Как устроен и работает стрелочный и цифровой мультиметр
Домашний мастер при ремонте квартиры своими руками сталкивается с необходимостью подключения светильников, розеток и выключателей по разным схемам. Такая деятельность требует выполнения электрических измерений и знания основных правил безопасности при работе под напряжением.
Наши советы помогут вам оптимально выбрать мультиметр для этих целей и понять основные правила безопасной работы с ним как в бытовой электропроводке, так и для ремонта подключаемых к ней приборов.
В материале статьи сравниваются два типа устройств измерителей: стрелочных аналоговых и цифровых. Это позволит оценить различные технологии замеров, сравнить их возможности, сделать выбор подходящей конструкции.
Содержание статьи
Назначение
Составное слово мультиметр обозначает своей первой частью «мульти» — много функций, которые выполняет этой прибор, а второй «метр» – измерение электрических величин.
Он позволяет определять:
- значение действующего напряжения;
- силу протекающего тока;
- электрическое сопротивление подключенной цепи;
- некоторые другие параметры.
Следует учесть, что прибор может иметь другие названия:
- авометр, обозначающее сокращение от ампер, вольт, ом измерение;
- или тестер, присвоенное первым аналоговым моделям.
На техническом языке его называют прибор многофункциональный измерительный.
Принципы измерения электрических величин
Поясняющая картинка из интернета с человечками призвана объяснить взаимосвязь процессов, происходящих в электрике, которые позволяет анализировать мультиметры любой конструкции.
Напряжение источника в вольтах старается пропихнуть ток в амперах через оказываемое ему противодействие сопротивлением в омах. Для анализа этих трех задач в мультиметр включены 3 отдельных измерительных прибора:
- амперметр;
- вольтметр;
- омметр.
Кратко рассмотрим их функции.
Как работает амперметр
За основу действия аналоговых приборов принята измерительная головка магнитоэлектрической системы.
При протекании через нее электрического тока поворачивается подвижная рамка с противодействующей пружиной и прикрепленной к ним стрелкой, указывающей на шкале его силу в микроамперах — тысячных долях ампера. На таком диапазоне протекают токи через измерительную головку.
Однако амперметр замеряет не доли ампера, а целые и даже значительно большие значения. Такие величины тока способны выжечь все токопроводящие магистрали головки. Чтобы этого не произошло, их ограничивают параллельным подключением калиброванного электрического сопротивления, называемого шунтом.
Принцип шунтирования дополнительным сопротивлением уменьшает величину протекающего через головку тока и делает его пропорциональным входному значению. За счет этого шкалу градуируют в амперах, а не в тысячных его долях.
В цифровых приборах используются датчики токи, которые работают по микропроцессорным технологиям.
Устройство вольтметра
Та же измерительная головка подключается последовательно к добавочным сопротивлениям — токоограничивающим резисторам. Шкала прибора градуируется в вольтах.
Переключатель режимов у амперметра и вольтметра позволяет расширять пределы измерения.
Цифровой вольтметр работает от датчика напряжения.
Конструкция омметра
Принцип замера сопротивления раскрыт в статье о прозвонке электрической цепи тестером, многофункциональным индикатором.
Омметр также работает с помощью измерительной головки.
Для этого используется встроенный источник напряжения, который выдает строго эталонную величину. Ее при подготовке омметра к работе необходимо вручную откалибровать.
Замеряемое сопротивление подключается к гнездам прибора. Через него проходит ток, ограничивающийся в зависимости от номинала резистора. Он отклоняет стрелку омметра на величину, пропорциональную значению электрического сопротивления.
Шкала омметра просто градуируется в омах.
Цифровые приборы вычисляют значение сопротивления по результатам информации, получаемой от датчиков тока и напряжения, но работают также от встроенного источника питания. Ручная калибровка им не требуется.
Разновидности мультиметров
Аналоговые приборы
Рассмотрим на примере тестера Ц4324.
Сразу бросаются в глаза многофункциональная шкала в несколько рядов и переключатели режимов с большим рабочим диапазоном.
Заводская схема внутренних соединений представлена на фото ниже.
Более подробно назначение шкалы измерительной головки показано на картинке.
При каждом замере необходимо анализировать положение стрелки на определённом диапазоне, соответствующем роду току и проверяемому сигналу.
Положения центрального переключателя разбиты на три главных сектора (амперметра, вольтметра и омметра) выделенные красными стрелками. При работе следует определять не только диапазон измеряемой величины, но и форму сигнала.
Цифровые приборы
Внутренняя конструкция этого типа мультиметра намного сложнее, а внешние органы выполнены проще для пользователя. В качестве образца выберем одну из типовых моделей с минимальным количеством автоматических настроек.
Вместо стрелочного указателя и сложной шкалы работает дисплей, а положением центрального переключателя можно выбрать все режимы измерения в любом секторе.
Подключение измерительных проводов выполняется к двум гнездам из трех:
- центральное — общее;
- левое — используется для замера токов более 10 ампер;
- правое — во всех остальных случаях.
Способы электрических замеров
Любой мультиметр сам ничего не измеряет. Он показывает только те величины, которые подготовил пользователь в созданном им режиме. Ошибки показаний чаще всего связаны с невнимательной работой человека.
Рассмотрим однотипные операции, которые необходимо выполнять на стрелочном и цифровом мультиметре.
Измерения тестером Ц4324
Замер напряжения
Работа с источниками постоянного тока
Выбираем соответствующий режим нажатием средней кнопки снизу и выставляем предел измерения больший, чем напряжение у замеряемой батарейки — 3 V.
Потребуется оценить полярность подключения проводов. Если пустить ток в обратном направлении через измерительную головку, то стрелка просто упрется в стопор слева от нуля. Замер не получится.
Для снятия отсчета необходимо выбрать правильно ту шкалу напряжения, на которой стоит знак постоянного тока. Следует учесть ее кратность на соответствующем положении переключателя.
Работа с источниками переменного тока
Обращаем внимание, что подобная операция относится к опасной и требует повышенного внимания.
Нажимаем до фиксации правую кнопку снизу со значком «~». Выбираем центральным переключателем соответствующий режим вольтметра и на нем положение 300 V. Только после этого устанавливаем концы в контакты розетки.
Со шкалы снимаем показания 250 V. Методика пользования ею та же, как и в предыдущем случае.
Замер тока
Положение переключателей и работа со шкалой выполняется по предыдущей методике.
Пальчиковая батарейка на 1,5 V выдала на лампочку 6,3 V ток 142 мА.
Замер сопротивления
В этом режиме важно:
- проверить выставление стрелки на ноль, используя регулятор натяжения пружины измерительной головки, расположенный под стрелкой;
- установить калиброванную величину источника питания ручкой потенциометра «Установка 0», размещенного в самой нижней части на лицевой стороне;
- обеспечить расположение корпуса строго по горизонту.
Для измерения потребуется нажать одновременно две левых кнопки и установить переключатель на значок омов. Отсчет показания по шкале Ω получился 1,5. Такое сопротивление у нити накаливания в холодном состоянии.
Режим измерения сопротивлений мультиметром создан для проверки резисторов и других элементов радиоэлектронных устройств. Он не предназначен для оценки качества изоляции диэлектрического слоя. Мощность источника питания недостаточна для подобного измерения.
Оценку сопротивления изоляции кабелей и проводов выполняют специальными приборами, питающимися от мощных источников: ручных генераторов или бытовой сети 220 либо встроенных преобразователей с комплектом батареек. Их называют мегаомметрами.
Три приведенных опыта с малогабаритной лампочкой накаливания и батарейкой позволяют показать, что мощность источника энергии и потребителя следует правильно подбирать по нагрузке и напряжению.
1,5 V у батарейки и 6,3 у лампочки — явное несоответствие. Источник работает в аварийном режиме и не справляется с задачей: нить еле-еле светится. Ему искусственно создан режим перегрузки.
Аналогичный случай может произойти и в бытовой сети 220, где защиту от перегрузок выполняет автоматический выключатель, снимающий питание с оборудования с выдержкой времени.
Подключая любой потребитель в электрическую сеть всегда оценивайте его возможность надежной работы и способность защит устранять аварийные ситуации.
Измерения цифровым мультиметром
Замер напряжения
Работа с источниками постоянного тока
Потребуется только установить центральный переключатель в положение замера напряжения на соответствующем пределе (=2 V), вставить провода в гнезда прибора и подключить их к проверяемой батарейке. Результат сразу отображается на табло.
Если полярность подключения источника к мультиметру перепутана, то на табло отобразится знак минус. Значит замер надо повторить, перевернув провода на батарейке.
Этот прием используют для определения полярности источника.
Когда замер выполняется на большем пределе, то точность результата будет занижена. Необходимо соблюдать соответствие величин.
Работа с источниками переменного тока
Вначале переключатель режимов устанавливают в положение «~600 V», а затем проверяют напряжение в розетке.
У нас получился результат 231 вольт.
Замер тока
Мультиметр врезают в цепь тока, предварительно переключив его в режим амперметра и установив на соответствующую позицию измерений. Мы имеем показание 145 мА на пределе 200.
Знак минус перед значением тока свидетельствует о том, что полярность подключения проводов прибора в схему перепутана. Ток через него идет в обратном направлении.
Электрикам, часто сталкивающимися с измерениями, рекомендуем приобрести мультиметр с разъемным магнитопроводом трансформатора тока —клещами. Им удобно выполнять безразрывное подключение и быстрый замер.
Замер сопротивления
Центральный переключатель мультиметра установлен в положение 200 Ω, а результат 9,75 отображен на табло.
Таким же способом прибор работает на шкале kΩ. На приведенном фото даже завышен предел измерения сопротивления. На результате это особенно не сказывается, хоть и влияет.
Режим прозвонки
Цифровой мультиметр в отличие от аналогового стрелочного имеет такую дополнительную функцию. Она позволяет просто определять наличие электрического контакта внутри проверяемой цепи.
В замкнутой и разомкнутой схеме меняется индикация на табло, а у многих моделей приборов дополнительно появляется звуковой сигнал.
Режим прозвонки создан для анализа маленьких сопротивлений, характерных для цепей тока. Но им не стоит пользоваться в цепях напряжения. Особенно он удобен для проверки полупроводниковых элементов.
Режим генератора
Еще одна полезная функция для радиолюбителей, называемая на их сленге «пищалкой». Мультиметр выдает высокочастотные сигналы, которые позволяют проверять тракты звуковых усилителей и различные каналы передатчиков или приемников.
У владельцев стрелочных приборов такой функции нет. Они вынуждены делать подобный генератор своими руками.
Проверка транзисторов
Еще одна полезная функция цифрового мультиметра, которая также встречается на более сложных конструкциях стрелочных моделей.
Для проверки биполярного транзистора достаточно правильно вставить его ножки в соответствующее гнездо, учитывающее структуру p-n-p или n-p-n полупроводникового перехода. Для этого создано четыре контактных отверстия, в которые устанавливают ножки за счет поворота корпуса в одну из сторон.
У исправного транзистора сразу высвечивается коэффициент усиления h31.
Эта же функция на стрелочных тестерах требует снятия показаний и выполнения математических расчетов.
Основные правила безопасности
Мультиметр создан для измерения электрических величин и позволяет работать под напряжением. Его корпус и провода выполнены с соответствующей степенью защиты как по классу IP, так и по нормативам электрической безопасности от поражения током.
Качество защиты цифровых приборов выше, а их дизайн более продуман. Однако, даже при их пользовании следует быть внимательным и осторожным, соблюдать рекомендации производителя.
Любой цифровой мультиметр можно вывести из строя неправильным обращением при его несомненных преимуществах перед стрелочным прибором:
- работе встроенных защит «от дурака», которые отключают схему от проникновения опасных токов, созданных при всех режимах измерения;
- повышенной диэлектрической прочности изоляции.
Стрелочные старые тестеры требуют еще больше внимания: при неправильном подключении к цепям токам или напряжения, особенно в бытовой сети 220, элементы их внутренней схемы выгорают. Если калибровочные резисторы еще можно заменить, то с контактами переключателей и кнопок ситуация ремонта усугубляется.
Но чаще всего у них выходит из строя токопроводящая пружинка или обмотка измерительной головки. В этой ситуации ремонт обходится дороже покупки нового цифрового мультиметра.
Рекомендуем посмотреть видеоролик владельца Andrey Tonurwator “Как пользоваться мультиметром”.
Ждем комментариев на статью и напоминаем, что сейчас ей удобно поделиться с друзьями в соц сетях.
Полезные товары
- Ножницы для резки кабеля
- Искусственные рыболовные приманки
- Электропаяльник с регулируемой температурой
Полезные сервисы и программы
- Курсы по дизайну
- Онлайн изучение английского языка с репетитором или самостоятельно
Реклама
Всё про цифровой мультиметр: принцип работы, как измерять
Мультиметр цифровой — это универсальный прибор для измерения электрических параметров, который сочетает действие амперметра, вольтметра и омметра в одном приборе, который выводит показания на небольшой дисплей. Существуют, как стендовые, так и переносные мультиметры.
Обратите внимание на основы электричества и на приборы электроники.
Преимущество цифрового мультиметра над приборами с измерительным механизмом заключается в том, что показание прибора по шкале должны пересчитываться в том случае, если стрелка прибора остановилась между отдельными делениями на шкале. Цифровые измерительные приборы не нуждаются в перерасчете показаний, изображая их в виде чисел на дисплее. Также цифровые мультиметры более чувствительны к малым изменениям тока и поэтому более точны по сравнению с другими приборами, измеряющими электрические параметры.
На постсоветском пространстве такой прибор известен под сленговым названием «Цэшка», т.к. названия советских мультиметров начинались с буквы «Ц».
Принцип действия цифрового мультиметра
В основе цифрового мультиметра лежит АЦП двойного интегрирования — аналого-цифровой преобразователь, в котором входной сигнал сравнивается с опорным.
Для того, чтобы измеритель показывал величину электрического параметра, измеритель должен быть электрически подсоединен к схеме или ее компоненту. Эти подсоединения выполняются набором проводов. Черный провод обычно называется общим или отрицательным, красный — положительным.
На одном конце каждого из проводов находится вилка, которая подключается в гнездо измерителя. Другой конец каждого провода используется для создания контакта со схемой или ее компонентом, который должен быть промерен.
Чтобы измерить постоянный ток, измеритель должен быть включен последовательно со схемой, в которой производятся измерения. Если прибор, который настроен на измерение тока, случайно будет включен параллельно с источником напряжения, напряжение может послужить причиной того, что избыточный ток потечет через измеритель и повредит его.
Чтобы измерить напряжение, измеритель должен быть включен параллельно с источником напряжения. Поскольку напряжение одинаково во всех ветвях параллельной схемы, напряжение, которое должно быть измерено, будет и на измерителе, в результате чего измеритель покажет уровень напряжения.
Измерения сопротивлений должны проводиться на обесточенных цепях. При измерениях сопротивлений используется небольшая внутренняя батарея для питания схемы измерителя и сопротивления, которое должно быть измерено.
Порядок измерения цифровым мультиметром
1) Включите измеритель нажатием кнопки ON/OFF
2) Выберите нужный тип измерения нажатием соответствующей кнопки
3) Выберите нужный диапазон измерений нажатием соответствующей кнопки переключения диапазонов
4) Подсоедините измерительные провода в соответствующие гнезда на панели.
5) Прижмите концы измерительных проводов к испытуемым точкам (или прикрепите провода к компоненту). Для измерения сопротивления нет необходимости выставления нуля, как это нужно было делать в вольт омметре, ламповом вольтомметре и вольтомметре на полевых транзисторах.
6) Снимите показания с дисплея.
Гальванометр устройство для измерения электрических параметров
Осциллограф применяется для проверки электронного оборудования
Стабилизаторы напряжения прибор, который обеспечивает стабильный уровень напряжения
Суммирующий усилитель выходное напряжение равно сумме его входных напряжений
Полевой транзистор могут использоваться в качестве выключателей, регуляторов тока или усилителей
Объяснение измерений мультиметра| Electronic Design
Перепечатано с разрешения Evaluation Engineering
Мультиметр или цифровой мультиметр (DMM) является одним из наиболее важных и распространенных элементов лабораторного оборудования. Мультиметры используются для проведения основных электрических измерений, связанных с законом Ома. Сюда входят такие измерения, как напряжение, ток, сопротивление и т. д. Мультиметры могут быть как портативными, так и настольными. Настольные мультиметры, как правило, обеспечивают более высокую точность, чем их меньшие портативные аналоги. Для этой цели в этой статье мы предположим, что используется настольный мультиметр.
Закон Ома Измерения мультиметром
Начнем с Напряжение постоянного тока , одного из самых простых и часто используемых мультиметровых измерений. Измерение напряжения постоянного тока используется для определения разности электрических потенциалов между двумя точками в цепи постоянного тока или «постоянного тока». Эта разница потенциалов измеряется в единицах [вольт постоянного тока]. Чтобы измерить напряжение постоянного тока с помощью настольного мультиметра, после его включения выберите режим «DC V».
Подсоедините щупы к мультиметру; положительный щуп должен быть подключен к порту «INPUT HI», а отрицательный щуп должен быть подключен к порту «INPUT LO». Подайте питание на проверяемую цепь или устройство и проверьте точки цепи.
Измерение переменного напряжения почти идентично измерению постоянного напряжения, однако этот режим используется для измерения потенциала напряжения между двумя точками цепи переменного или «переменного тока». Единицей измерения напряжения переменного тока является [вольт переменного тока]. Чтобы измерить напряжение переменного тока с помощью настольного мультиметра, выберите режим «AC V» и подключите щупы. Положительный щуп должен быть подключен к порту «INPUT HI», а отрицательный щуп должен быть подключен к порту «INPUT LO». Подайте питание на проверяемую цепь или устройство и проверьте точки на цепи 9.2*р. Поскольку даже у проводов есть сопротивление, провода датчиков могут фактически добавить к наблюдаемому измерению сопротивления. По этой причине существует два различных режима измерения сопротивления: 2-проводной режим и 4-проводной режим.
Если вас не беспокоит добавочное сопротивление проводов датчика, двухпроводного измерения сопротивления будет достаточно. Это более простое измерение, а датчики менее сложны и дороги. При 2-проводном измерении подаваемый ток и наблюдаемое напряжение измеряются через одни и те же датчики.
Чтобы выполнить двухпроводное измерение сопротивления с помощью настольного мультиметра, выберите режим «Ом» или «Ом» и подключите щупы к портам «ВХОД HI» и «ВХОД LO». Убедитесь, что тестируемая цепь или устройство выключены. Затем прощупайте нужный участок цепи.
Если вам нужно максимально точное измерение сопротивления, вам нужно выполнить 4-проводное измерение сопротивления . При 4-проводном измерении используются 2 дополнительных датчика, отсюда и термин «4-проводной». Два провода используются для подачи тока, а два других используются для измерения напряжения. Это устраняет эффективное падение напряжения на сопротивлении проводов датчика, что делает измерение напряжения и, следовательно, результирующего сопротивления более точным.
Чтобы выполнить 4-проводное измерение сопротивления с помощью настольного мультиметра, выберите на мультиметре режим «Ом» или «Ом» (возможно, вам придется нажать эту кнопку несколько раз, чтобы убедиться, что выбран 4-проводной режим). Подсоедините первый набор датчиков к портам «INPUT HI» и «INPUT LO», а второй набор датчиков к портам «SENSE HI» и «SENSE LO». Убедитесь, что проверяемая цепь или устройство отключены, затем проверьте нужную область цепи, используя оба щупа «HI» на одной стороне компонента и оба щупа «LO» на другой стороне измеряемого компонента
Важно, чтобы цепь не была включена во время измерения сопротивления. Поскольку мультиметр измеряет сопротивление как вычисление наблюдаемого падения напряжения из-за подаваемого тока, включение цепи вызовет помехи при измерении сопротивления и приведет к неправильным показаниям.
Постоянный ток или постоянный ток измеряет однонаправленный поток электронов в цепи, и единицей измерения является [амперы постоянного тока]. Для выполнения любого измерения тока в цепи должен быть «разрыв», который затем замыкается мультиметром, позволяя току течь через сам мультиметр. Другими словами, измерение тока должно производиться последовательно с цепью; тогда как измерения напряжения и сопротивления выполняются параллельно со схемой.
Чтобы измерить постоянный ток с помощью настольного мультиметра, выберите режим «I DC» на мультиметре. Подсоедините положительный щуп к порту «мА» для измерения малых токов или к порту «10А» для измерения больших токов. Подключите отрицательный щуп к порту «INPUT LO». Приложите щупы к соответствующим точкам последовательно с цепью, затем подайте питание на проверяемую цепь или устройство и запишите измерение постоянного тока.
Переменный ток или переменный ток — это измерение тока, который периодически меняет направление. Единицей измерения переменного тока является [ампер переменного тока]. Как и при измерении постоянного тока, переменный ток должен измеряться последовательно со схемой, чтобы позволить электронам проходить через мультиметр для выполнения измерения.
Для измерения переменного тока с помощью настольного мультиметра выберите режим «I AC», подключите положительный щуп к порту «мА» для измерения малых токов или к порту «10А» для измерения больших токов. Подключите отрицательный щуп к порту «INPUT LO». Подсоедините щупы к соответствующим точкам последовательно с цепью, затем подайте питание на проверяемую цепь или устройство.
Одной из самых распространенных ошибок при измерении тока мультиметром является использование порта «мА» при измерении больших токов. При измерении токов свыше 200 мА лучше переключиться и использовать порт «10А», чтобы не перегорел предохранитель внутри мультиметра.
Дополнительные измерения мультиметра
Проверка диода — Мультиметры также можно использовать для измерения падения напряжения на диоде с прямым смещением. Чтобы измерить падение напряжения на диоде, мультиметр автоматически подает небольшое напряжение на щупы и увеличивает это напряжение до тех пор, пока два щупа не будут электрически соединены (т. е. диод станет проводящим и смещенным в прямом направлении). Единицей измерения для проверки диодов является [вольт постоянного тока].
Чтобы выполнить проверку диодов с помощью настольного мультиметра, установите мультиметр в режим проверки диодов, нажав кнопку с символом диода. Подключите положительный щуп к порту «INPUT HI», а отрицательный щуп к порту «INPUT LO». Убедитесь, что тестируемая цепь или устройство выключены. Приложите щупы к диоду (убедившись в соблюдении полярности), затем запишите падение напряжения на диоде.
Измерение непрерывности (или электрического соединения) с помощью мультиметра является чрезвычайно полезным инструментом отладки и устранения неполадок. Когда цепь не работает должным образом, одним из первых действий при обнаружении проблемы является проверка наличия всех ожидаемых соединений и отсутствия нежелательных коротких замыканий. Конечно, можно использовать режим измерения сопротивления мультиметра, чтобы проверить наличие этих соединений, но использование режима непрерывности делает это еще проще. Это связано с тем, что мультиметр подаст звуковой сигнал, если между щупами есть соединение с низким сопротивлением, поэтому вам даже не нужно отрывать взгляд от схемы, которую вы отлаживаете.
Важно проверить руководство вашего мультиметра, чтобы увидеть, где он рисует линию с точки зрения «низкого сопротивления», чтобы издавать жужжание непрерывности. Это сопротивление составляет около 20 Ом для многих мультиметров. Чтобы проверить непрерывность с помощью настольного мультиметра, установите мультиметр в режим непрерывности, нажав кнопку со звуковым символом. Подключите положительный щуп к порту «INPUT HI», отрицательный щуп к порту «INPUT LO» и убедитесь, что проверяемая цепь или устройство отключены. Проверьте различные точки цепи и прислушайтесь к звуковому сигналу непрерывности.
Частота
Мультиметры также можно использовать для измерения частоты сигнала переменного напряжения. Частота — это измерение количества циклов, повторяющихся в сигнале каждую секунду. Например, синусоидальная волна, которая повторяет 10 циклов каждую секунду, будет иметь частоту 10 Герц или Гц. Диапазон входных частот мультиметров может сильно различаться, поэтому убедитесь, что ваш мультиметр способен измерять сигналы более высокой частоты. Как и напряжение, измерение частоты выполняется параллельно цепи.
Использование специального частотомера рекомендуется при необходимости измерения высокочастотных сигналов с более высокой точностью. Чтобы измерить частоту с помощью настольного мультиметра, установите мультиметр в режим «FREQ», затем подключите положительный щуп к порту «INPUT HI», а отрицательный щуп к порту «INPUT LO». Убедитесь, что тестируемая цепь или устройство включено, затем прощупайте измеряемый компонент на предмет частоты.
В заключение
Выбор лучшего мультиметра может оказаться непростой задачей. Ценовые диапазоны могут сильно различаться в зависимости от бренда и характеристик. Обязательно изучите все факторы, которые необходимо учитывать при выборе настольного мультиметра.
Как работает цифровой мультиметр DMM » Electronics Notes
Понимание того, как работает цифровой мультиметр, поможет максимально использовать его преимущества и свести к минимуму влияние его недостатков.
Учебное пособие по мультиметру Включает:
Основы работы с измерительным прибором
Аналоговый мультиметр
Как работает аналоговый мультиметр
Цифровой мультиметр цифровой мультиметр
Как работает цифровой мультиметр
Точность и разрешение цифрового мультиметра
Как купить лучший цифровой мультиметр
Как пользоваться мультиметром
Измерение напряжения
Текущие измерения
Измерения сопротивления
Проверка диодов и транзисторов
Поиск неисправностей транзисторных цепей
При использовании цифрового мультиметра полезно иметь представление о том, как работает измерительный прибор.
Ввиду того, что вместо аналоговых циферблатов используется цифровая технология, цифровой мультиметр работает совершенно иначе, чем старые аналоговые мультиметры. В цифровых мультиметрах используется технология аналого-цифрового преобразователя, а также они могут обеспечить гораздо больше возможностей измерения, поскольку добавление дополнительных измерений в базовую ИС не приводит к значительному увеличению стоимости.
Основными измерениями, выполняемыми любым мультиметром, являются амперы, вольты и омы (сопротивление), и многие цифровые мультиметры обеспечивают множество других измерений, включая емкость, сопротивление транзистора, зуммер непрерывности, температуру и т. д., в зависимости от конкретного измерительного прибора.
Принцип работы цифрового мультиметра — основы
При рассмотрении работы цифрового мультиметра необходимо понимать основные технологии, которые обычно используются.
Для цифрового мультиметра одним из ключевых процессов, связанных с этим, является аналого-цифровое преобразование.
Существует много форм аналого-цифрового преобразователя, АЦП. Однако тот, который наиболее широко используется в цифровых мультиметрах, DMM известен как регистр последовательного приближения или SAR.
Некоторые АЦП последовательного приближения могут иметь уровень разрешения только 12 бит, но те, которые используются в тестовом оборудовании, включая цифровые мультиметры, обычно имеют 16 бит или, возможно, больше, в зависимости от приложения.
Как правило, для цифровых мультиметров обычно используются уровни разрешения 16 бит со скоростью 100 тыс. отсчетов в секунду. Эти уровни скорости более чем достаточны для большинства приложений цифрового мультиметра, где обычно не требуются высокие уровни скорости. Как правило, для большинства стендовых или общих контрольно-измерительных приборов измерения необходимо проводить с максимальной скоростью несколько секунд в секунду, возможно десять в секунду.
АЦП регистра последовательного приближения, используемый в большинстве цифровых мультиметров
Как следует из названия, АЦП регистра последовательного приближения работает путем последовательного поиска значения входного напряжения.
Первый этап процесса заключается в том, что схема выборки и удержания производит выборку напряжения на входе цифрового мультиметра, а затем удерживает его постоянным.
Чтобы увидеть, как это работает, возьмем простой пример 4-битного SAR. Его выход будет начинаться с 1000. Если напряжение меньше половины максимальной емкости, выход компаратора будет низким, и это заставит регистр установить уровень 0100. Если напряжение выше этого, регистр переместится на 0110, и так далее, пока не будет найдено ближайшее значение.
Видно, что преобразователям SAR требуется один аппроксимирующий цикл для каждого выходного бита, т.е. n-разрядный АЦП потребует n циклов.
Работа цифрового мультиметра
Хотя аналого-цифровой преобразователь является ключевым элементом измерительного прибора, чтобы полностью понять, как работает цифровой мультиметр, необходимо рассмотреть некоторые другие функции аналого-цифрового преобразователя, АЦП.
Хотя АЦП берет очень много выборок, общий цифровой мультиметр не будет отображать или возвращать каждую взятую выборку. Вместо этого образцы буферизируются и «усредняются» для достижения высокой точности и разрешения.
Буферизация и «усреднение» устраняют влияние небольших изменений, таких как шум и т. д. Шум, создаваемый аналоговыми первыми каскадами цифрового мультиметра, является важным фактором, который необходимо устранить для достижения максимальной точности.
Блок-схема работы цифрового мультиметра
Основным измерением является измерение напряжения: аналого-цифровой преобразователь преобразует аналоговое напряжение в цифровой формат, чтобы его можно было обработать схемой обработки.
Для измерения больших напряжений на входе АЦП могут быть выполнены делители напряжения. Это может привести к тому, что входное напряжение попадет в диапазон АЦП.
Аналогичным образом можно измерить ток, отслеживая напряжение на известном резисторе.
Таким образом, в цифровом мультиметре используются методы измерения, очень похожие на методы измерения аналогового измерителя, в которых используются последовательные резисторы и параллельные шунты.
Для измерения сопротивления требуется несколько иной подход, часто измеряя напряжение на резисторе через известное сопротивление из стабилизированного напряжения в измерителе.
Еще одним элементом цифрового мультиметра является дисплей. Вместо аналогового панельного измерителя в цифровых мультиметрах используется цифровой дисплей. Обычно это жидкокристаллический дисплей, поэтому будьте осторожны при использовании его на улице, если становится холодно, так как жидкокристаллические дисплеи не работают при температуре ниже 0°C.
Обычно дисплеи относительно большие, и все цифры можно легко увидеть. В темноте цифры могут быть труднее увидеть, но некоторые цифровые мультиметры имеют подсветку, обеспечивающую дополнительный свет в этих обстоятельствах.
Время измерения
Одна из ключевых областей понимания работы цифрового мультиметра связана со временем измерения. Помимо основного измерения, есть ряд других необходимых функций, и все они требуют немного времени. Соответственно, время измерения цифрового мультиметра, DMM, не всегда может показаться простым.
Всегда лучше дать цифровому мультиметру время для стабилизации, хотя в большинстве случаев скорость, с которой выполняются измерения, очень высока и не будет беспокоить ручного пользователя. Если используются цифровые мультиметры с компьютерным управлением, для этого может потребоваться добавить в программу немного дополнительного времени. Эти автоматические цифровые мультиметры, как правило, представляют собой настольные коробки, а не ручные ручные.
Общее время измерения для цифрового мультиметра состоит из нескольких фаз, на которых выполняются различные действия:
Время переключения: Время переключения — это время, необходимое прибору для стабилизации после переключения входа. Сюда входит время установления после изменения типа измерения, т.е. от напряжения до сопротивления и т. д. Он также включает время установления после изменения диапазона. Если автоматическое определение диапазона включено, измеритель должен будет выполнить настройку, если требуется изменение диапазона.
Время установления: После того как измеряемое значение будет применено к входу, для его установления потребуется определенное время.
Это позволит преодолеть любые уровни входной емкости при проведении испытаний с высоким импедансом или, как правило, для стабилизации схемы и прибора.
Часто можно увидеть, что счетчик показывает окончательные показания. Это не является чем-то необычным, и необходимо дать время, чтобы счетчик установился и были получены устойчивые показания.
Время измерения сигнала: Это базовое время, необходимое для проведения самого измерения. Для измерений переменного тока необходимо учитывать рабочую частоту, поскольку минимальное время измерения сигнала основано на минимальной частоте, необходимой для измерения. Например, для минимальной частоты 50 Гц требуется апертура, в четыре раза превышающая период, т. е. 80 мс для сигнала 50 Гц или 67 мс для сигнала 60 Гц и т. д.
Время автоматического обнуления: Некоторые цифровые счетчики, как правило, цифровые мультиметры более высокого уровня, имеют функцию, известную как автоматическое определение диапазона.
При использовании в этом режиме необходимо только выбрать тип проводимого измерения: ампер постоянного тока, ампер переменного тока; напряжение постоянного тока; Напряжение переменного тока и т. д. Помимо этого, измеритель самостоятельно установит диапазон в соответствии с входным напряжением.
При выборе автоматического выбора диапазона или изменении диапазона необходимо обнулить счетчик для обеспечения точности. Как только выбран правильный диапазон, автообнуление выполняется для этого диапазона. Хотя обычно он довольно короткий, в некоторых случаях его можно заметить.
Время калибровки АЦП: В некоторых цифровых мультиметрах периодически выполняется калибровка. Это необходимо учитывать, особенно если измерения проводятся под автоматическим или компьютерным управлением.
Концепция работы цифрового мультиметра относительно проста, но можно понять, что измерение переменных сигналов или прерывистых напряжений может дать необычные результаты.