуске, целесообразно применять подключение обмоток по комбинированной схеме «треугольник-звезда». Особенно такой тип подключения актуален для электродвигателей, обладающих большей мощностью. Таким образом, в связи с соединением по схеме «треугольник- звезда» изначально запуск выполняется по схеме «звезда», а после того, как электродвигатель «набрал обороты», выполняется переключение в автоматическом режиме по схеме «треугольник».

Схема управления электродвигателем представлена на рисунке 3.


Рис. 3 Схема управления 

Еще один вариант схемы управления электродвигателем заключается в следующем (рис. 4).


Рис. 4 Схема управления двигателем

На контакт NC (нормально закрытый) реле времени K1, а также на контакт NC реле K2, в цепи катушки пускателя КЗ, подаётся напряжение питания.

После того, как произойдет включение пускателя КЗ, нормально закрытыми контактами КЗ расцепляются цепи катушки пускателя K2 (запрет случайного включения). Контакт КЗ в цепи питания катушки пускателя K1 замыкается.

Когда запускается магнитный пускатель K1, в цепи питания его катушки замыкаются контакты K1. Реле времени включается в то же самое время, контакт этого реле K1 в цепи катушки пускателя КЗ размыкается. А в цепи катушки пускателя K2 – замыкается.

При отключении обмотки пускателя КЗ, замкнётся контакт КЗ в цепи катушки пускателя K2. После того, как пускатель K2 включится, он размыкает своими контактами K2 цепь питания катушки пускателя КЗ.

Трёхфазное напряжение питания подаётся на начало каждой из обмоток W1, U1 и V1 с помощью силовых контактов пускателя K1. Когда срабатывает магнитный пускатель КЗ, тогда при помощи его контактов КЗ выполняется замыкание, посредством которого между собой соединяются концы каждой из обмоток электродвигателя W2, V2 и U2. Таким образом, выполняется подключение обмоток электродвигателя по схеме соединения «звезда».

Реле времени, объединенное с магнитным пускателем K1, сработает спустя определенное время,. При этом происходит отключение магнитного пускателя КЗ и одновременное включение магнитного пускателя K2. Таким образом силовые контакты пускателя K2 замкнутся и напряжение питания будет подано на концы каждой из обмоток U2, W2 и V2 электродвигателя. Иными словами, электродвигатель включается по схеме подключения «треугольник».

Для того, чтобы электродвигатель запустить по схеме соединения «треугольник-звезда», различные изготовители производят специальные пусковые реле. Данные реле могут носить разнообразные названия, например, реле «старт-дельта» или «пусковое реле времени», а также и некоторые другие. Но назначение всех этих реле заключается в одном и том же.

Типовая схема, выполненная с реле времени, предназначенном для запуска, то есть реле «треугольник-звезда», для осуществления управления запуска трехфазного электродвигателя асинхронного типа представлена на рисунке 5.


Рис.5 Типовая схема с пусковым реле времени (реле «звезда/треугольник») для управления запуском трехфазного асинхронного двигателя.

Итак, подытожим все вышеописанное. Для того, чтобы понизить пусковые токи осуществлять запуск электродвигателя требуется в определенной последовательности, а именно:

  1. сперва электродвигатель запускают на пониженных оборотах соединённым по схеме «звезда»;
  2. затем электродвигатель соединяют по схеме «треугольник».

Первоначальный запуск по схеме «треугольник» создаст максимальный момент, а последующее соединение по схеме «звезда» (для которой в 2 раза меньше пусковой момент) с продолжением работы в номинальном режиме, когда двигатель «набрал обороты», произойдёт переключение на схему соединения «треугольник» в автоматическом режиме. Но не стоит забывать о том, какая нагрузка создается перед запуском на валу, так как вращающий момент при соединении по схеме «звезда» ослаблен. По этой причине маловероятно, что данный метод запуска будет приемлем для электродвигателей с высокой нагрузкой, так как они в таком случае могут потерять свою работоспособность.

Соединение электродвигателя по схемам звезда

  

Разберем свойства соединения обмоток электродвигателя по схемам звезда — треугольник на конкретном примере.

Электродвигатель АИР250S4, 75 кВт, треугольник-звезда и соответствующие им U=380/660В и I=143/82,8А.

Подключаем треугольником на 380В. Полная мощность будет вычисляться по формуле S=U·I·√3.
S=380·143·1,73=94008 в·а.

Если мы подключим этот электродвигатель по схеме звезда к той же сети, то полная мощность будет вычисляться, конечно, по той же формуле S=U·I·√3. Но значения в нее нужно подставлять уже другие.
При переключении на звезду на каждую обмотку пришлось в √3 меньшее напряжение. Соответственно ток тоже уменьшился в √3 раза. И это еще не все. При схеме треугольник линейный ток был в √3 раза больше фазного, а при переключении стал равным фазному. Т.е. ток уменьшился в итоге в √3·√3=3 раза.

Полная мощность станет равна S=380·143/3·1,73=31336 в·а.

Такая ситуация возникает чаще всего (по нашему опыту) в двух случаях.
Во-первых, непонимание электриками вышеупомянутых расчетов.
Во-вторых, в случае когда в эксплуатации был аналогичный двигатель, но с напряжением 220/380В и соответственно схемой подключения треугольник-звезда. Такие двигатели даже большой мощности до сих пор производятся некоторыми заводами. При замене двигателя электрик «на автомате» подключает звездой и двигатель выходит из строя.

Вот цитата из письма одного из предприятий, после того как двигатель вышел из строя из-за неправильной схемы подключения.

 

Т.е. непонимание свойств соединений и того что указано на шильдике.

Также стоит обратить внимание на то, что пуско-защитная аппаратура подбирается на номинальную мощность электродвигателя, но при некорректном подключении звездой просто физически не может выполнять свои функции.

Наиболее полную защиту электродвигателя можно обеспечить с помощью термисторных реле. В наших электродвигателях начиная от 160 высоты оси вращения установлены РТС термисторы и контакты выведены в клеммную коробку.

Еще одна важная по нашему мнению информация. При пуске электродвигателя для уменьшения пусковых токов многие используют общеизвестную схему переключения со звезды на треугольник, т.е. запуск производится на звезде и после набора оборотов происходит переключение на треугольник с помощью реле времени (этот метод описан на множестве сайтов).
Такой метод работает, к сожалению, не всегда.
Если производится пуск, например центробежного насоса или вентилятора (имеется ввиду правильный пуск на закрытую задвижку), то такая схема успешно работает. Центробежный насос и вентилятор при пуске на закрытую задвижку потребляют минимальную мощность, которая увеличивается по мере открывания.
Но такую схему крайне нежелательно применять в условиях тяжелого пуска (т.е. таких механизмов которые при пуске уже потребляют мощность близкую к номинальной), например пресса, дробилки и др.

Также важно обратить внимание на время переключения, оно не должно быть большим. После того как двигатель набрал обороты нужно сразу производить переключение на треугольник. В большинстве случаев набор оборотов занимает до 5-10 сек., поэтому установка реле на 30-50 сек. грозит выходом из строя электродвигателя.

Если у вас есть замечания или мы в чем-то ошибаемся, пишите: [email protected]

 

звезда, треугольник, трехфазная сеть 380В, однофазная сеть 220В

Практически ежедневно мы сталкиваемся с одним и тем же вопросом от наших клиентов: «как подключить электродвигатель к сети питания?»

Самый простой и надежный способ – обратиться к нормальному электрику и не экономить на этом, т.к. зачастую, пытаясь сэкономить, приглашают «дядю Васю», или других отзывчивых «специалистов», которые рядом, но на самом деле слабо понимают, что происходит.
В лучшем случае, эти «профи» звонят и спрашивают – правильно ли я подключаю. Тут ещё есть шанс не спалить двигатель. Сразу становится понятна квалификация «электрика», когда задают такие вопросы, от которых можно просто впасть в ступор (так как именно этому и учат электриков).

Например:
— зачем шесть контактов в двигателе?
— а почему контактов всего три?
— что такое «звезда» и «треугольник»?
— а почему, когда я подключаю трехфазный насос и ставлю поплавковый выключатель, который рвёт одну фазу, двигатель не останавливается?
— а как измерить ток в обмотках?
— что такое пускатель?
и т.п.

Если ваш электрик задаёт такие вопросы, то нужно его отправить туда, откуда он пришёл. Иначе всё закончится сгоревшим электродвигателем, потерей денег, времени, дорогостоящим ремонтом. Давайте попробуем разобраться в схемах подключения электродвигателя к электропитанию.
Для начала нужно понимать, что существуют несколько популярных типов сетей переменного тока:

1. Однофазная сеть 220 В,
2. Трехфазная сеть 220 В (обычно используется на кораблях),
3. Трехфазная сеть 220В/380В,
4. Трехфазная сеть 380В/660В.
Есть ещё на напряжение 6000В и некоторые другие редкие, но их рассматривать не будем.

В трёхфазной сети обычно есть 4 провода (3 фазы и ноль). Может быть ещё отдельный провод «земля». Но бывают и без нулевого провода.

Как определить напряжение в вашей сети?
Очень просто. Для этого нужно измерить напряжение между фазами и между нулём и фазой.

В сетях 220/380 В напряжение между фазами (U1, U2 и U3) будет равно 380 В, а напряжение между нолём и фазой (U4, U5 и U6) будет равно 220 В.
В сетях 380/660В напряжение между любыми фазами (U1, U2 и U3) будет равно 660В, а напряжение между нулем и фазой (U4, U5 и U6) будет равно 380 В.


Возможные схемы подключения обмоток электродвигателей

Асинхронные электродвигатели имеют три обмотки, каждая из которых имеет начало и конец и соответствует своей фазе. Системы обозначения обмоток могут быть разными. В современных электродвигателях принята система обозначения обмоток U, V и W, а их выводы обозначают цифрой 1 начало обмотки и цифрой 2 – её конец, то есть обмотка U имеет два вывода: U1 и U2, обмотка V – V1 и V2, а обмотка W – W1 и W2.

Однако до сих пор ещё в эксплуатации находятся старые асинхронные двигатели, сделанные во времена СССР и имеющие старую советскую систему маркировки. В них начала обмоток обозначаются C1, C2, C3, а концы — C4, C5, C6. Значит, первая обмотка имеет выводы C1 и C4, вторая — C2 и C5, а третья — C3 и C6.

Обмотки трёхфазных электродвигателей можно подключать по двум различным схемам: звездой (Y) или треугольником (Δ).

Подключение электродвигателя по схеме звезда

Название схемы подключения обусловлено тем, что при соединении обмоток по данной схеме (см. рисунок справа), визуально это напоминает трёхлучевую звезду.


Как видно из схемы подключения электродвигателя, все три обмотки своим одним концом соединены вместе. При таком подключении (сеть 220/380 В), к каждой обмотке отдельно подходит напряжение 220 В, а к двум обмоткам, соединённым последовательно, – напряжение 380 В.

Основным преимуществом подключения электродвигателя по схеме звезда являются небольшие пусковые токи, так как напряжение питания 380 В (межфазное) потребляют сразу 2 обмотки, в отличие от схемы «треугольник». Но при таком подключении мощность питаемого электродвигателя ограничена (главным образом из экономических соображений): обычно по звезде включают относительно слабые электродвигатели.


Подключение электродвигателя по схеме треугольник

Название этой схемы также идёт от графического изображения (см. правый рисунок):


Как видно из схемы подключения электродвигателя – «треугольник», обмотки подключаются последовательно друг к другу: конец первой обмотки соединяется с началом второй и так далее.

То есть к каждой обмотке будет приложено напряжение 380 В (при использовании сети 220/380 В). В этом случае по обмоткам течёт больший ток, по треугольнику обычно включают двигатели большей мощности, чем при соединении по звезде (от 7,5 кВт и выше).


Подключение электродвигателя к трёхфазной сети на 380 В

Последовательность действий такова:

1. Для начала выясняем, на какое напряжение рассчитана наша сеть.
2. Далее смотрим на табличку, которая есть на электродвигателе, она может выглядеть так (звезда Y /треугольник Δ):



Двигатель для однофазной сети 220В
(~ 1, 220В)

Двигатель для трехфазной сети
220В/380В (220/380, Δ / Y)

Двигатель для трехфазной сети 380В
(~ 3, Y, 380В)

Двигатель для трехфазной сети
(380В / 660В (Δ / Y, 380В / 660В)


3. После идентификации параметров сети и параметров электрического подключения электродвигателя (звезда Y /треугольник Δ), переходим к физическому электрическому подключению электродвигателя.
4. Чтобы включить трёхфазный электродвигатель, нужно одновременно подать напряжение на все 3 фазы.
Достаточно частая причина выхода из строя электродвигателя – работа на двух фазах. Это может произойти из-за неисправного пускателя, или при перекосе фаз (когда напряжение в одной из фаз сильно меньше, чем в двух других).
Есть 2 способа подключения электродвигателя:
— использование автоматического выключателя или автомата защиты электродвигателя

Эти устройства при включении подают напряжение сразу на все 3 фазы. Мы рекомендуем ставить именно автомат защиты электродвигателя серии MS, так как его можно настроить в точности на рабочий ток электродвигателя, и он будет чутко отслеживать его повышение в случае перегрузки. Это устройство в момент пуска даёт возможность некоторое время работать на повышенном (пусковом) токе, не отключая двигатель.
Обычный же автомат защиты требуется ставить с превышением номинального тока электродвигателя, с учётом пускового тока (в 2-3 раза выше номинала).
Такой автомат может отключить двигатель только в случае КЗ или его заклинивания, что часто не обеспечивает нужной защиты.

— использование пускателя

Пускатель представляет собой электромеханический контактор, который замыкает каждую фазу с соответствующей обмоткой электродвигателя.
Привод механизма контактора осуществляется с помощью электромагнита (соленоида).

Устройство электромагнитного пускателя:

Магнитный пускатель устроен достаточно просто и состоит из следующих частей:

(1) Катушка электромагнита
(2) Пружина
(3) Подвижная рама с контактами (4) для подключения питания сети (или обмоток)
(5) Контакты неподвижные для подключения обмоток электродвигателя (сети питания).

При подаче питания на катушку, рама (3) с контактами (4) опускается и замыкает свои контакты на соответствующие неподвижные контакты (5).

Типовая схема подключения электродвигателя с использованием пускателя:


При выборе пускателя следует обращать внимание на напряжение питания катушки магнитного пускателя и покупать его в соответствии с возможностью подключения к конкретной сети (например, если у вас есть только 3 провода и сеть на 380 В, то катушку нужно брать на 380 В, если у вас сеть 220/380 В, то катушка может быть и на 220 В).

5. Проконтролировать, в правильную ли сторону крутится вал.
Если требуется изменить направление вращения вала электродвигателя, то нужно просто поменять местами любые 2 фазы. Это особенно важно при запитывании центробежных электронасосов, имеющих строго определённое направление вращения рабочего колеса


Как подключить поплавковый выключатель к трёхфазному насосу

Из всего вышеописанного становится понятно, что для управления трёхфазным электродвигателем насоса в автоматическом режиме с использованием поплавкового выключателя НЕЛЬЗЯ просто разрывать одну фазу, как это делается с монофазными двигателями в однофазной сети.

Самый простой способ – использовать для автоматизации магнитный пускатель.
В этом случае достаточно поплавковый выключатель встроить последовательно в цепь питания катушки пускателя. При замыкании цепи поплавком будет замыкаться цепь катушки пускателя, и включаться электродвигатель, при размыкании – будет отключаться питание электродвигателя.

Подключение электродвигателя к однофазной сети 220 В

Обычно для подключения к однофазной сети 220В используются специальные двигатели, предназначенные для подключения именно к такой сети, и вопросов с их питанием не возникает, т.к. для этого просто требуется вставить вилку (большинство бытовых насосов оснащены стандартной вилкой Шуко) в розетку

Иногда требуется подключение трехфазного электродвигателя к сети 220 В (если, например, нет возможности провести трехфазную сеть).

Максимально возможная мощность электродвигателя, который можно включить в однофазную сеть 220 В, составляет 2,2 кВт.

Самый простой способ – подключить электродвигатель через частотный преобразователь, рассчитанный на питание от сети 220 В.

Следует помнить, что частотный преобразователь на 220 В, выдает на выходе 3 фазы по 220 В. То есть подключить к нему можно только электродвигатель, который имеет напряжение питания на 220 В трёхфазной сети (обычно это двигатели с шестью контактами в распаячной коробке, обмотки которых можно подключить как по звезде, так и по треугольнику). В данном случае требуется подключение обмоток по треугольнику.

Возможно ещё более простое подключение трехфазного электродвигателя в сеть 220 В с использованием конденсатора, но такое подключение приведёт к потере мощности электродвигателя приблизительно на 30%. Третья обмотка запитывается через конденсатор от любой другой.

Данный тип подключения мы рассматривать не будем, так как нормально с насосами такой способ не работает (либо при старте двигатель не запускается, либо электродвигатель перегревается из-за снижения мощности).


Использование частотного преобразователя

В настоящее время достаточно активно все стали применять частотные преобразователи для управления частотой вращения (оборотами) электродвигателя.

Это позволяет не только экономить электроэнергию (например, при использовании частотного регулирования насосов для подачи воды), но и управлять подачей насосов объёмного типа, превращая их в дозировочные (любые насосы объёмного принципа действия).

Но очень часто при использовании частотных преобразователей не обращают внимания на некоторые нюансы их применения:

— регулировка частоты, без доработки электродвигателя, возможна в пределах регулировки частоты +/- 30% от рабочей (50 Гц),
— при увеличении частоты вращения более 65 Гц требуется замена подшипников на усиленные (сейчас с помощью ЧП возможно поднять частоту тока до 400 Гц, обычные подшипники просто разваливаются на таких скоростях),
— при уменьшении частоты вращения встроенный вентилятор электродвигателя начинает работать неэффективно, что приводит к перегреву обмоток.

Из-за того, что не обращают внимания при проектировании установок на такие «мелочи», очень часто электродвигатели выходят из строя.

Для работы на низкой частоте ОБЯЗАТЕЛЬНО требуется установка дополнительного вентилятора принудительного охлаждения электродвигателя.

Вместо крышки вентилятора устанавливается вентилятор принудительного охлаждения (см. фото). В этом случае, даже при снижении оборотов вала основного двигателя,
дополнительный вентилятор обеспечит надёжное охлаждение электродвигателя.

Мы имеем большой опыт модернизации электродвигателей для работы на низкой частоте.
На фото можно видеть винтовые насосы с дополнительными вентиляторами на электродвигателях.

Данные насосы используются в качестве дозирующих насосов на пищевом производстве.


Надеемся, что данная статья поможет вам правильно подключить электродвигатель к сети самостоятельно (ну или хотя бы понять, что перед вами не электрик, а «специалист широкого профиля»).


Технический директор
ООО «Насосы Ампика»
Моисеев Юрий.


✔ Как подключить электродвигатель, схема подключения

 

Трехфазные электродвигатели — имеют более высокую эффективностью, чем однофазные электродвигатели на 220 вольт. Поэтому подключение электродвигателя на 380 вольт обеспечивает более стабильную и экономичную работу устройства. Для запуска электродвигателя не понадобятся конденсаторы или другие пусковые устройства и обмотки, потому что вращающееся магнитное поле возникает в статоре сразу после подключения к электросети 380 Вольт.

На шильде электродвигателя должно быть видно, что обмотки электродвигателя можно соединить, как треугольником на 220 Вольт, так звездой на 380 Вольт.
В клеммной коробке электродвигателя вы увидите шесть выводов — U1, U2, V1,V2, W1, W2. Это означает что электродвигатель можно подключить на 220 или 380 Вольт.
 

Схема подключения трехфазного электродвигателя:

Подключение звездой — большинство промышленных трехфазных электродвигателей подключается по схеме — «звезда» 380В.
При подключении звездой вам нужно подключить 3 фазы на разъемы А, В, С.

При подключении треугольником на 220В — необходимо сделать три разные последовательные соединения. После чего можно подключать к 3 независимым последовательным соединениям 3 фазы на разъемы А, В и С как не рисунке.

Подключение звезда-треугольник — В очень редких случаях для получения большей отдачи по мощности, электродвигатель подключают «звезда-треугольник»

Внимание:

Указанная мощность на бирке электродвигателя, это не электрическая, а механическая мощность на валу.

Хочу заметить, что при подключении электродвигателя по схеме «звезда» запуск будет достаточно плавным, но при этом сложно будет достичь максимальной мощности работы трехфазного асинхронного электродвигателя. Поэтому для достижения максимальных показателей электродвигатель подключают «треугольником» и тогда он выдаст полную заявленную мощность, а это в 1,5 раза больше чем при подключении звездой. Но нужно знать что при запуске «треугольником» ток настолько высокий, что может повредить изоляцию проводки и сократить срок службы электродвигателя. Именно поэтому для мощных электродвигателей применяют комбинированную схему подключения по принципу «звезда-треугольник». Сначала запуск мотора происходит по схеме «звезда», но когда электродвигатель набирает достаточную мощность происходит ручное или автоматическое (через реле) переключение на схему «треугольник». После чего мощность возрастает в несколько раз.

Подключение трехфазного электродвигателя, видео:

Разница схемы звезда и треугольник

Специфика трехфазных электрических сетей предусматривает два варианта подключения трехфазных нагрузок – звездой и треугольником. Это касается фазных обмоток в трехфазных электродвигателях, обмоток трансформаторов или нагревательных элементов электрических котлов. При этом для звезды начала всех обмоток соединяются с фазными проводами, а концы обмоток соединены в нулевую (нейтральную) точку. В случае соединения треугольником конец предыдущей обмотки соединяется с началом последующей, образуя равносторонний треугольник, а все 3 фазы подключаются к его вершинам (точкам соединения).

Однако геометрические схемные различия не единственное, что отличает звезду от треугольника. Рассматривая на примере активной нагрузки, представленной тремя ТЕНами, видим, что в случае соединения звездой при выходе из строя одного нагревателя, двое остальных, подключенных последовательно на линейное напряжение остаются работать, а вот при поломке сразу двух перестает работать и третий. Если все три ТЕНа подключены треугольником, то каждый из них работает от линейного напряжения (380 в) и нагреватель сохраняет работоспособность даже при выходе из строя двух элементов.

Схема подключения и мощность асинхронных электродвигателей

Иначе сказываются схемы подключения обмоток статора в асинхронных двигателях. Дело в том, что при подключении их звездой или треугольником мощность двигателя меняется в три раза. То есть в случае подключения трехфазных асинхронных электродвигателей предназначенных для работы в подключении звездой при 380 вольтах трехфазного напряжения, треугольником их мощность увеличивается втрое. При таком режиме двигатель просто сгорает, но если у двигателя, рассчитанного на работу при подключении треугольником в те же 380 В обмотки статора соединены звездой, то его мощность упадет в три раза.

Последнее свойство нашло широкое применение в схемах пуска электрического двигателя. При запуске электродвигателя величина пускового тока может до 10 раз превышать номинальные значения. Влияние пусковых нагрузок негативным образом сказывается на напряжении в сети и на работе подключенного к ней оборудования.

С целью снижения пусковых токов электродвигатель включается по схеме пуска звезда-треугольник, при которой до момента разгона он подключен звездой, а при достижении номинальных оборотов на валу переключается на схему треугольника. Для возможности реализации схемы переключения звезда-треугольник большинство мощных электродвигателей имеют отдельные выводы обмоток статора, сама коммутация обеспечивается применением контакторов.

Таким образом каждая из схем включения имеет свои достоинства. Для треугольника это достижение максимальной мощности, хотя требует строгого соблюдения эксплуатационных режимов, преимуществами соединения звездой можно назвать:

  • плавный пуск;
  • работу в номинальном режиме;
  • нормальную реакцию на кратковременные перегрузки;
  • оптимальные температурные режимы.

Схемы подключения обмоток генераторов

В отношении электрогенераторов схемы подключения обмоток тоже имеют свои отличия. Как и нагрузка, они также могут включаться по схеме звезды или треугольника, однако мощность генератора при этом остается неизменной. Изменения касаются выходного напряжения, так если обмотки генератора соединяют звездой, то выходное напряжение будет в √3 раз ниже, нежели при соединении треугольником, но поскольку мощность остается неизменной, то при увеличении напряжения значение тока падает на этот же множитель.

Смотрите также другие статьи :

Перекос фаз, в чем опасность

Перекосом фазных напряжений в трехфазных электрических сетях называют несовпадение величин последних, вызванное, как правило, неравномерностью распределения нагрузок.

Подробнее…

УЗО и дифавтомат в чем разница

Если необходимо быстро определить, дифавтомат или УЗО перед вами, то необходимо обратить внимание на маркировку, на диф. автомате рядом с номинальным током стоит какая например буква С или В, что указывает на категорию расцепителя, если же стоит маркировка с указанием ампер (буква А), то это однозначно УЗО. Ниже на фото видно, в верхнем ряду установлены именно диф. автоматы, а в нижнем ряду УЗО.

Подробнее…

Как подключить трёхфазный электродвигатель на 380 Вольт

Трехфазные электродвигатели обладают более высокой эффективностью, чем однофазные на 220 вольт. Если у Вас в доме или гараже есть ввод на 380 Вольт, тогда обязательно покупайте компрессор или станок с трехфазным электродвигателем. Это обеспечит более стабильную и экономичную работу устройств. Для пуска мотора не понадобятся различные пусковые устройства и обмотки, потому что вращающееся магнитное поле возникает в статоре сразу после подключения к электросети 380 Вольт.

Выбор схемы включения электродвигателя

Схемы подключения 3-х фазных двигателей при помощи магнитных пускателей Я подробно описывал в прошлых статьях: «Схема подключения электромоторов с тепловым реле» и «Схема реверсивного пуска«.

Подключить трех фазный двигатель возможно и в сеть 220 Вольт с использованием конденсаторов по этой схеме. Но будет значительное падение мощности и эффективности его работы.

В статоре асинхронного двигателя на 380 В расположены три отдельные обмотки, которые соединяются между собой в треугольник или звезду и к трем лучам или вершинам подключаются 3 разноименные фазы.

Вы должны учитывать, что при подключении звездой пуск будет плавным, но для того что бы достичь полной мощности необходимо подключить мотор треугольником. При этом мощность возрастет в 1.5 раза, но ток при запуске мощных или средних моторов будет очень высоким, и да же может повредить изоляцию обмоток.

Перед подключением электродвигателя ознакомьтесь с его характеристиками в паспорте и на шильдике. Особенно это важно при подключении 3 фазных электродвигателей западно-европейского производства, которые рассчитаны на работу  от сети напряжением 400/690. Пример такого шильдика на картинке снизу.  Такие моторы подключаются только по схеме «треугольник» к нашей электросети. Но многие монтажники подключают их аналогично отечественным в «звезду» и электромоторы при этом сгорают, особенно быстро под нагрузкой.

На практике все электродвигатели отечественного производства на 380 Вольт подключаются звездой. Пример на картинке.  В очень редких случаях на производстве для того что бы, выжать всю мощность используется комбинированная схема включения звезда-треугольник. Об этом подробно узнаете в самом конце статьи.

Схема подключения электродвигателя звезда треугольник

В некоторых наших электромоторах выходит всего 3 конца из статора с обмотками- это означает, что уже внутри двигателя собрана звезда. Вам только остается подключить к ним 3 фазы. А для того, что бы собрать звезду необходимы оба конца, каждой обмотки или 6 выводов.

Нумерация концов обмоток на схемах идет слева направо. К номерам 4, 5 и 6 подключаются 3 фазы А-В-С от электросети.

При соединении звездой трёхфазного электродвигателя начала его обмоток статора соединяются вместе в одной точке, а к концам обмоток подключаются 3 фазы электропитания на 380 Вольт.

При соединении треугольником статорные обмотки между собой соединяются последовательно. Практически, необходимо соединить конец одной обмотки с началом следующей. К трем точкам соединения их между собой подключаются 3 фазы питания.

Подключение схемы звезда-треугольник

Для подключения мотора по  довольно редкой схеме  звезды при запуске, с последующим переводом для работы в рабочем режиме в схему треугольника. Так Мы сможем выжать максимум мощности, но получается довольно сложная схема без возможности реверсирования или изменения направления вращения.

Для работы схемы необходимы 3 пускателя. На первый К1 подключено электропитание с одной стороны, а с другой — концы обмоток статора. Их же начала подключены к К2 и К3. С пускателя К2 начала обмоток подключаются соответственно на другие фазы по схеме треугольник. При включении К3 все 3 фазы закорачиваются между собой и получается схема работы звездой.

Внимание, одновременно не должны включаться магнитные пускатели К2 и К3, а то произойдет произойдет аварийное отключение автомата защиты из-за возникновения межфазного короткого замыкания. Поэтому и делается электрическая блокировка между ними- при включении одного из них размыкается блок контактами цепь управления другого.

Схема работает следующим образом. При включении пускателя К1 реле времени включает К3 и двигатель запускается по схеме звезда. По истечении заданного промежутка, достаточного для полного запуска двигателя реле времени отключает пускатель К3 и включает К2. Мотор переходит на работу обмоток по схеме треугольник.

Отключение происходит пускателем К1. При повторном запуске все снова повторяется.

Соединение типа звезда и треугольник для электродвигателей

На сегодняшний день данная тема особо актуальна, и в интернете можно найти массу вопросов по ней. Ответов тоже много, но некоторые из них на гранью фантастики. Поэтому мы решили пошагово и точно рассказать о соединении обмоток электродвигателя так исходя из своей практики.

Для начала вкратце вспомним действие асинхронного электродвигателя. Подключают его сети с трехфазным переменным напряжением. В статоре есть 3 обмотки, сдвинутые по отношению друг к другу на 120 электроградуса. Все это необходимо для того. Чтобы возникло вращающееся магнитное поле.

 

Выводы обмоток статора обозначают так:

  • С1, С2, С3 – начала обмоток,
  • С4, С5, С6 – конец обмоток.

Указанное обозначение является стандартным, но сегодня появились новые маркировки выводов, которые соответствуют ГОСТу 26772-85:

  • U1, V1, W1 — начала обмоток,
  • U2, V2, W2 – конец обмоток.

Выводы фазных обмоток асинхронного двигателя выводят на клеммник или колодку и размещают так, чтобы при подключении использовать специальные перемычки и не перекрещивать провода.

Клеммник в основном стараются прикреплять сверху или, если не получается, сбоку.  Иногда если тип клеммника позволяет его можно развернуть на 180°, чтобы осуществление подводки питающих кабелей было удобней.

На клеммник можно вывести 3 или 6 выводов фазных обмоток статора.

 

 

Рассмотрим каждую ситуацию отдельно.

Например:

Если вывести в клеммник 6 выводов обмоток статора, то подключиться можно в сеть на два разноуровневых напряжения, которые могут отличаться величиной в 1,73 раза (√3). Если взять электродвигатель с напряжением 220/380 (В), а в сети уровень линейного напряжения будет составлять 380 (В), то статорные обмотки следует соединять по схеме звезда.

 

Соединение звездой

Концы трех обмоток соединяем в одной точке за счет специальной перемычки. На начальные концы обмоток подаем трехфазное сетевое напряжение. Напряжение фазной обмотки должно составить 220 (В), а линейное напряжение между двумя фазными обмотками — 380 (В).

 

 

Соединение треугольником

Если сеть имеет линейное напряжение уровнем 220 (В), то обмотку статора нужно соединить по схеме треугольник. Пошаговое соединение по типу треугольник фазных обмоток:

  • конец обмотки фазы «А» C4 (U2) соединяем с началом обмотки фазы «В» С2 (V1)
  • конец обмотки фазы «В» С5 (V2) соединяем с началом обмотки фазы «С» С3 (W1)
  • конец обмотки фазы «С» С6 (W2) соединяем с началом обмотки фазы «А» С1 (U1)

Места, где произведено соединение, подключаются к соответствующим фазам питающего трехфазного напряжения.

Линейное напряжение в данном случае должно составлять 220 (В), и на трехфазной обмотке также 220 (В).

На клеммнике при подключении по схеме треугольник обмоток статора асинхронного двигателя специальные перемычки следует установить так:

 

 

В представленных примерах при подключении, что по схеме звезда, что треугольник напряжение каждой фазы обмотки асинхронного двигателя составляет 220 (В).

Частный случай

Иногда так бывает, что на клеммник асинхронного двигателя выведено не 6, а 3 вывода. В такой ситуации соединение независимо от вида схемы будет выполняться внутри двигателя с торца. В данном случае подключение к сети можно будет провести только при одном напряжении, которое указано на таблице с технической информацией.

Если обмотки асинхронного двигателя соединены звездой, то запуск будет мягким, а работа плавной. При этом допускаются кратковременные перегрузки.

При соединении треугольником обмоток асинхронного электродвигателя можно достичь его максимальной мощности. В период запуска токи будут иметь большое значение. Можно будет еще пронаблюдать, что двигатель, подключенный по данной схеме, будет сильнее нагреваться.

 

Исходя из полученных данных, мы должны понимать, что асинхронные двигатели средней мощности и выше следует запускать по схеме звезда. При наборе номинальной частоты вращения в автоматическом режиме происходит переключение его на схему треугольника.

Также на основе собственного опыта рекомендуем для асинхронного электродвигателя использовать стеатитовые клеммные колодки, которые позволят надежно и безопасно провести подключение проводов к любой сети. Их можно использовать не только для электродвигателей, но и для оборудования и отдельных нагревательных элементов с повышенным уровнем температуры.

 

 

Клеммные колодки КМ имеют керамический корпус и расположенный внутри трубчатый латунный профиль. Наличие резьбовых отверстий позволяет устанавливать шпильки для колодки.

Выбирая клеммные колодки, в первую очередь обращайте внимание на предъявляемый уровень их сопротивления температурной нагрузке. Клеммники низкого качества приводят к плавлению изоляции, и провоцирую появление коротких замыканий в системе питания. Применение стеатитовых колодок позволяет исключить перечисленные риски, т. к. корпус из керамики выдерживает температуру вплоть до 1000 °С. А клеммные колодки керамические для для асинхронного электродвигателя работают при постоянной температурной нагрузке окружающей среды в 300°С.

 

Помимо стеатитовых клеммных колодок для электродвигателей «Элемаг» изготавливает еще несколько разных вариантов колодок обладающих высоким уровнем термостойкости. В разделе товаров на сайте вы можете рассмотреть:

Термостойкие колодки от «Элемаг» широко используют для подключения электротехнического оборудования, т. к. им характерно безопасное использование и удобное проведение соединений. Мы изготавливаем клеммники для температурных нагрузок свыше 100°С. Мы используем для разных типов колодок стеатит, керамику и даже фарфор. Это отличные изоляторы способные выдерживать сверхвысокие температуры, обладают устойчивостью к пробоям тока, не поддаются плавке и горению. Для увеличения защиты мы можем покрывать колодки специальной керамической глазурью.

Корпуса у колодок могут быть закрытыми или открытыми. У первых контакты располагаются внутри корпуса, а у вторых контакты размещены вверху колодки. Для фиксации колодок в корпусе могут быть выполнены специальные отверстия.

У нас в ассортименте вы сможете подобрать и открытые и закрытые колодки на 2, 3, 4, 5 контактов.

Мы советуем устанавливать лампы, чередуя в шахматном порядке. Эта схема поможет уменьшить количество необогреваемых точек.

Как подключить трехфазный двигатель высокого и низкого напряжения

Трехфазный двигатель более эффективен, чем однофазный, из-за особенностей переменного тока. Когда питание двигателя подается от трех проводов, а не только по одному, и подача энергии проходит через каждый из них в последовательности (отсюда, часть «А» переменного тока), это обеспечивает эффективный уровень мощности, равный √3-кратному. выше (примерно в 1,728 раза), чем у соответствующей однофазной схемы.Как вы помните, электрическая мощность — это уровень напряжения, умноженный на ток.

Трехфазный двигатель может иметь одну из двух конфигураций: Y-образный (часто пишется «звезда», как это произносится) или треугольный. Кроме того, эти двигатели имеют шесть или девять выводов. При установке с шестью выводами вы не можете выбрать, получаете ли вы систему высокого или низкого напряжения, но при установке с девятью выводами вы можете выбрать любой из них, используя любую конфигурацию. Это дает в общей сложности четыре варианта подключения.

В вашей схеме также могут использоваться программируемые логические переключатели или ПЛК.

Для справки: L1, L2 и L3 обычно черные, красные и синие соответственно. Провода двигателя (от T1 до T9) обычно в порядке: синий, белый, оранжевый, желтый, черный, серый, розовый, красный и кирпично-красный. При выполнении следующих шагов, если возможно, обратитесь к диаграмме.

Схема «звезда», низкое напряжение

Подключите 1 и 7 к L1, 2 и 8 к L2, а 3 и 9 к L3. Соедините оставшиеся выводы (4, 5 и 6) вместе.

Схема «звезда», высокое напряжение

Подключите 1 к L1, 2 к L2 и 3 к L3. Затем подключите 4 к 7, 5 к 8 и 6 к 9.

Дельта-конфигурация, низкое напряжение

Подключите 1, 6 и 7 к L1; 2, 4 и 8 к L2; и 3, 5 и 9 — L3.

Дельта-конфигурация, высокое напряжение

Подключите 1 к L1, 2 к L2 и 3 к L3. Подключите 4 к 7, 5 к 8 и 6 к 9.

Разница между соединениями звездой и треугольником

Сравнение соединений звездой и треугольником

Мы в основном используем термины звезда и треугольник в электрических системах при обсуждении трехфазных цепей переменного тока и электродвигатели.Ниже приведена таблица, в которой сравниваются соединения «звезда» и «треугольник», показывающая точную разницу между соединениями звезда (Y) и треугольник (Δ).

Соединение ЗВЕЗДА (Y) Соединение ТРЕУГОЛЬНИК (Δ)
В соединении ЗВЕЗДА начальный или конечный концы (аналогичные концы) трех катушек соединены вместе, чтобы сформировать нейтраль точка. Из нейтральной точки выводится общий провод, который называется Neutral . В соединении треугольником противоположные концы трех катушек соединены вместе. Другими словами, конец каждой катушки соединяется с начальной точкой другой катушки, а из соединений катушек выводятся три провода.
Имеется нейтраль или Star Point . Нет нейтральной точки при соединении треугольником.
Трехфазная четырехпроводная система является производной от Star Connections (3-фазная, 4-проводная система ).Мы также можем получить 3-х фазную 3-проводную систему от Star Connection Трехфазная трехпроводная система получена из Delta Connections (3-фазная, 3-проводная система) . то есть трехфазная, проводная система невозможна при соединении треугольником.
Линейный ток равен фазному току. т.е.

Линейный ток = Фазный ток

I L = I PH

Линейный ток в √3 раз больше фазного тока.то есть

I L = √3 I PH

Напряжение сети в √3 раз больше фазного напряжения. т.е.

В L = √3 В PH

Линейное напряжение равно фазному напряжению. т.е.

Линейное напряжение = фазное напряжение

В L = В PH

При соединении звездой общую мощность трех фаз можно определить по формуле:

P = √3 x V L x I L x CosФ….Или

P = 3 x V PH x I PH x CosФ

P = √3 V x 1

При соединении треугольником полную мощность трех фаз можно определить по формуле:

P = √3 x V L x I L x CosФ… Или

P = 3 x V PH x I PH x CosФ

P = 3 x V (1 / √3)

Двигатели, подключенные звездой, имеют низкую скорость, поскольку они получают напряжение 1 / √3 . Скорость двигателей, подключенных по схеме «треугольник», высока, потому что каждая фаза получает общее линейное напряжение.
При соединении звездой, плавном пуске и работе с номинальной мощностью может быть достигнута нормальная работа без перегрева. При соединении треугольником двигатель получает максимальную выходную мощность.
При соединении звездой фазное напряжение составляет 1 / √3 от линейного напряжения. Следовательно, требуется небольшое количество витков, что позволяет сэкономить на меди. При соединении треугольником фазное напряжение равно линейному напряжению, следовательно, требуется большее количество витков, что увеличивает общую стоимость.
Требуется низкая изоляция, поскольку фазное напряжение низкое по сравнению с Delta. Требуется высокая изоляция, поскольку фазное напряжение = линейное напряжение.
Звездное соединение — это общая и общая система, которая используется при передаче электроэнергии. Delta Connection — типичная система, используемая в системах распределения и промышленности.

Эту же таблицу, показывающую различия между конфигурациями звезды и треугольника, можно увидеть ниже, если у вас возникнут какие-либо трудности при чтении текста.

Щелкните изображение, чтобы увеличить

Основное различие между соединением «звезда» и «треугольник»

Сообщения по теме:

Приведите в действие свой двигатель — занятие

(0 Рейтинги)

Быстрый просмотр

Уровень оценки: 4 (3-5)

Необходимое время: 1 час

Расходные материалы на группу: 3 доллара США.00

Размер группы: 2

Зависимость действий: Нет

Associated Sprinkle: Get Your Motor Running (для неформального обучения)

Тематические области: Физические науки, физика

Ожидаемые характеристики NGSS:


Резюме

Учащиеся исследуют двигатели и электромагниты, собирая свои простые электродвигатели, используя батареи, магниты, скрепки и проволоку. Эта инженерная программа соответствует научным стандартам нового поколения (NGSS).

Инженерное соединение

Посмотрите вокруг … двигатели используются в неограниченном количестве бытовых устройств, разработанных инженерами. Инженеры должны полностью понимать и применять связь между электричеством и магнетизмом при проектировании и производстве двигателей или разработке более эффективных и эффективных двигателей.

Цели обучения

После этого занятия студенты должны уметь:

  • Создайте простой мотор.
  • Опишите, как двигатель использует для работы электромагнит и магнитные силы.
  • Объясните: двигатели разработаны инженерами для использования в различных областях.

Образовательные стандарты

Каждый урок или задание TeachEngineering соотносится с одним или несколькими научными предметами K-12, образовательные стандарты в области технологий, инженерии или математики (STEM).

Все 100000+ стандартов K-12 STEM, охватываемых TeachEngineering , собираются, обслуживаются и упаковываются сетью стандартов достижений (ASN) , проект Д2Л (www.achievementstandards.org).

В ASN стандарты иерархически структурированы: сначала по источникам; например , по штатам; внутри источника по типу; например , естественные науки или математика; внутри типа по подтипу, затем по классу, и т. д. .

NGSS: научные стандарты нового поколения — наука
Ожидаемые характеристики NGSS

3-ПС2-4.Определите простую конструктивную задачу, которую можно решить, применив научные идеи о магнитах. (Класс 3)

Вы согласны с таким раскладом? Спасибо за ваш отзыв!

Нажмите, чтобы просмотреть другие учебные программы, соответствующие этим ожиданиям от результатов.
В этом упражнении основное внимание уделяется следующим аспектам трехмерного обучения NGSS:
Наука и инженерная практика Основные дисциплинарные идеи Сквозные концепции
Определите простую проблему, которую можно решить путем разработки нового или улучшенного объекта или инструмента.

Соглашение о выравнивании: Спасибо за ваш отзыв!

Электрические и магнитные силы между парой объектов не требуют, чтобы объекты соприкасались. Размеры сил в каждой ситуации зависят от свойств объектов и их расстояний друг от друга, а для сил между двумя магнитами — от их ориентации относительно друг друга.

Соглашение о выравнивании: Спасибо за ваш отзыв!

Научные открытия о мире природы часто могут привести к новым и усовершенствованным технологиям, которые разрабатываются в процессе инженерного проектирования.

Соглашение о выравнивании: Спасибо за ваш отзыв!

Ожидаемые характеристики NGSS

4-ПС3-2. Проведите наблюдения, чтобы доказать, что энергия может передаваться с места на место с помощью звука, света, тепла и электрического тока.(4 класс)

Вы согласны с таким раскладом? Спасибо за ваш отзыв!

Нажмите, чтобы просмотреть другие учебные программы, соответствующие этим ожиданиям от результатов.
В этом упражнении основное внимание уделяется следующим аспектам трехмерного обучения NGSS:
Наука и инженерная практика Основные дисциплинарные идеи Сквозные концепции
Проведите наблюдения, чтобы получить данные, которые послужат основой для свидетельств для объяснения явления или проверки проектного решения.

Соглашение о выравнивании: Спасибо за ваш отзыв!

Энергия может передаваться с места на место с помощью движущихся объектов, звука, света или электрического тока.

Соглашение о выравнивании: Спасибо за ваш отзыв!

Энергия присутствует всякий раз, когда есть движущиеся объекты, звук, свет или тепло. Когда объекты сталкиваются, энергия может передаваться от одного объекта к другому, тем самым изменяя их движение.При таких столкновениях некоторая энергия обычно также передается окружающему воздуху; в результате воздух нагревается и раздается звук.

Соглашение о выравнивании: Спасибо за ваш отзыв!

Свет также передает энергию с места на место.

Соглашение о выравнивании: Спасибо за ваш отзыв!

Энергия также может передаваться с места на место с помощью электрического тока, который затем можно использовать локально для создания движения, звука, тепла или света.С самого начала токи могли быть созданы путем преобразования энергии движения в электрическую.

Соглашение о выравнивании: Спасибо за ваш отзыв!

Энергия может передаваться различными способами и между объектами.

Соглашение о выравнивании: Спасибо за ваш отзыв!

Международная ассоциация преподавателей технологий и инженерии — Технология
ГОСТ Предложите выравнивание, не указанное выше

Какое альтернативное выравнивание вы предлагаете для этого контента?

Список материалов

Каждой группе необходимо:

  • 1 батарея типа D
  • 1 широкая резинка
  • 2 большие скрепки (металлические, без покрытия)
  • 1 керамический магнит прямоугольной формы (доступен в крупных хозяйственных магазинах, таких как Home Depot)
  • 43.Магнитный провод среднего сечения 5 дюймов (111 см); магнитопровод — медный провод, изолированный пленкой на полимерной основе или красной эмалью, а не пластиком; доступны в крупных магазинах бытовой техники или электроники, таких как Radio Shack
  • Раздаточный материал для учащихся

На долю всего класса:

  • мелкая наждачная бумага
  • плоскогубцы или кусачки
  • (необязательно) несколько компасов
  • резьба

Рабочие листы и приложения

Посетите [www.teachengineering.org/activities/view/cub_mag_lesson2_activity2] для печати или загрузки.

Больше подобной программы

Магнитная личность

Студенты изучают свойства магнитов и то, как инженеры используют магниты в технике. В частности, студенты узнают о хранении на магнитной памяти, которое представляет собой чтение и запись информации данных с помощью магнитов, например, на жестких дисках компьютеров, zip-дисках и флэш-накопителях.

Две стороны одной силы

Студенты узнают больше о магнетизме и о том, как магнетизм и электричество связаны в электромагнитах. Они изучают основы работы простых электродвигателей и электромагнитов. Студенты также узнают о гибридных бензиново-электрических автомобилях и их преимуществах перед обычным бензиновым двигателем…

Электрические и магнитные личности мистера Максвелла

Студенты кратко знакомятся с уравнениями Максвелла и их значением для явлений, связанных с электричеством и магнетизмом. Рассмотрены и усилены основные понятия, такие как ток, электричество и силовые линии.Благодаря множеству тем и заданий учащиеся видят, как электричество и магн …

Создание электромагнита

Студенческие отряды исследуют свойства электромагнитов. Они создают свои собственные небольшие электромагниты и экспериментируют со способами изменения силы, чтобы взять больше скрепок.Студенты узнают о том, как инженеры используют электромагниты в повседневной жизни.

Предварительные знания

Студенты должны иметь некоторые знания о магнитных силах (полюсах, силах притяжения). Хорошая информация об электромагнитах представлена ​​в разделе «Магнетизм», урок 2: Две стороны одной силы.

Введение / Мотивация

Сегодня мы немного узнаем о том, как работают двигатели. Инженеры разрабатывают двигатели для самых разных целей. Двигатели принимают электрическую энергию и преобразуют ее в механическую энергию или энергию движения. По сути, двигатели получают электроэнергию от источника электричества, такого как розетка или аккумулятор, и превращают эту энергию во что-то, что вращается, движется или выполняет какую-то работу. Мы ежедневно взаимодействуем со всеми видами двигателей.Кто-нибудь может придумать какие-нибудь предметы, у которых есть моторы?

Вы когда-нибудь чувствовали силу, толкающую или тянущую между двумя магнитами? Что произойдет, если поставить два магнита рядом? Иногда они быстро слипаются, а иногда отталкивают друг друга. Иногда магниты действительно двигаются, а затем слипаются. Когда два магнита сближаются, это происходит потому, что один магнит хочет выровнять свой южный полюс (S) с северным полюсом (N) другого магнита. Инженеры используют эту магнитную силу, чтобы заставить моторы работать.

Знаете ли вы разницу между электромагнитом и постоянным магнитом? Ну, одно отличие состоит в том, что магнитное поле электромагнита можно включать и выключать путем включения или выключения источника электричества на витой проволоке. Многие из магнитов, используемых в машинах, на самом деле являются электромагнитами, а не постоянными магнитами. Однако, даже если мы называем их «постоянными», постоянные магниты тоже не являются постоянными. Их можно размагнитить, ударив по ним молотком или нагрея.

Двигатель, который мы собираемся построить сегодня, состоит из трех частей: постоянного магнита, катушки с проволокой и батареи. Что действительно важно помнить, так это то, что когда электричество проходит через провод, оно превращает провод в электромагнит. Итак, наша проволочная катушка в конечном итоге будет действовать как еще один магнит (когда мы пропускаем через нее ток от батареи). В нашем простом двигателе действительно будет два магнита, и они будут работать вместе, создавая движение, толкая и притягивая друг друга.Сборка двигателей может быть довольно сложной задачей, и инженеры должны много узнать о магнетизме и электричестве, чтобы заставить их работать. Давайте начнем!

Процедура

Фон

Электродвигатели — это устройства, преобразующие электрическую энергию в механическую (электричество в движение). Каждый день нас окружают электромоторы. Например, в автомобилях есть десятки электродвигателей — закрывание окон, протирание лобового стекла, регулировка сидений и боковых зеркал, запуск двигателя поворотом ключа или нажатием кнопки и даже двигатель, включенный задним ходом. для подзарядки аккумулятора во время движения автомобиля.Вы найдете электродвигатели в стиральных машинах, холодильниках, блендерах, консервных ножах, компьютерах и других устройствах в вашем доме, и все они работают по одному и тому же основному принципу.

Если вы когда-нибудь играли с магнитами, то вы чувствовали силу, связанную с магнитными полями. Эта сила всегда работает для выравнивания полей двух магнитов. Магнит хочет выровнять свой южный полюс (S) с северным полюсом (N) другого магнита. Это похоже на известную поговорку «противоположности притягиваются».»Использование этой магнитной силы — вот как мы заставляем моторы работать.

Двигатель в этом упражнении состоит из трех частей: керамического магнита, соленоидного электромагнита (катушки с проволокой) и батареи. Когда в проволочной катушке присутствует ток и , он создает магнитное поле. Одна сторона катушки становится северным полюсом, а другая — южным. Керамический магнит притягивает свой противоположный полюс на катушке и отталкивает такой же полюс, заставляя катушку вращаться. Коммутатор и щетки обычного двигателя для этого двигателя не требуются.Вместо этого с одного конца провода удаляется половина изоляции. Это означает, что на половину каждого вращения в проводе нет тока. Следовательно, электромагнит не может создавать магнитное поле для этой половины спина. Когда полюс электромагнита приближается к постоянному магниту, часть изолированного провода отключает электрический ток. Однако инерция вращающейся катушки переносит ее на пол-оборота за изоляцию. Когда неизолированная часть провода снова входит в контакт, через катушку снова проходит электрический ток.Это создает магнитное поле, которое имеет то же направление, что и когда катушка ранее была в той же ориентации. Следовательно, скручивающая сила на катушке имеет то же направление, что и раньше, и катушка вращается в том же направлении. Вот почему для запуска этого двигателя требуется толчок, в отличие от обычного двигателя.

Перед мероприятием

  • Соберите материалы и сделайте копии Раздаточного материала с инструкциями для учащихся, по одному на группу.
  • Отрежьте один кусок магнитной проволоки длиной 2 фута (0,6 м) для каждой команды.

Со студентами: Часть 1 — Изготовление двигателя

  1. Разделите класс на команды по два ученика в каждой.
  2. Проведите предварительную оценку деятельности, как описано в разделе «Оценка».

Рис. 1. Катушка с магнитной проволокой. Авторское право

Авторское право © 2006 Эшли Бейли, программа ITL, Инженерный колледж, Университет Колорадо, Боулдер

  1. Начните примерно на 1,5 дюйма (38 мм) от конца провода и оберните его семь раз вокруг короткой стороны прямоугольного магнита.Осторожно выдвиньте магнит, стараясь не изменить прямоугольную форму провода. Оставив хвостик 1,5 дюйма (38 мм) напротив исходной точки, отрежьте проволоку кусачками или плоскогубцами. Осторожно оберните каждый из двух хвостов вокруг катушки (ближайшего к этому концу), чтобы катушка была надежно связана вместе, а два хвоста проходили перпендикулярно катушке. Ваша катушка должна выглядеть так, как показано на рисунке 1. Примечание: убедитесь, что хвосты на катушке расположены напротив друг друга.

Рисунок 2.Увеличенное поперечное сечение (или вид сбоку) провода. Авторское право

Copyright © 2006 Джанет Йоуэлл, Программа ITL, Инженерный колледж, Университет Колорадо, Боулдер

  1. На одном хвосте используйте наждачную бумагу, чтобы полностью удалить изоляцию с конца хвоста на расстояние до ¼ дюйма (6 мм) от точки, в которой хвост встречается с катушкой. Этот хвост должен выглядеть как левый хвост в поперечном сечении провода на Рисунке 2. На другом хвосте , снова оставляя сечение ¼ дюйма (6 мм) провода в точке соединения с катушкой — уложите катушку плоско и тщательно зачистите изоляцию с верхней половины провода.Этот хвост должен выглядеть как правый хвост, показанный на рисунке 2.

Рис. 3. Согнутые скрепки. Авторское право

Авторские права © 2004 Джо Фридрихсен, Программа ITL, Инженерный колледж, Университет Колорадо в Боулдере

  1. Согните две канцелярские скрепки, как показано на рис. 3. При необходимости используйте плоскогубцы.
  2. Чтобы обеспечить хороший контакт на клеммах батареи, слегка отшлифуйте скрепки по поверхностям, которые будут касаться батареи, и поверхностей, на которые будет опираться катушка.
  3. Используйте резиновую ленту, чтобы прикрепить концы больших петель каждой скрепки к клеммам D-элементной батареи. Батарея, резинка и скрепки должны выглядеть так, как показано на рис. 4.

Рис. 4. Закрепите скрепки на батарее резинкой. Авторское право

Авторское право © 2004 Джо Фридрихсен, Программа ITL, Инженерный колледж, Университет Колорадо в Боулдере

Рис. 5. Вид со стороны батареи с керамическим магнитом на месте. Авторское право

Авторские права © 2004 Джо Фридрихсен, Программа ITL, Инженерный колледж, Университет Колорадо в Боулдере

  1. Поместите керамический магнит сбоку батареи (он будет «прилипать» к батарее), как показано на рисунках 5.

Рис. 6. Полная настройка двигателя. Авторское право

Copyright © 2006 Джанет Йоуэлл, программа ITL, Инженерный колледж, Университет Колорадо, Боулдер

  1. Поместите свернутую проволоку с кончиками в маленькие петли, образованные незакрепленными концами скрепок («люльки»). Ваш двигатель должен выглядеть так, как показано на Рисунке 6.
  2. Медленно поверните катушку рукой (касайтесь только изолированной части провода) и наблюдайте за магнитным притяжением и отталкиванием между электромагнитом и керамическим магнитом.
  3. (Необязательно) Снимите магнит с аккумулятора. Используйте компас, чтобы определить ориентацию магнитного поля катушки. Снимите катушку и установите ее на скрепки в обратном направлении. С помощью компаса снова определите ориентацию магнитного поля катушки.

Со студентами: Часть 2 — Как заставить двигатель работать

  1. Установите двигатель на край стола или столешницы (см. Рисунок 6).
  2. Согните конец провода с полностью удаленной изоляцией в очень маленькую тугую петлю.
  3. Обвяжите эту петлю одним концом нити длиной 0,3 м. Другой конец обвяжите небольшой скрепкой.
  4. Слегка подтолкните катушку, чтобы она начала наматывать струну. Добавление дополнительной петли и тетивы может вывести мотор из равновесия. Чтобы мотор правильно обернул веревку, потребуется немало усилий, но это сработает. Используйте свой палец в качестве ориентира.
  5. Как только мотор захватит одну скрепку, размотайте ее и попробуйте подсоединить вторую скрепку к первой.Продолжайте добавлять скрепки и пытайтесь снова, пока двигатель не перестанет поднимать груз. Мы смогли поднять 16 скрепок с помощью только этого мотора, так что — это !

Словарь / Определения

Батарея: элемент, обеспечивающий электрический ток.

Коммутатор: Цилиндрическое расположение металлических стержней, подключенных к катушкам двигателя постоянного тока (постоянного тока), которое обеспечивает реверсирование тока в катушках двигателя с каждой половиной оборота, позволяя двигателю непрерывно вращаться в одном направлении.

ток: поток электронов.

инженер: человек, который применяет научные и математические принципы в творческих и практических целях, таких как проектирование, производство и эксплуатация эффективных и экономичных конструкций, машин, процессов и систем.

Изолированный провод: провод, покрытый каким-либо покрытием.

магнит: что-то, что притягивает железо и создает магнитное поле.

магнитное поле: поле, создаваемое магнитом или электрическим током.

двигатель: электрическое устройство, преобразующее электрическую энергию в механическую.

северный полюс: конец магнита, указывающий на север.

соленоид: Катушка изолированного провода.

Южный полюс: конец магнита, указывающий на юг.

неизолированный провод: провод без покрытия.

Оценка

Оценка перед началом деятельности

Голосование : Задайте вопрос «правда / ложь» и попросите учащихся проголосовать, подняв палец вверх за истину и вниз за ложь. Подсчитайте голоса и запишите их на доске. Дайте правильный ответ.

  • Верно или неверно: одинаковые магнитные полюса притягиваются, а разные магнитные полюса отталкиваются. (Ответ: Неверно. Верно и обратное.)
  • Верно или неверно: движущийся магнит может создавать электрический ток.(Ответ: Верно)
  • Верно или неверно: инженеры проектируют двигатели и работают над их улучшением. (Ответ: Верно)
  • Верно или неверно: электрический ток не создает магнитное поле (Ответ: неверно, электрический ток действительно создает магнитное поле).

Оценка деятельности

Вопросы / ответы : Задайте студентам следующие вопросы, когда они работают над заданием.

  • Что заставляет катушку вращаться? (Ответ: Магнитное поле электромагнита [катушки] взаимодействует с магнитным полем керамического магнита, вращая катушку.)
  • Какая часть двигателя является электромагнитом? (Ответ: Катушка.)

Оценка после деятельности

Рисунок Рисунок : попросите учащихся нарисовать изображения своих двигателей, а затем попросите их нарисовать стрелки, чтобы показать, как энергия протекает через их двигатели. (Ответ: начиная с батареи, проходя через скрепки в катушку.)

Технические вопросы для обсуждения : запрашивайте, объединяйте и обобщайте ответы студентов.

  • Инженеры проектируют многие вещи, используя электромагниты и двигатели.Какие примеры устройств, которые разработали инженеры, имеют двигатели? (Возможные ответы: вентилятор, блендер, стиральная машина, сушилка, проигрыватель компакт-дисков, движущиеся электронные игрушки и т. Д.)
  • Для какого из этих устройств (приборов / оборудования / устройств) может потребоваться самый мощный двигатель? Почему? (Ответ: Любая машина, которая должна перемещать тяжелый груз, например стиральная машина, требует более мощного двигателя, чем машины, которые перемещают небольшие грузы, такие как электрический консервный нож. Примите разумные ответы.)
  • Какие части двигателя следует изменить инженерам для создания более мощных двигателей? (Ответ: Электромагнит, поскольку инженеры могут изменить количество электрического тока в электромагните, а также количество катушек.У постоянного магнита нет этих вариантов для замены.)
  • Если бы вы были инженером, проектировавшим двигатель для новой электронной игрушки, что бы вы приняли во внимание при разработке своего двигателя? (Возможные ответы: сколько двигатель должен вращаться, какого размера должен быть двигатель, сколько работы двигатель должен выполнить и т. Д.)

Вопросы безопасности

Посоветуйте учащимся проявлять осторожность при сгибании скрепок, чтобы не повредить кожу на пальцах.

Советы по поиску и устранению неисправностей

Шлифовка магнитной проволоки — самая сложная часть. Студенты должны быть осторожны, чтобы точно следовать инструкциям. Медленно проделывайте с ними каждый шаг.

Может потребоваться проверить батарею вольтметром, чтобы убедиться, что она не разряжена (разряжается менее 1,5 В). При необходимости используйте новую батарею.

Когда мотор «работает», он помогает направить тетиву пальцем так, чтобы она равномерно оборачивалась вдоль хвоста катушки, как лебедка.

Расширения деятельности

Предложите учащимся поэкспериментировать с катушками различной формы (но с одинаковым количеством витков проволоки): овальными, прямоугольными и квадратными. Какая фигура вращается быстрее всего?

Попросите учащихся изменить количество витков проволоки в катушке. Попробуйте число меньше семи. Как насчет более семи? Влияет ли количество витков на скорость двигателя?

Предложите учащимся выяснить, как толщина провода влияет на двигатель? (Если проволока слишком тонкая, возможно, она не сможет захватывать скрепки без изгиба.Если он слишком толстый, он может быть слишком жестким и плохо контактировать с опорами.)

Попросите учащихся изменить дизайн опор для скрепок. Они могут захотеть попробовать скрепки меньшего размера, больше резиновых лент, согнуть скрепки совершенно по-другому или даже отшлифовать их поверхность для лучшего контакта.

Попросите учащихся использовать магнит в форме кольца вместо магнита прямоугольной формы. Имеет ли значение форма магнита?

Попросите учащихся изменить одну или несколько переменных из предложенных изменений в дополнительных упражнениях и предложить дизайн для наилучшей возможной моторики.

Масштабирование активности

  • Для младших классов и младших школьников это задание может быть слишком сложным. Два альтернативных варианта включают в себя: заранее изготовить катушки из проволоки и попросить учащихся собрать простой двигатель группой; или завершите упражнение в виде демонстрации в классе. Для младших школьников исключите часть 2 процедуры задания.
  • Для старших классов обсудите использование итераций в инженерии и то, как инженеры обычно пробуют разные подходы к проблеме, прежде чем решить ее.На ошибках можно многому научиться! Попросите учащихся выбрать одно изменение дизайна в разделе «Расширения деятельности» и реализовать его.

Рекомендации

Merriam-Webster Интернет. 2005-06. Merriam-Webster, Incorporated. По состоянию на 2 мая 2006 г. (Источник некоторых словарных определений с некоторой адаптацией) http://www.m-w.com

Авторские права

© 2006 Регенты Университета Колорадо.

Авторы

Джо Фридрихсен; Малинда Шефер Зарске; Эбигейл Уотрус; Дениз Карлсон; Джанет Йоуэлл; Эшли Бейли

Программа поддержки

Комплексная программа преподавания и обучения, Инженерный колледж, Университет Колорадо в Боулдере

Благодарности

Содержание этой учебной программы по цифровой библиотеке было разработано за счет гранта Фонда улучшения послесреднего образования (FIPSE), U.S. Министерство образования и Национальный научный фонд GK-12, грант № 0338326. Тем не менее, это содержание не обязательно отражает политику Министерства образования или Национального научного фонда, и вы не должны рассчитывать на одобрение со стороны федерального правительства.

Последнее изменение: 13 июля 2021 г.

Подключение электродвигателя 380 на 220 В своими руками: схема

При установке оборудования в домашних условиях иногда возникает необходимость подключить электродвигатель 380 на 220 В.Выбор в большинстве случаев падает на асинхронные машины переменного тока, так как они обладают высокой надежностью — простота конструкции позволяет увеличить ресурс двигателя. Коллекторные двигатели с точки зрения подключения к сети проще — не нужно никаких дополнительных устройств для запуска. Асинхронным устройствам необходима конденсаторная батарея или преобразователь частоты, если их необходимо подключить к сети 220 В.

Схема подключения двигателя к трехфазной сети 380 В

В трехфазных асинхронных двигателях есть три одинаковые обмотки, они соединены по определенной схеме.Схемы соединения обмоток электродвигателей всего две:

  1. Звезда.
  2. Треугольник.

При соединении обмоток по схеме «треугольник» достигается максимальная мощность. Но на этапе пуска возникают большие токи, для оборудования они опасны.


При подключении по схеме «звезда» запуск двигателя будет плавным, так как токи небольшие. Правда, при таком подключении добиться большой мощности не получится.Если обратить внимание на эти моменты, станет понятно, почему электродвигатели при подключении к бытовой сети 220 В подключаются только по схеме «звезда». Если выбрать схему «треугольник», то вероятность выхода из строя электродвигателя увеличивается.


В некоторых случаях, когда нужно добиться от привода высокого показателя мощности, используют комбинированное соединение. Пуск осуществляется с подключением обмоток к «звезде», а затем осуществляется переход к «треугольнику».

Звезда и треугольник

Независимо от того, какую схему вы выберете для подключения электродвигателя от 380 до 220 В, вам необходимо знать конструктивные особенности двигателя. Обратите внимание:

  1. Обмоток статора три, у которых два вывода — начало и конец. Они выведены в контактную коробку. С помощью перемычек выводы обмоток соединяются по схеме «звезда» или «треугольник».
  2. Сеть 380 В имеет три фазы, которые обозначаются буквами A, B и C.

Для подключения по схеме «звезда» необходимо замкнуть все начала обмоток.


А на торцы подается напряжение 380 В. Это нужно знать при подключении электродвигателя 380 на 220 Вольт. Для соединения обмоток по схеме «треугольник» необходимо начало катушки замкнуть концом соседней. Получается, что вы последовательно соединяете все обмотки, образует своеобразный треугольник, к вершинам которого подключается питание.



Переходная схема переключения

Для плавного пуска трехфазного электродвигателя и получения максимальной мощности необходимо включить его по схеме «звезда». Как только ротор достигает номинальной частоты вращения, происходит переключение и включение по «треугольнику». Но у такой переходной схемы есть существенный недостаток — отменить ее нельзя.


При использовании переходной схемы для подключения электродвигателя 220/380 к сети 380 В используются три магнитных пускателя:

  1. Первый соединяет начальные концы обмоток статора и фазы питания.
  2. Второй пускатель необходим для подключения по схеме «треугольник». С его помощью соединяются концы обмоток статора.
  3. С помощью третьего пускателя концы обмоток подключаются к сети.

В этом случае второй и третий пускатели нельзя запускать одновременно, так как возникнет короткое замыкание. Следовательно, автоматический выключатель, установленный в щитке, отключит сеть. Для предотвращения одновременного включения двух стартеров используется электрическая блокировка.В этом случае возможно включение только одного стартера.

Как работает переходная цепь

Особенности работы переходной цепи:

  1. Включен первый магнитный пускатель.
  2. Пускается реле времени, позволяющее ввести в действие третий магнитный пускатель (двигатель запускается с обмотками, соединенными по схеме «звезда»).
  3. По истечении времени, указанного в настройках реле, третье реле отключается, а второй пускатель запускается.В этом случае обмотки соединяются по схеме «треугольник».

Для остановки работы необходимо разомкнуть силовые контакты первого пускателя.

Особенности подключения к однофазной сети

При использовании трехфазного двигателя в однофазной сети добиться максимальной мощности не удастся. Чтобы подключить электродвигатель 380 на 220 к конденсатору, нужно придерживаться нескольких правил. И самое главное — правильно подобрать емкость конденсатора.Правда, пока мощность мотора не превысит 50% от максимальной.


Обратите внимание, что при подключении электродвигателя к сети 220 В, даже при включении обмоток по схеме «треугольник» токи не критичны. Поэтому разрешено использовать эту схему даже больше — она ​​считается оптимальной при работе в этом режиме.

Схема подключения к сети 220 В

Если питание подается от сети 380, то к каждой обмотке подключается отдельная фаза.Причем три фазы сдвинуты друг относительно друга на 120 градусов. Но в случае подключения к сети 220 В оказывается, что фаза всего одна. Правда второй — ноль. Но с помощью конденсатора делается третий — делается сдвиг на 120 градусов относительно первых двух.


Обратите внимание, двигатель, рассчитанный на подключение к сети 380 В, проще всего подключить к 220 В только с помощью конденсаторов. Есть еще два способа — с помощью преобразователя частоты или другого статора двигателя.Но эти методы увеличивают либо стоимость всего накопителя, либо его габариты.

Конденсаторы рабочие и пусковые

При пуске электродвигателя мощностью ниже 1,5 кВт (при условии отсутствия на начальном этапе нагрузки на ротор) допускается использование только рабочего конденсатора. Только при этом условии возможно подключение электродвигателя 380 к 220 без пускового конденсатора. А если ротор подвергается нагрузке и мощности двигателя более 1,5 кВт, необходимо использовать пусковой конденсатор, который необходимо включить на несколько секунд.


Рабочий конденсатор подключен к нулевому выводу и к третьей вершине треугольника. Если необходимо реверсировать ротор, то нужно просто подключить выход конденсатора к фазе, а не к нулю. Пусковой конденсатор включается кнопкой без защелки параллельно рабочему. Он участвует в работе до тех пор, пока не произойдет разгон электродвигателя.

Для выбора рабочего конденсатора при включении обмоток по схеме «треугольник» нужно воспользоваться следующей формулой:

Cp = 2800 * I / U

Пусковой конденсатор подбирается опытным путем.Его мощность должна быть примерно в 2-3 раза больше, чем у рабочего.

Сравнение соединений звездой и треугольником в трехфазных системах

Соединение звездой (Y или звезда) Соединение треугольником (Δ)
Соединение звездой — это 4-проводное соединение (в некоторых корпусов) Соединение треугольником представляет собой 3-проводное соединение.
Возможны два типа систем соединения звездой: 4-проводная 3-фазная система и 3-проводная 3-фазная система. При соединении треугольником возможна только 3-проводная 3-фазная система.
Из 4 проводов 3 провода являются фазами, а 1 провод является нейтралью (которая является общей точкой 3 проводов). Все 3 провода являются фазами в соединении треугольником.
При соединении звездой один конец всех трех проводов подключен к общей точке в форме Y, так что все три открытых конца трех проводов образуют три фазы, а общая точка образует нейтраль. . При соединении треугольником каждый провод соединяется с двумя соседними проводами в форме треугольника (Δ), и все три общие точки соединения образуют три фазы.
Общая точка звездного соединения называется нейтральной или звездной точкой. В соединении треугольником нет нейтрали.
Напряжение линии (напряжение между любыми двумя фазами) и напряжение фазы (напряжение между любой фазой и нейтралью) различаются. Линейное и фазное напряжение одинаковы.
Линейное напряжение равно трехкратному фазовому напряжению, то есть VL = √3 VP. Здесь VL — линейное напряжение, а VP — фазное напряжение. Напряжение линии равно фазному напряжению, то есть VL = VP.
При соединении звездой вы можете использовать два разных напряжения, поскольку VL и VP различны. Например, в системе 230 В / 400 В напряжение между любым фазным проводом и нейтральным проводом составляет 230 В, а напряжение между любыми двумя фазами — 400 В. При соединении треугольником мы получаем только одно значение напряжения.
Линейный ток и фазный ток одинаковы. Линейный ток в три раза больше тока фазы.
В соединении звездой, IL = IP. Здесь IL — линейный ток, а IP — фазный ток. При соединении треугольником, IL = √3 IP
Общая трехфазная мощность при соединении звездой может быть рассчитана по следующим формулам.
P = 3 x VP x IP x Cos (Φ) или
P = √3 x VL x IL x Cos (Φ)
Общая трехфазная мощность при соединении треугольником может быть рассчитана по следующим формулам.
P = 3 x VP x IP x Cos (Φ) или
P = √3 x VL x IL x Cos (Φ)
Поскольку линейное и фазовое напряжение различны (VL = √3 VP), изоляция требуется для каждой фазы меньше при соединении звездой. При соединении треугольником линейное и фазное напряжения одинаковы, поэтому для отдельных фаз требуется дополнительная изоляция.
Обычно соединение звездой используется как в передающих, так и в распределительных сетях (с однофазным или трехфазным питанием). Delta Connection обычно используется в распределительных сетях.
Поскольку требуется меньшая изоляция, соединение звездой может использоваться на больших расстояниях. Соединения треугольником используются для более коротких расстояний.
Соединения «звездой» часто используются в приложениях, требующих меньшего пускового тока. Соединения «треугольник» часто используются в приложениях, требующих высокого пускового момента.

Схема подключения — все, что вам нужно знать о схеме подключения

Что такое электрическая схема?

Схема подключения — это простое визуальное представление физических соединений и физической компоновки электрической системы или цепи.Он показывает, как электрические провода соединяются между собой, а также может показать, где приспособления и компоненты могут быть подключены к системе.

Когда и как использовать электрическую схему

Используйте электрические схемы, чтобы помочь в создании или производстве схемы или электронного устройства. Также они пригодятся при ремонте.

Энтузиасты своими руками используют электрические схемы, но они также распространены в домостроении и ремонте автомобилей.

Например, строитель дома захочет подтвердить физическое расположение электрических розеток и осветительных приборов, используя схему подключения, чтобы избежать дорогостоящих ошибок и нарушений строительных норм.

Как нарисовать электрическую схему

SmartDraw поставляется с готовыми шаблонами электрических схем. Создавайте сотни электрических символов и быстро вставляйте их в свою электрическую схему. Специальные ручки управления вокруг каждого символа позволяют при необходимости быстро изменять их размер или вращать.

Чтобы нарисовать провод, просто щелкните параметр Draw Lines в левой части области рисования. Если щелкнуть линию правой кнопкой мыши, можно изменить цвет или толщину линии, а также при необходимости добавить или удалить стрелки.Перетащите символ на линию, и он вставится и встанет на место. После подключения он останется подключенным, даже если вы переместите провод.

Если вам нужны дополнительные символы, щелкните стрелку рядом с видимой библиотекой, чтобы открыть раскрывающееся меню, и выберите Дополнительно . Вы сможете искать дополнительные символы и открывать любые соответствующие библиотеки.

Щелкните Set Line Hops в SmartPanel, чтобы показать или скрыть линейные переходы в точках пересечения. Вы также можете изменить размер и форму хмеля.Выберите Показать размеры , чтобы показать длину проводов или размер компонента.

Щелкните здесь, чтобы прочитать полное руководство SmartDraw о том, как рисовать принципиальные и другие электрические схемы.

Чем электрическая схема отличается от схемы?

Схема показывает план и функции электрической цепи, но не касается физического расположения проводов. На схемах подключения показано, как соединяются провода и где они должны располагаться в реальном устройстве, а также физические соединения между всеми компонентами.

Чем электрическая схема отличается от графической схемы?

В отличие от графической схемы, схема подключения использует абстрактные или упрощенные формы и линии для отображения компонентов. Графические схемы часто представляют собой фотографии с этикетками или подробные чертежи физических компонентов.

Стандартные символы электрических схем

Большинство символов, используемых на схеме соединений, выглядят как абстрактные версии реальных объектов, которые они представляют. Например, выключатель будет разрывом линии с линией под углом к ​​проводу, очень похоже на выключатель, который вы можете включать и выключать.Резистор будет представлен серией волнистых линий, символизирующих ограничение тока. Антенна — это прямая линия с тремя маленькими линиями, отходящими на ее конце, очень похожая на настоящую антенну.

  • Провод, токопроводящий
  • Предохранитель, отключается, когда ток превышает определенную величину
  • Конденсатор для хранения электрического заряда
  • Тумблер, останавливает ток при открытии
  • Кнопочный переключатель, на мгновение разрешает ток при нажатии кнопки, прерывает ток при отпускании
  • Аккумулятор, накапливающий электрический заряд и вырабатывающий постоянное напряжение
  • Резистор, ограничивает ток
  • Провод заземления, используемый для защиты
  • Автоматический выключатель, используемый для защиты цепи от перегрузки по току
  • Индуктор, катушка, создающая магнитное поле
  • Антенна, принимает и передает радиоволны
  • Устройство защиты от перенапряжения, используется для защиты цепи от скачков напряжения
  • Лампа, излучает свет при протекании тока через
  • Диод, позволяет току течь в одном направлении, указанном стрелкой или треугольником на проводе
  • Микрофон, преобразует звук в электрический сигнал
  • Электродвигатель
  • Трансформатор, изменяет напряжение переменного тока с высокого на низкое или наоборот
  • Наушники
  • Термостат
  • Электророзетка
  • Распределительная коробка

Примеры электрических схем

Лучший способ понять электрические схемы — это посмотреть на несколько примеров электрических схем.

Щелкните любую из этих схем подключения, включенных в SmartDraw, и отредактируйте их:

Просмотрите всю коллекцию примеров и шаблонов схем подключения SmartDraw

В чем разница между последовательными и параллельными схемами | ОРЕЛ

О нет! Почему не горят рождественские огни? О, вы думали, что было бы забавно вытащить одну из лампочек, а теперь все пошло прахом! Если вы один из тех неудачников, которым удалось затемнить всю свою световую установку, не расстраивайтесь, вы не одиноки.Каждый год миллионы огней по всему миру гаснут, чтобы получить один важный урок — научить вас различать между последовательными и параллельными цепями!

Во-первых, основы

Прежде чем мы углубимся в разницу между последовательными и параллельными цепями, давайте рассмотрим некоторые основные термины, которые мы будем обсуждать.

  • Ток. У электричества есть над чем поработать, и когда электроны движутся по цепи, действует ток.
  • Схема. Если это замкнутый непрерывный путь, то по нему будет течь электричество. На этом пути электричество может творить массу удивительных вещей, например, приводить в действие ваш смартфон или отправлять людей в космос!
  • Сопротивление. Это то, с чем сталкивается электричество, когда оно течет по физическому материалу, будь то медный провод или простой старый резистор. Сопротивление ограничивает прохождение электрического тока.

Ниже вы найдете изображение простой схемы, которая включает батарею, выключатель и лампочку.

Самая простая из схем питания лампочки от аккумулятора.

Сезон серии

Давайте вернемся к нашим рождественским огням, чтобы понять, как именно работает схема, соединенная последовательно. Допустим, у вас есть цепочка огней, соединенных одна за другой. Если вы посмотрите на схему, это будет выглядеть примерно так:

Ваши рождественские гирлянды последовательно, обратите внимание, что все гирлянды соединены друг за другом. (Источник изображения)

Что будет делать ток, когда мы подключим наш светильник к розетке? Давайте проследим за потоком:

  • Включение. Когда мы включаем рождественские гирлянды в розетку, в розетке начинает течь ток.
  • Плывёт. Затем он движется по жиле медной проволоки и сквозь наш рождественский свет, заставляя их ярко светиться.
  • Возвращаюсь домой. Когда ток достигает конца нашей светящейся нити, он направляется к земле, чтобы немного отдохнуть, и цикл продолжается.

Неважно, какие компоненты вы размещаете в последовательной цепи, вы можете смешивать и сочетать конденсаторы, резисторы, светодиоды и несколько рождественских гирлянд вместе, и ток все равно будет течь одинаково от одной части к другой. .

Вот здесь, как правило, гаснут рождественские огни. Что произойдет, если вы выдернете одну из этих лампочек в своей цепочке огней? Если ваш свет хоть немного похож на наш, значит, он все выключен! Почему это? Подумайте об этом: если ток течет от света к свету, и вы нарушаете эту связь, то вы перекрываете путь, по которому пытается течь электричество. Это называется обрывом цепи .

Ток и сопротивление в серии

Существует фундаментальный закон Вселенной, который следует помнить о том, как ток и сопротивление работают в последовательной цепи:

Чем больше работы (сопротивления) выполняет последовательная цепь, тем больше уменьшается ее ток.

Имеет смысл, правда? По мере того, как вы добавляете в цепь большее сопротивление, например, рождественские гирлянды или даже резистор, тем больше работы требуется для вашей схемы. Допустим, вы взяли схему, которую мы представили в начале этого блога, с одной лампочкой. Итак, что произойдет, если вы добавите еще один источник света в эту схему? Обе лампочки будут сиять так же ярко? Неа. Когда вы подключите вторую лампочку, она станет одинаково тусклой, потому что вы добавили в цепь большее сопротивление, что уменьшает ток.

Добавление еще одной лампочки последовательно уменьшает ток , потому что у нашей батареи теперь больше работы!

Но как узнать, какое сопротивление у вас в последовательной цепи? Вы просто складываете все различные значения сопротивления вместе. Например, в схеме ниже у нас есть два резистора, каждый по 10 кОм. Чтобы получить общее сопротивление в этой цепи, просто сложите все числа вместе. Это 10 кОм + 10 кОм, что составляет 20 кОм полного сопротивления.

Сложить наши резисторы в последовательную цепь очень просто, просто сложите каждый из них вместе.

И какой у вас будет ток в этой цепи, исходя из такого сопротивления? Вот как это понять.

  • Используя наш проверенный треугольник закона Ома, мы получаем уравнение, которое нам нужно использовать: I = V / R или ток = напряжение, деленное на сопротивление.
  • Подставляя известные нам числа, получаем I = 10V / 20k. Через нашу цепь протекает 0,5 миллиампер (мА)!
  • Что делать, если мы вынимаем один из резисторов? Теперь наше уравнение I = 10 В / 10 кОм, и мы увеличили наш ток до 1 миллиампер (мА) за счет уменьшения сопротивления.

Параллельная работа

Итак, разве не было бы замечательно, если бы вы вытащили одну из лампочек в своей нити рождественских гирлянд, а остальные остались включенными? Если бы все ваши рождественские огни были соединены параллельно, то они вели бы себя именно так!

В параллельной цепи представьте, что все ваши световые нити соединены вместе. Но вместо того, чтобы каждую лампочку подключать одну за другой, все они подключаются отдельно в своих цепях, как на изображении ниже.Как видите, каждая лампочка имеет свою собственную мини-цепь, отдельную от другой, но все они работают вместе как часть более крупной цепи.

Ваши рождественские огни теперь параллельны, обратите внимание, как у каждого светильника есть своя цепь. (Источник изображения)

Но как протекает ток в такой цепи? Он не следует просто по одному пути; он следует за всеми одновременно! Вот почему это круто. Представьте, что вы выдергиваете одну из лампочек в такой схеме.Вместо того, чтобы останавливать всю работу рождественского света, остальная часть цепи будет продолжать движение, потому что каждый свет не зависит от источника света до или после него в качестве источника электричества.

Ток и сопротивление параллельно

Когда цепь подключена параллельно, ток и сопротивление начинают делать некоторые странные вещи, которых вы, возможно, не ожидали, вот что вам нужно запомнить:

В параллельных цепях, когда вы увеличиваете сопротивление, вы также увеличиваете ток, но в результате ваше сопротивление уменьшается вдвое.

Подождите, что? Звучит безумно! Но подумайте об этом в отношении рождественских огней. По мере того, как вы добавляете больше разноцветных огней в свою схему, вам нужно потреблять больше тока для питания всех этих огней, верно? И поэтому начинает происходить волшебство: чем больше источников света вы добавляете, тем выше поднимается ваш ток, но этот увеличенный ток оказывает противоположное влияние на ваше сопротивление.

Это может быть немного сложно для понимания, поэтому давайте рассмотрим простой пример.Проверьте схему ниже:

Здесь у нас есть параллельная схема с двумя резисторами 10 кОм и батареей 10 В.

Здесь у нас есть батарейный источник 10 В и два резистора 10 кОм, которые подключены параллельно. Теперь, поскольку каждый резистор имеет свою собственную схему, нам нужно выяснить, какой ток каждый будет использовать:

  • Возвращаясь к нашему треугольнику закона Ома, мы знаем, что уравнение, которое нам нужно использовать, это I = V / R, или ток равен напряжению, деленному на сопротивление.
  • И вставляя наши числа, мы получаем I = 10 В / 10 кОм, что составляет 1 мА.Но это только одна из двух схем резистора; Теперь нам нужно удвоить ток, чтобы получить общее значение для всей цепи, которое составляет 2 мА.
  • Итак, что происходит с нашим сопротивлением при двух амперах? Мы можем использовать закон Ома, чтобы выяснить это с R = V / I, что составляет R = 10 В / 2 мА = 5 кОм. Поскольку мы удвоили наш ток, наши оригинальные резисторы 10 кОм теперь дают только половину сопротивления!

Да, все это довольно безумно, не так ли? Это просто один из тех законов Вселенной.

Как на самом деле работают рождественские огни

Так как же твои рождественские гирлянды на самом деле работают? Подсказка — они не на 100% последовательны и не на 100% параллельны, они оба! Эти умные инженерные эльфы решили, что самый эффективный способ заставить ваши рождественские огни работать — это соединить несколько серий огней параллельно. Посмотрите на изображение ниже, чтобы понять, что мы имеем в виду:

Многие из сегодняшних рождественских гирлянд соединены последовательно / параллельно.(Источник изображения)

Вот почему этот последовательный / параллельный гибрид хорош — если вы выдернете один свет, выключится только одна часть ваших фонарей, а не все из них. Это потому, что вы затронули только одну из последовательных цепей в вашей более крупной параллельной цепи. Но почему инженерные эльфы просто не сделали все огни параллельно? Для этого потребуется тонна проводов, и Санта должен следить за своими производственными затратами, как и мы!

Но подождите, вы можете вспомнить тот год, когда у вас перегорел свет, но остальные фонари продолжали работать, что там произошло? Вы можете поблагодарить этот небольшой фокус на так называемом шунте .Это маленькое устройство позволяет току продолжать движение по цепи даже после того, как лампа перегорела. Как так? Давайте подробнее рассмотрим одну из ваших рождественских гирлянд ниже:

Шунтирующий провод поддерживает движение электричества даже после того, как лампа перегорела. (Источник изображения)

Видите этот провод, который обвивает нижнюю часть фонаря? Это шунт, и на нем есть покрытие, которое предотвращает прохождение электричества через него, пока свет работает правильно.Но когда верхний провод перегорает, повышение температуры приводит к плавлению покрытия шунтирующего провода, позволяя электричеству продолжать проходить от одного вывода к другому, и ваши рождественские огни продолжают работать!

Дар дарения

Вот тебе подарок на год! Теперь у вас есть новые знания о разнице между цепями, соединенными последовательно и параллельно, и о том, как они работают вместе, чтобы ваши рождественские огни сияли ярко.

Цепи, соединенные последовательно, проще всего понять, поскольку ток течет в одном непрерывном и плавном направлении.И чем больше работы у вас будет выполнять последовательная цепь, тем больше будет уменьшаться ваш ток. Параллельные схемы немного сложнее, позволяя подключать несколько схем, работая индивидуально как часть более крупной схемы. Из-за этого интересного соединения, когда вы увеличиваете сопротивление в параллельной цепи, вы также увеличиваете ток!

Если вы все еще не можете осмыслить все это, то вот отличное видео от Bozeman Science, которое упрощает понимание: