Как проверить конденсатор мультиметром не выпаивая: Как проверять конденсаторы мультиметром не выпаивая, проверить исправность

Содержание

Как проверить конденсатор на исправность мультиметром

В прошлых статьях были рассмотрены вопросы: принципов работы, характеристик и схем соединения конденсаторов. Сейчас Я подробно расскажу как его проверить при помощи недорого и распространенного измерительного прибора- мультиметра, а так же как, его используя при наличии соответствующий функции, узнать величину емкости.

Перед проверкой конденсатор необходимо выпаять из схемы, потому что не выпаивая это сделать практически невозможно из-за влияния на измерения других компонентов схемы. В большинстве случаев, не выпаивая из схемы можно лишь проверить мультиметром только на пробой, при котором на выводах конденсатора будет короткое замыкание.

Некоторые радиолюбители используют метод для проверки на плате при помощи зарядки — разрядки конденсатора, меняя полярность перестановкой концов мультиметра или тестера. Сомнительный метод, Я один раз попробовал данным методом воспользоваться и у меня ничего не получилось проверить, потому что в схеме было много других конденсаторов. Рекомендую, если внешним осмотром ничего выявить не удалось, для правильной проверки выпаивать конденсатор.

Помните, что приступая к любым работам с конденсаторами— необходимо перед этим разрядить его выводы. Я для этого использую отвертку с изолированными ручкой, за которую держась необходимо  замкнуть контакты конденсатора.  Мощные модели во избежания повреждения искровым разрядом металлической части отвертки, лучше разрядить при помощи лампочки накаливания. Необходимо держась за изолированную часть проводов коснуться выводов конденсатора. Лампочка вспыхнет и погаснет, после этого произойдет полный разряд. Но одной лампочкой необходимо только разряжать при рабочем напряжении 220 Вольт, для 380 Вольт- используйте 2 последовательно соединенные между собой лампочки.

Как проверить конденсаторы внешним осмотром

Прежде чем выпаивать со схемы конденсатор сделайте внешний его осмотр. Очень часто визуально неисправность определяется при осмотре электролитических конденсаторов.
Если Вы обнаружили подтеки электролита в нижней части и следы коррозии (левая картинка) или вздутие в области перекрестия сверху (правая картинка), то такие конденсаторы необходимо заменить.

Довольно просто в большинстве случаев удается проверить конденсаторы на 220 Вольт следующим методом:

  1. Проверяем пробником или тестером на отсутствие короткого замыкания внутри конденсатора.
  2. Заряжаем конденсатор от электросети рабочим напряжением с соблюдением мер предосторожности.
  3. Отключаем его от электропитания.
  4. Закорачиваем или подключаем лампочку, как было описано выше- увидели искровой разряд или вспышку в лампочке, значит конденсатор в порядке.

Как проверить конденсатор мультиметром

Конденсаторы бывают полярные и неполярные. К полярным относятся только электролитические. Они впаиваются в схемы только с соблюдением полярности к плюсу плюсовой контакт, к минусу- минусовой контакт. Минус напротив контакта указывается галочкой на золотистой или светлой продольной линии на корпуса конденсатора.

Неполярные- без разницы какими контактами подключать или впаивать в схему.

Перед началом проверки не забываем закоротить выводы. После этого берем мультиметр и переключаем его в режим прозвонки или измерения сопротивления. У исправного конденсатора сразу после подключения начнется зарядка постоянным током и сопротивление на табло будет минимальным (рисунок 1). Далее сопротивление будет плавно расти пока не достигнет  максимально большого значения или  бесконечности (рисунок 2).

При неисправности конденсатора:

  • При проверке мультиметром сразу высвечивается бесконечность. Это говорит о том, что внутри конденсатора произошел обрыв.
  • Мультиметр пищит и показывает нулевое сопротивление- в конденсаторе произошел пробой изолятора и возникло короткое замыкание.

В обоих случаях конденсаторы подлежат замене.

Неполярные конденсаторы проверяются гораздо проще. Устанавливаем предел измерения сопротивления на мультиметре Мега Омы и касаемся измерительными щупами контактов конденсатора. У неисправного конденсатора сопротивление будет меньше 2 Мега Ом.

Вы должны учитывать, что большинство моделей тестеров позволяют проверить лишь на короткое замыкание неполярные и полярные конденсаторы номиналом менее 0.25 мкФ.

Как определить емкость конденсатора

Все параметры наносятся на корпусе конденсаторов, для проверки соответствия емкости или если эту величину невозможно прочесть- необходимо воспользоваться мультиметром с функцией измерения емкости «Сх».

Для измерения величины емкости переключите мультиметр в режим Cx с предполагаемым максимальным пределом измерения для данного конденсатора. В некоторых моделях есть специальные гнезда для проверки небольших конденсаторов, в которые вставляются контактные ножки согласно пределам измерения. В других- для этого используются измерительные щупы.

На рисунке показан пример измерения конденсатора на 9.5 Микрофарад, поэтому предел выставлен на 20 Микрофарад.

Не забывайте только перед проверкой всегда разряжать конденсаторы.

Как проверить конденсатор мультиметром или тестером

Конденсатор – это устройство, способное накапливать электрический заряд. Вследствие неисправности он теряет это свойство и становится бесполезным. В этой статье речь пойдет о том, как проверить конденсатор.

Конденсаторы делятся на электролитические, подключаемые в схему лишь определенным образом, и неполярные, порядок подключения выводов которых безразличен. Для начала рассмотрим, как проверить электролитический конденсатор на работоспособность.

Как проверить исправность электролитического конденсатора мультиметром

Сначала нужно провести внешний осмотр конденсатора. Повреждения электролитов нередко приводят к увеличению давления внутри их корпуса. В итоге они взрываются. Сила взрыва невелика, но больший вред окружающему пространству наносит разбрызгивание содержимого детали. Для исключения этого явления современные конденсаторы имеют в верхней части крестообразную насечку. При превышении давления корпус рвется по ее линиям и стравливает давление из корпуса, не давая ему достичь высоких значений. Заключение о неисправности можно смело дать в случаях вспучивания корпуса или его разрыва в месте насечки. В остальных случаях потребуется проверить работоспособность конденсатора.

Такой конденсатор необходимо заменить

Принцип проверки заключается в следующем. Мультиметры и тестеры используют для измерения сопротивления внутренний источник постоянного тока – батарейку. Для проверки исправности конденсатора прибор подключают к его выводам, соблюдая полярность. В первый момент времени прибор будет показывать сопротивление разряженного устройства, которое близко к нулю. Источник постоянного тока прибора начнет заряжать конденсатор, по мере зарядки сопротивление будет увеличиваться. Когда заряд закончится, прибор покажет бесконечно большое сопротивление, лежащее за пределом его измерения.

Перед тем, как проверить конденсатор мультиметром, его необходимо разрядить, замкнув выводы между собой или закоротив любым металлическим предметом: отверткой, пинцетом, ножом. Предел измерения мультиметра выставляется максимально возможным. Плюсовой вывод прибора, имеющий красный цвет и маркировку «Ω», соединяется с выводом радиодетали, обозначенным знаком «+». Минусовой вывод черного цвета, обозначенный на корпусе мультиметра «COM», подключается к другому выводу, и измерение начинается. При этом нужно внимательно следить за показаниями мультиметра, которые должны только увеличиваться, не изменяясь в меньшую сторону.

Должен быть обеспечен надежный контакт между щупами мультиметра и выводами детали, процесс не рекомендуется прерывать. Также нельзя держаться за оба вывода руками: тело человека имеет сопротивление, которое будет шунтировать элемент, мешая ему заряжаться. В конце проверки прибор покажет не бесконечность, а сопротивление тела, и исправность изделия определить будет невозможно.

Возможные результаты проверки конденсатора мультиметром:

  • показания прибора равны нулю и не увеличиваются, любо увеличиваются незначительно. В этом случае у изделия наблюдается пробой (замыкание) обкладок между собой. Его подключение к схеме, где он работает, приведет к короткому замыканию
  • показания прибора увеличиваются, но не достигают бесконечности, останавливаясь на определенном значении сопротивления. В этом случае между обкладками наблюдается ток утечки, а емкость изделия значительно снижается. Элемент будет работать, но неэффективно, выполняя свое функциональное назначение не полностью. Использование его в блоках питания приведет к недостаточной фильтрации выходного напряжения, на звуковых устройствах это сопровождается наличием фона 50 Гц в выходном сигнале. В других узлах это приводит к искажениям сигнала.

Рабочее напряжение мультиметра не превышает 1,5 В, а в схемах, где работают конденсаторы оно намного больше. Если прибор показывает утечку, то при установке изделия на свое место при рабочем напряжении не исключен его полный пробой.

При проверке работоспособности электролитического изделия изменять полярность подключения мультиметра не имеет смысла.

Как проверить исправность обычного конденсатора мультиметром

Перед тем, как проверить обычный конденсатор на исправность, его также нужно разрядить. Метод проверки работоспособности ничем не отличается от предыдущего, кроме того, что заряд произойдет быстрее. Скорость заряда зависит от емкости изделия, при ее уменьшении время заряда тоже уменьшается. Электролитические элементы выпускаются с емкостью от 0,5 мкФ до 1000 мкФ и более, тогда как этот параметр у большинства неполярных не превышает 1 мкФ.

После проверки исправности неполярного конденсатора нужно разрядить его перед впаиванием обратно в схему.

Критерии работоспособности неполярных элементов те же, что и у электролитических.

Как можно проверить конденсатор мультиметром, не выпаивая его

Конденсаторы, особенно электролитические, имеют очень неприятное свойство: при прогреве паяльником при пайке они иногда восстанавливают свои свойства. Поэтому вопрос, как проверять исправность конденсатора, не выпаивая его из схемы, становится иногда очень актуальным. К сожалению, сделать это без интеллектуальных ухищрений невозможно, и универсального метода не существует. Вокруг изделия всегда существуют элементы, шунтирующие его своим сопротивлением, и проверка закончится его измерением.

Поэтому профессионалы после впаивания проверенного конденсатора на место иногда включают ремонтируемое устройство, наблюдая за изменениями в его работе. Если работоспособность его восстановилась или что-то изменилось к лучшему, только что проверенную деталь заменяют на новую.

Сократить время на проверку элементов можно, выпаивая только один из выводов. Но это не может помочь в проверке большинства электролитических конденсаторов, так как конструкция их корпуса не позволяет отпаять только один вывод.

Если проверяемая деталь подключена последовательно с каким-нибудь другим элементом, можно определять ее исправность прямо на плате, выпаяв этот элемент.

Если схема проверяемого устройства сложная, то конденсаторов в ней много. Выпаивать каждый из них для проверки – трудоемкое занятие. К тому же после такого ремонта плата оказывается изрядно перепаханной. В этом случае нужно найти принципиальную схему устройства и проанализировать ее работу. Наличие на схеме контрольных точек с указанными в них напряжениями очень поможет делу. В том, как определять неисправность конденсаторов в этом случае, поможет измерение напряжений на них или на сопряженных с ними узлах схемы. Если напряжение не соответствует ожидаемому, то подозрительный элемент выпаивается и проверяется одним из вышеперечисленных способов.

Как можно проверить конденсатор тестером

Тестер отличается от мультиметра наличием стрелочного измерительного механизма. Он имеет достоинство, позволяющее выполнить процесс диагностики нагляднее. При проверке тестером его стрелка плавно отслеживает изменение сопротивления проверяемой детали, что дает возможность контролировать процесс заряда в подробностях. Будут зафиксированы изменения скорости заряда, рывки, связанные с кратковременными пробоями обкладок, которые при использовании мультиметра невозможно увидеть.

Методика проверки конденсаторов тестером ничем не отличается от той, что применяется для мультиметра.


[ads-pc-1][ads-mob-1]

Как проверять емкость конденсатора

Не всегда исправность конденсаторов можно определить, заряжая его от постороннего источника и контролируя зарядный ток. При небольших значениях емкости (менее 0,5 мкФ) они заряжаются настолько быстро, что за этим не сможет уследить ни один прибор. В таких случаях нужно определить, насколько емкость детали соответствует номинальной. Для этого используются специализированный прибор для проверки конденсаторов: измеритель емкости или LC-метр.

Одна из разновидностей электронных LC-метров

Профессиональные приборы выполняют измерения с большой точностью, но они имеют большие габаритные размеры, дороги и сложны в эксплуатации. Применение их оправдано только при профессиональной деятельности, связанной не только с ремонтом, но и наладкой сложных радиотехнических устройств, требующих точной подгонки емкостей конденсаторов.

Для использования в бытовых условиях используются компактные цифровые измерители емкости, по габаритам не отличающиеся от обычного мультиметра. Они имеют точно такие же щупы для подключения измеряемого элемента, жидкокристаллический дисплей и переключатель пределов измерения. Для проверки конденсаторов сначала узнают его емкость по надписям на корпусе, выбирают соответствующий предел измерения и подключают элемент к прибору. Некоторые модели способны измерять емкость деталей без выпаивания их из схемы.

Как известно, у радиодеталей существует разброс параметров, который регламентируется величиной допуска. Измеренное значение должно укладываться в этот допуск. В этом случае конденсатор считается исправным.

Как проверять емкость конденсатора мультиметром

Некоторые модели мультиметров имеют встроенную функцию для измерения емкости. Проверяемый объект может подключаться как при помощи стандартных щупов, так и втыкаться в специально предназначенные для этого гнезда на корпусе прибора. Мультиметрами тоже можно пользоваться, чтобы определять исправность конденсаторов.

Цифровой мультиметр с функцией измерения емкости конденсаторов

Но, в отличие от узкоспециализированных приборов, пределы их ограничены: на верхнем емкость измеряется до десятков микрофарад, нижний – сотнями пикофарад. Но иногда и этого бывает достаточно для проверки и ремонта большинства распространенных радиоэлектронных устройств.

 Как проверить конденсатор мультиметром на работоспособность не выпаивая

Конденсатор – это важный элемент, обеспечивающий эффективную работу электронных схем по своему функциональному назначению. Прежде чем ознакомиться с методами, как проверить конденсатор мультиметром, рассмотрим виды этих деталей и принципы их работы. Тогда проверку мультиметром работоспособности конденсаторов можно будет делать осознанно, с пониманием того, какие параметры в заданных пределах измеряются.

Проверяем конденсатор мультиметром

Устройство и принципы работы

Практически все электронные схемы включают в свой состав конденсаторы, за исключением отдельно взятых микросхем.

Конденсаторы выполняют роль накопителя энергии, применяются в электронных схемах разного назначения:

  • в фильтрах выпрямителей и стабилизаторов источников питания;
  • передают сигналы между каскадами усилительной аппаратуры;
  • на их основе строятся частотные фильтры, разделяющие звуки на высокие и низкие частоты;
  • в таймерах задаются временные интервалы пусковой системы электродвигателей стиральной машины или режимов микроволновки;
  • в генераторах подбирается определенная частота колебаний и многие другие функции.

Классическая конструкция конденсатора представляет собой две токопроводящие пластины, расположенные друг против друга. Между ними находится диэлектрическая прокладка, в качестве которой может быть даже воздух.

Формула для расчета емкости

е – диэлектрическая проницаемость прокладки;
S – площадь пластин в кв/м;
С – фарады, емкость.

Соотношение формулы показывает, что емкость увеличивается при увеличении площади пластин и уменьшении расстояния между ними.

В промышленности плоские конденсаторы изготавливаются с малыми емкостями, для получения больших емкостей используются технологии изготовления деталей цилиндрической формы. Так, в цилиндрическом корпусе сворачиваются две полоски из фольги, между которыми бумажная лента, пропитанная трансформаторным маслом. Такая конструкция позволяет достичь больших площадей пластин, малых расстояний между ними, получить большую емкость конденсатора.

Классический пример работы конденсатора

Схема работы конденсатора

Конденсатор заряжается до напряжения источника питания за время Т = RC = 500 ОМ х 0,002 Ф = 1 сек. При переключении тумблера накопленный заряд разрядится на лампочку, при этом можно будет заметить кратковременную вспышку.

Виды конденсаторов

Все конденсаторы делятся на два вида: без полярности и полярные – электролитические,

По конструктивным особенностям их разделяют на:

  • простые;
  • диэлектрические;
  • с фиксированной и переменной емкостью.

Электролитические полярные конденсаторы в схемах подключаются обязательно с соблюдением полярности: контакты со знаком «+» на плюсовую дорожку платы, «–» – на минусовую дорожку. Другие конденсаторы можно припаивать на плату любыми выводами, не обращая внимания на полярность.

Причины неисправности

Простые конденсаторы с постоянной или переменной емкостью практически не выходят из строя – нечему ломаться, если только при механическом повреждении токопроводящих пластин.

Электролитические диэлектрические конденсаторы имеют ограниченные сроки службы, со временем диэлектрический слой между пластинами теряет свои свойства.

Полярные конденсаторы в схемах подключаются строго по полюсам, ошибка приводит к потере конденсатором заданных параметров или полному пробою, обрыву цепи или короткому замыканию.

При замене конденсаторов даже новые надо обязательно проверять, электролитический слой может просто высохнуть за время его хранения.

Проверка конденсаторов мультиметром

Мультиметр – это универсальный прибор, с помощью которого можно измерять целый ряд параметров электротехнических цепей и отдельных деталей:

  • величину переменного и постоянного тока;
  • напряжение;
  • сопротивление и другие элементы.

Рассмотрим, как проверить конденсатор.

Существует два вида мультиметров: аналоговые и цифровые. На цифровом варианте измеряемые параметры отображаются в виде чисел в жидкокристаллическом дисплее. Аналоговый прибор имеет стрелочный индикатор с градуировкой на шкале – для проверки конденсаторов этот вариант более удобный. Измеряемые параметры и пределы устанавливаются переключателем, который находится на корпусе, концы проводов для измерения оборудованы контактными клеммами и щупами.

Проще всего проверяются конденсаторы, которые не имеют полярности. Для этого надо установить переключатель мультиметра в режим измерения «мегомы», на шкале переключателя он обозначен как 2000k. Один провод вставить в гнездо со знаком VОм.mA, второй – в гнездо со знаком заземления. Затем нужно подсоединить концы щупов к контактам конденсатора; показания стрелки или чисел на дисплее должны быть на уровне 2Мом или выше. При сопротивлении ниже 2Мом конденсатор считается неработоспособным.

Двухполюсные электролитические конденсаторы надо проверять на исправность обязательно с соблюдением полярности. На корпусе конденсатора есть маркировка с указанием допустимого напряжения в вольтах и максимальной емкости в микрофарадах.

На импортных моделях со стороны отрицательного вывода на корпусе ставят знак минуса черным цветом. На отечественных конденсаторах возле ножек стоят знаки «–» и «+».

Маркировка на корпусе конденсатора для соблюдения полярности

Переключатель мультиметра выставляется в режим измерения сопротивления или прозвонки. Затем подсоединяют щупы к выводам конденсатора, соблюдая полярность. На конденсатор подается постоянное напряжение с элементов питания мультиметра, он начинает заряжаться.

Стрелка индикатора при этом постепенно отклоняется в правую сторону, на цифровом варианте значение цифры увеличивается, сопротивление растет. Значение сопротивления может дойти до бесконечности, это зависит от номиналов конденсатора.

Если стрелка прибора остается на значении «0», значит в цепи конденсатора есть обрыв; при резком повороте стрелки в пределы бесконечности пластины конденсатора короткозамкнуты. В этих случаях пробитые детали подлежат замене.

Особенности проверки

Для того чтобы правильно проверить работоспособность конденсаторов тестером или мультиметром, очень важно знать некоторые особенности этой методики.

По причине технических ограничений в пределах измерений мультиметром или тестером можно проверить только конденсаторы емкостью выше 0,25 микрофарад. Другие конденсаторы проверяются специальным прибором LC- метром.

Перед замерами конденсаторы надо обязательно разряжать, особенно высоковольтные – выше 100В. Для этого используются лампы накаливания. Если напряжение конденсатора более 220 Вольт, подключается несколько ламп последовательно.

В процессе эксплуатации заряд конденсатора может оставаться длительное время; при соединении его клемм с контактами ламп происходит разряд, при этом лампы могут кратковременно вспыхнуть. Низковольтные конденсаторы можно разряжать, перемыкая контакты отверткой. При таком замыкании максимум будет небольшая искра, которая не явится угрозой здоровью.

Нельзя прозванивать конденсаторы в схеме, обязательно надо выпаивать и проверять отдельно. Остальные детали в цепи схемы будут влиять на измерения, что помешает получить истинные значения сопротивления конденсатора. Допускается отпаять одну ножку и сделать замеры, но это не всегда удается, выводы на печатных платах у деталей очень короткие.

Проверяем конденсатор на пригодность

Не стоит тратить время на конденсаторы с явными признаками неисправности, отечественные изделия при превышении допустимого напряжения или ошибки в подключении полярности может разорвать на части.

В импортных электролитических конденсаторах предусмотрены крестообразные оттиски в верхней части корпуса. В этих местах толщина стенок тоньше, при пробое энергия прорывает эти полосы, остается маленькое выжженное отверстие. Внимательно осматривайте и отбраковывайте такие элементы.

Проверка. Видео

Видео на практике покажет, как проверить конденсатор мультиметром, чтобы у читателей и вовсе не осталось вопросов.

 

Оцените статью:

Как проверить исправность конденсатора, его емкость и сопротивление



Иногда возникает необходимость проверки электронных элементов, в том числе и конденсаторов.
По разнообразным причинам конденсаторы выходят из строя, это может быть внутреннее короткое замыкание, увеличение тока утечки пробой конденсатора в следствие превышения максимально допустимого напряжения или же обычное уменьшение емкости - причина которая со временем постигает почти все электролитические конденсаторы.

Методы проверки конденсатора, мы рассмотрим, довольно простые, здесь главное умение пользоваться тестером или мультиметром и правильно применять данную инструкцию.

Для начала необходимо знать что все конденсаторы разделяются на полярные и неполярные. К полярным относятся электролитические конденсаторы, к неполярным все остальные.

Полярные конденсаторы в схеме должны стоять таким образом чтоб на обозначенном минусовом выводе был минус питания, а на плюсовом контакте плюс, только так ы не иначе.

Если нарушить полярность то минимум что будет это конденсатор выйдет из строя, но при достаточном напряжение он вздуется и взорвется, для того чтоб при аварийной ситуации конденсатор не разрывало на осколки, в импортных конденсаторах, в верхней части корпус сделан с тонкого материала и нанесены специальные разделительные прорези, при взрыве такой конденсатор просто выстреливает вверх и не задевает при этом элементы вокруг себя.

Проверка конденсаторов

Перед проверкой конденсатор необходимо обязательно разрядить любым металлическим предметом закоротив его выводы, и так перед каждой проверкой.
Если проверяемый конденсатор находится на плате, необходимо хотя бы один его вывод освободить от схемы и приступить тогда уже к замерам. Но так как большинство современных конденсаторов имеют достаточно низкую посадку - лучше конденсатор выпаять полностью.


Проверка конденсатора мультиметром

С помощью мультиметра можно проверить практически любой конденсатор по емкости больше 0.25 микрофарад.

Полярность конденсатора обозначена на корпусе в виде поздовжной полосы с знаками минус - это минусовой вывод конденсатора.

И так выставляем тестер в режим или прозвонки или сопротивления. Мультиметр в таком режиме будет иметь на своих щупах постоянное напряжение.
Касаемся щупами контактов конденсатора и видим как показатель сопротивления плавно растет - конденсатор заряжается.
Скорость заряда будет напрямую зависеть от емкости конденсатора. Через определенное время конденсатор зарядится и на дисплее мультиметра будет значение "1" или по другому говоря "бесконечность" это уже говорит о том что конденсатор не пробит и не замкнут.

Но если при касание щупами контактов конденсатора мы сразу наблюдаем значение "1" то это говорит об внутреннем обрыве - конденсатор не исправен.
Бывает и другое, значение "000" или близкое очень малое значение которое не меняется (при зарядке) иногда мультиметр пищит, это говорит о пробое или коротком замыкание пластин внутри конденсатора.

Неполярные конденсаторы проверяются довольно просто, тестер выставляем в режим измерения сопротивления (мегаОмы), касаясь щупами контактов конденсатора  - сопротивление должно быть не меньше 2 МегОм. Если наблюдается меньше то конденсатор неисправен, но убедитесь что вы в момент замера не касались пальцами щупов.


Проверка конденсаторов стрелочным тестером
Проверяя стрелочным прибором. Суть проверки та же что и мультиметром, но здесь можно уже более наглядно наблюдать процесс зарядки конденсатора потому как мы видим отклонения стрелки а не мигающие цифры на дисплее.

Исправный конденсатор при контакте с щупами, не забываем разряжать, должен сначала отклонить стрелку а затем медленно и плавно возвращать стрелку назад, скорость возврата стрелки будет зависеть от емкости конденсатора.
Если стрелка не отклоняется или же отклонившись не возвращается это говорит о явной неисправности конденсатора.

Но если емкость конденсатора очень мала, "зарядки" можно и не заметить - практически сразу же стрелка уйдет в бесконечность, то есть не сдвинется с места. Для конденсатора же более 500 микрофарад - такая картина практически сразу же будет говорить о внутреннем обрыве.
Хорошим способом будет проверка заведомо исправного конденсатора (для наглядности) и сравнение с испытуемым. Такой способ даст возможность более уверено ответить на вопрос - рабочий ли конденсатор?

Проверка переменным напряжением

Так как невозможно наблюдать столь быстрый процесс заряда для проверки конденсаторов малой емкости есть специальный способ который с точностью определит нет ли обрыва в нем.
Собирается небольшая схемка состоящая с последовательно соединенных конденсатора, амперметра переменного тока и токоограничительного резистора.
Соединенную цепь подключают к источнику переменного напряжения, с напряжением не больше 20% от максимального напряжения конденсатора.
Если стрелка амперметра не отклоняется это говорит об внутреннем обрыве конденсатора

Проверяем емкость конденсатора


Для проверки емкости нам нужно убедится что реальная емкость конденсатора соответствует указанной на его корпусе.
Все электролитические конденсаторы со временем (в процессе работы) "подсыхают" и теряют свою емкость, это естественный процесс и для каждой конкретной схемы существуют свои припуски и отклонения.

Проверяют емкость мультиметром в режиме "Cx" выбирают примерную емкость с максимальным пределом.
Конденсатор разряжают об металлический предмет, например пинцет и вставляют в гнездо проверки конденсаторов.
Для более точных показаний необходимо следить за тем чтоб в мультиметре стояла новая и не розряженая "крона".

Применяют и специальные приборы внешне схожие с мультиметром, которые специализированы конкретно для проверки конденсаторов и имеют достаточно широкий диапазон измерений емкости, от единиц пикофарад до десятков тысяч микрофарад, не каждый профессиональный мультиметр может похвастаться и половиной того диапазона емкостей.

Но если у вас под рукой нет ни мультиметра ни "микрофарадметра" можно достаточно приблизительно замерить емкость стрелочным омметром.
Как писалось выше, конденсатор заряжают прикасаясь щупами к его контактам - "засекаем" время отклонения стрелки назад и сравниваем время с заведомо исправным (новым) конденсатором, если время сильно не отличается то емкость в пределах нормы и конденсатор исправен.

Таким же способом можно определить ток утечки конденсатора. Для этого конденсатор щупами заряжают до отклонения стрелки назад.
С интервалом несколько секунд (зависит от емкости) щупы прикладывают снова, если стрелка снова проделывает такой же весь путь то это говорит о повышенном токе утечки и уже частичном неисправности конденсатора. В исправного же конденсатора в течение несколько секунд, чем больше емкость тем больше времени, должен сохранятся "заряд" и стрелка уже не должна показывать столь низкое сопротивление вначале как при первой зарядке.

"Зарядка напряжением".
Такой способ проверки аналогичной ситуации подходит для более высоковольтных конденсаторов так как на малом напряжение (от тестера) может быть не понятна вся ситуация.
И так суть способа заключается в том что конденсатор заряжают  от источника постоянного напряжения, для этого напряжение выбирают немного меньше максимального и заряжают контакты конденсатора, как правило хватит 1-2 секунды. После чего "зарядку" отсоединяют и мультиметром измеряют напряжение на контактах конденсатора, оно должно быть практически таким же что и использовалось при зарядке, если это ни так и оно сильно занижено то у конденсатора большой ток утечки и он неисправен.

Мултиметром наблюдают напряжение в течение некоторого времени, конденсатор будит плавно терять напряжение, скорость будит зависеть от емкости и ESR (внутреннего сопротивления).

Как проверить конденсатор без приборов?
В некоторых ситуациях при отсутствие омметра или вольтметра, исправность электролитического конденсатора можно проверить только лишь при наличие источника подходяще допустимого напряжения. Конденсатор в течение 1-2 секунд заряжают, а затем нужно замкнуть его контакты металлической отверткой.
У исправного конденсатора должна появится яркая искра. Если же она тусклая или же едва заметная то это говорит о том что конденсатор неисправен и плохо держит заряд.

Как проверить конденсатор самым простым, дешевым мультиметром

Как проверить обычным мультиметром исправность конденсатора?

Итак, у вас есть проблема — нужно проверить исправность конденсатора, но подходящего измерительного прибора с функцией измерения емкости под рукой нет. Что же делать? Бежать в магазин и купить нужный мультиметр? Если вы будете постоянно иметь дело с измерением емкости и проверкой конденсаторов, такой шаг будет более чем оправдан, но для разовой, простой проверки подойдет и обычный, самый простой прибор.

Так что давайте узнаем, как можно проверить работоспособность конденсатора с помощью данного измерительного прибора, который вообще не имеет функции измерения емкости конденсаторов. Единственный недостаток этого способа — измерение емкости конденсатора таким способом просто невозможно.

Так что же нужно делать?

Начнем проверку. Представим, что вы уже разобрали прибор или устройство на котором нужно проверить конденсаторы, или же они и вовсе отпаяны. С последними работать будет даже проще. Но если конденсаторы нужно только проверить, лучше не выпаивать их с устройства. Особенно если сомневаетесь, что получится их выпаять и припаять на место.

  • Итак, включаем мультиметр в режим измерения сопротивления. При этом выставляем самый высокий предел.

  • Неважно, выпаян конденсатор или находится на плате — главное подключить щупы к выводам конденсатора. Но некоторые радиолюбители советуют отпаять хотя бы одну ножку конденсатора, чтобы устранить «паразитные помехи» прочих компонентов сети.

  • Теперь наблюдаем за показаниями. На экране устройства вы увидите, что сопротивление конденсатора постепенно возрастает. Если это так — конденсатор исправен.
Как это работает?

Когда конденсатор набирает заряд его сопротивление, соответственно, растет. Если вы наблюдаете рост сопротивления, значит, конденсатор заряжается. При измерении сопротивления мультиметры подают через щупы определенное, фиксированное напряжение. Именно оно и заряжает конденсатор. Если сопротивление остается постоянным — конденсатор пробит и не набирает заряд.

Для такой вот проверки конденсатора годиться любая модель, которая может измерять сопротивление. Это может быть как универсальный цифровой прибор, так и простой, аналоговый измеритель. Но вот снимать данные простым, аналоговым инструментом интереснее.

  • Аналоговый мультиметр должен быть включен в режим измерения сопротивления. Можно выбрать средний диапазон.
  • Как и в случае с цифровым, дотроньтесь щупами к контактам конденсатора.
  • Наблюдайте за стрелкой. Она будет до определенного момента ползти вверх, а потом падать назад. Если это происходит, значит, конденсатор заряжается и разряжается.
Как видите, все достаточно просто!

Стоит заметить, что мультиметры не смогут измерить емкость конденсатора. Хотя в большинстве случаев достаточно просто проверить работоспособность компонента.

Поделиться в соцсетях

Как проверить конденсатор мультиметром: инструкция с полезными советами

Ходит одна байка: для проверки конденсатора мультиметр не нужен. Школьники-плохиши обижали ребят послабее экстравагантным методом. Заряжали большую емкость розеткой, били током. Проверить работоспособность основных конденсаторов импульсного блока питания не составит труда. В персональном компьютере напряжение достигает 650 вольт, тронешь – шарахнет сильно. Избегайте лезть отверткой. Температура дуги столь высока, что желание узнать емкость конденсатора может обернуться неплохими практическими навыками сварщика. Для целей разрядки народные умельцы применяют патрон, снабженный лампочкой Ильича. Высокий реактивный импеданс спирали позволит легко решить задачу, как проверить конденсатор мультиметром.

Процесс проверки конденсатора

Увидите, проверить мультиметром конденсатор может каждый. Неполярный конденсатор, керамический конденсатор, разницы дают мало, многое определяет номинал. Однако сюрпризы способна преподнести гибридная технология. Понятно, извлечь SMD конденсатор – дело нешуточное (большинству не под силу). Тогда проводите косвенные тесты, например, сравнение показаний с заведомо рабочим устройством.

Проверка конденсатора

Простейшим методом проверки конденсатора называют натурное испытание. Причем в составе изначальной схемы. Потрудитесь:

  1. Скачать в интернете нужную схему, едва ли в руках имеется готовая.
  2. Прикинуть напряжение на проверяемом конденсаторе. В блоках питания, например, удобно идти по шинам земли-питания, выясняя вопрос. Решается не для проверки конденсатора непосредственно, а знать уточнить диапазон, выставляемый мультиметром. Неправильно стоит род тока (напряжения), неверно подсоединены контакты – выход измерителя из строя гарантирован.
  3. Задача – проверить наличие напряжения на конденсаторе. Имеется – емкость зарядится.
  4. Схемой прослеживаем путь разряда: резисторы, диоды, транзисторы, включенные в правильном направлении. Оговоримся, речь ведем о крупных, мощных конденсаторах преимущественно блоков питания. Полярность не позволяет разрядиться через диод выпрямителя, включенный в обратном направлении. Резистор увеличением номинала повышает время протекания процесса, элемент станет бить током. Ученые называют временем разряда, явление характеризуется постоянной, представляющей произведение номинала резистора на емкость, выраженную фарадами. Беря тестер, ставя на постоянный диапазон, видим падающий потенциал. По времени несложно оценить величину, годность емкости.

    Тестирование мультиметром

  5. Потрудившись включить мультиметр в обратном направлении, увидите не разряд конденсатора, но выход из строя очередного детища китайской промышленности. Новичкам полезно знать одну вещь: контакты мультиметра подписаны, избегайте пренебрегать изучением внешнего вида прибора.
    1. Черный провод служит нулевым (земля, нейтраль). Подписывается Com (англ. common), помечается значком заземления.
    2. Напротив других клемм стоят пределы. Вот, в каком ведет работу, туда втыкайте. Используется для этого красный провод, некоторые мультиметры отказываются работать, если неправильно произвести подсоединение.

Итак, инструкция по работе с тестером понадобится, цвет проводов покажет, куда тыкать. Кажется смешным, пока не попытаешься измерить высокое напряжение, нарезаемое импульсами крошечной микросхемой. Будут мешаться рядом лежащий корпус, провода, много другого. В таких условиях применяют специальные тончайшие щупы, набор лишен аксессуаров. Рекомендуем заранее потренироваться мультиметром вести работу. Особенно внимательны будьте с пределами. В большинстве современных тестеров имеются следующие варианты ведения работ:

  • Измерение переменного напряжения понадобится большинству. Диапазон помечается знаком тильды ~. Рядом стоит английская буква V (Voltage).

    Процесс проверки

  • Постоянное напряжение помечается схожим образом, рядом стоят тире, точки. Наподобие знака равенства, у которого рассечена нижняя черта тремя более мелкими линиями.
  • Ток часто измеряется постоянный. Будьте внимательны в вопросе, избегая сжечь прибор. Помечается набор диапазонов буквой А (Ampere). В отличие от напряжений, где фигурируют тысячи вольт, мультиметр предлагает довольствоваться десятком. Меньше, нежели ток заряда автомобильного аккумулятора. Процессор ПК суммарно потребляет больше.
  • Номиналы сопротивлений знать полезно, этот сорт радиоэлементов чаще можно извлечь из старой схемы, снабдив новую. Понятно, нельзя ошибиться, или величина погрешности должна быть минимизирована. Шкала сопротивлений помечается буквой Ω (Омега) греческого алфавита. Среда профессионалов своеобразно помечает омы.
  • Самым нужным большинству пользователей покажется режим прозвонки. Нужен проверять диоды, некоторые транзисторы, гораздо чаще при помощи опции просто оценивают целостность проводов. Здесь важно, чтобы цепь не была под током. Иначе тестер сгорит. Помечается режим значком зуммера, либо общепринятым обозначением электрическими схемами диода. Прозвонкой называется, благодаря характерной особенности: пройдя удачный тест, мультиметр начнет тонко пищать.
  • Отдельной темой разговоров назовем проверку транзисторов, диодов на работоспособность при помощи специального гнезда, помечающего эмиттеры, коллекторы, базы, некоторые другие электроды электрорадиоэлементов.

Проверить емкость конденсатора мультиметром

Мультиметр

Проще проверить электролитический конденсатор мультиметром. Начать лучше с визуального контроля. Неисправные электролитические конденсаторы ощутимо раздуваются. На зарубежных моделях в верхней части цилиндра делается специальная крестовидная прорезь для гарантированной индикации неисправности. Внешние признаки молчат – нужно хватать мультиметр. Сначала элемент гарантированно разрядим. Обычно напряжение отсутствует, но совать голую отвертку, кусок провода – бестолковая идея. Неплохо создать своими руками разрядник, воспользовавшись патроном, ввинченной лампочкой. Штуковина повсеместно используется мастерами ремонта телевизоров, импульсных блоков питания. Пара слов касаемо процесса, когда конденсатор разряжен, можно хватать тестер.

На контактах мультиметра в некоторых режимах выходит напряжение 5 вольт. Требуется, чтобы оценить параметры. К примеру, при измерении сопротивлений мультиметр просто делит напряжение на ток, получает искомую величину. Первая цифра известна – 5 вольт (определяет модель тестера). Аналогично проводится прозвонка. Подаются 5 вольт на оба конца. Некоторые стабилитроны пробиваются. Прозвонить такие элементы на цифровых мультиметрах не представляется возможным.

Зная указанные вещи, понимаем, что делать дальше:

  1. Подключаем в режиме измерения сопротивления клеммы к контактам разряженного конденсатора.
  2. Образуется зарядная цепь, сформированная внутренним сопротивлением мультиметра, емкости. Вначале ток равен бесконечности, потом падает, достигая нуля.
  3. Попутно сопротивлению начнёт расти от нуля до бесконечности.

Любой конденсатор, обладающий рабочим напряжением выше 5 вольт, проверим таким способом. Единственный фокус могут выкинуть полярные, например, электролитические емкости. Параллельно отслеживаем правильность расположения щупов (красного, черного). Теперь проводим анализ. Выяснили, годен ли конденсатор, присутствуют некоторые особенности. Обсуждали 5 вольт на щупах мультиметра, значение сильно зависит от модели. Можем измерить на концах заведомо исправного конденсатора: пока звоним контакты, емкость зарядится до нужной величины.

Итак, напряжение испытуемого образца сильно отличается от эталонных показаний (нужно заранее позаботиться о получении), наверняка сломалось. Начинаем измерять напряжение конденсатора, внутреннее сопротивление прибора уступает бесконечности. Потенциал начнет потихоньку падать, заметим на экране. Делаем два вывода:

  1. Начальное значение напряжение намного ниже эталона (выдает на контакты тестер, режим прозвонки) – внутри наличествует утечка. Параметр нормально составляет часть формулы добротности, если конденсатор быстро разряжается самостоятельно (без намеренного замыкания контактов), элемент отслужил.
  2. По скорости разряда можно оценить размер емкости конденсатора. Можно, конечно, заморочиться с определением констант, формулами, проще провести тест с заведомо рабочими емкостями, после чего свести результаты таблицей. Станет возможным судить о номинале конденсатора по одной скорости разряда. Процесс напоминает оценку давления при помощи тонометра. Ориентируемся на глаз. Величина емкости определена скоростью падения напряжения на дисплее мультиметра.

Разумеется, делается больше навскидку, отличить мкФ от мФ удастся без труда. Жаждущим большего, можем сообщить: за время RC заряд падает на 63%. Каждый волен посчитать уровень вольт для мультиметра. Вычислить приблизительно внутреннее сопротивление, исходя из полученных данных, проводить приблизительный замер номинала емкости конденсатора.

Известен простой способ проверить емкость конденсатора мультиметром. Купить тестер, у которого наличествует соответствующая шкала. Надписана буквой F (Farad). Просто берется за ножки конденсатор, примерно выставляется диапазон, мультиметр проделает работу, описанную выше. Проверить конденсатор мультиметром, не выпаивая, не всегда удаётся. Параллельно емкости включены резисторы, дроссели, другие элементы (включая конденсаторы), мешающие оценить исправность. Будь то электролитический конденсатор, пленочный конденсатор, любой другой. Разумеется, многое определят конкретные номиналы.

Проведём сравнение. Допустим, на исправной технике показывает фиксированное значение, на поломанной – нечто другое. Необязательно неисправный конденсатор мультиметром на плате нашли – цепь разряда барахлит. Пусковой конденсатор авто – возможно вынуть, проверить (предварительно обработав разрядником), для электроники методика не всегда действенна.

Как проверить конденсатор подавления эмп мультиметром

Одной из наиболее распространенных причин неисправности радиоэлектронной техники является поломка одного или нескольких конденсаторов, которые составляют неотъемлемую часть ее платы. И чтобы выяснить, какой же именно конденсатор оказался слабым звеном, необходимо проверить их работоспособность. В этой статье описывается, как прозванивают конденсатор. Независимо от того, занимаетесь ли вы электронной аппаратурой профессионально или вы просто любитель, вам это вполне под силу. Для этого вам понадобится мультиметр. Ниже мы рассмотрим, как проверить конденсатор мультиметром самостоятельно.

Виды конденсаторов и их проверка

Прежде чем разобраться, как мультиметром прозвонить конденсатор, давайте выясним, какие виды конденсаторов существуют. Все конденсаторы делятся на полярные и неполярные. Разница между ними заключается в том, что полярные, как можно догадаться из названия, имеют полярность. Проверять их нужно строго соответствующим образом: "плюс" к "плюсу", "минус" к "минусу", так как в противном случае они придут в негодность и могут взорваться. Все полярные конденсаторы являются электролитическими. Если конденсатор еще советского производства, то при взрыве электролит может попасть вам на кожу. В современных конденсаторах для таких случаев предусмотрено специальное сечение на поверхности, которое разрывается в определенном направлении и не дает проводящему веществу разбрызгаться в разные стороны.

Пробой конденсатора

Наиболее распространенной проблемой конденсаторов является пробой диэлектрика. Диэлектрик – это слой материала между двумя проводниками внутри конденсатора, который имеет большое сопротивление, чтобы не допустить протекания тока между проводниками.

В исправном конденсаторе допускается небольшое пропускание тока через этот изолятор, это называется "ток утечки", и он ничтожно мал. При пробое диэлектрика его сопротивление резко падает, и, по сути, он превращается в обыкновенный проводник. Причиной такого пробоя, как правило, является резкий перепад напряжения в сети, к которой подключено оборудование. К характерным признакам пробоя относятся вздутие корпуса конденсатора, его потемнение и появление черных пятен. Перед тем как проверить конденсатор на исправность, осмотрите его визуально на предмет внешних дефектов.

Проверка неполярного конденсатора в режиме омметра

Проверка мультиметром сопротивления диэлектрика в конденсаторе осуществляется в режиме омметра. В неполярных конденсаторах диэлектрик может быть выполнен из стекла, керамики, бумаги или даже в виде воздушной прослойки. Таким образом обеспечивается крайне высокое сопротивление, и в исправном конденсаторе цифровой мультиметр покажет фактически бесконечную величину. Если же электрический пробой имеет место, то уровень сопротивления будет в пределах нескольких Ом, максимум нескольких десятков.

Помните о технике безопасности и не держитесь одновременно и за щупы прибора и за выводы конденсатора, так как из-за меньшего сопротивления электрический ток пойдет через ваше тело.

Проверка полярного конденсатора в режиме омметра

По сравнению с неполярными конденсаторами в полярных сопротивление диэлектрика на порядок меньше, поэтому максимум сопротивления на мультиметре нужно выставлять соответствующее. Большинство таких конденсаторов имеют не менее 100 кОм сопротивления, особо мощные и до 1 мОма. Перед тем как мультиметром прозвонить конденсатор, замкните выводы накопителя, чтобы разрядить его полностью.

Как мультиметром прозвонить конденсатор (аналоговый измеритель)

Как мультиметром прозвонить конденсатор: инструкция по проверке емкости накопителя

Прежде чем проверять таким образом электролитический конденсатор, его обязательно необходимо полностью разрядить. Заряженный конденсатор может попросту испортить ваш мультиметр. Особенно это касается полярных накопителей с высоким рабочим напряжением и большой емкостью. Как правило, такие конденсаторы используются в импульсных блоках в качестве фильтрующих накопителей.

Разрядка конденсатора

Обрыв конденсатора

Обрыв – довольно редкая для конденсаторов неисправность. Как правило, он возникает при механических повреждениях накопителя. В результате обрыва конденсатор полностью теряет свою накопительную функцию и имеет нулевую емкость. Фактически он превращается в два изолированных друг от друга проводника. Обнаружить обрыв при помощи омметра практически невозможно. Своеобразным симптомом обрыва в полярных электролитических конденсаторах при измерении сопротивления является отсутствие какого-либо изменения в показаниях прибора. Так как исправный неполярный конденсатор малой емкости имеет высокое сопротивление, проверить его на обрыв, таким образом, не представляется возможным. Единственный выход – измерение емкости.

Потеря емкости конденсатора

Для того чтобы определить, потерял ли конденсатор свою емкость, как ни странно, нужно замерить эту самую емкость. Выставьте на мультиметре соответствующий предел измеряемой емкости, разрядите проверяемый конденсатор, подключите щупы измерителя к соответствующим гнездам на нем, соблюдая правильную полярность, и наконец, прикоснитесь щупами к выводам конденсатора. Очевидно, что разобраться, как мультиметром проверить конденсатор кондиционера или любого другого бытового прибора на предмет потери емкости, не столь сложно.

Измерение напряжения конденсатора

Учтите, что при проверке накопитель теряет свой заряд и напряжение, соответственно, будет быстро падать, поэтому важно увидеть цифру, которая появилась в самом начале.
Есть и более простой способ проверки, но он действенен только для конденсаторов с достаточно большой емкостью. Зарядив накопитель полностью, возьмите обыкновенную отвертку с изолированной рукояткой, поднесите ее металлическую часть к его выводам и замкните их. Если в результате проскочила яркая искра, значит, элемент рабочий. Если же искра очень слабая или вовсе отсутствует, значит, конденсатор не держит заряд.

Заключение

В данной статье мы попытались разобрать все наиболее часто встречающиеся поломки конденсаторов, а также способы их проверки. Важный момент: многие начинающие мастера думают, как прозвонить конденсатор мультиметром, не выпаивая его из платы, однако в таком случае в процессе измерений будет иметь место очень большая погрешность. Единственный способ в таком случае – это визуальный осмотр на предмет наличия внешних признаков, таких как взбухание, потемнение или изменение цвета поверхности.

Чаще всего конденсаторы «летят» в таких видах бытовой техники, как стиральные машины, телевизоры, микроволновые печи и др. Поэтому если перед вами стала проблема, как прозвонить конденсатор кондиционера мультиметром, можете смело использовать нашу инструкцию.

Мультиметр – это электроизмерительное устройство с различными функциями. С его помощью можно проверять напряжение, силу тока, а также производные от этих величин – сопротивление и емкость. С помощью мультиметра можно проверить и работоспособность различных электронных компонентов. В этой статье мы с вами узнаем, как проверить мультиметром конденсатор и его емкость.

Конденсатор и емкость

Конденсаторы используются практически во всех микросхемах и являются частой причиной ее неработоспособности. Так что в случае неисправности устройства следует проверять в первую очередь именно этот элемент.

Виды конденсаторов по типу диэлектрика:

  • вакуумные;
  • с газообразным диэлектриком;
  • с неорганическим диэлектриком;
  • с органическим диэлектриком;
  • электролитические;
  • твердотельные.

Обычно используются электролитические конденсаторы

Основные неисправности конденсаторов:

  • Электрический пробой. Обычно вызван превышением допустимого напряжения.
  • Обрыв. Связан с механическими повреждениями, встрясками, вибрациями. Причиной может служить некачественная конструкция и нарушение эксплуатационных условий.
  • Повышенные утечки. Сопротивление между обкладками изменяется, и это приводит к низкой емкости конденсатора, которая не способна сохранять заряд.

Все эти причины приводят к тому, кто конденсатор становится непригодным для дальнейшего использования.

В данном случае присутствует протечка электролита

Перед проверкой конденсатора

Т.к. конденсаторы накапливают электрический заряд, перед проверкой их следует разряжать. Это можно сделать отверткой – жалом нужно прикоснуться к выводам, чтобы образовалась искра. Затем можно прозванивать компонент. Проверку конденсатора можно сделать как мультитестером, так и при помощи лампочек и проводов. Первый способ является более надежным и дает более точные сведения об электронном элементе.

До начала проверки следует осмотреть конденсатор. Если он имеет трещины, нарушение изоляции, подтеки или вздутие, поврежден внутренний электролит и прибор сломан. Его нужно поменять на работающее устройство. При отсутствии внешних повреждений придется использовать мультиметр.

Перед проведением измерений нужно определить вид конденсатора – полярный или неполярный. У первого обязательно должна соблюдаться полярность, иначе прибор выйдет из строя. Во втором случае определение плюсового и минусового выходов не требуется, но измерения будут проводиться по другой технологии.

Определить полярность можно по метке на корпусе. На детали должна быть черная полоса с обозначением нуля. Со стороны этой ножки расположен отрицательный контакт, а с противоположной – положительный.

Измерение емкости в режиме сопротивления

Переключатель мультиметра следует установить в режим сопротивления (омметра). В этом режиме можно посмотреть, есть ли внутри конденсатора обрыв или короткое замыкание. Для проверки неполярного конденсатора выставляется диапазон измерений 2 МОм. Для полярного изделия ставится сопротивление 200 Ом, так как при 2 МОм зарядка будет производиться быстро.

Сам конденсатор нужно отпаять от схемы и поместить его на стол. Щупами мультиметра нужно коснуться выводов конденсатора, соблюдая полярность. В неполярной детали соблюдать плюс и минус не обязательно.

Измерение в режиме сопротивления

Когда щупы прикоснутся к ножкам, на дисплее появится значение, которое будет возрастать. Это вызвано тем, что мультитестер будет заряжать компонент. Через некоторое время значение на экране достигнет единицы – это значит, что прибор исправен. Если при проверке сразу же загорается 1, внутри устройства произошел обрыв и его следует заменить. Нулевое значение на дисплее говорит о том, что внутри конденсатора произошло короткое замыкание.

Если проверяется неполярный конденсатор, значение должно быть выше 2. В ином случае прибор является не рабочим.

Аналоговое устройство

Вышеописанный алгоритм подходит для цифрового тестера. При использовании аналогового устройства проверка производится еще проще – нужно наблюдать лишь за ходом стрелки. Щупы подключаются так же, режим – проверка сопротивления. Плавное перемещение стрелки свидетельствует о том, что конденсатор исправен. Минимальное и максимальное значение при подключении говорят о поломке электронной детали.

Важно отметить, что проверка в режиме омметра производится для деталей с емкостью выше 0Ю25 мкФ. Для меньших номиналов используются специальные LC-метры или тестеры с высоким разрешением.

Измерение емкости конденсатора

Емкость является основной характеристикой конденсатора. Она указывается на внешней оболочке прибора, и при наличии тестера можно замерить реальное значение и сравнить его с номиналом.

Переключатель мультиметра переводится в диапазон измерений. Значение ставится равное или близкое к номиналу, указанному на компоненте. Сам конденсатор устанавливается в специальные отверстия –CX+ (если они есть на мультиметре) или с помощью щупов. Подключаются щупы так же, как и при измерении в режиме сопротивления.

При подключении щупов на мониторе должно появиться значение сопротивления. Если оно близко к номинальной характеристике, конденсатор исправен. Когда расхождение полученного и номинального значений отличаются более чем на 20% , устройство пробито, и его нужно поменять.

Измерение емкости через напряжение

Проверка работоспособности детали может производиться и при помощи вольтметра. Значение на мониторе сравнивается с номиналом, и из этого делается вывод об исправности устройства. Для проверки нужен источник питания с меньшим напряжением, чем у конденсатора.

Соблюдая полярность, нужно подключить щупы к выводам на несколько секунд для зарядки. Затем мультиметр переводится в режим вольтметра и проверяется работоспособность. На дисплее тестера должно появиться значение, схожее с номинальным. В ином случае прибор сломан.

Другие способы проверки

Можно проверить конденсатор, не выпаивая его из микросхемы. Для этого нужно параллельно подключить заведомо исправный конденсатор с такой же емкостью. Если устройство будет работать, то проблема в первом элементе, и его следует поменять. Такой способ применим только в схемах с небольшим напряжением!

Иногда проверяют конденсатор на искру. Его нужно зарядить и металлическим инструментом с заизолированной рукояткой замкнуть выводы. Должна появиться яркая искра с характерным звуком. При малом разряде можно сделать вывод, что деталь пора менять. Проводить данное измерение нужно в резиновых перчатках. К этому методу прибегают для проверки мощных конденсаторов, в том числе пусковых, которые рассчитаны на напряжение более 200 Вольт.

Использовать способы проверки без специальных приборов нежелательно. Они небезопасны – при малейшей неосторожности можно получить электрический удар. Также будет нарушена объективность картины – точные значения не будут получены.

Сложности проверки

Основной сложностью при определении работоспособности конденсатора мультиметром является его выпаивание из схемы. Если оставить компонент на плате, на измерение будут влиять другие элементы цепи. Они будут искажать показания.

В продаже существуют специальные тестеры с пониженным напряжением на щупах, которые позволяют проверять конденсатор прямо на плате. Малое напряжение сводит к минимуму риск повреждения других элементов в цепи.

Как проверить емкость – видео ролики в Youtube

Отличное видео с описанием процесса проверки конденсаторов и поиска неисправностей от популярных ютуб-блогеров.

Современный человек не представляет своей жизни без разнообразных бытовых радиотехнических устройств и приспособлений. Основой таких устройств являются различные схемы, где конденсатор занимает одно из ведущих мест. Из статьи вы узнаете, что это за элемент и как его проверить.

Устройство конденсатора

Это радиотехнический элемент, который способен накапливать электрическую энергию и отдавать её в сеть, в заданное время. Конструктивно он представляет две металлические пластины разделённые слоем диэлектрика. Параметры его зависят в основном от площади проводника и от толщины и свойств диэлектрика. Чем больше площадь пластин и меньше расстояние между ними, тем больше ёмкость такого элемента.

Пластины изготавливаются из алюминиевой фольги, которая скручена в рулон. Между пластинами помещается изоляция из различных диэлектрических материалов. В зависимости от того, какой диэлектрик используется, конденсаторы бывают:

  • Керамическими.
  • Бумажными.
  • Электролитическими.

От условий применения их подразделяют:

Как проверить конденсатор мультиметром не выпаивая?

Перед началом ремонта радиотехнической схемы, необходимо произвести внешний осмотр радиоэлементов, не выпаивая их из платы. Характерными признаками неисправного накопителя энергии является вздутие его корпуса, изменение цвета. Современные электролитические конденсаторы снабжены специальными щелями, для более безопасного выхода системы из строя. На плате могут появиться признаки температурного воздействия неисправного элемента – токопроводящие дорожки отслаиваются от поверхности, потемнение платы и т. п. Проверять контакт элемента можно осторожно покачав его пальцем.

Если имеется электрическая схема, можно проконтролировать наличие величины напряжения на контрольных точках. Точнее, нужно произвести измерения по цепи разряда конденсатора и оценить его состояние. При подозрении на неисправность нужно параллельно подозрительному компоненту включить в схему исправный, одинакового номинала, что позволит судить о его работоспособности. Такой вариант определения неисправности приемлем в схемах с малым напряжением.

Как проверить конденсатор мультиметром?

Современная промышленность выпускает большое разнообразие моделей приборов для измерения электрических параметров – мультиметров. Они бывают как с аналоговой стрелочной индикацией, так и с жидкокристаллическим дисплеем. Приборы с ЖК дисплеем дают более точные измерения и удобны в использовании. Стрелочные индикаторы предпочитают из-за более плавного перемещения стрелки.

Перед проверкой накопителей энергии, их необходимо выпаять из схемы, чтобы избежать влияния на показания других радиотехнических элементов.

Конденсаторы разделяют на полярные и неполярные. К полярным относятся все электролитические. Они включаются в электрическую схему строго с соблюдением полярности. К неполярным – все остальные. Неполярные впаиваются в схему без соблюдения полярности.

Как проверить электролитический конденсатор мультиметром

  • Настраиваем прибор на режим измерения сопротивления до 100 Ком.
  • Дотрагиваемся до контактных выводов этого кондера измерительными проводами мультиметра, при это необходимо строго соблюдать полярность.
  • Внимательно контролируем изменение показаний на шкале измерительного прибора.

Оцениваем результат измерения:

  • Если сопротивление начинает расти (происходит заряд) и достигает большого значения, а затем медленно начинает уменьшаться (он разряжается) — элемент исправен.
  • Если сопротивление на шкале мультиметра увеличивается, но нет обратного движения показаний (происходит заряд, но нет разряда) – проводящая пластина находится на обрыве. Такой элемент подлежит замене.
  • Если сопротивление остаётся малым (не происходит заряд измеряемого элемента) – электролит находится в состоянии короткого замыкания. Его необходимо заменить.

Обязательно нужно разряжать электролит перед его проверкой, чтобы не попасть под напряжение. Разрядить его легко, коснувшись одновременно двух контактов электролита любой отвёрткой с изолированной рукояткой.

Как проверить керамический конденсатор

Конденсаторы неполярные (керамические, бумажные и т. п.) проверяются мультиметром немного другим способом:

  • Прибор настраиваем на измерение сопротивления.
  • Выставляем самый максимальный предел измерения.
  • Прикасаемся измерительными проводами к контактам, не касаясь их.

Если в результате этих действий на экране прибора величина сопротивления будет больше 2 Мом. – конденсатор исправен. Если полученное показание сопротивления будет меньше 2 Мом. – элемент неисправен (конденсатор пробит или закорочен). Его необходимо заменить исправным.

Помните, что при измерении на максимальных режимах сопротивления, нужно обязательно исключить касание проводящих частей. Связано это с тем, что сопротивление человеческого тела намного меньше сопротивления конденсатора. Это сопротивление и оказывает большое влияние на точность измерения. Тестер не показывает правильные параметры.

Как измерить ёмкость конденсатора мультиметром?

Проверка путём измерения сопротивления зачастую не даёт возможности гарантированно говорить о том, что кондер работоспособен. Именно измерение ёмкости может дать ответ о полной пригодности этого элемента в радиотехнической схеме. Для проведения таких измерений понадобится более точный прибор для проверки конденсаторов, имеющий специальную функцию для измерения ёмкости.

Принцип измерения ёмкости:

  • Аккуратно зачищаем и выравниваем ножки.
  • На измерительном приборе устанавливаем значение ёмкости, близкое к оригиналу.
  • Вставляем конденсатор в специальные контакты на приборе. Ожидаем зарядки элемента несколько секунд. Когда показания на шкале перестанут изменяться – фиксируем их.

Измерение ёмкости прибором, имеющим специальную функцию, одинаково для накопителей энергии любого типа (полярный, неполярный). Из этой статьи мы узнали, что знание основных навыков для проверки конденсаторов мультиметром дело нужное и не очень сложное. Их легко измерять и прозванивать самостоятельно. О более точных принципах измерения можно узнать из видео в интернете.

Как проверить конденсатор без распайки (простая проверка)

В большинстве случаев электрики, любители и энтузиасты работают с печатными платами.

Это основа всех электронных устройств, которые мы видим на рынке, и тех, которые мы производим сами.

Печатные платы

состоят из множества различных компонентов, таких как конденсаторы, резисторы, индукторы, микросхемы и проводники, и это лишь некоторые из них.

Нередко один или несколько таких компонентов сгорают или повреждаются, что означает их необходимость в замене.

С некоторыми компонентами, такими как резисторы и микросхемы, выяснить, работают ли они или нет, действительно легко и может быть выполнено за считанные секунды.

Однако с конденсаторами дело обстоит немного сложнее.

Если вам повезет, вы можете обнаружить неисправный конденсатор, проверив его верхнюю часть, и если он сломался, это означает, что конденсатор необходимо заменить.

Тем не менее, во многих случаях нормальный конденсатор все еще может быть неисправен, поэтому настоятельно рекомендуется проверить ваши конденсаторы, чтобы быть уверенным.

Многие люди, особенно новички, думают, что для этого требуется демонтаж, но на самом деле вы можете протестировать конденсатор без демонтажа, о чем мы и поговорим в этой статье.

Итак, если вы искали пошаговое руководство по тестированию конденсатора без демонтажа припоя, вы попали в нужное место.

Прочтите, чтобы узнать больше.

Как проверить конденсаторы без распайки

В отличие от других электрических компонентов, вы не можете проверить конденсатор с помощью простого мультиметра.

Это связано с тем, что использование таких устройств, как мультиметр или конденсаторный измеритель, может фактически приводить к неточным результатам.

Это происходит из-за того, что конденсаторы внутри схемы подключены последовательно или параллельно другим компонентам, поэтому вы фактически получаете эквивалентное, а не фактическое значение.

Хотя конденсаторные измерители и мультимеры определенно могут измерять емкость, их не рекомендуется использовать для проверки того, работает ли конденсатор.

Вместо этого существует ряд устройств, которые можно использовать для проверки конденсатора без демонтажа припайки, например измеритель ESR, интеллектуальный пинцет и проверка зрения.

В этом разделе мы расскажем, как использовать любой из этих трех методов.

Проверка с помощью измерителя ESR (хороший способ проверить конденсаторы)

Разряд конденсатора

Это самый важный шаг, который вы должны предпринять при тестировании конденсаторов, независимо от того, какие инструменты используются.

Это связано с тем, что не разрядить его перед тестированием может привести к повреждению измерителя СОЭ или другого инструмента, который вы используете.

Это нужно будет сделать независимо от того, какие параметры проверяются.

Для разрядки просто закоротите ноги любым доступным вам способом.

Однако при этом рекомендуется использовать провод с высоким сопротивлением.

И как только вы это сделаете, вы можете переходить к следующему шагу.

Включите измеритель СОЭ

Чтобы начать тестирование, просто включите измеритель СОЭ, пока на экране не появится «0».

Когда он показывает 0, это означает, что вам не нужно сокращать количество потенциальных клиентов, и вы можете начинать тестирование.

Присоедините провода

Чтобы начать тестирование, все, что вам нужно сделать, это прикрепить провода в нужных местах.

Тестер имеет два вывода: красный и черный.

Красный провод подключается к положительной клемме, а черный - к отрицательной клемме конденсатора.

Чтение и интерпретация данных

После того, как вы подключили провода, измеритель СОЭ должен начать отображать данные.

Просто запишите показания, а затем сравните их с таблицей, которая обычно помещается на корпусе измерителя СОЭ, чтобы интерпретировать их.

В то время как на большинстве счетчиков таблица уже напечатана на корпусе, на других моделях этого нет.

И в этой ситуации все, что вам нужно сделать, это использовать техническое описание конденсатора и сравнить его со значением ESR.

Во всех технических паспортах конденсаторов указано их значение ESR для частоты 100 кГц и его конкретное номинальное напряжение.

Любое отклонение от этой частоты указывает на неисправный конденсатор, который необходимо заменить, и

Значения

обычно отклоняются в сторону увеличения, когда дело касается конденсаторов.

Тестирование с помощью интеллектуального пинцета (еще один хороший инструмент для измерения)

Хотя тестера ESR было бы достаточно для измерения и проверки значений ESR большинства конденсаторов, при работе с SMD-компонентами все может быть довольно сложно.

Когда дело доходит до гибкости и эффективности, интеллектуальный пинцет может оказаться лучшим вариантом по сравнению с тестерами СОЭ.

Они позволят вам намного проще получать данные и тестировать компоненты SMD, а также обычные компоненты с отверстиями.

При этом пара интеллектуальных пинцетов может быть очень дорогой, особенно по сравнению с простым и экономичным измерителем СОЭ.

Пинцет

Smart на рынке может стоить до 300 долларов, что может быть недоступно для многих новичков и любителей, и в этом случае лучшим выбором будет тестер СОЭ.

И если вы решите инвестировать в умный пинцет, это все равно будет очень выгодным вложением, поскольку это очень полезный и функциональный инструмент, который можно использовать на рабочем месте.

Чтобы использовать интеллектуальный пинцет для проверки конденсаторов, просто выполните те же действия, что и при использовании тестера ESR.

Разрядите конденсатор, подсоедините провода, сравните и интерпретируйте данные.

Нет ничего проще и проще.

Проверка глазами (быстрый способ проверить конденсаторы без демонтажа)

Многие люди не знают, что в отсутствие тестера ESR или интеллектуального пинцета вы все равно можете проверить, работает ли конденсатор, проверив зрение.

Это не самый точный способ сделать это, но это быстрый, дешевый и простой способ выполнить работу.

Неисправный или неисправный конденсатор будет вздуться или вздуться на верхней стороне, и если вы заметите это, это означает, что у вас неисправный конденсатор и его необходимо заменить.

Опять же, это не самый точный способ узнать, неисправен ли ваш конденсатор, но это быстрый и простой способ проверить.

В случае сомнений всегда лучше использовать подходящие инструменты и инструменты для работы.

Мне нужно сначала удалить его?

Многие думают, что для проверки конденсатора его нужно распаять и снять с печатной платы.

Это не так, поскольку существует множество способов проверить конденсатор без демонтажа припоя.

Первый метод - использовать измеритель ESR, который требует только разрядить конденсатор перед тестированием.

Вы также можете использовать те же методы для проверки конденсатора с помощью интеллектуального пинцета.

После получения данных о значении ESR воспользуйтесь таблицей, напечатанной на измерителе, или прочтите лист данных конденсатора, чтобы определить, неисправен он или нет.

Вдобавок к этому вы можете провести быструю проверку зрения и посмотреть, не вздулся ли конденсатор или не вздулся ли он вверх.

Если он вздулся, это означает, что конденсатор неисправен и его необходимо заменить.

Могу ли я использовать мультиметр для проверки?

Как мы упоминали ранее, мультиметр можно использовать для проверки множества различных компонентов, но он не будет надежным для проверки конденсаторов.

Это потому, что, хотя он может проверять емкость, данные не будут надежными.

Причина этого в том, что конденсаторы обычно включаются последовательно или параллельно с другими компонентами, что может помешать получению точных данных.

Вот почему ESR-тестеры и интеллектуальные пинцеты более рекомендуются для проверки конденсаторов, чем мультиметры.

Как узнать, закорочен ли конденсатор?

Чтобы проверить, не закорочен ли конденсатор, вам понадобится мультиметр.

Просто подключите выводы мультиметра к конденсатору и наблюдайте за данными.

Если измеритель сопротивления начинает с низкого значения и постепенно увеличивается, это означает, что ваш конденсатор работает нормально.

Однако, если сопротивление остается низким в течение длительного времени и не повышается, это означает, что у вас закорочен конденсатор, который необходимо заменить.

Что происходит при коротком замыкании?

При коротком замыкании конденсатора возникает сопротивление между проводами напряжения и заземления.

Это потенциально может нарушить работу цепи, что может вызвать множество различных проблем.

Поэтому, если ваш конденсатор закорочен, не забудьте сразу заменить его, чтобы избежать каких-либо осложнений или повреждения вашей электроники.

Вдобавок к этому, если конденсатор закорочен, устройство временами просто не будет работать.

Как измерить напряжение, емкость и другие переменные, относящиеся к печатной плате?

Существует множество инструментов, которые могут помочь вам в достижении ваших целей, когда дело касается электроники и печатных плат.

Вы можете ознакомиться с другими нашими руководствами здесь для получения дополнительной информации.

Заключение

На этом наше краткое руководство по тестированию конденсаторов без распайки подходит к концу.

Есть много разных способов сделать это, используя различные инструменты и инструменты.

Фактически, один из методов предполагает использование только ваших глаз и наблюдательных навыков.

Итак, теперь, когда вы знаете, как это сделать, вам остается только отправиться в мастерскую с любыми приборами, которые вы выберете для использования, и приступить к тестированию своих конденсаторов!

Дополнительная литература:

Как работают конденсаторы

Последнее обновление 19 июня 2021 года Томом

Конденсаторы 101 - iFixit

Вот немного сухого материала, просто чтобы помочь понять, что такое конденсатор и что он обычно делает.Конденсатор - это небольшой (в большинстве случаев) электрический / электронный компонент на большинстве печатных плат, который может выполнять различные функции. Когда конденсатор помещается в цепь с активным током, электроны с отрицательной стороны накапливаются на ближайшей пластине. Отрицательный течет к положительному, поэтому отрицательный является активным проводом, хотя многие конденсаторы не поляризованы. Как только пластина больше не может удерживать их, они выталкиваются через диэлектрик на другую пластину, таким образом вытесняя электроны обратно в цепь.Это называется разрядом. Электрические компоненты очень чувствительны к колебаниям напряжения, и поэтому скачок мощности может убить эти дорогостоящие детали. Конденсаторы создают постоянное напряжение для других компонентов и, таким образом, обеспечивают стабильное питание. Переменный ток выпрямляется диодами, поэтому вместо переменного тока есть импульсы постоянного тока от нуля до пика. Когда конденсатор от линии питания подключен к земле, и постоянный ток не проходит, но по мере того, как импульс заполняет конденсатор, он снижает ток и эффективное напряжение.Когда напряжение питания падает до нуля, конденсатор начинает вытекать свое содержимое, это сглаживает выходное напряжение и ток. Таким образом, конденсатор размещается на одной линии с компонентом, что позволяет поглощать выбросы и дополнять впадины, что, в свою очередь, поддерживает постоянное питание компонента.

Существует множество различных типов конденсаторов. Часто они по-разному используются в схемах. Все слишком знакомые конденсаторы в виде круглой жестяной банки обычно представляют собой электролитические конденсаторы.Они сделаны из одного или двух листов металла, разделенных диэлектриком. Диэлектрик может быть воздухом (простейший конденсатор) или другими непроводящими материалами. Металлические пластины из фольги, разделенные диэлектриком, затем скручиваются, как Fruit Roll-up, и помещаются в банку. Они отлично подходят для объемной фильтрации, но не очень эффективны на высоких частотах.

Вот конденсатор, который некоторые, возможно, еще помнят со времен старого радио. Это многосекционный баночный конденсатор. Этот конкретный конденсатор представляет собой четырехсекционный (4) конденсатор.Все это означает, что в одной емкости содержится четыре отдельных конденсатора с разными номиналами.

Керамические дисковые конденсаторы идеально подходят для более высоких частот, но не подходят для объемной фильтрации, поскольку керамические дисковые конденсаторы становятся слишком большими по размеру для более высоких значений емкости. В схемах, где жизненно важно поддерживать стабильность источника напряжения, обычно имеется большой электролитический конденсатор, подключенный параллельно керамическому дисковому конденсатору. Электролитик будет делать большую часть работы, тогда как небольшой керамический дисковый конденсатор будет отфильтровывать высокую частоту, которую пропускает большой электролитический конденсатор.

Еще есть танталовые конденсаторы. Они маленькие, но имеют большую емкость по сравнению с керамическими дисковыми конденсаторами. Они более дорогие, но находят широкое применение на печатных платах небольших электронных устройств.

Старые бумажные конденсаторы, хотя и неполярные, имели черные полосы на одном конце. Черная полоса показывала, на каком конце бумажного конденсатора была металлическая фольга (которая действовала как экран). Конец с металлической фольгой был подключен к земле (или к самому низкому напряжению).Основное назначение экрана из фольги - продлить срок службы бумажного конденсатора.

Вот тот, который нас, скорее всего, интересует больше всего, когда речь идет об iDevices. Они очень маленькие по сравнению с перечисленными выше конденсаторами. Это крышки для устройств поверхностного монтажа (SMD). Несмотря на то, что они миниатюрны по размеру по сравнению с предыдущими конденсаторами, функция остается той же. Одной из важных особенностей этих конденсаторов, помимо номинальных характеристик, является их «упаковка». Существует стандартизация размеров этих компонентов, т.е.е. упаковка 0201 - 0,6 мм x 0,3 мм (0,02 дюйма x 0,01 дюйма). Размер корпуса керамических конденсаторов SMD соответствует размеру корпуса резисторов SMD. Это делает практически невозможным определить, конденсатор это или резистор, с помощью визуализации. Вот хорошее описание индивидуальных размеров на основе номеров пакетов.

Определить значение конденсатора можно несколькими способами. Номер один, конечно же, это маркировка на самом конденсаторе.

Этот конкретный конденсатор имеет емкость 220 мкФ (микрофарад) с допуском 20%.Это означает, что он может находиться в диапазоне от 176 мкФ до 264 мкФ. Он имеет номинальное напряжение 160 В. Расположение выводов показывает, что это радиальный конденсатор. Оба вывода выходят с одной стороны, в отличие от осевого расположения, когда один вывод выходит с обеих сторон корпуса конденсатора. Кроме того, полоса со стрелками на стороне конденсатора указывает полярность, стрелки указывают на отрицательный вывод .

Теперь главный вопрос здесь - как проверить конденсатор на предмет необходимости его замены.

Для проверки конденсатора, когда он все еще установлен в цепи, потребуется измеритель ESR. Если конденсатор удален из схемы, то можно использовать мультиметр, установленный в качестве омметра, , но только для выполнения теста «все или ничего» . Этот тест покажет только, полностью ли разряжен конденсатор. , а не , будет определять, в хорошем или плохом состоянии конденсатор. Чтобы определить, работает ли конденсатор при правильном значении (емкости), потребуется тестер конденсатора.Конечно, это также верно для определения номинала неизвестного конденсатора.

Счетчик, используемый в этой Wiki, является самым дешевым из всех доступных в любом универмаге. Для этого теста также рекомендуется использовать аналоговый мультиметр. Он покажет движение более наглядно, чем цифровой мультиметр, отображающий только быстро меняющиеся числа. Это должно позволить любому выполнять эти тесты, не тратя целое состояние на что-то вроде глюкометра Fluke.

Всегда разряжайте конденсатор перед тестированием, если этого не сделать, будет шокирующим сюрпризом.Конденсаторы очень маленькой емкости можно разрядить, переставив оба вывода отверткой. Лучше всего это сделать, разрядив конденсатор через нагрузку. В этом случае это выполнят кабели из крокодиловой кожи и резистор. Вот отличный сайт, показывающий, как построить инструменты для разряда.

Чтобы проверить конденсатор с помощью мультиметра, установите показание измерителя в диапазоне высоких сопротивлений, где-то выше 10 кОм и 1 м Ом. Прикоснитесь к выводам измерителя к соответствующим выводам на конденсаторе, красный к плюсу и черный к минусу.Измеритель должен начинать с нуля, а затем медленно приближаться к бесконечности. Это означает, что конденсатор находится в рабочем состоянии. Если счетчик остается на нуле, конденсатор не заряжается через батарею счетчика, что означает, что он не работает.

Это также будет работать с заглушками SMD. Тот же тест, когда стрелка мультиметра медленно движется в том же направлении.

Еще одно испытание конденсатора - это испытание напряжением. Мы знаем, что конденсаторы накапливают на своей пластине разность потенциалов зарядов, это напряжения.Конденсатор имеет анод с положительным напряжением и катод с отрицательным напряжением. Один из способов проверить, работает ли конденсатор, - это зарядить его напряжением, а затем измерить напряжение на аноде и катоде. Для этого необходимо зарядить конденсатор напряжением и подать напряжение постоянного тока на выводы конденсатора. В этом случае очень важна полярность. Если у этого конденсатора есть положительный и отрицательный вывод, это поляризованные конденсаторы (электролитические конденсаторы). Положительное напряжение пойдет на анод, а отрицательное - на катод конденсатора.Не забудьте проверить маркировку на тестируемом конденсаторе. Затем на несколько секунд подайте напряжение, которое должно быть меньше номинального напряжения конденсатора. В этом примере конденсатор 160 В будет заряжаться от батареи постоянного тока 9 В в течение нескольких секунд.

По окончании заряда отключите аккумулятор от конденсатора. Воспользуйтесь мультиметром и снимите напряжение на выводах конденсатора. Напряжение должно быть около 9 вольт. Напряжение будет быстро уменьшаться до 0 В, потому что конденсатор разряжается через мультиметр.Если конденсатор не сохраняет это напряжение, он неисправен и его следует заменить.

Проще всего конечно будет проверить конденсатор емкостным измерителем. Вот осевой GPF 1000 мкФ 40 В FRAKO с допуском 5%. Проверить этот конденсатор с помощью измерителя емкости очень просто. На этих конденсаторах отмечен положительный вывод. Подсоедините положительный (красный) провод от измерителя к нему, а отрицательный (черный) - к противоположному. Этот конденсатор показывает 1038 мкФ, что явно в пределах допуска.

Для проверки конденсатора SMD может быть сложно сделать с громоздкими пробниками. Можно либо припаять иглы к концам этих зондов, либо купить умный пинцет. Лучше всего использовать умный пинцет.

Некоторые конденсаторы не требуют проверки для определения неисправности. Если визуальный осмотр конденсаторов обнаруживает какие-либо признаки вздутия верхних частей, их необходимо заменить. Это наиболее частая неисправность блоков питания. При замене конденсатора крайне важно заменить его конденсатором того же или более высокого номинала.Никогда не субсидируйте конденсатор меньшей стоимости.

Если конденсатор, который собираются заменить или проверить, не имеет маркировки, потребуется схема. На изображении ниже показано несколько символов конденсаторов, которые используются на схеме.

В этом отрывке из схемы iPhone указаны символы конденсаторов, а также их значения.

Эта Wiki - это в значительной степени только основы того, что искать в конденсаторах, она никоим образом не является полной.Чтобы узнать больше о любых распространенных электронных компонентах, существует множество хороших онлайн-курсов и офлайн-курсов.

Eaton Electronics

Максвелл

Digikey

Mouser

Как проверить конденсатор с помощью цифрового и аналогового мультиметра

6 способов проверки конденсатора с помощью цифрового мультиметра и AMM (AVO)

При большинстве работ по устранению неисправностей и ремонту электрических и электронных устройств мы сталкиваемся с типичной проблемой, которая как проверить и проверить конденсатор? Хорошее, плохое (мертвое), короткое или открытое?

Здесь мы можем проверить конденсатор с помощью аналога (измеритель AVO i.е. Ампер, напряжение, омметр), а также цифровой мультиметр, либо он в хорошем состоянии, либо его следует заменить новым.

Примечание. Для определения значения емкости вам понадобится цифровой измеритель с функциями измерения емкости. .

Ниже приведены пять (6) методов проверки и тестирования конденсатора на исправность, неисправность, обрыв, неисправность или короткое замыкание .

Похожие сообщения:

Метод 1.

Традиционный метод тестирования и проверки конденсатора

Примечание. Не рекомендуется для всех, кроме профессионалов.Будьте осторожны, выполняя эту практику, так как это опасно. Убедитесь, что вы профессиональный инженер-электрик / электрик (вы действительно знаете, что делаете, или проверяете предупреждения, прежде чем применять этот метод), и нет других вариантов проверки конденсатора, потому что во время этой практики могут возникнуть серьезные повреждения). Если вы уверены, продолжайте, в противном случае перейдите к способу 2–6 в качестве альтернативы конденсатору.

Предположим, вы хотите проверить конденсатор (например, конденсаторы вентилятора, конденсаторы воздухоохладителя в помещении или оловянные конденсаторы на печатной плате / печатной плате и т. Д.)

Предупреждение и рекомендации по тестированию конденсатора методом 1.

Для большей безопасности используйте 24 В постоянного тока вместо 230 В переменного тока. В случае отсутствия желаемой системы постоянного тока 24 В вы можете использовать 220-224 В переменного тока, но вам необходимо сделать серию резисторов (скажем, 1 кОм ~ 10 кОм, 5 ~ 50 Вт) для подключения конденсатора к источнику переменного тока 230 В. Таким образом, это уменьшит зарядный и разрядный ток. Вот пошаговое руководство по проверке конденсатора этим методом.

  1. Отключите подозрительный конденсатор от источника питания или убедитесь, что хотя бы один вывод конденсатора отключен.
  2. Убедитесь, что конденсатор полностью разряжен.
  3. Подключите два отдельных провода к клеммам конденсатора. (Необязательно)
  4. Теперь безопасно подключите эти выводы к источнику переменного тока 230 В на очень короткий период (около 1-4 сек) [или на короткое время, когда напряжение поднимется до 63,2% от напряжения источника].
  5. Отсоедините предохранительные провода от источника питания 230 В переменного тока.
  6. Теперь закоротите клеммы конденсатора (будьте осторожны при этом и убедитесь, что у вас есть защитные очки)
  7. Если возникает сильная искра, то конденсатор исправен .
  8. Если он дает слабую искру, то это конденсатор неисправен, и немедленно замените его новым.

Связанные сообщения:

Метод 2.

Проверка конденсатора аналоговым мультиметром

Чтобы проверить конденсатор с помощью AVO (ампер, напряжение, омметр), выполните следующие действия.

  1. Убедитесь, что предполагаемый конденсатор полностью разряжен.
  2. Возьмите измеритель AVO.
  3. Выберите аналоговый измеритель на ОМ (Всегда выбирайте более высокий диапазон Ом).
  4. Подключите выводы измерителя к клеммам конденсатора.
  5. Примечание Прочтите и сравните со следующими результатами.
  6. Короткие конденсаторы : Закороченный конденсатор покажет очень низкое сопротивление.
  7. Открытые конденсаторы : Открытый конденсатор не будет показывать никакого движения (отклонения) на экране омметра.
  8. Хорошие конденсаторы : Сначала сопротивление будет низким, а затем постепенно увеличивается до бесконечности. Это означает, что конденсатор в хорошем состоянии.

Метод 3.

Проверка конденсатора с помощью цифрового мультиметра

Чтобы проверить конденсатор с помощью цифрового мультиметра (DMM), выполните следующие действия.

  1. Убедитесь, что конденсатор разряжен.
  2. Установите измеритель на диапазон Ом (установите его на 1000 Ом = 1 кОм).
  3. Подключите выводы измерителя к клеммам конденсатора.
  4. Цифровой измеритель на секунду покажет некоторые числа. Обратите внимание на чтение.
  5. И тут сразу вернется в OL (Open Line).Каждая попытка на шаге 2 будет показывать тот же результат, что и на шагах 4 и 5. Это означает, что конденсатор находится в хорошем состоянии .
  6. Если изменений нет, то Конденсатор не работает .

Вы также можете проверить:

Метод 4.

Проверка конденсатора с помощью мультиметра в режиме емкости

Примечание. Вы можете выполнить этот тест с помощью мультиметра, если у вас есть измеритель емкости или мультиметр с функцией проверки емкости.Кроме того, этот метод хорош и для проверки крошечных конденсаторов. Для этого теста поверните ручку мультиметра в режим измерения емкости.

  1. Убедитесь, что конденсатор полностью разряжен.
  2. Снимите конденсаторы с платы или цепи.
  3. Теперь выберите «Емкость» на мультиметре.
  4. Теперь подключите клемму конденсатора к выводам мультиметра.
  5. Если показание близко к фактическому значению конденсатора (т. Е. Значению, напечатанному на коробке контейнера конденсатора).
  6. Значит, конденсатор в хорошем состоянии. (Обратите внимание, что показание может быть меньше, чем фактическое значение конденсатора (значение, напечатанное на коробке контейнера конденсатора).
  7. Если вы читаете значительно меньшую емкость или ее нет вовсе, то конденсатор неисправен, и вам следует его заменить.

Связанные сообщения:

Метод 5.

Проверка конденсатора простым вольтметром.
  1. Обязательно отсоедините один провод (не беспокойтесь, если положительный (длинный) или отрицательный (короткий)) конденсатор от цепи (при необходимости вы также можете полностью отключить его)
  2. Проверьте номинальное напряжение конденсатора, напечатанное на нем (как показано в нашем нижеприведенном примере, где напряжение = 16 В)
  3. Теперь зарядите этот конденсатор в течение нескольких секунд до номинального значения. (не до точного значения, но меньше, чем i.е. зарядите конденсатор 16В от батареи 9В) напряжением. Обязательно подключите положительный (красный) вывод источника напряжения к положительному (длинному) выводу конденсатора, а отрицательный - к отрицательному. Если вы не можете его найти или не уверены, вот руководство, как найти отрицательный и положительный вывод конденсатора.
  4. Установите значение вольтметра на постоянный ток и подключите конденсатор к вольтметру, подключив положительный провод батареи к положительному выводу конденсатора, а отрицательный - к отрицательному.
  5. Запишите начальное значение напряжения на вольтметре. Если оно близко к подаваемому на конденсатор напряжению, конденсатор находится в хорошем состоянии. Если показания очень малы, значит, конденсатор неисправен. Обратите внимание, что вольтметр будет показывать показания в течение очень короткого времени, так как конденсатор разряжает свое напряжение в вольтметре, и это нормально.

Связанные сообщения:

Метод 6.

Найдите значение конденсатора, измерив значение постоянной времени

Мы можем найти значение конденсатора, измерив постоянную времени (TC или τ = Тау), если значение емкости конденсатора известно в микрофарадах (обозначено мкФ), напечатанном на нем i.е. конденсатор не перегорел и не перегорел.

Вкратце, время, необходимое конденсатору для зарядки примерно 63,2% приложенного напряжения при заряде через резистор известного номинала, называется постоянной времени конденсатора (TC или τ = Tau) и может быть рассчитано с помощью:

τ = RxC

Где:

  • R = Известный резистор
  • C = Значение емкости
  • τ = TC или τ = Tau (постоянная времени)

Например, если напряжение питания составляет 9V , затем 63.2% из этого составляет около 5,7В .

Теперь давайте посмотрим, как найти значение емкости конденсатора путем измерения постоянной времени.

Обязательно отключите и разрядите конденсатор от платы.

Подключите известное значение сопротивления (например, резистор 5-10 кОм) последовательно с конденсатором.

Подайте известное значение напряжения питания. (например, 12 В или 9 В) к конденсатору, подключенному последовательно с резистором 10 кОм.

Теперь измерьте время, необходимое для зарядки конденсатора около 63.2% от приложенного напряжения. Например, если напряжение питания составляет 9 В, то 63,2% от этого значения составляет около 5,7 В.

Из значения данного резистора и измеренного времени вычислите значение емкости по формуле Time Content, т.е. τ = TC или τ = Tau (постоянная времени) .

Теперь сравните рассчитанное значение емкости с напечатанным на нем значением конденсатора.

Если они одинаковы или почти равны, конденсатор в хорошем состоянии. Если вы обнаружите заметную разницу в обоих значениях, пора заменить конденсатор, поскольку он не работает должным образом.

Также можно рассчитать время разряда. В этом случае можно измерить время, необходимое конденсатору для разряда до 36,8% от пикового напряжения.

Полезная информация : Также можно измерить время, необходимое конденсатору для разряда около 36,8% пикового значения приложенного напряжения. Время разряда можно использовать так же, как в формуле, чтобы найти емкость конденсатора.

Похожие сообщения:

5 способов с мультиметром и без него

В общих чертах описывается, как проверить конденсатор с функцией измерения емкости и без нее на мультиметре, как проверить конденсатор с помощью прибора для проверки целостности цепи или с помощью омметра, а также «грубый тест» путем его короткого замыкания.

Найдите другие руководства, советы и рекомендации по автомобилям и мотоциклам

СОДЕРЖАНИЕ
Что такое конденсатор
Визуальный осмотр
Функциональный тест
1. Как проверить конденсатор без измерения емкости
2. Как проверить конденсатор с помощью мультиметра для проверки целостности цепи
3. Использование мультиметра с измерением емкости
4. Как проверить конденсатор омметром
5. Как проверить конденсатор коротким замыканием

Мультиметр является предпочтительным измерительным устройством, когда дело доходит до проверки возможно неисправного конденсатора.Есть несколько способов проверить конденсатор с помощью мультиметра.

В основном, однако:

Для мультиметра требуется специальное измерительное устройство, чтобы иметь возможность проверять конденсаторы и, таким образом, определять точные значения емкости конденсатора. Если нет функции для измерения емкости, можно только определить, имеет ли конденсатор короткое замыкание или заряжается ли он. Для этого можно выполнить проверку целостности или измерение сопротивления в омном диапазоне.

Что такое конденсатор?

Конденсаторы - это пассивный электронный компонент, который используется практически во всех электрических устройствах. Вы можете найти их в компьютерах, телевизорах, кухонной технике, ремесленных машинах, транспортных средствах и многих других устройствах.

В основном конденсаторы состоят из двух электропроводящих поверхностей, которые отделены друг от друга изоляционным материалом. Однако существуют конденсаторы разных типов и форм. Один из самых известных - электролитический конденсатор.Это поляризованный конденсатор. Напротив, керамические конденсаторы, например, используются как неполяризованные конденсаторы. В области моторных конденсаторов также используются пусковые конденсаторы.

Поскольку конденсаторы блокируют постоянный ток и пропускают переменный ток, они выполняют разные функции. В цепи переменного тока конденсатор используется как резистор переменного тока, в цепи постоянного тока он может накапливать электрический заряд. Это сохраненное напряжение называется электрической емкостью (C) и измеряется в Фарадах (F).

Поскольку электролитические конденсаторы со временем изнашиваются, может потребоваться проверка их работоспособности. Вы можете измерить конденсатор мультиметром. Есть два подхода: вы хотите просто проверить состояние конденсатора с помощью мультиметра или вы хотите измерить точную емкость конденсатора?

Визуальный осмотр

  • Пластиковый корпус: есть ли где-нибудь на корпусе неопределимая масса? На корпусе есть трещина или даже дыра?
  • Алюминиевый корпус: утечка жидкости? Сработала ли защита от избыточного давления?

Если вы ответите на один из этих вопросов «Да», скорее всего, конденсатор неисправен.

В следующем разделе мы познакомим вас с различными методами проверки конденсатора с помощью мультиметра.

Функциональный тест

Двигатель с неисправным конденсатором либо гудит перед запуском, либо запускается с отчетливо слышимым гудением. Это явные признаки потери емкости и, следовательно, неисправного конденсатора.

Вы ​​должны быть очень осторожны с этим типом теста, так как существует большой риск получения травмы. Прежде всего, никогда не проверяйте пилы или газонокосилки подобным образом.Многие люди переоценивают свои рефлексы и не могут достаточно быстро вывести пальцы из опасной зоны, когда двигатель внезапно запускается. К сожалению, многие несчастные случаи с отрубленными пальцами говорят сами за себя.

Если двигатель вращается в неправильном направлении, это также может указывать на неисправный конденсатор. То же самое относится к очень медленному или бессильному запуску машины. Если машина загружена, скорость в этом случае очень быстро падает. Если ваш электродвигатель работает неправильно или у него заканчивается мощность, в дополнение к дефекту конденсатора также может быть виновата неисправная обмотка двигателя.

1. Как проверить конденсатор без измерения емкости

Если доступен только простой мультиметр без функции измерения емкости, то можно проверить только приблизительную работоспособность конденсатора или электролитического конденсатора (электролитического конденсатора). Действуйте следующим образом:

1. Выставляем конденсатор

Прежде всего, проверяемый конденсатор следует полностью удалить из схемы. Все контакты в цепи должны быть удалены, а полюса конденсатора должны быть открыты для свободного доступа.

2. Визуально проверьте конденсатор

Перед тем, как измерить конденсатор мультиметром, его следует визуально проверить на наличие явных повреждений. Обратите внимание на небольшие неровности или мелкие трещинки на поверхности. Утечка жидкости также указывает на неисправный конденсатор, который следует заменить.

3. Разрядный конденсатор

Следующий шаг - убедиться, что конденсатор полностью разряжен. Чтобы гарантировать отсутствие остаточного тока в конденсаторе, его можно подключить к потребителю, например, к простой лампочке.Таким образом, вся накопленная энергия может быть полностью разряжена.

4. Настроить мультиметр

Теперь мультиметр должен быть настроен на функцию измерения сопротивления (измеренные значения в омах). Чтобы можно было определить пригодные для использования результаты, необходимо выбрать диапазон измерения 1000 Ом, то есть 1 кОм.

5. Измерить конденсатор мультиметром

Теперь две измерительные линии мультиметра можно подключить к полюсам конденсатора.Для полного испытания конденсатора измерительные линии необходимо применить дважды и сравнить реакцию обоих процессов:

На дисплее цифрового мультиметра теперь должно отображаться измеренное значение в течение доли секунды, которую вы должны запомнить. Дисплей измерений сразу же перейдет к OL (открытая линия). Если измерительные линии удалены и повторно подключены, на дисплее снова должно появиться то же измеренное значение, а затем OL. Если это так, то конденсатор в порядке.

2. Как проверить конденсатор с помощью мультиметра для проверки целостности цепи

Тестер непрерывности с проверкой диодов встроен во многие модели мультиметров. Это также можно использовать для проверки конденсатора. Однако таким образом можно только определить, заряжается ли конденсатор.

Ток от измерительного устройства сначала течет в конденсатор, пока он не будет полностью заряжен. Затем можно провести измерение сопротивления. Затем показание на дисплее показывает непрерывно увеличивающееся измеренное значение, пока не выйдет из диапазона измерения и не будет отображаться только 1.

Проверка целостности с помощью звукового сигнала

Мультиметры с измерителем целостности цепи с акустическим сигналом обеспечивают следующую обратную связь:

  • Постоянный или отсутствующий звуковой сигнал означает, что конденсатор неисправен.
  • Звуковой сигнал изменяется по громкости или высоте, что означает, что конденсатор в порядке.

В обоих вариантах конденсатор можно проверить только на короткое замыкание или проверить процесс зарядки.Таким способом нельзя измерить точную емкость конденсатора.

Вы также должны учитывать, что конденсаторы могут реагировать иначе, когда они удалены, чем когда они встроены в цепь. С небольшими конденсаторами в диапазоне пФ или нФ измерения определенно значимы, но с большими конденсаторами от 10 мкФ они становятся неточными, поскольку они ведут себя иначе во время измерения, чем при нормальной работе в реальных условиях. Измерение конденсаторов в цепи, но это больше для профессионалов, чем для электриков-любителей.

Узнайте больше о точной процедуре проведения проверки целостности с помощью мультиметра в руководстве по эксплуатации мультиметра и узнайте все, что вам нужно учесть.

3. Использование мультиметра для измерения емкости

Если доступен мультиметр, способный измерять емкость, прямое измерение емкости может быть выполнено на конденсаторе или электролитическом конденсаторе (электролитическом конденсаторе). Действуйте следующим образом:

1.Выставляем конденсатор

Здесь тоже первое, что нужно сделать, это полностью удалить проверяемый конденсатор из схемы. Все контакты в цепи должны быть удалены, а два полюса конденсатора должны быть доступны для свободного доступа.

2. Визуально проверьте конденсатор

Перед измерением емкости мультиметром необходимо проверить конденсатор на предмет повреждений. Если на поверхности видны небольшие неровности, мелкие трещины или даже протекающая жидкость, это может указывать на неисправный конденсатор.

3. Разрядный конденсатор

Следующий шаг - убедиться, что конденсатор полностью разряжен. Чтобы снять с конденсатора весь остаточный ток, его можно подключить к потребителю. И здесь, например, лампочка полностью разряжает энергию конденсатора.

4. Настроить мультиметр

Теперь мультиметр должен быть настроен на функцию измерения емкости (измеренные значения в фарадах).Диапазон измерения обычно автоматически регулируется устройством.

5. Измерить емкость конденсатора мультиметром

Теперь обе измерительные линии можно подключить к полюсам конденсатора. На дисплее мультиметра теперь должно отображаться показание, примерно соответствующее значению, указанному на конденсаторе. Если два значения очень похожи, конденсатор в хорошем состоянии. Если измеренное значение значительно ниже, чем значение, указанное на конденсаторе, или если измеренное значение не отображается вообще, то конденсатор неисправен и его необходимо заменить.

Общее примечание:

Поскольку конденсаторы или электролитические конденсаторы накапливают электрический ток, они должны быть полностью разряжены, прежде чем вы сможете проверить конденсатор с помощью мультиметра.

С помощью простых мультиметров вы можете только определить, есть ли в конденсаторе короткое замыкание или заряжается ли он. Точные измеренные значения емкости конденсатора можно определить только с помощью надлежащим образом оборудованных измерительных устройств.

4.Как проверить конденсатор омметром

Также можно проверить конденсатор в электродвигателе, измерив сопротивление омметром. При этом измерении сопротивление должно начинаться с низкого уровня и постепенно увеличиваться по мере заряда конденсатора. Наиболее значимым из обоих методов измерения является сравнение с определенно работающим конденсатором двигателя с такими же техническими характеристиками. Если отклонения стрелки ведут себя одинаково с точки зрения интенсивности и временной прогрессии, конденсатор, вероятно, в порядке.

5. Как проверить конденсатор коротким замыканием

В некоторых случаях состояние электролитического конденсатора можно проверить без омметра или вольтметра только при наличии подходящего источника напряжения. Конденсатор заряжается 1-2 секунды. Затем нужно замкнуть контакты отверткой по металлу.

Рабочий конденсатор должен иметь яркую искру. Если он тусклый или едва заметный, это означает, что конденсатор неисправен и плохо держит заряд.

Как проверить конденсатор с помощью мультиметра [Учебное пособие]

Мультиметр - это электрическое измерительное устройство с различными функциями. Его можно использовать для проверки напряжения, силы тока, а также производных от этих значений - сопротивления и емкости. Вы также можете использовать мультиметр для проверки работы различных электронных компонентов. В этой статье мы узнаем, как проверить конденсатор и его емкость с помощью мультиметра.

Конденсатор и емкость

Конденсаторы

используются практически во всех микросхемах и являются частой причиной их неработоспособности. Так что в случае выхода из строя устройства необходимо сначала проверить этот элемент.

Типы конденсаторов по типу диэлектрика:

  • конденсаторы вакуумные;
  • с газообразным диэлектриком;
  • с неорганическим диэлектриком;
  • диэлектрик органический;
  • конденсаторы электролитические;
  • твердотельный.

Неисправности главного конденсатора:

  • Электрический пробой . Обычно это вызвано превышением допустимого напряжения.
  • Обрыв . Это связано с механическими повреждениями, тряской, вибрацией. Причина может заключаться в плохой конструкции и условиях эксплуатации.
  • Чрезмерная утечка . Сопротивление между крышками меняется, что приводит к низкой емкости конденсатора, который не может удерживать свой заряд.

По всем этим причинам конденсатор становится непригодным для дальнейшего использования.

Перед испытанием конденсатора

Поскольку конденсаторы накапливают электрический заряд, перед проверкой их необходимо разрядить. Сделать это можно отверткой - нужно коснуться выводов жалом, чтобы образовалась искра. Затем вы можете вызвать компонент. Проверить конденсатор можно мультиметром или лампочками и проводами. Первый способ более надежен и дает более точную информацию об электронном элементе.

Перед началом теста следует осмотреть конденсатор.Если на нем есть трещины, нарушенная изоляция, протечки или вздутие, внутренний электролит поврежден, и устройство сломано. Его следует заменить на исправный. Если внешних повреждений нет, понадобится мультиметр.

Перед проведением измерений необходимо определить, полярный или неполярный конденсатор. Необходимо соблюдать полярность первого конденсатора; в противном случае устройство выйдет из строя. Во втором случае нет необходимости определять положительный и отрицательный выходы, но измерения будут производиться по другой технологии.

Полярность можно определить по метке на корпусе. На детали должна быть черная полоса с нулевыми отметками. На стороне этой ступни имеется отрицательный контакт, а на противоположной ступне - положительный.

Измерение емкости в режиме сопротивления

Переключатель мультиметра должен быть установлен в режим сопротивления (омметр). Вы можете увидеть, есть ли в конденсаторе обрыв цепи или короткое замыкание в этом режиме. Для проверки неполярного конденсатора диапазон измерения установлен на 2 МОм .Для полярного изделия установлено сопротивление 200 Ом, т.к. на уровне 2 МОм, и зарядка будет быстрой.

Сам конденсатор необходимо вынуть из схемы и поставить на стол. Щупами мультиметра прикоснуться к клеммам конденсатора, соблюдая полярность. В неполярных запчастях соблюдать все «за» и «против» нет необходимости.

Когда щупы соприкасаются с ножками, на дисплее отображается значение, которое увеличивается. Это связано с тем, что мультитестер будет заряжать компонент.Через некоторое время значение на экране достигнет единицы, что означает, что устройство исправно. Если на тесте сразу загорается 1, значит внутри прибора поломка, и его нужно заменить. Нулевое значение на дисплее указывает на то, что внутри конденсатора произошло короткое замыкание.

Если тестируется неполярный конденсатор, значение должно быть выше 2 . В противном случае агрегат не работает.

Описанный выше алгоритм подходит для цифрового тестера.При использовании аналогового устройства проверка еще проще - нужно только наблюдать за ходом стрелки. Датчики подключаются аналогично, режим - проверка сопротивления. Плавное движение стрелки указывает на то, что конденсатор исправен. Минимальное и максимальное значение при подключении говорят о поломке электронной части.

Важно отметить, что режим проверки омметра предназначен для деталей емкостью более 0,25 мкФ . Для меньших номиналов используются специальные LC-метры или тестеры с высоким разрешением.

Измерение емкости конденсатора

Конденсатор - главная особенность конденсатора. Он указан на внешней оболочке устройства, и при наличии тестера вы можете измерить реальное значение и сравнить его с номинальным значением.

Переключатель мультиметра преобразуется в диапазон измерения. Значение устанавливается равным или близким к номинальному значению, указанному на компоненте. Сам конденсатор устанавливается в специальные отверстия -CX + (если они есть на мультиметре) или с помощью щупов.Щупы подключаются так же, как при измерении в режиме сопротивления.

При подключении щупов значение сопротивления должно отображаться на мониторе. Если она близка к номинальной, конденсатор исправен. Когда разница между полученным и номинальным значениями составляет более чем на 20% , устройство прокалывается и его необходимо заменить.

Измерение емкости сквозного напряжения

Вольтметр также можно использовать для проверки работоспособности детали.Значение на мониторе сравнивается с номиналом, и на основании этого делается вывод об исправности устройства. Для проверки понадобится блок питания с более низким напряжением, чем конденсатор.

Соблюдая полярность, необходимо подключить щупы к выводам на несколько секунд для зарядки. Затем мультиметр переводят в режим вольтметра, и проверяют работоспособность. На дисплее тестера должно появиться значение, аналогичное номинальному. В противном случае устройство сломается.

Важный!

Напряжение проверяется в самом начале измерения. Это связано с тем, что конденсатор при подключении начинает терять заряд.

Другие способы тестирования

Проверить конденсатор можно, не отпаивая его от микросхемы. Для этого нужно подключить параллельно конденсатор такой же емкости. Если устройство будет работать, проблема в первом элементе, и его следует поменять. Этот метод можно использовать только в цепях низкого напряжения!

Иногда проверяют конденсатор на искры.Вам нужно зарядить его и использовать металлический инструмент с изолированной ручкой, чтобы закрыть провода. Должна появиться яркая искра с характерным звуком. При малом разряде можно сделать вывод, что деталь пора менять. Это измерение необходимо производить в резиновых перчатках. Этот метод используется для проверки конденсаторов большой емкости, в том числе пусковых конденсаторов, которые рассчитаны на напряжения выше 200 вольт .

Нежелательно использовать методы испытаний без специальных приборов. Они небезопасны - малейшая неосторожность может вызвать поражение электрическим током.Также будет нарушена объективность картинки - точных значений получить не удастся.

Трудности тестирования

Основная сложность определения работоспособности конденсатора мультиметра - его отпайка из схемы. Если компонент оставить на плате, на измерение будут влиять другие элементы схемы. Они исказят показания.

На пробниках есть специальные тестеры минимального напряжения, позволяющие проверять конденсатор прямо на плате.Низкое напряжение сводит к минимуму риск повреждения других элементов схемы.

Как проверить емкость - Полезное видео на Youtube

Отличное видео с описанием процесса проверки конденсаторов.

Как проверить конденсатор? Использование различных методов

Как проверить конденсатор с помощью мультиметра? Различные методы проверки конденсаторов

В электронных схемах конденсатор является одним из наиболее часто используемых компонентов. При устранении неисправностей таких цепей необходимо знать , как проверить конденсатор .

В этой статье мы обсудим, как проверить конденсатор на исправность , короткое замыкание или разомкнутый , используя разные методы.

Перед испытанием конденсатора необходимо узнать о самом конденсаторе.

Конденсатор

Конденсатор - это электронный компонент с двумя выводами, способный накапливать заряд в электрическом поле. Он состоит из двух металлических пластин, разделенных средой, известной как диэлектрик .

Когда конденсатор подключен к батарее, между металлическими пластинами возникает электрическое поле. Благодаря этому электрическому полю металлические пластины накапливают заряд.

Способность конденсатора накапливать заряд называется емкостью . Он измеряется в фарадах и обозначается F .

Клеммы конденсатора

Конденсатор имеет два вывода, т.е. положительный и отрицательный, также известные как анод , и катод , соответственно.

Конденсаторы бывают двух типов в зависимости от полярности вывода.

Полярные конденсаторы Полярные конденсаторы

, также известные как электролитические конденсаторы , используют электролит в качестве одного из своих выводов для увеличения емкости накопления заряда. Он имеет большую емкость по сравнению с неполярными конденсаторами.

Его пластины поляризованы, т.е. две уникальные клеммы, известные как анод (положительный) и катод (отрицательный).

При использовании полярного конденсатора очень важно проверить полярность его вывода .Напряжение на анодном выводе всегда должно поддерживаться на более высоком напряжении , чем на его выводах катода . Изменение полярности может повредить конденсатор и даже разрушить его.

Проще говоря, всегда соединяйте положительную клемму с положительной клеммой, а отрицательную - с отрицательной клеммой аккумулятора.

Неполярный конденсатор

Неполярный конденсатор или неполяризованный конденсатор без полярности . Между его клеммами нет никакой разницы.Оба вывода могут действовать как катод и анод.

Неполярные конденсаторы имеют очень низкую емкость в диапазоне от нескольких пикофарад до нескольких микрофарад.

Также прочтите: Тест транзисторов для идентификации клемм, типа и состояния.

Нет положительных и отрицательных выводов. Клемма, подключенная к положительной клемме батареи, действует как анод. В то время как клемма, подключенная к отрицательной клемме аккумулятора, действует как катод.Изменение полярности батареи не влияет на конденсатор.

Визуальная идентификация клемм

Как известно, неполярные конденсаторы не имеют разных выводов. Таким образом, нет необходимости идентифицировать его терминалы.

Однако очень важно идентифицировать выводы полярного электролитического конденсатора.

Первый метод

При изготовлении опора анод полярного конденсатора делается на длиннее по сравнению с катодной опорой.Этот метод работает только тогда, когда конденсатор не используется. Второй метод работает как с новыми, так и с использованными конденсаторами.

Второй метод

Отрицательная клемма конденсатора обозначена на его корпусе маркировкой « - », указывающей на катодную ножку .

Однако полярные конденсаторы SMD имеют маркировку на положительной клемме (анод).

Различные методы проверки конденсаторов

Для проверки конденсатора необходимо удалить конденсатор из его цепи, если он есть в какой-либо цепи.Затем разряжает конденсатор, поскольку он может иметь некоторый накопленный заряд. Это может повредить ваше испытательное оборудование.

Чтобы правильно разрядить конденсатор , подключите резистор между его выводами. Заряд будет рассеиваться через резистор.

Мультиметр - важный инструмент, необходимый для проверки конденсатора . Ниже рассматриваются различные методы проверки конденсаторов с помощью мультиметра.

Проверка конденсатора с помощью проверки целостности цепи

Метод проверки целостности конденсатора показывает, является ли он разомкнутым, коротким или хорошим .

  • Удалите подозрительный конденсатор из его цепи.
  • Разрядите с помощью резистора.
  • Установите мультиметр в режим проверки целостности .
  • Поместите красный щуп мультиметра на анод, а черный (общий) щуп на катод конденсатора.
  • Если мультиметр показывает признак обрыва цепи ( гудок или светодиод ), а затем он останавливается (показывает OL ). Значит конденсатор хороший .

Также прочтите: Различия между конденсатором и батареей

  • Если конденсатор не показывает никаких признаков непрерывности, конденсатор открыт .
  • Если мультиметр издает непрерывный звуковой сигнал, конденсатор замкнут и нуждается в замене.
Проверить конденсатор с помощью теста сопротивления

Тест сопротивления также используется для проверки конденсатора. Этот тест может выполнять как цифровой, так и аналоговый мультиметр.Метод остается одинаковым для обоих мультиметров.

  • Удалите конденсатор из его цепи.
  • Разрядите конденсатор с помощью резистора.
  • Установите ручку мультиметра в режим высокого сопротивления (выше 10 кОм).
  • Поместите красный щуп на анод, а черный щуп на катодный вывод конденсатора.
  • Значение сопротивления должно начинаться с некоторой точки в середине и начинаться с , увеличиваясь с до до бесконечности .Он показывает, что конденсатор хороший .

Также читайте: Как проверить диод и методы тестирования диодов, светодиодов и стабилитронов

  • Если конденсатор показывает высокое сопротивление даже после разряда, конденсатор открыт .
  • Если конденсатор показывает 0 или очень низкое сопротивление, это короткое замыкание .

Причина увеличения сопротивления в том, что изначально конденсатор заряжал от мультиметра .Таким образом, он позволяет току проходить через него (в этом случае омметр измеряет сопротивление ). Когда конденсатор полностью зарядил , он больше не пропускал ток. Из-за чего он выглядит как открытый путь ( бесконечное сопротивление )

Проверить конденсатор в емкостном режиме

Режим измерения емкости - это уникальный режим в цифровых мультиметрах, используемый для измерения емкости. Если вы хотите проверить конденсатор с помощью этого метода, вам нужно знать, как считывать значение конденсатора.

Как считать значение конденсатора:

Электролитический конденсатор обычно указывает полное значение, как показано на рисунке ниже.

Однако значение керамического конденсатора записывается в виде кода. Вы можете преобразовать / расшифровать его, используя его специфический метод. Пример считывания керамического конденсатора приведен ниже.

Керамический конденсатор имеет номер 103 .

  • Первые две цифры являются значащими цифрами и пишутся как есть.Например, 10 .
  • Третья цифра « 3 » показывает множитель 10 3 . Таким образом, общая емкость составляет 10 * 10 3 , что равно 10000 пФ .
  • Керамические конденсаторы измеряются в пикофарадах 10 -12 F .
  • Таким образом, емкость этого конденсатора составляет 10 нФ .

Следующий шаг - найти допуск . Он дает минимальный и максимальный диапазон, в котором емкость может отличаться от номинального значения.

Некоторые из общих значений допуска задаются буквами j, k, l, m и n для добавления / вычитания процента от 5,10,15,20 и 30 соответственно.

Теперь перейдем к тесту измерения емкости.

  • Удалите конденсатор из его цепи.
  • Разрядите конденсатор с помощью резистора.
  • Установите мультиметр в режим измерения емкости .
  • Некоторые модели мультиметров имеют специальные клеммы для измерения емкости.

  • Поместите щупы мультиметра на конденсатор.
  • Если измеренная емкость соответствует записанному значению (включая допуск) конденсатора, конденсатор хороший .
Проверьте конденсатор с помощью теста напряжения:

Способность конденсатора заключается в том, чтобы накапливать заряд, который отражается как напряжение на его выводах.

Этот тест показывает, что конденсатор может удерживать заряд или нет.Если конденсатор , хороший , он будет накапливать заряд. который будет отображаться как напряжение на его клемме, и мы можем измерить его с помощью вольтметра .

Перед испытанием конденсатора на испытание напряжением вам необходимо узнать о номинальном напряжении конденсатора.

Номинальное напряжение конденсатора всегда указывается рядом с его значением емкости, как показано на рисунке ниже.

При зарядке конденсатора от аккумулятора напряжение аккумулятора должно быть на меньше, чем на номинальное напряжение конденсатора.В противном случае конденсатор перейдет в разряд .

В этом тесте мы используем конденсатор номиналом 63 В с 12-вольтовой батареей.

  • Удалите конденсатор из его цепи.
  • Обозначьте клеммы и разрядите конденсатор с помощью резистора.
  • Подключите положительный полюс аккумулятора к положительному, а отрицательный - к отрицательному на конденсаторе. ( будьте осторожны, не касайтесь клемм аккумулятора вместе)

  • Дайте ему зарядить в течение нескольких секунд.
  • Извлеките аккумулятор.
  • Установите мультиметр в диапазон настройки вольтметра постоянного тока более 12 В.
  • Запишите начальное мгновенное показание напряжения конденсатора.

  • , если показание составляет около 12 вольт, конденсатор хороший .
  • Если показание напряжения намного ниже 12 В, конденсатор неисправен и не может хранить достаточный заряд.
Как проверить конденсатор путем расчета постоянной времени RC

Постоянная времени RC (обозначается греческим словом tau ‘τ’ ) - это время, в течение которого конденсатор заряжается до 63.2% от приложенного напряжения.

Постоянная времени τ вычисляется как сопротивление , умноженное на , емкость :

τ = R C

В этом уравнении резистор R имеет известное значение, и во время этого теста мы измерим τ .

В этом тесте мы используем батарею 12 В с резистором 10 кОм . Мы соединили их последовательно с конденсатором. Мы используем вольтметр для измерения напряжения на конденсаторе и секундомер для измерения времени.

  • Настройте схему , как показано ниже.
  • Подключите клеммы аккумулятора, чтобы начать зарядку конденсатора.
  • Включите секундомер, как только вы подключите клеммы аккумулятора.
  • Наблюдать за показаниями напряжения с помощью вольтметра.
  • Как только он достигнет 63,2% из 12v (что составляет 7,5v ). Запишите время на секундомере.

Также прочтите: Цифровой логический шлюз NAND (универсальный шлюз), его символы, схемы и детали IC

Предположим, секундомер показывает 9 секунд .

  • Используйте уравнение постоянной времени RC для расчета емкости.

C = τ / R

C = 9/10 3

C = 0,9 мФ = 900 мкФ

  • Сравните это рассчитанное значение емкости с заданным значением конденсатора.
  • Если разница очень мала, включая диапазон допуска от 10% до 20%. Конденсатор хороший .
  • Если рассчитанное значение емкости слишком низкое, чем указанное значение.конденсатор плохой .
Визуальная проверка конденсатора

Вы можете определить неисправный конденсатор, просто наблюдая за его признаками.

Неисправный или поврежденный конденсатор будет иметь любой из следующих признаков.

Выпуклый верхний дефлектор:

В электролитических конденсаторах есть отверстие (на самом деле не вентиляционное отверстие, а слабые места) в форме X, K, T на его вершине. Он предназначен для сброса давления во время выхода конденсатора из строя, чтобы избежать повреждения (взрыва) любых других компонентов.

При выходе из строя электролит внутри конденсатора выделяет газ. Этот газ создает давление и разрушает верхнее вентиляционное отверстие. В результате иногда возникает выпуклая верхняя часть или электролитический разряд . Разряд бывает черного, оранжевого или белого цвета в зависимости от электролитических химикатов.

Выпуклый нижний и приподнятый корпус

Иногда при выходе из строя конденсатора не выходит из строя верхнее вентиляционное отверстие. в таком случае давление внутри проходит через нижнюю часть .Дно электролитического конденсатора покрыто резиной . Газ внутри выталкивает эту резину наружу, заставляя нижнюю часть выпирать , а также поднимая корпус над своей печатной платой.

Керамические конденсаторы и конденсаторы поверхностного монтажа

Вы можете определить неисправный керамический конденсатор по следующим признакам.

  • он имеет поврежденную обсадную трубу или отверстие в обсадной колонне.
  • Любая из его ног повреждена рядом с кожухом.
  • Трещины в корпусе.

Вы также можете прочитать:

1994-2008 гг.
Все права защищены.

Полное или частичное воспроизведение этого документа разрешено, если оба выполняются следующие условия:

1. Это примечание полностью включено в начало.
2. Плата не взимается, кроме расходов на копирование.

ОТКАЗ ОТ ОТВЕТСТВЕННОСТИ Мы не несем ответственности за повреждение оборудования, ваше эго, взорванные детали, перебои в подаче электроэнергии в округе, спонтанно генерируемые мини (или больше) черные дыры, планетарные сбои или травмы, которые могут возникнуть в результате использования этого материала.



  • Вернуться к содержанию тестирования конденсаторов.

    Введение

    Объем документа

    Конденсаторы нельзя считать суперзвездами электронного оборудования. (кроме, возможно, таких устройств, как ксеноновые вспышки и импульсные лазеры), но больше нравятся помощники и массовки. Однако они играют жизненно важную роль практически в все, что так или иначе использует электроны. Неисправный конденсатор на 2 цента в телевизоре или мониторе может сделать его бесполезным.

    В этом документе описаны методы тестирования конденсаторов с использованием мультиметр без режима проверки емкости.Информация о сейфе разрядка конденсаторов высокой емкости или высокого напряжения и разряд Схема с визуальной индикацией заряда и полярности тоже включена.

    Также есть общая информация о конденсаторах, измерителях емкости и ESR, и другие связанные темы.



  • Вернуться к содержанию тестирования конденсаторов.

    Соображения безопасности

    Базовая безопасность конденсатора

    При этом случайного контакта с конденсаторами на плате логики 3,3 В не происходит. чтобы привести к шокирующему опыту, это не относится ко многим распространенным типам оборудование, включая телевизоры, компьютерные и другие мониторы, микроволновые печи; в импульсные источники питания в некоторых видеомагнитофонах, портативных компьютерах, батареях видеокамер зарядные устройства; электронная вспышка и другие ксеноновые стробоскопы; источники питания для лазеров и многие другие бытовые и промышленные устройства.

    Если оборудование подключено к сети переменного тока или использует высокое напряжение, специальные меры предосторожности необходимы как для личной безопасности, так и для предотвращения повреждения схемотехника от неосторожных действий. Помимо конкретных вопросов безопасности Что касается конденсаторов, обсуждаемых ниже, прочтите, поймите и соблюдайте Рекомендации, содержащиеся в документе: Меры предосторожности при тестировании конденсаторов ВНИМАНИЕ: убедитесь, что конденсатор разряжен! Это и для вашей безопасности и постоянное здоровье вашего мультиметра.

    Пара диодов 1N400x, включенных параллельно с противоположной полярностью, может помочь защитить схема цифрового мультиметра. Поскольку цифровой мультиметр обычно не подает более 0,6 В. в диапазонах Ом диоды не будут влиять на показания, но будут проводить, если вы случайно зажали глюкометр на заряженной крышке или на выходе блока питания. Они мало что сделают с заряженным конденсатором 10 Ф или сильноточным источником питания, где вы забыли вытащить вилку, но можете сэкономить микросхему LSI вашего цифрового мультиметра с более скромным лохи.

    Этот подход нельзя использовать с типичными аналоговыми ВОМ, потому что они обычно поставьте слишком высокое напряжение в диапазонах Ом.Однако мой 20-летний аналог У VOM есть что-то подобное по всему движению счетчика, что спасло это не раз.



  • Вернуться к содержанию тестирования конденсаторов.

    Базовое испытание конденсаторов

    Проверка конденсаторов мультиметром

    Некоторые цифровые мультиметры имеют режимы проверки конденсаторов. Они достаточно хорошо работают, чтобы определить приблизительный рейтинг мкФ. Однако для большинства приложений они Не проводите испытания при напряжении, близком к нормальному рабочему напряжению, и не проверяйте утечку.Обычно этот тип тестирования требует отсоединения хотя бы одного провода. подозрительного конденсатора из схемы, чтобы получить достаточно точную чтение - или вообще любое чтение. Однако более новые модели также могут достойная работа по тестированию конденсаторов в цепи. Конечно, вся власть должна должны быть удалены, а конденсаторы должны быть разряжены. Обычно это работает до тех пор, пока компоненты, прикрепленные к конденсатору, являются либо полупроводниками (которые не работают при низком испытательном напряжении) или пассивные компоненты с достаточно высокий импеданс, чтобы не перегружать тестер слишком сильно.Чтение может не будет таким точным в схеме, но, вероятно, не приведет к ложному отрицательному результату - назвать конденсатор хорошим - это плохо. Но я не знаю, какие модели лучше в этом плане.

    ВНИМАНИЕ: Для этого и любых других испытаний конденсаторов большой емкости и / или конденсаторов. в блоке питания, усилителе мощности или аналогичных цепях убедитесь, что конденсатор полностью разряжен, иначе ваш мультиметр может быть поврежден или разрушен!

    Однако VOM или цифровой мультиметр без диапазонов емкости могут тесты.

    Для маленьких крышек (например, 0,01 мкФ или меньше) все, что вы действительно можете проверить, это шорты или протечка. (Однако на аналоговом мультиметре по шкале высокого сопротивления вы можете увидеть кратковременное отклонение, когда прикоснетесь щупами к конденсатор или поменять их местами. Цифровой мультиметр может вообще не давать никаких указаний.) Любой конденсатор с сопротивлением несколько Ом или меньше - это плохо. Большинству следует проверить бесконечно даже в самом высоком диапазоне сопротивления.

    Для электролитов в диапазоне мкФ или выше вы должны увидеть заряд конденсата, когда вы используете шкалу высокого сопротивления с правильной полярностью - сопротивление будет увеличиваться, пока не достигнет (почти) бесконечности.Если конденсатор закорочен, тогда он никогда не будет заряжаться. Если он открыт, сопротивление сразу станет бесконечным и не изменится. Если полярность щупы перевернуты, он также не будет заряжаться должным образом - определите полярность вашего измерителя и отметьте его - они не все одинаковы. красный обычно ** отрицательный ** с (аналоговыми) VOM, но ** положительный ** с большинством Цифровые мультиметры, например. Подтвердите с помощью отмеченного диода - низкое значение поперек исправный диод (ВОМ на Ом или цифровой мультиметр на тесте диода) указывает на то, что положительный свинец находится на аноде (треугольник), а отрицательный вывод - на катоде (стержень).

    Если сопротивление никогда не становится очень высоким, конденсатор негерметичен.

    Лучший способ действительно проверить конденсатор - заменить его заведомо исправным. ВОМ или цифровой мультиметр не будет проверять колпачок при нормальных рабочих условиях или при полное номинальное напряжение. Однако это быстрый способ поиска серьезных неисправностей.

    Простой способ довольно точно определить емкость - это построить осциллятор, использующий таймер 555. Заменить колпачок в цепи, а затем рассчитать значение C по частоте.С несколькими номиналами резисторов это будет работать в довольно широком диапазоне.

    В качестве альтернативы, используя источник питания постоянного тока и последовательный резистор, емкость можно рассчитать, измерив время нарастания до 63% источника питания напряжение от T = RC или C = T / R.

    Заметки Рэя по тестированию конденсаторов

    (Этот раздел от: Раймонд Карлсен ([email protected])

    Лучшая техника зависит от того, для чего используется колпачок. Полно электролиты считаются "негерметичными", когда они действительно частично открыты и просто не выполняют свою работу.Электролитики, которые на самом деле электрически негерметичные встречаются не так часто. Вы можете вынуть каждый конденсатор из цепь и проверьте ее с помощью средства проверки колпачка или даже VOM, но в цепи тестирование проходит быстрее. Я не люблю хвататься за паяльник, если я не почти уверен, что часть плохая. Время - деньги.

    Сначала я провожу визуальный осмотр и смотрю, нет ли электролитов. выпуклые (они-неплотные и обычно нагреваются) или физически протекающие (коррозия вокруг клемм). Вздутие колпачков в импульсном блоке питания являются беспощадной распродажей, но также могут указывать на негерметичные диоды.Далее, если устройство включится, я ищу признаки открытия крышек фильтров ... гул полосы в изображение, гул в звуке, мерцающие дисплеи, низкий уровень B +, но ничего не нагревается, и т. д. Вы можете многое сказать, просто наблюдая и делая несколько простые проверки. Попробуйте все элементы управления и переключатели ... вы можете получить другие подсказки. Что работает, а что нет?

    Если у вас очевидная неисправность ... например, уменьшенная вертикальная развертка на телевизоре установить или контролировать, например, чтобы найти колпачок, который начинает открываться, вы можете соединить каждый из них с другим колпачком, по одному и посмотреть, это исправляет проблему.(Опыт научил меня, что плохие электролиты обычно не убивает вертикальную развертку полностью). несколько лет и более, может быть высохло несколько крышек (открыто). Проверь их все.

    «Выталкивающие» фильтры (как это раньше называлось) путем объединения исходных с аналогичным значением не является хорошей практикой с твердотельной электроникой. В удар по цепи, находящейся под напряжением, может повредить другие компоненты или потрясите схему, чтобы она снова заработала ... на некоторое время. Тогда вы можете сесть там, как дурак, и ждите, пока он снова сойдет с ума... минут или недель позже. Для небольших электролитов я использую трюк, обходя каждый из них с помощью небольшой конденсатор от 0,1 до 0,47 мкФ во время работы установки. Если я увижу -любого- изменение производительности, Я ЗНАЮ, что оригинал не выполняет свою работу (стоимость сильно снижена или открыта). Конечно, если вы попадете в колпачки времени, это немного расстроит вертикальный осциллятор ... это нормально. Для большего электролитические, подобные тем, которые используются для питания ярма или питающей сети фильтры, единственный эффективный способ проверить их - заменить на такая же или большая емкость.Выключите телевизор, вставьте новый колпачок в цепь и снова включите ее.

    Как я уже говорил ранее, протекающие колпачки на самом деле довольно редки ... но это действительно случается. Обычно они расстраивают цепь намного больше, чем открытые. Вещи имеют тенденцию быстро нагреваться, если крышка является фильтром в блоке питания. Закороченные танталы и электролиты в источниках питания могут буквально взорваться. Очевидно, что негерметичные заглушки необходимо удалить из контура, чтобы замените их в тестовых целях.

    Большинство других типов малогабаритных конденсаторов: майларовые, дисковые керамические, и т.п.довольно прочные. Действительно, редко можно найти их плохими. Такое случается достаточно часто, чтобы технический специалист оставался скромным.

    Комментарии Гэри об испытании конденсатора

    (От: Гэри Коллинза ([email protected]).)

    Омметр говорит вам только о том, закорочена ли крышка или нет, если она Достаточно большой электролит может сказать вам, открыта ли крышка. Я техник в крупной компании по промышленному контролю в заводском сервисном центре. Мы Считайте любую электролитическую крышку подозрительной, если ее кодовая дата превышает пять лет.У нас есть Fluke 97, и он бесполезен для тестирования схем. Все измеритель, как Fluke 97, может сказать вам, находится ли крышка на пути к открытию от потери электролита или короткого замыкания. На самом деле не все, что вам нужно знать. Несколько других фактов, которые вам необходимо знать: какова проводимость? (внутреннее сопротивление утечки), иногда оно зависит от напряжения. Вы тоже необходимо знать, какой коэффициент мощности у конденсаторов в некоторых случаях. Это его способность пройти A.C. Это особенно важно для компьютерного оборудования, которое должно пройти гармоники и шум на землю.Импульсные источники питания, подобные почти все ПК в наши дни используют высокочастотные преобразователи напряжения для регулирования Напряжение. Гармоники и шум, создаваемые этим быстрым переключением, нагревают постоянный ток. крышки фильтра и заставляет их терять влагу из своих несовершенных уплотнений. Этот Эффект приводит к постепенному открытию конденсатора или падению емкостного значения.

    Если вы говорите о других типах конденсаторов, вы можете проверить их значение. с измерителем, но я видел крышки, которые хорошо смотрятся с измерителем, но ломаются под напряжением.Существуют специальные измерители крышки, которые проверяют все эти параметры и позволяют вы судите, хороша ли кепка или нет, но лучший тест, кроме этого, заменить колпачок и посмотреть, работает он или нет. Не стесняйтесь спросить, не так ли то, что вы хотели знать.

    На самом деле, иногда лучший тест - это использовать осциллограф, чтобы посмотреть, что кап делает в цепи.

    А как насчет измерителей емкости?

    Простые шкалы емкости на цифровых мультиметрах просто измеряют емкость в мкФ и не проверяйте на утечку, ESR (эквивалентное последовательное сопротивление) или пробой Напряжение.Если результат измерения находится в пределах разумного процента от отмеченное значение (некоторые конденсаторы имеют допуски, которые могут достигать +100% / - 20% или более), то во многих случаях это все, что вам нужно знать. Однако утечка и СОЭ часто меняются на электролитах по мере старения и высохнуть.

    Многие измерители емкости не проверяют ничего другого, но, вероятно, больше точнее, чем дешевый цифровой мультиметр для этой цели. Счетчик этого типа будет не гарантирую, что ваш конденсатор соответствует всем спецификациям, но если он проверяет плохо - очень низко - конденсатор плохой.Это предполагает, что тест был проведен при снятом конденсаторе (хотя бы один вывод из схемы - в противном случае другие компоненты, включенные параллельно, могут повлиять на показания.

    Чтобы более полно охарактеризовать конденсатор, вам необходимо проверить емкость, утечка, СОЭ и напряжение пробоя. Другие параметры, такие как индуктивность, не вероятно, изменится на вас.

    Тестеры СОЭ, которые отлично подходят для быстрого устранения неполадок, предназначены только для Измерьте эквивалентное последовательное сопротивление, так как это отличный индикатор исправности электролитического конденсатора.Некоторые предлагают только "идти / не идти" индикация того, какой другой фактически отображает показание (обычно между 0,01 и 100 Ом, поэтому их также можно использовать в качестве низкоомных измерителей сопротивления в безиндуктивные цепи). См. Раздел: Что такое СОЭ и Как это можно проверить ?.

    Примечание: всегда размещайте щупы на самих выводах конденсатора, если возможный. Любая проводка между вашим измерителем и конденсатором может повлиять на чтения. Хотя в вашем руководстве пользователя может быть указано, что вы можете тестировать конденсаторы в цепи, другие компоненты, подключенные параллельно конденсатору, могут испортить показания - обычно приводящие к индикации короткого замыкания конденсатора или слишком большое значение мкФ.Удаление лучше всего. Отпаял только один из контактов достаточно, если вы можете изолировать его от цепи.

    Замена действительно лучший способ ремонта, если у вас нет очень сложный измеритель емкости.

    В мартовском номере Popular Electronics за 1998 г. измеритель емкости с диапазоном от 1 пФ до 99 мкФ.

    В майском выпуске журнала Popular Electronics за 1999 г. Метр », который точно измерит емкость и позволит определение некоторых других характеристик конденсаторов большой емкости - до нескольких сотен тысяч мкФ.Это в основном постоянная времени, основанная на тестер с использованием источника постоянного тока.

    Больше о тестировании конденсаторов, чем вы, вероятно, хотели Знать

    (От: Джона Уитмора ([email protected]).)

    Во-первых, вам понадобится источник переменного тока пульсаций. Затем вы настраиваетесь на частоту представляет интерес (обычно 120 Гц для конденсаторов фильтра блока питания выпрямителя) и приложите как переменный ток, так и смещение постоянного напряжения. Измерьте фазовый сдвиг между током и напряжением (для идеального конденсатора это 90 градусов) и измерьте наведенное напряжение (для идеального конденсатора это это I * 2 * pi * f * C).

    Возьмите тангенс разности фазового сдвига на 90 градусов. (Этот 'tan (delta)' и появляется в спецификации конденсатора ...)

    Затем отключите переменный ток и увеличьте смещение постоянного тока до номинального значения скачка напряжения; измерить ток утечки. Понизьте смещение постоянного тока до номинального рабочего напряжения; измерить ток утечки.

    Увеличьте температуру и повторите измерение емкости, фазового сдвига и рабочего напряжения. измерения при максимальной температуре, на которую рассчитан конденсатор.

    Да, это ДЕЙСТВИТЕЛЬНО звучит довольно сложно, но это тест, который производители используют.



  • Вернуться к содержанию тестирования конденсаторов.

    Безопасный разряд конденсаторов телевизоров, видеомониторов и микроволновых печей Духовки

    Почему это имеет значение

    Это важно - для вашей безопасности и для предотвращения повреждения устройства под испытание, а также ваше испытательное оборудование - это большие или высоковольтные конденсаторы быть полностью разряженным до проведения измерений, попытки пайки, либо схемотехника никак не задета.Некоторые из больших конденсаторов фильтра обычно находящийся в линейном хранилище оборудования потенциально опасен для жизни.

    Это не означает, что каждый из 250 конденсаторов в вашем телевизоре должен быть разряжается каждый раз, когда вы отключаете питание и хотите провести измерение. Тем не мение, большие конденсаторы основного фильтра и другие конденсаторы в источниках питания следует проверить и разрядить при обнаружении значительного напряжения до касаясь чего-либо - некоторых конденсаторов (например, высокое напряжение ЭЛТ в Телевизор или видеомонитор) сохранит опасный или, по крайней мере, болезненный заряд за дней или дольше!

    Работающий телевизор или монитор может полностью разрядить свои крышки, когда он отключен, так как существует значительная нагрузка как на низком, так и на высоком напряжении источники питания.Однако телевизор или монитор, которые кажутся мертвыми, могут содержать заряд. как на низковольтном, так и на высоковольтном питании в течение длительного времени - часы в случае LV, дни или более в случае HV, так как на них может не быть нагрузки. запасы.

    Конденсаторы главного фильтра в блоке питания низкого напряжения должны иметь резисторы утечки, чтобы разрядить их относительно быстро, но резисторы может потерпеть неудачу. Не полагайся на них. Нет пути разгрузки для высокое напряжение, сохраненное на емкости ЭЛТ, кроме луча ЭЛТ ток и обратная утечка через высоковольтные выпрямители, которые довольно маленький.В случае старых телевизоров с вакуумными ламповыми высоковольтными выпрямителями, утечка была практически нулевой. Они будут держать заряд почти бесконечно.

    (От: Эдвина Винета ([email protected]).)

    Некоторые из нас работают в областях, где конденсаторы огромные, необычные, а иногда и то, и другое. Многие считают, что убить, сбить с толку могут только «большие» конденсаторы. через комнату, продырявить в вас дыру или привлечь ваше внимание. Вот пара комментариев:

    Когда конденсатор благополучно разряжен, не останавливайтесь на достигнутом.Некоторые конденсаторы, из-за их способности протекать --- "мертвы" после безопасной разгрузки с "сливной резистор" подходящего номинала для работы. Используя резистор, который занижена - по мощности - может привести к разрыву цепи дренажа ВО ВРЕМЯ разрядки, ОСТАВЛЯЯ немного энергии! Конденсаторы высокого напряжения, или что еще хуже, конденсаторы с высокой энергией и высоким напряжением требуют правильной мощности И правильное сопротивление для безопасного кровотечения. Также высокое микрофарад низкое напряжение конденсаторы могут испарить отвертку и брызгать металлом вам в глаза.(Адекватный Запас по напряжению также важен для резисторов, используемых в цепях высокого напряжения. --- Сэм.)

    Определенные типы конденсаторов сделаны из ОЧЕНЬ хороших материалов, которые могут удерживать заряд на ГОДЫ! Убирать заряженные конденсаторы этого типа - приглашение к катастрофе!

    Конденсаторы с низкой индуктивностью, которые многократно используются в схемах импульсов энергии. относятся к маслонаполненному типу для высоких энергий / высокого напряжения. Этот тип может дать САМЫЙ неприятный сюрприз ПОСЛЕ того, как его полностью осушили сейфом. техника кровотечения.После того, как конденсатор был удален, НЕМЕДЛЕННО закоротите это, от клеммы к клемме И к внешней металлической банке (если применимо) !!! Эти конденсаторы перезаряжаются из своей внутренней жидкости и ЕЩЕ МОГУТ доставлять смертельны, так как они «восстанавливают» определенное количество энергии! Этот тип конденсатор или любой конденсатор любого высокого (достаточно) значения энергии ДОЛЖЕН быть СЛЕВА. закорочен.

    Будьте особенно осторожны с любым конденсатором с оторванным проводом, который сидит в ящике! Иногда эти блоки ломаются во время тестирования и не попадают в выброшен - но остается обвиненным - чтобы убить или шокировать годы спустя.

    Наконец, слово «поражение электрическим током» используется во многих письменных источниках, посвященных высоковольтным устройствам. Это плохо, потому что он был предназначен только для «электрического стула», короче для электро + исполнение.

    Метод разряда конденсаторов

    Я рекомендую использовать резистор высокой мощности примерно От 5 до 50 Ом / В рабочего напряжения конденсатора. Это не критично - немного более или менее будет нормально, но это повлияет на время, необходимое для полного разрядить конденсатор. Использование токоограничивающего резистора приведет к предотвратить дуговую сварку, связанную с разрядом отвертки, но иметь достаточно короткую постоянную времени, чтобы конденсатор упал до низкое напряжение в течение нескольких секунд (в зависимости, конечно, от Постоянная времени RC и его исходное напряжение).

    Затем проверьте с помощью вольтметра, чтобы быть уверенным вдвойне. А еще лучше контролировать при разряде (для ЭЛТ мониторинг не нужен - разряд почти мгновенно даже с резистором с сопротивлением несколько МОм).

    Очевидно, убедитесь, что вы хорошо изолированы!

    • Для основных конденсаторов в импульсном источнике питания, телевизоре или мониторе, что может быть 400 мкФ при 350 В, подойдет резистор 2 кОм 25 Вт. 2 / R), так как полная энергия, запасенная в конденсатор не такой уж и большой.
    • Для ЭЛТ используйте высокую мощность (не для мощности, а для удержания высокой мощности). напряжение, которое может перепрыгнуть через крошечную работу 1/4 Вт) резистор от 1 до 10 МОм, разряженный на массу шасси, подключенную к внешней стороне ЭЛТ - НЕ СИГНАЛЬНОЕ ЗАЗЕМЛЕНИЕ НА ОСНОВНОЙ ПЛАТЕ, поскольку вы можете повредить чувствительные схема. Постоянная времени очень мала - мс или около того. Однако повторить несколько раз, чтобы убедиться. (Использование закорачивающего зажима может быть неплохой идеей а также во время работы на оборудовании - слишком много историй было болезненных переживаний от заряда, развивающегося по тем или иным причинам готов кусать при повторном подключении высоковольтного провода.) Обратите внимание, что если вы касаетесь небольшая доска на шейке ЭЛТ, вы можете захотеть разрядить HV даже если вы не отключаете жирный красный провод - фокус и экран (G2) напряжения на этой плате выводятся из ЭЛТ HV.
    • Для высоковольтного конденсатора в микроволновой печи используйте 100 кОм 25 Вт (или резистор большего размера с зажимом, ведущим к металлическому шасси. Причина использования большой (большой) резистор опять же не столько рассеивает мощность, сколько задержка напряжения.Вы же не хотите, чтобы высоковольтное напряжение проходило через клеммы резистор.

      Прикрепите провод заземления к неокрашенному месту на шасси. Используйте разряд щупайте по очереди с каждой стороны конденсатора в течение секунды или двух. Поскольку постоянная времени RC составляет около 0,1 секунды, это должно быстро разрядить заряд и безопасно.

      Затем подтвердите, используя ОТВЕРТКУ С ХОРОШЕЙ ИЗОЛЯЦИЕЙ на конденсаторе. терминалы. Если есть большая искра, вы каким-то образом узнаете, что ваша первоначальная попытка оказалась менее чем полностью успешной.По крайней мере, будет не будет опасности.

      НЕ используйте для этого цифровой мультиметр, если у вас нет подходящего высоковольтного пробника. Если разрядка не сработала, можете взорвать все, в том числе сам.

    Разрядный инструмент и схема, описанные в следующих двух разделах, могут быть используется для визуальной индикации полярности и заряда телевизора, монитора, SMPS, конденсаторы фильтра источника питания и малая электронная энергия вспышки накопительные конденсаторы и высоковольтные конденсаторы для микроволновых печей.

    Причины для разрядки конденсаторов использовать резистор, а не отвертку:

    1. Не повредит отвертки и клеммы конденсатора.
    2. Не повредит конденсатор (из-за импульса тока).
    3. Это снизит уровень стресса вашего супруга из-за того, что ему не нужно слышать эти страшные щелчки и треск.

    Инструмент для разряда конденсатора

    Подходящий разрядный инструмент для каждого из этих приложений может быть выполнен в виде довольно легко. Схема индикатора разряда конденсатора, описанная ниже могут быть встроены в этот инструмент для визуального отображения полярности и заряда (на самом деле не требуется для ЭЛТ, так как постоянная времени разряда равна практически мгновенно даже с резистором мульти-МОм).Опять же, всегда дважды проверяйте с помощью надежного вольтметра или закорачивая изолированная отвертка!

    Цепь индикатора разряда конденсатора

    Вот предлагаемая схема, которая разряжает главный фильтр высокого качества. конденсаторы в телевизорах, видеомониторах, импульсных источниках питания, СВЧ конденсаторы духовки и другие подобные устройства быстро и безопасно. Эта схема может быть встроен в разгрузочный инструмент, описанный выше (Примечание: другое значение резисторы необходимы для приложений низкого, высокого и сверхвысокого напряжения.)

    Визуальная индикация заряда и полярности обеспечивается с максимального входа до нескольких вольт.

    Общее время разряда составляет примерно:

    • LV (блоки питания телевизоров и мониторов, SMPS, электронные фотовспышки) - up до 1000 мкФ, 400 В. Время разряда 1 секунда на 100 мкФ емкости (5RC с R = 2 кОм).
    • HV (высоковольтные конденсаторы СВЧ) - до 5000 В, 2 мкФ. Время разряда 0,5 секунды на 1 мкФ емкости (5RC с R = 100 кОм)
    • EHV (вторые аноды ЭЛТ) - до 50 000 В, 2 нФ.Время разряда 0,01 секунды на 1 нФ емкости (5RC с R = 1 МОм). Примечание: разряд время настолько короткое, что мигание светодиода можно не заметить.
    Отрегулируйте значения компонентов для вашего конкретного приложения.
     (Зонд)
    ------- + --------- + -------- +
     (Зажим GND)
    
     
    Два набора из 4 диодов (от D1 до D8) будут поддерживать почти постоянное напряжение. падение примерно 2,8-3 В на светодиоде + резистор, пока входной сигнал больше чем около 20 В. Примечание: это означает, что яркость светодиода НЕ индикация значения напряжения на конденсаторе до его падения ниже примерно 20 вольт.Затем яркость будет уменьшаться до тех пор, пока не исчезнет полностью выключен на уровне около 3 вольт.

    ВНИМАНИЕ: Всегда проверяйте разряд с помощью вольтметра, прежде чем касаться любого высокого напряжения. конденсаторы напряжения!

    Для конкретного случая крышек главного фильтра импульсных источников питания, Телевизоры и мониторы - это быстро и эффективно.

    (От: Пола Гроэ ([email protected]).)

    Я обнаружил, что лампа «ночник» на 4 Вт лучше, чем простой резистор. так как он дает немедленную визуальную индикацию оставшегося заряда - вплоть до ниже 10 В.

    Как только он перестанет светиться, напряжение упадет до несмертельного уровня. Тогда уходи он подключился еще немного и закончил его с помощью `ole отвертка.

    Они дешевы и легко доступны. Вы можете сделать дюжину «тестовых ламп» из старая гирлянда рождественских гирлянд 'C7' («самое время!»).

    Примечание редактора: если задействован удвоитель напряжения (или вход 220 В переменного тока), используйте два такие лампочки в серию.

    (От: Дэйва Талкотта ([email protected]).)

    Я построил инструмент для разряда конденсаторов. У меня были все детали под рукой, кроме для последовательного резистора, для которого я использовал осевой блок на 2 Вт, так как мощность диссипация не критична. Я решил упаковать его в пробную форму для удобство. За исключением последовательного резистора, который находится в цековке, все устанавливается на поверхность и сообщается через МНОГО перфорированных дыры. Кусок термоусадочной трубки удерживает все на месте. Единственный Сложная часть заключалась в том, чтобы сделать два небольших углубления для размещения светодиодов.Наконечник зонда короткий кусок сплошного медного провода, взятый из домашней проводки Ромекса и заземлить до точки.

    Устройство проверки напряжения

    В то время как мультиметр предназначен для измерения напряжений (и прочего), чекер используется в основном для быстрого определения присутствия напряжения, его полярности и других основных параметров. Одно использование - быстрое, но надежная индикация состояния заряда на БОЛЬШОМ конденсаторе. An, Примером простого варианта такого устройства является «Конденсаторный разряд». схема индикатора », описанная выше.

    (От: Яна Филда ([email protected]).)

    Версия чекера, которая у меня есть, тоже содержит миниатюрную 12 В. аккумулятор для проверки непрерывности - любое сопротивление менее 22 кОм будет произвести некоторое свечение. Это удобно для быстрой проверки полупроводниковых переходов - в общем, если он дает небольшое свечение, значит, он дырявый, но транзистор B / E переходы имеют внутреннее напряжение стабилитрона, поэтому обычно наблюдается некоторое свечение. Также диоды с барьером Шоттки дают свечение с обратной утечкой - этого не происходит. означают, что они неисправны, проверьте Vf с помощью проверки диодов на цифровом мультиметре перед биннинг! Любой стабилитрон выше 10-11 В можно быстро проверить на S / C, более низкий Vz будет производить некоторое свечение - снова проверьте Vf перед биннингом.

    Эти шашки становится все труднее достать, большинство продавцов компонентов здесь переносятся только сложные (и дорогие) версии с встроенный измерительный компьютер и ЖК-дисплей - этого не хватит на 5 минут схема обратного хода! В некоторых магазинах автомобильных аксессуаров есть более простые версии. без батареи - всегда проверяйте, что он способен измерять Переменный или постоянный ток от 4 до 380 В перед расставанием с деньгами! Внутренний контур должен содержат светодиоды, резистор на 15 Ом для ограничения максимального импульсного тока при PTC холодный и специальный пленочный термистор PTC.Батарея может быть добавлен кнопкой с передней панели видеомагнитофона - но не обвиняйте меня, если вы убьете сами, потому что вы неправильно изолировали добавленные компоненты! Там есть более сложная безбатарейная версия с 2 светодиодами на передней панели ручка для указания полярности и ряд светодиодов по длине дескриптор для указания диапазона напряжения. Эта версия содержит 2 специальных PTC и схема гистограммы на дискретных транзисторах - здесь есть место для добавления аккумулятор внутри корпуса. Что касается специального PTC, это единственное место, где я видел их - одна из возможностей, на которую стоит обратить внимание, - это Термистор запуска Siemens PTC SMPSU для микросхем управления TDA4600, обычно это имеет последовательный резистор не менее 270 Ом и с большей вероятностью включится в Европейские телевизоры, но я видел их в ранних дисплеях Matsushita IBM и у некоторых других (возможно, Tandon) термистор PTC всегда синий и выглядит как очень миниатюрная копия бело-пластикового размагничивания PTC Philips термистор.



  • Вернуться к содержанию тестирования конденсаторов. Сопротивление эквивалентной серии

    (ESR) и связанные параметры

    Что такое СОЭ и как его проверить?

    ESR (эквивалентное последовательное сопротивление) - важный параметр любого конденсатора. Он представляет собой эффективное сопротивление, возникающее в результате комбинации проводка, внутренние соединения, пластины и электролит (в электролитическом конденсатор). ESR влияет на работу настроенных цепей (высокое ESR снижает коэффициент добротности) и может привести к полностью неправильному или нестабильному работа таких устройств, как импульсные источники питания и отклоняющие цепи в телевизорах и мониторах.Как и следовало ожидать, электролитические конденсаторы имеют тенденцию имеют высокий СОЭ по сравнению с другими типами, даже если они новые. Однако из-за электрохимическая природа электролитического конденсатора, ESR действительно может меняться - и не в лучшую сторону - со временем.

    При устранении неисправностей электронного оборудования, электролитических конденсаторов, в в частности, может ухудшиться, что приведет к значительному и неприемлемому увеличению в ESR без аналогичного снижения емкости мкФ при измерении на типичном Шкала емкости цифрового мультиметра или даже дешевый измеритель LCR.

    Вот несколько веб-сайтов, на которых более подробно обсуждается тестирование СОЭ, а на некоторых Включите полную информацию о создании собственного измерителя СОЭ:

    Доступны коммерческие измерители СОЭ и наборы по цене от 50 до 200 долларов. или больше. Вот пара сайтов, на которые стоит обратить внимание:

    Эти устройства обычно могут использоваться для измерения действительно низких сопротивлений неиндуктивные устройства или цепи (они используют переменный ток, поэтому индуктивность приводят к неточным показаниям). Поскольку их самый низкий диапазон составляет не менее 10 раз лучше, чем у типичного цифрового мультиметра (полная шкала 1 Ом - 0.Разрешение 01 Ом), их даже можно использовать для обнаружения закороченных компонентов на печатной плате доски.

    Примечание: всегда размещайте щупы на самих выводах конденсатора, если возможный. Любая проводка между вашим измерителем и конденсатором может повлиять на чтения. Хотя обычно это не проблема, компоненты с очень низким сопротивлением в параллельно с конденсатором может привести к ложному отрицательному показанию - конденсатор, который тестирует хорошо, хотя на самом деле его ESR чрезмерно.

    (От: Ларри Сабо (ac274 @ FreeNet.Carleton.CA).)

    Я считаю, что мой измеритель СОЭ неоценим для поиска высоких значений СОЭ, и никогда видел закороченную кепку, которая не взорвалась. Это такое удовольствие застегивать молнию через заглушки в блоке питания и найдите те, у которых имел, все не касаясь паяльника.

    Были дни, когда мне хотелось иметь LC102 для измерения утечек. возможности, но по моему ограниченному опыту цифра 10% кажется высокой. В LC102 также может похвастаться звонком индуктивности, но вы обязательно заплатите премиум.Сначала я построю штуковину Сэма.

    Кстати, я построил свой измеритель СОЭ из комплекта, приобретенного у Dick Smith Electronics. в Австралии: 52,74 австралийского доллара + 25 австралийских долларов за доставку. Прошло около 8 часов собрать, но я задница.

    Подробнее о ESR, DF и Q

    (От: Майкл Каплан ([email protected]).)

    Прежде чем я купил свой измеритель СОЭ, я тоже задавался вопросом - что именно он измеряет? Тем не менее, так много наслышавшись о счетчике, я пошел дальше и купил один. Это работает, и это настоящая прибыль.

    Недавний вопрос о том, что именно измеряется (DF или Q), вызвал у меня внимание. снова интерес. Думаю, у меня есть ответ - "думай", будучи оперативником. слово. Вот моя интерпретация.

    Таким образом, СОЭ действительно связано с коэффициентом рассеяния (DF), но это не то же самое. Измерительный прибор пеленгации может не так легко определить неисправный конденсатор, как и измеритель ESR, потому что показания различаются и не являются прямыми, как описано ниже.

    Конденсаторы можно рассматривать как имеющие чистую емкость (C) и некоторую чистую емкость. сопротивление (R), два последовательно.Идеальный конденсатор имел бы только C, а не R. Однако есть выводы и пластины, на которых сопротивление и составляют реальную R. Любая R, соединенная последовательно с C, уменьшит способность конденсатора пропускать ток в ответ на изменяющееся приложенное напряжение, как в приложениях фильтрации или изоляции постоянного тока, и он будет рассеивать тепло, которое является расточительным и может привести к отказу компонента. Как и в случае с СОЭ, более низкая DF (или более высокий Q, он инверсный) может быть приравнен к лучшей производительности, все при прочих равных.

    Теперь я немного усложняю математику, но использую только основную электронную теорию и формулы, поэтому я надеюсь, что большинство сможет это сделать.

    DF определяется как Rc / Xc, отношение R в конденсаторе (Rc) к реактивное сопротивление конденсатора (Xc). Чем выше Rc, тем выше DF и «беднее» конденсатор. Все идет нормально.

    Реактивное сопротивление (Xc) зависит от частоты. Хс = 1 / (2 * пи * f * C). Итак, как частота повышается, Xc понижается. Теперь вернемся к формуле DF.DF - это функция, обратная Xc. Когда Xc уменьшается, DF увеличивается, и наоборот. Так DF изменяется пропорционально частоте.

    Вот пример использования вездесущего электролита 22 мкФ, 16 В, который, кажется, слишком часто быть виноватым во многих импульсных источниках питания.

    При 1000 Гц этот конденсатор имеет Xc 7,2 Ом. Если серия Rc только 0,05 Ом (неплохо), тогда пеленгатор 0,0069.

    При 50 000 Гц этот же конденсатор имел бы Xc всего 0,14 Ом.На это частота, пеленгатор 0,36, опять хорошо.

    Теперь измените Rc с 0,05 до 25 Ом. На частоте 1000 Гц DF = 3,4. При 50 000 Гц, DF = 178.

    Итак, мы видим, что пеленг - это функция тестовой частоты. Чем выше частота, тем выше пеленгатор. DF - это мера «качества» конденсатора, но цифра действительна только при частоте проведения теста. (Хороший конденсатор, с идеальным Rc, равным нулю, будет иметь DF, равный нулю, независимо от частоты.)

    DF действительно может использоваться для идентификации неисправного конденсатора, но пользователь должен интерпретировать уровень измеренного пеленгации, который указывает на неисправный компонент.Любой "идти / не идти" таблицы значений DF будут действительны только при указанной частоте. Как в качестве альтернативы пользователь может рассчитать Rc, сначала измерив как DF, так и C, а затем, зная частоту испытаний, определите, соответствует ли Rc излишний. (Rc = DP * Xc).

    Однако система измерения ESR-метра, похоже, не является функцией Xc. Он измеряет напряжение на конденсаторе, возникающее в результате применение очень короткого импульса тока. Этого короткого импульса недостаточно для зарядки конденсатора так, чтобы напряжение, измеряемое на конденсаторе Количество отведений в первую очередь зависит от Rx, который не чувствителен к частоте.А также, с «таблицами» типичного СОЭ (= Rc), которые предоставляются измерителями СОЭ I увидели, дальнейшие расчеты не нужны.

    Измеритель ESR не будет надежным с очень маленькими конденсаторами. В этом случае они будут более полно заряжены приложенным током в то время измеритель измеряет напряжение. Даже если Rc является идеальным нулевым сопротивлением, измеритель теперь будет считывать напряжение на конденсаторе и интерпретировать его как очень высокая (возможно, зашкаливающая) СОЭ.Таким образом, его преимущество и основная цель заключаются в тестирование электролитов, которые, как правило, являются конденсаторами большей емкости.

    (Примечание: неспособность измерителя ESR проверить конденсаторы малой емкости верна. только если измеритель не различает синфазный и квадратурный напряжения, а это не так. Если бы он чувствовал только синфазное напряжение, которое возникает через Rx (т.е. синфазно с приложенным током), то он не будет быть чувствительным к задержанному (минус 90 градусов) напряжению, возникающему на обкладки конденсатора.)

    Все тесты, которые я проводил с небольшими конденсаторами (менее 0,001 мкФ), похоже, предполагают, что измеритель СОЭ (Боб Паркер) не различает фазу, а Боб Паркер это подтвердил. Это не большой недостаток. Цель измерителя ESR предназначен для определения вышедших из строя конденсаторов. Это больше случай с электролитами, где диэлектрическая смесь имеет тенденцию к высыханию. Конденсаторы меньшего размера обычно не являются электролитическими и поэтому обычно относительно стабильный. Неисправности последнего (напр.грамм. керамика, слюда, полистирол) с большей вероятностью будут открытыми, закороченными или негерметичными, и все это будет обнаружено приборами для измерения емкости или сопротивления.)

    (От: Роя Маккаммона ([email protected]).)

    Обратите внимание, что «эквивалентное последовательное сопротивление» не обязательно то же самое, что «последовательное сопротивление. сопротивление".

    «Последовательное сопротивление» - это просто сопротивление, соединенное последовательно с емкостью. Это то, с чем в большинстве описаний есть дельта, и с большими токами. и частоты, как вы склонны видеть в импульсном источнике питания, "истинная серия сопротивление "- вот что вы хотите знать.

    «Эквивалентное последовательное сопротивление» - это сопротивление, которое вам нужно будет разместить последовательно с чистой емкостью, чтобы произвести такие же потери. Это может быть частотно-зависимый. Колпачок с резистором параллельно имеет esr. На одной частоты, вы не можете отличить колпачок от параллельного резистор и колпачок с резистором серии. Например, при 100 Гц 1 мкФ и 10 Ом последовательно имеет реактивное сопротивление 10 + J1591, как и 1 мкФ параллельно с 253K, следовательно, оба имеют ESR 10 Ом.

    Вам нужно точно знать, что делает ваш глюкометр. Лучшее, что измерение относятся к вашему использованию.

    Схема и схемы простого измерителя СОЭ

    Журналы по электронике опубликовали различные схемы измерителя ESR по всему миру. годы. Уникальность в том, что можно тестировать крышки в прямом эфире. оборудование, хотя я не уверен, какое это большое преимущество:

    (От: Пита Калфа ([email protected]).)

    "В январском номере журнала" Телевидение "за 2003 год есть статья о под напряжением - в цепи электролитического тестера СОЭ.Аккумулятор работает Проект Яна Филда основан на компараторе TL431 с высоким коэффициентом усиления с вход изолирован через оптрон. Он предназначен для живого тестирования. я еще не построил, так как я привык немного подождать и почитать о любые проблемы, которые обнаруживают другие ребята, прежде чем я попробую, но в последующих выпусках Я не слышал ни о каких проблемах ".

    Вот пара основных схем аналогового измерителя ESR:

    Марк Зениер ([email protected]) имеет СОЭ Схема измерителя настолько проста, насколько это возможно.

    Тестирование СОЭ без измерителя СОЭ

    Хотя описанные ниже методы в принципе применимы к любым конденсатор, они будут наиболее полезны для электролитических типов. Конечно, обязательно соблюдайте полярность и номинальное напряжение конденсатора. во время тестирования! Кроме того, следите за максимальным подаваемым напряжением. к другим компонентам, если вы попытаетесь проверить конденсаторы в цепи. Так должно быть достаточно мал, чтобы полупроводниковые переходы не смещались вперед (несколько макс. десятые доли вольт), а полное сопротивление должно быть таким, чтобы низкое значение резисторы не курят!

    Лучшее из дешевых, если у вас есть осциллограф, будет: 99 Cent ESR Test Адаптер.

    (От: Рона Блэка ([email protected]).)

    Недорогой (по стоимости резистора) способ измерения ESR конденсатор предназначен для подачи прямоугольного сигнала через резистор, включенный последовательно с тестируемый конденсатор. Следите за формой волны на конденсаторе, используя осциллограф. При использовании разумной частоты прямоугольной волны (несколько кГц - не тот, где индуктивность цепи становится проблемой) будет треугольная форма волны с шагом во временах перехода прямоугольной волны.В амплитуда шага будет пропорциональна ESR конденсатора. Откалибруйте вещи, добавив имитирующий резистор небольшого значения ESR в последовательно с конденсатором. Это не должно ничего стоить, если у вас есть генератор прямоугольной волны, или можно построить его дешево.

    (От: Гэри К. Хенриксона ([email protected]).)

    Воодушевленный дискуссиями о достоинствах тестирования СОЭ, я заказал подлинный измеритель СОЭ. Ожидая его прибытия, большая куча собак была накапливается в моем магазине.

    Тем временем, чтобы быстро провести этот ремонт, я построил ESR метр ', подключив кабелем выход функционального генератора (50 Ом) ко входу осциллографа и, через тройник к набору измерительных проводов.

    При закороченных измерительных проводах на экране осциллографа отображаются только милливольты. Через хороший конденсатор, всего милливольт. Через больной конденсатор много вольт. В дефектные колпачки торчали как больной палец.

    Вау, это слишком просто. Мгновенное внутрисхемное (отключение) надежное тестирование электролитические.Хотел бы я подумать об этом 50 лет назад.

    Я использовал 100 кГц и 5 В размах. Установив осциллограф на 0,2 В / дел, вы также можете проверить диоды, окруженные низкоомными обмотками трансформатора или индуктора.

    (Примечание редактора: чтобы избежать возможности повреждения полупроводников из-за чрезмерное напряжение, используйте сигнал с меньшей амплитудой - скажем, 0,5 В размах - для внутрисхемное тестирование. Это также предотвратит большинство полупроводниковых переходов. от проведения и запутывания ваших показаний.

    (Источник: Берт Кристенсен ([email protected]).)

    Я читал различные сообщения о средствах проверки СОЭ, но пока не сомневаюсь в их ценности в электронном обслуживании, я думаю, что использование этих устройств добавляет лишний и ИМХО ненужный шаг. Мой метод диагностики возможен Электролитическая неисправность заключается в использовании только прицела. Помня, что электролиты проходят Переменного тока или сигналов через них, осциллограф должен показывать * одинаковую * форму волны на обоих стороны кепки. Если колпачок представляет собой перепускной колпачок на землю, то форма волны должна быть ровная линия с двух сторон; если это крышка муфты, форма волны должна быть одинаковой с обеих сторон.

    Есть несколько исключений, одно из которых - колпачок, который используется для формирования волны в вертикальный контур но таких приложений немного. Большинство электролитов либо муфта или байпас.

    Использование метода «моя» область видимости имеет несколько преимуществ. Главный из них - это то, что он тестирует заглушки динамически в цепи, в которой они используются, и с использованием фактических сигналов применительно к ним в реальной жизни. Метод быстрый, потому что вам просто нужно идти от одного к другому (если вы используете метод рассеивания), используя только объем прод.Но, что лучше всего, он органично интегрирует тотальный динамический подход. на обслуживание по собственным сигналам установки или их отсутствие. Если вы отслеживаете видеосхема, вы можете найти открытую крышку, открытый транзистор или неисправную микросхему с использованием того же оборудования.

    Я занимаюсь услугами более 40 лет. Большая часть моего бизнеса сегодня оказывает жесткую услугу другим сервисным компаниям.

    Но, я должен признать, что иногда я исправляю наборы, просто меняя заглушки, которые вздутый.; -}

    (От: Клифтона Т. Шарпа-младшего ([email protected]).)

    Я все еще делаю достаточно работы, чтобы однажды сломаться и купить измеритель СОЭ. (Я всегда сдаюсь и балую себя игрушками своего «ремесла»). Пока что, Тем не менее, я использую быстрый метод - осциллограф. Это похоже на это:

    1. Положительный провод осциллографа. Любой значительный AC? Если нет, переходите к следующей шапке.
    2. Переменный ток превышает примерно 5% от постоянного тока? Если нет, отметьте это место и перейти к следующей шапке.
    3. Отрицательный провод осциллографа. AC здесь примерно такой же, как на плюсовом проводе? Если так, перейти к следующей шапке. (Если этот вывод * очевидно * заземлен, пропустите этот шаг.)
    4. Зачет; стоимость примечания; перемычка примерно на такое же значение при безопасном номинальном напряжении. (Примечание: убедитесь, что обе крышки разряжены! --- Сэм)

      Установить на; положительный результат. Значительная разница? Если нет, обратите внимание на это место и перейти к следующей шапке.

    5. Заменить колпачок. Набор для испытаний. Если не в порядке, переходите к следующей шапке.
    Если это не улавливает, часто бывает быстрый обзор «отмеченных мест».Это устраняет 98% проблем с крышкой. Не исчерпывающий, не идеальный и не предполагаемый быть. Закройте крышку перед нанесением удара. Вероятно, вызывает рак у лабораторных крыс. Ваш пробег может отличаться.

    (От: Тони Уильямса ([email protected]).)

    При измерении параметра компонента всегда лучше всего опереться на измерение. метод к какой-то эмуляции приложения, к которому параметр важен. Особенно это касается силовых компонентов, потому что значение параметра может изменяться в зависимости от условий эксплуатации.это необходимо для магнетиков, в меньшей степени для электролитов, но в любом случае это хорошая привычка.

    Держите колпачок заряженным и найдите способ нанести повторяющийся квадрат * ток * подает импульс к нему, ампер или больше каждый раз, в зависимости от ожидаемого СОЭ.

    Если у крышки нет ESR, то осциллограф на ее терминалах покажет, что каждый текущий импульс дает красивый плавный треугольник. Если в шапке есть СОЭ тогда каждому треугольнику будет предшествовать небольшая вертикальная ступенька. Если нынешний Как известно, измерение этого шага дает вам значение ESR.Ты можешь перепроверьте точность метода, увидев эффект увеличения «ESR» как R с низким значением подключаются последовательно с крышкой, от 0,01 до 0,1 Ом.

    Будьте осторожны с размещением выводов прицела, вы не хотите измерять ИК-капля в проводке.

    Если размер каждой ступеньки + треугольника мал по сравнению со стабильным напряжением на колпачок, то известный импульс разряда с постоянным I можно аппроксимировать с помощью не более чем резистор и коммутационный Fet.

    (От: Оливер Бец (list_ob @ gmx.де).)

    Если вам нужна возможность развязки, вы, возможно, захотите знать только ESR. на последовательной резонансной частоте. Это довольно просто:

    Используйте синусоидальный генератор, подключите коаксиальный кабель к его выходу на конце кабель поставить последовательно 47 Ом и подключить резистор к одному концу колпачка, аналогичным образом подключите тип извещателя (47R - кабель - извещатель) к тот же свинец. Другой конец крышки (и коаксиальных экранов) к небольшой заземляющей пластине. Детектором может быть вольтметр, осциллограф или анализатор спектра, в зависимости от вашего оборудование и резонансная частота.Анализатор спектра со следящим генератором устраняет необходимость в отдельном генераторе, упрощает измерения и позволяет для измерения даже очень малых емкостей конденсаторов.

    Настройтесь на минимальный сигнал на детекторе. С помощью прицела вы также можете проверить фазу shift (спасибо за подсказку, Winfield!), cap должен быть только резистивным (нет сдвиг фазы). Теперь можно легко рассчитать СОЭ.

    (От: Джорджа Р. Гонсалеса ([email protected]).)

    Увидев все светящиеся рекомендации по ESR-метрам на наукаВ группе новостей electronics.repair я решил разобраться в этом. Быть дешевым типа, я сначала попытался настроить свой собственный измеритель СОЭ, используя вещи, лежащие вокруг магазин: Функциональный генератор на 2 В p-p, синусоидальный сигнал 100 кГц, подключен к тройник BNC, одна сторона тройника идет к некоторым зажимам, другая сторона - к прицел, установленный на 0,1 вольт / см, развертка 10 мкс / см.

    Когда зажимы свободно свисают, след прицела почти не виден, так как он увеличивается и уменьшается на 20 см в 10 раз по экрану. С зажимом провода закорочены, я получаю около 0.3 см синусоиды. С резистором 1 Ом через провода зажима я получаю синусоидальную волну около 1 см.

    Ставлю ХОРОШИЙ конденсатор на 2 мкФ на выводы зажима, мы видим синус около 0,5 см. волна. Все тесты с различными хорошими электролитиками дают менее 1 см синуса. волна.

    Теперь мы можем просто прыгать по печатной плате, перекрывая электролитические соединения, пока мы идти вместе. Хороший электролит будет показывать прогиб не более 1 см. Многие старые с кодами дат 1970-х годов показывают 2 или 3 см. Зондирование вокруг подозреваемая старая печатная плата показала, что 80% крышек дали более 2 см отклонения!

    Это не всегда плохо.Вы должны немного рассудить. Если электролит находится в цепи с высоким импедансом, такой как соединение двух напряжений каскадов усилителя, несколько Ом не повредит. Но если это обходной путь конденсатор на линии Vcc, это может быть значительным. Просто поймите, что цепь Может показаться, что он отлично работает даже с крышками с большим сопротивлением СОЭ. Я все равно обычно заменяю эти кепки, так как они будут только кататься под гору. отсюда.

    Я не могу сказать вам, сколько времени эта небольшая установка уже сэкономила мне!Раньше мне пришлось отпаивать один вывод конденсатора, воткнуть его в колпачок. мост, крутите циферблаты, пока я не добьюсь подобия баланса, или если это был плохой конденсатор, я бы потратил еще больше времени, пытаясь найти недостающий ноль. Теперь я могу просто проверить колпачки в цепи и пометить плохие большим красный магический маркер для последующей замены. Это быстро и здорово для морального духа.

    Этот метод хорошо работает с крышками в диапазоне от 1 до 500 мкФ, со средними или высокая СОЭ. Но у него недостаточно мощности, чтобы управлять БОЛЬШИМИ крышками.За это вам понадобится генератор с более низким выходным сопротивлением.

    Следующий эксперимент - подключим трансмиссию от старого дохлого ИИП, чтобы понизить выходное сопротивление генератора, чтобы мы могли протестировать эти большие конденсаторы PS. Остаться настроен ....

    Кстати, это не значит, что продажи встроенных измерителей СОЭ! Это может даже увеличивайте их, так как как только вы увидите, насколько прекрасна эта техника, вы можете захотеть купить специальный измеритель СОЭ.



  • Вернуться к содержанию тестирования конденсаторов.

    Электролитические конденсаторы и специальные типы

    Cool Electrolytics - номинальная температура по сравнению с ESR

    (От: Йерун Х. Стессен ([email protected]).)

    Электролитические конденсаторы любят охлаждение! Если есть что-нибудь, что эти конденсаторы терпеть не могут, это тепло. Это заставляет их высыхать.

    Электролитические конденсаторы существуют (как минимум) в двух разных температурах. рейтинги: 85 C и 105 C. Последние, очевидно, более устойчивы к температуре. К сожалению, они также, как правило, имеют более высокое ESR, чем их аналоги на 85 ° C.2 * Рассеивание ESR, 105 C type на самом деле может быть * худшим * выбором! Если жар вызван близлежащим горячим радиатор 105 C действительно лучший выбор.

    От: Ральф В. М. ([email protected]).)

    Хотя кажется правдой, что электролиты 105 C имеют примерно на 50% больше ESR, когда новый, по сравнению с аналогичными электролитами 85 C, IMO, что не имеет значения в схема. Если бы вы (могли) провести долгосрочный эксперимент и установить 85C и 105 C в той же цепи, и измерьте ESR через 1000 часов, я можно было бы ожидать увидеть ESR детали 105 C после старения / использования, теперь будет меньше чем 85 C.

    Уход, подача и хранение электролита Конденсаторы

    "Я, кажется, припоминаю, что читал (или это старая женская сказка?), Что электролитические длиться дольше, если вы время от времени подаете на них напряжение. Это мне подразумевает, что редко используемые устройства следует включать время от времени, чтобы сделать их дольше, не оставив сидеть на полке. Правда или ложь?"
    (От: Ральфа В. М. ([email protected]).)

    Электролитики имеют срок хранения. Электролитики могут испортиться (т.е., высохнуть) на полку, даже если они ни разу не использовались / не включались.

    Технически «несвежий» электролит (более чем через год после того, как он был изготовлены) будут иметь чрезмерную утечку постоянного тока и должны быть должным образом переформированы перед его использованием. На практике я никогда не обнаруживал, что это проблема. 99% время (единственное исключение составляет критическая синхронизация / цепи с прямой связью; очень редко В эти дни). Самое худшее, что я даже заметил, при установке устаревшего электролитическим, заключалась в том, что цепь была немного нестабильной в течение 15 минут, но прояснилось и после этого все было в порядке и НИКОГДА не "подпрыгнуло".(все ставки отменены, если что-то настолько старое, что у него есть "усы", хотя пробуют).

    Сколько лет слишком стар? Я бы предложил это до 5 лет на полке, в практика, не должно быть проблемой. Но 10 лет несвежего МОЖЕТ расстроить ситуацию. немного.

    Технически, если вы прочитаете спецификации электролитов, вы обнаружите, что лучшая (то есть самая низкая) утечка постоянного тока не будет, пока она ДЕЙСТВИТЕЛЬНО не будет использована для не менее 10% от общего прогнозируемого срока службы (т. е. 1000 часов при 105 ° C электролитический не достигнет самой низкой утечки постоянного тока, пока он не будет использован в течение 100 часов при 105 ° C (или используется в течение 600 часов при 65 ° C; но это преобразование - другое сказка).

    На практике, IMO, огромное количество схемотехнических конструкций / типов схем в настоящее время разработаны, встроили в него достаточно допуска для выше среднего постоянного тока утечка, то есть (в наши дни) чрезмерная / дрейфующая утечка постоянного тока редко является проблемой.

    Что касается «тренировок», редко используется оборудование; не может повредить.

    Некоторые вопросы и ответы о выходе из строя конденсатора

    Вот вопрос из трех частей, касающихся электролитических конденсаторов. Это автомобильное компьютерное приложение.

    Проблема: электролитические конденсаторы протекают через некоторое время, вызывая сбой компьютера.

    Вопросов:

    1. Каков физический механизм, который вызывает утечку диэлектрика?
    2. Есть ли преимущества в повышении номинального напряжения для замены крышки?
    3. Каковы плюсы и минусы замены тантала?
    (От: Азимова ([email protected]).)
    1. Тепло - враг диэлектрика, оно может проходить через много высоких частотный ток, на который он не рассчитан. Ток утечки увеличивается экспоненциально с температурой.
    2. Это снижает возможность разрыва диэлектрического перехода, который, хотя обычно самовосстановление, может стать постоянным после повторяющихся эпизодов.
    3. Тантал хорошо работает в субмегагерцовом диапазоне. Главная проблема с ними - это когда их диэлектрик разрывается, и он подключается через При подаче достаточного тока он может потреблять фантастическое количество энергии. Обычно это приводит к взрыву конденсатора, который разбрызгивает горячий воздух. расплавленный материал вокруг.Он раздается как выстрел и тантал Пеллета - это пуля.

    Комментарии к рейтингам ESR и uF

    (От: Азимова ([email protected]).)

    Я видел очень показательный график в каталоге Sprague относительно долговечные испытания при + 130 ° C, показывающие зависимость СОЭ от времени. Получается, что для 10 мкФ cap, СОЭ фактически падает в течение первых 1500 часов или около того. Интересный Часть состоит в том, что с 1500 часов до 5000 часов стоимость увеличивается примерно вдвое.

    На другом графике результаты ограничения 47 мкФ не показывают изменений в ESR. в течение всего срока службы.Однако его значение мкФ падает примерно на 2,5%. Электроэнергия 10 мкФ, с другой стороны, показывает небольшое изменение емкости (менее более 1%).

    Если мы экстраполируем эти результаты, мы сможем увидеть общую тенденцию увеличения значения ограничивают потерю емкости с течением времени, но их СОЭ остается довольно значительным постоянные, а меньшие крышки сохраняют свое значение, но их СОЭ увеличивается со временем. Таким образом, для меня это имеет некоторый смысл в том, почему эти маленькие Так пресловуты крышки 1 мкФ. Комментарии приветствуются ...

    Номинальное напряжение электролитических конденсаторов по сравнению с Надежность

    Вот некоторые из вопросов:
    "Мне интересно, есть ли проблемы с заменой колпачка с более низким напряжением рейтинг с одним из более высоких оценок.Например, конденсатор 2,2 мкФ 50 В в целом работает нормально в качестве замены крышки 2,2 мкФ 16 В, которая используется в качестве фильтр в цепи 6 или 12 вольт? Я никогда не думал дважды о делает это, но недавно видел некоторые обсуждения, в результате которых я задал вопрос будет ли электролитик работать должным образом, если он работает только при малая часть его номинального напряжения ».

    (От: Ральфа В. М. ([email protected]).)

    Я знаю, что многие люди пытаются повысить надежность, увеличивая напряжение замена электролитической.А некоторые компании вроде Sony выпускают модификацию обновляет увеличивая номинальное напряжение. И да, НЕКОТОРЫЕ (но НЕ все) электролитические производители рекомендуют увеличивать номинальное напряжение для повышения надежности ОРГАНИЧЕСКИЕ электролиты. Но на мой взгляд, я бы не стал и не буду.

    Для повышения надежности я сначала модернизирую темп. Или я мог бы выбрать обновление до электролитического низкого ESR. Иногда обстоятельства или логистика препятствуют продолжаются, и я увеличу мкФ до 200% от первоначального, если это приложение для фильтрации или развязки.

    По сути, любое увеличение срока службы за счет увеличения номинального напряжения просто происходят из-за большего размера корпуса, позволяющего поддерживать температуру электролитического сердечника возможно, на 5С холоднее, т.е. снижение температуры происходит из-за большего размера корпуса будучи лучшим «радиатором». Я считаю, что увеличение номинального напряжения замена детали не приведет к увеличению срока службы более чем на 50%; НО за счет большей / худшей утечки постоянного тока (большая утечка постоянного тока может не быть проблемой).

    С другой стороны, я читал некоторых производителей компонентов, которые рекомендуют увеличивая мкФ для повышения надежности, и я считаю, что в 2 раза больше оригинального мкФ приведет к улучшению как минимум на 200% (возможно, на 400%) компонентов срок эксплуатации.

    И, чтобы предвидеть возможный вопрос, например, «что, если бы вы попытались восстановить Колпачок «1,5X», который эксплуатировался при более низком напряжении по сравнению с исходным номиналом в стараясь осторожно и медленно увеличивая приложенное напряжение, чтобы восстановить диэлектрик ». Может, не знаю, никогда не проводил такой эксперимент. Как минимум, потребуется много труда на том, что стоят относительные копейки.

    (От Стива Белла ([email protected]).)

    По опыту я не вижу проблем с установкой конденсаторов чуть выше. номинальное напряжение.Я держу полный диапазон высокочастотных конденсаторов с низким ESR 105 градусов. я найди, например, когда я заменяю конденсатор 47 мкФ 35 В, он оказывается на 47 мкФ 50 В устройство. Из-за улучшений в производстве конденсаторов замена подогнанный обычно того же размера, возможно, меньше, и обычно имеет меньшую СОЭ, чем у оригинала до отказа ..

    Проблемы могут возникнуть, если кто-то установит в критическая область, такая как источник питания переключения режима монитора или видеосхема. Конденсаторы с более высоким напряжением имеют более высокое ESR, что может не подходить для схема.

    (От: Роберт Мэйси ([email protected]).)

    Электролит с более высоким напряжением имеет более высокое значение esr.

    Ток пульсаций будет одинаковым для конденсаторов и более высоких значений esr. большая мощность рассеивается в крышке, высушивая электролит и сокращая жизнь конденсатора много.

    Комментарии о старых электролитах и ​​неисправностях Механизмы

    Часто (ну, по крайней мере, иногда) возникает вопрос: что делать с что касается электролитических конденсаторов в действительно старом оборудовании.Заменить все?

    Не вдаваясь в подробное обсуждение (см. Ниже):

    1. Общего правила нет.
    2. Оборудование, которое интенсивно использовалось и / или в жаркой среде, будет скорее всего проблем будет больше с засохшими конденсаторами.
    3. Я бы просто проверил их и заменил те, которые сильно уменьшились в значение uF, имеют более высокое ESR или более высокую утечку после того, как им будет предоставлено время для реформа. Я как раз работал над 30-летним стробоскопом Minox. Его электролиты, кажется, быть такими же хорошими, как день, когда они были изготовлены.

      (От: Дэвида Шермана ([email protected]).)

      Я занимаюсь электроникой не менее 20 лет и изучил электронику. первоначально на старом военном снаряжении времен Второй мировой войны, которое было дешево в время. С тех пор я был дипломированным инженером и профессиональным инженером, а также заядлый сборщик мусора. К действительно старому военному снаряжению дизайнеры часто обращались к многим. расходов, чтобы избежать электролитов. Они используют большой двухсекционный дроссель и подключать маслонаполненные бумажные конденсаторы емкостью 4 мкФ к источнику питания, а не только к одному большой электролитический, потому что электролиты в то время имели тенденцию «высыхать» и терпят неудачу с возрастом.

      В ранней бытовой электронике я часто обнаруживал плохие электролиты. Первое то, что нужно сделать с этим старым материалом, - это посмотреть, не просочилось ли что-нибудь из конденсаторы. Затем включите его. В этот момент нет ничего необычного для что-то простаивающее, чтобы взорвать конденсатор струей пара! потом вы знаете, какой из них плохой. Сигнальные конденсаторы (связь, эмиттер / катодный байпас, и т. д.) обычно не являются проблемой, потому что на них не так много напряжения как конденсаторы питания.После замены перегоревших конденсаторов (а может, другие, которые выглядят точно так же) снова зажгите эту штуку. Если не сработает, проверьте напряжение постоянного тока на всех электролитах. Даже если ты не знаешь что они для, все они должны иметь постоянный ток правильной полярности и обычно в пределах изрядная доля рабочего напряжения, напечатанного на них. Также почувствуйте, если любой горячий. Думаю, вы уловили идею.

      Теперь по поводу утилизации старых конденсаторов. Произведенные, может быть, с 1970 года - ДАЛЬШЕ лучше, чем модели 40-х и 50-х годов, и все они заслуживают экономии, если только они не из них течет слизь или резиновая заглушка выпирает (вроде как оценивая старую банку с фасолью!).Я никогда не встречал ни одного в приспособлении после 1970 года, чтобы испортиться из хранилища. Если вы хотите быть уверенным, прежде чем устанавливать его в схему, просто подайте номинальное рабочее напряжение от переменного источника питания (справа полярность, конечно) и оставьте на несколько минут. Если вы можете установить ограничение тока на поставку до низкого значения, это предотвратит потенциально липкий взрыв. На самом деле, применение постоянного напряжения - это хорошо. Это называется «формируя» конденсатор, и он создает изолирующую оксидную пленку на алюминиевая фольга.

      (От: Джона Попелиша ([email protected]).)

      В электролизерах действуют как минимум два различных механизма износа. Один из них - потеря электролита из-за утечки из емкости. Это усугубляется плохие уплотнения и нагрев, поэтому сильно варьируется в зависимости от качества оригинала упаковка и такие вещи, как температура окружающей среды и внутренний нагрев пульсацией Текущий. Если они хранятся в прохладных условиях, они могут долго оставаться влажными. более 10 лет. Второй - разрушение оксидов, и это имеет тепловая и смещающая составляющие.Тепло ускоряет ухудшение во время хранение и отсутствие напряжения смещения также ускоряют потерю. Я всегда очень сильно затыкаю старое оборудование в вариак, когда я в первый раз поднимаю его, и больше не применяю чем примерно 70% сетевого напряжения на некоторое время, и проверьте, не нагреваются ли колпачки. Если все выглядит хорошо, я буду медленно поднимать линию до полного напряжения примерно час. Это позволяет частично восстанавливать оксиды без катастрофического термического воздействия. подъем. Мне не приходилось заменять колпачки оптом, если надежность не была очень высокой. важно (где более поздняя неисправность будет намного дороже, чем все конденсаторы).

      Электролитические колпачки имеют одну металлическую пластину и одну жидкостную пластину. Диэлектрик между ними находится очень тонкий слой оксида, который образуется на металлической пластине. после протравливания, чтобы сделать его поверхность очень губчатой ​​и пористой. Этот процесс травления увеличивает площадь поверхности металла во много раз (увеличение емкости, пропорциональной площади поверхности), но означает что оксид образуется на очень шероховатой поверхности. Итак, часть оксида обернуты вокруг очень острых краев и точек.Это химически менее стабильная ситуация по сравнению с оксидом, образовавшимся на гладкой поверхности или внутри пустой. То же самое для оксида, образованного по границам зерен металла. Со временем некоторые этого оксида либо отламывается, либо трескается, либо он превращается в атомы металла и кислорода, в результате в изоляционном слое образуются тонкие пятна.

      Если крышка хранится со смещением постоянного тока, эти тонкие точки потребляют ток, который высвобождает атомарный кислород из электролита, который повторно окисляет слабые пятна по мере их образования. Если он хранится без приложенного напряжения, все эти пятна нужно реформировать сразу при сдаче шапки в сервис.Это заставляет их протекать чрезмерный ток, выделяют много газа и выделяют тепло. Если утечка достаточно плохо, крышка может самоуничтожиться. Если большие и дорогие кепки, особенно высоковольтные, будут введены в эксплуатацию после продления хранения, их можно более изящно преобразовать, приложив напряжение последовательно с токоограничивающим сопротивлением. И они должны быть проверены на приемлемость ток утечки при номинальном напряжении перед использованием. Я думаю современный Ожидается, что электролитические колпачки прослужат около 10 лет при хранении в прохладном месте.Выше температуры сокращают их жизнь.

      Если бы вы собирались реформировать множество похожих крышек, вы могли бы создать регулируемый источник постоянного тока, который имеет как регулировку напряжения, так и ограничение тока, можно установить значения, подходящие для крышек разного размера. Для одного или двух я использовали Variac перед простой нерегулируемой подачей. Дело в том, чтобы позволить некоторому формующему току течь, но ограничить его до меньшего, чем то, что могло бы вызвать заметный подъем температуры в шапке. Для маленькой трубчатой ​​крышки это на порядка десятой ватта.Разделите это на приложенное напряжение, и вы иметь некоторое представление о необходимом текущем пределе. Для больших бейсболок (размером с кулак) вы может позволить внутреннему рассеиванию приблизиться к ватту. Эти уровни мощности не поднимет температуру крышки, чтобы вы заметили это своим пальцами (хотя они могут вызвать довольно ощутимые горячие точки на небольших области в шапке).

      (От: Dbowey)

      Насколько я помню, формирование электролитов состоит в том, что ступенчатое во времени напряжение был применен.Таймер был мной, и я увеличил вариакционный выход до мощности. поставка в течение одного-двух дней, начиная с 10% номинального напряжения и в итоге получаем 100%.

      (От: Джека Шидта ([email protected]).)

      Это хорошо работает. Электролитические крышки NOS всегда должны быть выполнены до к использованию. Часто для старых передач необходимо использовать NOS или использованные колпачки из соображений экономии. или доступность.

      Поскольку я много чиню ламповое оборудование, я построил небольшой изолированный тройник. легко поставить 450В для подачи электролита.Я использовал весь новый майлар колпачки.

      Я немного изменил вашу процедуру, установив тройник на рабочий напряжение на крышке без нагрузки, подключив резистор 2 М или около того к колпачок и подключите его к источнику питания.

      Для действительно больших (1000 мкФ +) конденсаторов я использую несколько сотен К; ты хочешь приложенный ток должен быть больше, чем средний ток утечки хорошего конденсатора.

      Периодически проверяйте напряжение крышки с помощью DVM или VTVM, отключая измерительные щупы сразу после измерения.Если вы используете высокое напряжение, низкое транзистор утечки в качестве эмиттерного повторителя, счетчик можно оставить подключенным всегда. Я рекомендую это.

      Часто вы видите, что более старая крышка достигает определенного напряжения, а затем падает. резко, поскольку его диэлектрик разрушается, процесс повторяется. Их следует выбросить, так как диэлектрик явно имеет тонкие пятна и будет выходят из строя.

      Некоторые полностью зарядятся через несколько часов [t = RC], некоторые через несколько дней и некоторые никогда не отрываются от земли.Выбросьте те, которые не заряжаются.

      Что это за штриховые линии на концах электролиза? Конденсаторы?

      Они предназначены для того, чтобы направить мусор в известном направлении, если конденсатор превратиться в бомбу. Действительно :-).

      Однако взрывающиеся конденсаторы не все ТАК распространены в правильно спроектированных оборудование .... (Ну, кроме программатора СППЗУ, у которого был танталовый электролитик установлен задом наперед на заводе. Через полгода - К-Блам!)

      (От: Гэри Вудс (gwoods @ wrgb.com).)

      Если вы посмотрите в каталог DigiKey, там подробно описан «Vent Test», в котором электролитический колпачок определенным образом перегружен, и баллончик не выталкивается материал * только * через эту надрезанную часть. Похоже на материал для еще одна городская легенда; как поставщик, который тщательно проверял каждую входящую предохранитель на срабатывание за заданное время при заданной перегрузке. Конечно, люди, пытающиеся * использовать * эти предохранители, не оценили, насколько хорошо они прошли эти тесты!

      Вы можете сделать тест вентиляции, подключив электролит к своей «суицидальной пуповине». и подключить его к сети 110 В переменного тока.Развлекательный. (Я НЕ рекомендовал вам делать это, и я НЕ несу ответственности!)

      Изготовление неполяризованных конденсаторов из нормальных Электролитические

      Вы можете найти неполяризованные электролитические конденсаторы в некотором оборудовании - обычно Телевизоры или мониторы, хотя некоторые из них также появляются в видеомагнитофонах и других устройствах. Большой их также можно найти в приложениях для запуска двигателей. Обычно это так необходимо заменить на неполяризованные конденсаторы. Поскольку поляризованные типы как правило, намного дешевле, производитель использовал бы их, если бы возможный.

      Для небольших конденсаторов - скажем, 1 мкФ или меньше - неэлектролитический тип будет очень полезен. скорее всего будет удовлетворительным, если его размер - они обычно намного больше - не проблема.

      Существует несколько подходов к использованию электролитических конденсаторов с нормальной поляризацией. построить неполяризованный тип.

      Ничто из этого не является действительно отличным, и получение надлежащей замены могло бы будь лучшим. В нижеследующем обсуждении предполагается, что 1000 мкФ, 25 В нужен неполяризованный конденсатор.

      Вот три простых подхода:

      1. Подключите два электролитических конденсатора с удвоенным номиналом мкФ и не менее равное номинальное напряжение с обратной связью последовательно:
                           - + + -
                 о ----------) | ----------- | (----------- o
                         2000 мкФ 2000 мкФ
                           25 В 25 В
        
         
        Неважно, какой знак (+ или -) находится вместе, если они совпадают.

        Повышенная утечка в обратном направлении приведет к увеличению заряда отцентрируйте узел так, чтобы колпачки были смещены с соблюдением правильной полярности. Однако иногда некоторое обратное напряжение все же будет неизбежно. Для сигнальных цепей, это, вероятно, приемлемо, но используйте с осторожностью в источник питания и приложения высокой мощности.

      2. Подключите два электролитических конденсатора с удвоенным номиналом мкФ и не менее равное номинальное напряжение с обратной связью последовательно. Чтобы свести к минимуму любые значительные обратное напряжение на конденсаторах, добавить пару диодов:
                       + --- |> | ---- + ---- |
          Обратите внимание, что изначально источник будет видеть емкость, равную полной
          емкость (не половина).Но очень быстро две крышки зарядятся до
          положительные и отрицательные пиковые значения входа через комбинацию через
          диоды. В установившемся режиме диоды вообще не будут проводить и
          поэтому будет так, как если бы их не было в цепи.
         

        Однако при переходных процессах в цепи будет некоторая нелинейность. условия (и из-за утечки, которая приведет к разрядке конденсаторов) так что используйте с осторожностью. Диоды должны пропускать пиковый ток. без повреждений.

      3. Подключите последовательно два конденсатора емкостью в два раза больше мкФ и смещайте центр. точка от положительного или отрицательного источника постоянного тока выше максимального сигнала ожидается для схемы:
                                 +12 В
                                   о
                                   |
                                   /
                                   \ 1K
                                   /
                           - + | + -
                 о ----------) | ----- + ----- | (----------- o
                         2000 мкФ 2000 мкФ
                           35 В 35 В
        
         
        Сопротивление резистора должно быть высоким по сравнению с сопротивлением привода. цепь, но низкая по сравнению с утечкой конденсаторов.Конечно, номинальное напряжение конденсаторов должно быть больше, чем смещение плюс пиковое значение сигнала в обратном направлении.

      О танталовых конденсаторах

      (От: Ральфа В. М. ([email protected]).)

      Во-первых, вам необходимо идентифицировать / указать конкретный тантал, который вы говоря о. Бывают как ТВЕРДЫЙ, так и ОРГАНИЧЕСКИЙ тантал. Если это знакомый стиль эпоксидной смолы слезоточивый корпус, это прочная разновидность; любой другой пакет может быть твердым или органическим (и это НЕ одно и то же).

      Да, твердые танталы могут взорваться. Но это либо редкость в случае изготовленное оборудование в исходном состоянии ИЛИ модифицированное кем-то схема и выбрана / выбрана неправильно. Твердые танталы ОЧЕНЬ непереносимы скачков / скачков; НО органические электролиты толерантны к скачкам / скачкам напряжения; (НО органические электролиты НЕ являются прямой заменой твердого тантала !!!).

      Твердые танталы ОЧЕНЬ стабильны в отношении:

      1. Значение мкФ.
      2. Чрезвычайно стабильная утечка постоянного тока.Обратите внимание, я НЕ говорил о низкой утечке; они имеют средние утечки постоянного тока по сравнению с современными электролитиками.

      Твердые танталы также имеют ОЧЕНЬ низкий импеданс на низких частотах; (органический танталов нет).

      Утверждение, что твердые танталы имеют меньшие утечки постоянного тока по сравнению с Органические электролиты стали употребляться неправильно, то есть 20 лет назад в основном быть правдой, но не сегодня. В настоящее время утечки постоянного тока в Solid тантал похож на средний органический электролит; есть некоторые органических электролитов, которые имеют примерно на 50% МЕНЬШЕ утечки постоянного тока (после допуска от 2 до 5 минут "разогрева"), (НО твердые танталы имеют ОЧЕНЬ стабильный постоянный ток протечки, и НЕТ "прогрева").

      Суперкапс и суперкапс

      (От: Николаса Бодли ([email protected]).)

      В течение последних 2 недель или около того (текущая дата: 11 августа 1997 г.), вероятно под влиянием статьи в EE Times, я настроил Excite на поиск «суперконденсаторов». и «ультраконденсаторы». Я обнаружил, что когда вы используете "More Like This" option 'достаточно, он дает те же результаты.

      Во всяком случае:

      То, что я обнаружил, было захватывающим для старика. Конденсаторная технология - это теперь в точке, где он может выполнять выравнивание нагрузки, чтобы продлить срок службы аккумуляторы для электромобилей.Высокая мощность, необходимая для ускорения электромобиля может быть обеспечен ультраконденсатором. Ультракап. также может поглощать энергию для рекуперативного торможения, чтобы ограничить в противном случае очень высокую зарядку ток на аккумулятор.

      Попутно был отмечен экспериментальный электромобиль Mazda, в котором используются колпачки. это способ; его зовут, хотите верьте, хотите нет, Бонго Френди. Без шуток. (У меня есть коллекция из 7 или 8 других таких имен ...)

      Упоминались конденсаторы на 1800 фарад на 2.3В. Ага, мы сейчас находимся в эра килофарадов, ребята! Конденсаторная батарея состояла всего из 80, в группы по два человека параллельно, 40 групп последовательно.Общее напряжение 92.

      Другие характеристики отмечены попутно:

      Ультракэпс. сейчас находятся в диапазоне от 0,1 до 8 кВтч (киловатт-час).

      Некоторые из них сделаны из углеродных аэрогелей (это не новость ...)

      Maxwell имеет 8-элементный блок, рассчитанный на 24 В, биполярный, 4,5 Втч / кг. Тоже самое у компании также есть монополярный элемент (монополярный?) номиналом 2300 F, 3 В; 5 Втч / кг. Он может обеспечить более 100 А!

      Некоторые ультраконденсаторы, по-видимому (почти наверняка) не используют электрический двойной послойная технология.3; отлично работает при температурах до -30 C, и может управлять мощностью более 7кВт / кг. Саморазряд в неделях.

      Я нашел эту информацию. совершенно захватывающе. Когда я получаю достойную работу, я приобретаю себе 100F Elna.

      Кстати, вы слышали, что цифровой мультиметр использует суперконденсатор. за власть? я думаю цифры таковы, что 3-х минутная зарядка проработает 3 часа.

      Что это за конденсаторы X и Y в линии переменного тока? Вход?

      «Недавно я заметил, что в конденсаторах используются так называемые« X »и« Y »конденсаторы. входная силовая часть блоков питания.Когда я изучил это дальше, Я обнаружил, что есть разные степени X и Y - X1, X2, Y1, Y2 и т. Д. Очевидно, это связано с кодексом или регулирующим органом.
      1. Каково определение или использование различных классов (X1, X2 и т. Д.)
      2. Где регулирующие органы говорят, что мы должны использовать различные типы.
      3. Что является хорошей методикой проектирования для фильтрации шума SMPS с использованием эти устройства и др. "
      (От: Пола Касли ([email protected]).)

      Крышки класса X предназначены для повсеместного использования.Бейсболки класса Y предназначены для линия на защитное заземление. Эти колпачки сконструированы так, чтобы «самоочищаться». То есть, если в устройстве возникает короткое замыкание, энергия, рассеиваемая в короткое "сдует" короткое. Типичный линейный входной фильтр будет иметь один колпачок класса X от линии к нейтрали или от линии к линии и Цоколь класса Y от каждой линии до земли или от линии до земли и нейтрали К земле, приземляться. Никакие регулирующие органы не требуют их использования. Однако вы можете обнаружите, что они вам нужны, чтобы соответствовать нормам EMI / EMC и соответствовать вашим собственным Требования к устойчивости к электромагнитным помехам / электромагнитной совместимости.UL, CSA, VDE и другие меры безопасности агентства потребуют, чтобы вы использовали соответствующие компоненты для обеспечения безопасности стандартов (что всегда является хорошей практикой) и получить разрешение на используйте их маркировку безопасности. Что касается точных различий между типов (X1, X2, Y1, Y2), я предлагаю вам связаться с производителями крышек, такими как Vishay-Roederstein за их каталоги и прикладные книги.

      Конденсаторы для фотовспышки

      Они встречаются не только в электронных вспышках и стробоскопах, но и в импульсных. источники питания для лазеров и другие приложения для быстрого разряда.Они созданы для быстрой разрядки с минимальными потерями и без самоуничтожения. Таким образом, ESR и индуктивность очень низкие, а внутренняя структура настроена на выдерживают очень высокие пиковые токи (сотни или тысячи ампер).
  • Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *