Как рассчитать циркуляционный насос на отопление: Калькулятор подбора циркуляционного насоса — интернет-магазин Belamos.pro

подбор по напору и расходу, формулы, примеры

  1. Сферы использования циркуляционных насосов
  2. Для чего необходимо выполнять расчет
  3. Как правильно рассчитать производительность насоса
  4. Как рассчитать гидравлические потери отопительной системы
  5. Как выбрать циркуляционный насос по количеству скоростей

Большинство автономных систем отопления, которые используются для обогрева загородных домов и дач, сегодня оснащаются циркуляционными насосами. Чтобы при установке такой гидравлической машины добиться требуемых результатов, необходимо выполнить предварительный расчет циркуляционного насоса для системы отопления и, основываясь на полученных значениях, выбрать насосное оборудование с соответствующими характеристиками.

Грамотный подбор циркуляционного насоса обеспечит эффективную работу отопительной системы и позволит избежать лишних затрат

Сферы использования циркуляционных насосов

Главная задача циркуляционного насоса состоит в том, чтобы улучшить циркуляцию теплоносителя по элементам отопительной системы.

Проблема поступления в радиаторы отопления уже остывшей воды хорошо знакома жильцам верхних этажей многоквартирных домов. Связаны подобные ситуации с тем, что теплоноситель в таких системах перемещается очень медленно и успевает остыть, пока достигнет участков отопительного контура, находящихся на значительном отдалении.

При эксплуатации в загородных домах автономных систем отопления, циркуляция воды в которых осуществляется естественным путем, тоже можно столкнуться с проблемой, когда радиаторы, установленные в самых дальних точках контура, еле нагреваются. Это также является следствием недостаточного давления теплоносителя и его медленного движения по трубопроводу. Избежать подобных ситуаций как в многоквартирных, так и в частных домах позволяет установка циркуляционного насосного оборудования. Принудительно создавая в трубопроводе требуемое давление, такие насосы обеспечивают высокую скорость движения нагретой воды даже к самым отдаленным элементам системы отопления.

Насос повышает эффективность действующего отопления и позволяет совершенствовать систему, добавляя дополнительные радиаторы или элементы автоматики

Свою эффективность системы отопления с естественной циркуляцией жидкости, переносящей тепловую энергию, проявляют в тех случаях, когда их используют для обогрева домов небольшой площади. Однако, если оснастить такие системы циркуляционным насосом, можно не только повысить эффективность их использования, но и сэкономить на отоплении, снизив количество потребляемого котлом энергоносителя.

По своему конструктивному исполнению циркуляционный насос представляет собой мотор, вал которого передает вращение ротору. На роторе устанавливается колесо с лопатками – крыльчатка. Вращаясь внутри рабочей камеры насоса, крыльчатка выталкивает поступающую в нее нагретую жидкость в нагнетательную магистраль, формируя поток теплоносителя с требуемым давлением. Современные модели циркуляционных насосов могут работать в нескольких режимах, создавая в системах отопления различное давление перемещающегося по ним теплоносителя. Такая опция позволяет быстро прогреть дом при наступлении холодов, запустив насос на максимальную мощность, а затем, когда во всем здании сформируется комфортная температура воздуха, переключить устройство на экономичный режим работы.

Устройство циркуляционного насоса для отопления

Все циркуляционные насосы, используемые для оснащения систем отопления, делятся на две большие категории: устройства с «мокрым» и «сухим» ротором. В насосах первого типа все элементы ротора постоянно находятся в среде теплоносителя, а в устройствах с «сухим» ротором только часть таких элементов контактирует с перекачиваемой средой. Большей мощностью и более высоким КПД отличаются насосы с «сухим» ротором, но они сильно шумят в процессе работы, чего не скажешь об устройствах с «мокрым» ротором, которые издают минимальное количество шума.

Для чего необходимо выполнять расчет

Циркуляционный насос, установленный в системе отопления, должен эффективно решать две основные задачи:

  1. создавать в трубопроводе такой напор жидкости, который будет в состоянии преодолеть гидравлическое сопротивление в элементах отопительной системы;
  2. обеспечивать постоянное движение требуемого количества теплоносителя через все элементы отопительной системы.
Чтобы циркуляционный насос был в состоянии справляться с решением вышеперечисленных задач, выбирать такое устройство следует только после того, как будет сделан расчет отопления.

При выполнении такого расчета учитывают два основных параметра:

  • общую потребность здания в тепловой энергии;
  • суммарное гидравлическое сопротивление всех элементов создаваемой отопительной системы.

Таблица 1. Тепловая мощность для различных помещений

После определения данных параметров уже можно выполнить расчет центробежного насоса и, основываясь на полученных значениях, выбрать циркуляционный насос с соответствующими техническими характеристиками. Подобранный таким образом насос будет не только обеспечивать требуемое давление теплоносителя и его постоянную циркуляцию, но и работать без чрезмерных нагрузок, которые могут стать причиной быстрого выхода устройства из строя.

Как правильно рассчитать производительность насоса

Такой важный параметр циркуляционного насоса, как его производительность, указывает на то, какое количество теплоносителя он может переместить за единицу времени.

Расчет производительности циркуляционного насоса, которая обозначается буквой Q, выполняется по следующей формуле:

Q = 0,86R/TF–TR.

Параметры, которые используются в данной формуле, указаны в таблице.

Таблица 2. Параметры теплоносителя для расчета производительности насоса

Потребность помещений дома в количестве тепла для их обогрева, которая обозначается буквой R, определяется в зависимости от климатических условий местности, в которой такой дом расположен. Так, для домов, которые эксплуатируются в условиях европейского климата, выбирают следующие значения данного параметра:

  • частные дома небольшой и средней площади – 100 кВт на 1 м2;
  • многоквартирные дома – 70 кВт на 1 м2 площади их помещения.

В том случае, если расчет производительности насоса для отопления выполняется для зданий с низкими теплоизоляционными характеристиками, значение тепловой мощности, подставляемое в формулу, следует увеличить.

Для производственных помещений, а также помещений, расположенных в зданиях с хорошей теплоизоляцией, значение параметра R принимают равным 30–50 кВт/м2.

Как рассчитать гидравлические потери отопительной системы

На выбор циркуляционного насоса по его мощности и создаваемому им напору, как уже говорилось выше, оказывает влияние и такой важный параметр отопительной системы, как гидравлическое сопротивление, которое создают все элементы ее оснащения. Зная гидравлическое сопротивление, создаваемое отдельными элементами отопительной системы, можно рассчитать высоту всасывания насоса и, руководствуясь таким параметром, подобрать модель оборудования по мощности и создаваемому напору. Для расчета высоты всасывания насоса, которая обозначается буквой H, нужна следующая формула:

H = 1,3x(R1L1+R2L2+Z1……..Zn)/10000.

Параметры, используемые в данной формуле, указаны в таблице.

Таблица 3. Параметры для расчета высоты всасывания

Значения R1 и R2, используемые в данной формуле, следует выбирать по специальной информационной таблице.

Значения гидравлического сопротивления, создаваемого различными устройствами, которые применяются для оснащения систем отопления, обычно указываются в технической документации на них. Если таких данных в паспорте на устройство нет, то можно воспользоваться приблизительными значениями гидравлического сопротивления:

  • отопительный котел – 1000–2000 Па;
  • сантехнический смеситель – 2000–4000 Па;
  • термоклапан – 5000–10000 Па;
  • прибор для определения количества тепла – 1000–1500 Па.

Существуют специальные информационные таблицы, по которым можно определить гидравлическое сопротивление практически для любого элемента оснащения отопительных систем.

Зная высоту всасывания, для расчета которой используется вышеуказанная формула, можно оптимально выбрать насосное оборудование по его мощности, а также определить, каким должен быть напор насоса.

Как выбрать циркуляционный насос по количеству скоростей

Обычно современные модели циркуляционных насосов оснащаются регулирующим механизмом, позволяющим изменять скорость их работы. Используя такой механизм, имеющий, как правило, три ступени регулировки, можно настраивать насос по расходу жидкости, подаваемой в систему отопления. Так, при резком похолодании на улице и, соответственно, в доме, насос можно включать на максимальную скорость работы, а при потеплении выбирать другой режим.

Элементом управления, при помощи которого изменяют скорость работы циркуляционного насоса, выступает рычаг на корпусе устройства. Отдельные модели циркуляционных насосов оснащаются системой авторегулирования скорости их работы, которая изменяется в зависимости от температурного режима в помещении.

Насос Wilo-Stratos с автоматической регулировкой мощности

Приведенная выше методика – это только один пример выполнения расчетов, которые необходимы для того, чтобы выбрать циркуляционный насос для теплого пола или системы отопления.

Специалисты, занимающиеся системами отопления, используют различные методики расчета напора насоса (а также производительности и других параметров таких устройств), позволяющие подбирать такое оборудование по его мощности и создаваемому давлению. Во многих случаях собственнику дома, в котором необходимо смонтировать отопительную систему, можно даже не задаваться вопросами о том, как рассчитать мощность насоса и как подобрать насосное оборудование. Многие производители предоставляют услуги квалифицированных специалистов или предлагают воспользоваться онлайн-сервисами по расчету параметров циркуляционного насоса и его выбору для систем отопления или теплого пола.

Выбирая мощность циркуляционного насоса, следует принимать во внимание, что все предварительные расчеты выполняют, исходя из значений максимальных нагрузок, которые такое оборудование может испытывать в процессе эксплуатации.

В реальных условиях эксплуатации такие нагрузки будут ниже, что даст вам возможность сделать выбор насоса, технические характеристики которого несколько ниже рассчитанных. Выбор менее мощного насоса при таком подходе не отразится на эффективности его использования в системе отопления. В том случае, если мощность насоса, который вы выбрали, значительно выше значений, полученных при расчете, это не улучшит работу отопительной системы, но при этом увеличит ваши расходы на оплату электроэнергии.

Помочь сделать выбор циркуляционного насоса из нескольких моделей по их напорно-расходным характеристикам и скорости работы помогает специальный график. При построении такого графика используются реальные значения напора и расхода, необходимые для нормального функционирования системы отопления, а также значения, которые соответствуют конкретным моделям насосного оборудования, работающего на различных скоростях. Чем ближе точки, расположенные на двух графиках, тем больше подходит насос для его использования в системе отопления.

Расчет циркуляционного насоса для системы отопления

Казалось бы, в чем проблема выбрать циркуляционный насос для отопления? Но на практике это оказывается действительно проблема. Приходишь в магазин просишь помочь в подборе циркуляционного насоса.

В ответ слышишь либо рекламу фирмы производителя, либо ряд технических вопросов про объем системы отопления, гидравлический расчет и т.д. В результате либо так и не удается выбрать циркуляционный насос, либо приобретается заведомо более мощный и дорогой чем требуется.

Мощный циркуляционный насос для отопления, безусловно, хорошо, да и переплата не очень уж и значительная. Но такой подход как минимум просто не рационален, а как максимум вызовет различные проблемы при эксплуатации. К примеру, повышенная скорость теплоносителя вызывает значительный шум системы отопления, что для жилого помещения очень не хорошо.

И так попробуем разобраться, как же правильно подбирать циркуляционный насос для отопления, что бы избежать пусть и не критичных, но достаточно не приятных последствий неправильного выбора.

Вначале разберемся в назначении циркуляционного насоса и его основных характеристиках. Задача циркуляционного насоса для отопления состоит в том, что бы осуществлять прокачку теплоносителя через всю систему отопления. При этом у насоса есть две основные характеристики: подача и напор.

Расчет подачи и напора циркуляционного насоса.

Подача или производительность циркуляционного насоса характеризует количество прокачиваемого теплоносителя в единицу времени и измеряется м3/ч. Чем больше подача, тем больший объем теплоносителя сможет прокачать циркуляционный насос.

Другими словами подача циркуляционного насоса влияет на объем теплоносителя, который обеспечивает достаточный перенос тепла от элемента нагревания до радиатора отопления. Если подача не достаточна, то радиаторы отопления не будут достаточно нагреваться и в помещении будет холодно. Если подача избыточна, то теплоноситель не будет успевать остывать в системе и тем самым возрастут расходы на отопление, за счет избыточного подогрева теплоносителя.

Расчет необходимой подачи циркуляционного насоса осуществляется по формуле:

V=(Sопп×Qуд)/(1,16×?T)

V – подача циркуляционного насоса, м3/ч.
Sопп – полезная площадь отапливаемого помещения, м2.

Qуд – удельная теплопотребность зданий, Вт/м2. Определяется расчетным путем в зависимости от климатических факторов и конструкции здания. Для упрощения принимают, что Qуд для одиночных зданий 100Вт/м2.
?T – разница между температурой теплоносителя выходящего из отопительного котла и температурой теплоносителя входящего в кател. Для систем автономного отопления эта величина составляет 15…20 °С.

Напор фактически это величина гидравлического сопротивления системы отопления, которое может преодолеть циркуляционный насос. Дело в том, что каждый элемент системы отопления радиаторы отопления, краны и винтили, переходники, трубы создают гидравлическое сопротивление, т.е. препятствуют движению теплоносителя. Для того что бы через систему циркуляционный насос смог прокачать теплоноситель при этом с заданной скоростью необходимо что бы напор был больше, чем общее гидравлическое сопротивление системы.

Соответственно если напор не достаточен, то циркуляционный насос не справится со своей задачей. Если же напор избыточен, то скорость движения теплоносителя может достигнуть критического значения, при котором появится шум в системе отопления, что для жилого помещения крайне не желательно.

Полный расчет гидравлического сопротивления системы отопления не сложная, но трудоемкая задача. Поэтому для подбора циркуляционного насоса, особенно если система отопления уже смонтирована можно использовать приближенные вычисления.

Методика расчета напора циркуляционного насоса базируется на определении всех гидравлических сопротивлений в наиболее удаленном нагруженном контуре.

Вообще (упрощенно) гидравлическое сопротивление зависит от скорости протекания теплоносителя и диаметра трубопровода. Поэтому для определения гидравлических потерь задаются оптимальной скоростью движения теплоносителя для металлических труб 0,3…0,5 м/с, для полимерных 0,5…0,7 м/с. При такой скорости движения теплоносителя гидравлическое сопротивление на прямолинейных участках трубопровода будет составлять 100…150 Па/м, в зависимости от диаметра труб, чем труба толще, тем потери меньше.

Потери давления на местных сопротивлениях определяются по формуле:

Z=∑ζ×V2×ρ/2

ζ – коэффициент местных потерь. Как правило, для определенных типов деталей (муфт, кранов и т.д.) у различных производителей примерно одинаковы. Поэтому без труда можно найти эти характеристики на сайтах производителей трубопроводов и запорной арматуры.
V – скорость движения теплоносителя, м/с.
ρ – плотность теплоносителя.

Далее суммируются величины всех местных сопротивлений и величины сопротивлений прямолинейных участков. Полученная величина будет минимально допустимым напором. Если система сильно разветвленная, то следует провести расчет для каждой ветки системы отопления.

Выбор циркуляционного насоса.

Циркуляционные насосы бывают двух видов со ступенчатым регулирования мощности и сплавным регулированием. Циркуляционные насосы с плавным регулированием обычно применяются с системой автоматики. Насосы со ступенчатым регулированием нашли наиболее широкое применение в частном строительстве. Рассмотрим, как же выбрать циркуляционный насос со ступенчатым регулированием скорости вращения ротора.

Для этого ранее мы определили подачу и напор. Задача выбора циркуляционного насоса сводится к тому, что бы он полностью обеспечивал расчетные параметры нашей системы отопления на средней скорости вращения, что бы обеспечить запас мощности насоса. Тем самым насос не будет перегружен и прослужит значительно дольше, а система отопления будет работать бесперебойно и эффективно.

В случае если вы не хотите разбираться в формулах, обращайтесь к нашим менеджерам и они подберут правильный насос для вашей системы отопления.

8 800 511 47 48 бесплатно для РФ
+7 499 899 08 71
WhatsApp +7 919 231 04 32

Как подобрать циркуляционный насос?

Перейти к содержимому

Предыдущий Следующий

Как подобрать циркуляционный насос?

Установить циркуляционный насос на систему горячего водоснабжения несложно, но вы должны знать, как правильно подобрать размер насоса. Приобретение самого большого насоса может быть неправильным решением, если у вас небольшая система горячего водоснабжения, но слишком маленький насос может вызвать много проблем с получением горячей воды из вашей системы. Циркуляционные насосы хорошо работают с солнечными панелями или с другими видами экологически чистого отопления, поэтому, если у вас есть какая-либо система горячего водоснабжения, установка одного из них может помочь ей функционировать как обычная система горячего водоснабжения. Прежде чем купить циркуляционный насос, вам нужно определить размер насоса, который вам нужен, чтобы соответствовать типу вашего нагревателя.

Шаг 1. Рассчитайте свои потребности

Первое, что вам нужно будет учесть, это то, какую нагрузку вы будете оказывать на циркуляционный насос. Большая семья будет запускать помпу чаще, чем пара или один человек. Лучший способ определить, как часто вы будете пользоваться насосом, — это подсчитать количество раз, когда горячая вода использовалась в течение одного дня. Каждый раз, когда резервуар требуется для распределения воды, насос будет работать. Это даст вам хороший расчет того, насколько большим должен быть ваш насос.

Этап 2. Проверка давления на утечку воздуха

Прежде чем приступать к установке насоса, необходимо проверить дом на предмет утечки воздуха. За небольшую плату это может сделать профессионал, и лучше всего это сделать у эксперта, чтобы вы получили точный результат. Запишите результаты этого теста и включите их в расчет потребности, который вы выполнили. Количество утечек воздуха, которое вы получаете, будет ограничивать количество горячей воды, которая достигает ваших кранов, поэтому вы должны добавить это количество к вашему общему использованию, чтобы получить точное отражение того, сколько горячей воды вы используете.

Шаг 3. Проведите измерения

Измерьте площадь рядом с резервуаром. Измерьте диаметр труб, которые будут соединять ваш резервуар с насосом, а также рассчитайте количество воды, которое будет проходить к насосу в любой момент времени. Сделайте это, удалив часть трубы, где вы установите насос, и пропустите через трубу горячую воду. Измерьте в течение минуты.

Этап 4. Рассчитайте свои потребности

Циркуляционные насосы должны быть рассчитаны на примерно 60 процентов отопительной нагрузки, рассчитанной вами, включая потребности в воде, утечки и давление. Установка насоса для управления такой нагрузкой должна дать вам 90-95 процентов потребности в горячей воде для вашего дома. Отнесите эти измерения вашему поставщику насоса, и это должно позволить ему рассчитать правильную мощность для нужд вашего двигателя.

  • ГЭК бытовой
  • ГЭК бытовой


Высокоэффективные циркуляционные насосы, предназначенные для систем отопления. Применяется в качестве универсального апгрейда и сменного насоса. Насосы изготавливаются из различных материалов, что делает их подходящими для различных областей применения.


Flow max
Head max
Liquid temperature
Pressure max

3. 7 m 3 /h
7m
2.. 110°C
10 bar

VIEW

  • HET Domestic
  • HET Бытовой


Высокоэффективные циркуляционные насосы. Насос оснащен функцией AUTO, которая автоматически настраивает насос в соответствии с требованиями системы для обеспечения оптимального комфорта и минимального энергопотребления, а также простоты ввода в эксплуатацию.


Flow max
Head max
Liquid temperature
Pressure max

3.7 m 3 /h
7m
2.. 110°C
10 bar

VIEW

  • HEC ​​Commercial
  • HEC Commercial


Высокоэффективный циркуляционный насос для коммерческих зданий. Интуитивно понятный пользовательский интерфейс, особенно подходящий для замены старых циркуляционных насосов. Режим ECO автоматически регулирует насос в соответствии с потребностью в нагреве.


Flow max
Head max
Liquid temperature
Pressure max

10.8 m 3 /h
10m
2.. 110°C
10 bar

VIEW

  • HE Domestic PWM
  • HE Внутренний PWM


Высокоэффективные циркуляционные насосы компактной конструкции, подходящие для всех применений HVAC, от котлов и тепловых насосов до систем тепловых интерфейсов (HIU). Он управляется всеми основными функциями, а также функцией PWM для дистанционного управления.


Flow max
Head max
Liquid temperature
Pressure max

4.0 m 3 /h
8m
2.. 110°C
10 bar

VIEW

  • Gas Boiler Pump
  • Насос газового котла


Циркуляционные насосы OEM подходят для настенных газовых котлов мировых брендов, таких как Vaillant, Viessmann, Bosch, Italtherm. Благодаря отличной совместимости, это лучший выбор для замены старого циркуляционного насоса в газовых котлах. Также доступен высокоэффективный тип.


Flow max
Head max
Liquid temperature
Pressure max

2.3 m 3 /h
7m
2.. 95°C
3 bar

VIEW

  • LE Domestic
  • LE Бытовые


Предназначены для систем отопления, горячего водоснабжения, охлаждения и кондиционирования воздуха. Насосы изготавливаются из различных материалов, что делает их подходящими для различных областей применения. Надежный и не требующий обслуживания. Нет шума.


Макс. расход
Макс. напор
Температура жидкости
Макс. давление

9,6 м 3
15 м
2.. 110°C
10 бар

ВИД пластпамп2021-07-07T07:54:17+00:00

Перейти к началу

Для определения размера циркулятора требуется немного математики

Словарь определяет систему как группу взаимодействующих, взаимосвязанных или взаимозависимых элементов, образующих сложное целое. При проектировании и установке водяной системы отопления мы фактически создаем группу элементов, которые взаимодействуют, взаимосвязаны и взаимозависимы, и они образуют очень сложное целое, предназначенное для обеспечения комфорта людей при минимальном потреблении энергии. Относительный успех или провал системы зависит от того, насколько хорошо эти элементы работают вместе для выполнения заявленной функции системы. Определение гидроники — это наука о передаче определенного количества БТЕ от источника к устройству теплопередачи и обратно посредством движения воды или ее раствора. Ключевым компонентом современной гидравлической системы является циркуляционный насос, и его основная функция заключается в перемещении нагретой воды (BTU / HR) через распределительную систему (радиаторы) и обратно.

Важно помнить, что при расчете циркуляционного насоса не нужно учитывать высоту здания. Физическая высота здания НЕ равна ногам головы. Частью определения циркуляционного насоса в отличие от насоса является тот факт, что мы находимся в системе с замкнутым контуром по сравнению с открытой системой, которая должна преодолевать статический напор, а также падение давления. Примерами этого может быть колодец или система водоотливных насосов. Циркуляционному насосу не нужно поднимать воду на вершину здания, потому что то, что поднимается, должно опускаться. Циркуляционному насосу не нужно поднимать воду на верхние этажи – вес воды, возвращающейся обратно по обратной стороне, является противовесом. Думайте о циркуляторе как о двигателе на колесе обозрения. Мотору не нужно поднимать вес людей — люди с другой стороны колеса возвращаются вниз. Все, что нужно сделать, это преодолеть потери на трение подшипниковых узлов в колесе. Циркуляционному насосу не нужно поднимать воду — ему нужно только компенсировать потери на трение — или потери напора — в системе.

Все трубопроводные системы создают потери на трение жидкости в системе, и понимание этого является ключом к правильному функционированию вашей гидравлической системы. Если заняться математикой, рассчитать требуемый расход для циркулятора довольно просто — это элементарная арифметика. Расчет «другой» половины — напора (или потерь на трение) — немного сложнее. Используйте формулу Universal Hydronics, чтобы определить, на какой расход должен быть рассчитан циркуляционный насос.

гал/мин = BTUH ÷ ΔT x 500

GPM — это галлоны в минуту. BTUH — расчетная нагрузка системы. ΔT — это разница температур в системе при проектных условиях, и мы используем 20 ° F для наших систем. 500 — это константа — это вес галлона воды (8,33 фунта), умноженный на 60 минут. Когда мы определили нагрузку системы, все, что нам нужно сделать, это разделить на 10 000 (20 x 500), и у нас есть требования к GPM для циркуляционного насоса. В качестве примера предположим, что мы зонируем с помощью циркуляционных насосов и имеем зону плинтуса мощностью 30 000 БТЕ или 50 футов элемента. Когда мы делим 30 000 на 10 000, мы определяем скорость потока 3 галлона в минуту.

Выбор размера трубы

Какой размер трубы мы должны использовать для этой зоны? Что ж, рекомендации по размеру трубы следующие: 

  • Расход от 2 до 4 галлонов в минуту, используйте медь ¾” M;

  • от 4 до 8 галлонов в минуту, используйте 1 дюйм;

  • От 8 до 14 галлонов в минуту, используйте дюйм с четвертью;

  • От 14 до 22 галлонов в минуту, используйте полтора дюйма.

Все они соответствуют рекомендациям гидравлики по размеру трубы и поддержанию скорости потока на уровне не менее 2 футов в секунду и не более 4 футов в секунду. При скоростях более 4 футов в секунду система будет производить шум скорости и жалобы клиентов. При скоростях ниже 2 футов в секунду растворенный кислород будет выходить из раствора и вызывать проблемы с воздухом в системе.

Чтобы определить потери напора в зоне, начните с измерения общей длины зоны, включая элемент. В этом случае у нас есть 80 футов трубы диаметром ¾ дюйма, соединенных с 50-футовым элементом, что в сумме составляет 130 футов. Теперь умножьте полученное значение на 1,5, чтобы учесть фитинги, клапаны и т. д. Фитинги и клапаны создают перепад давления в системе, который эквивалентен нескольким футам трубы каждый, поэтому умножение на 1,5 учитывает большинство основных фитингов и клапанов.

Если в вашей системе есть элементы с высоким напором, такие как обратные клапаны или 3-ходовые клапаны, позже вам придется добавить еще немного напора. Теперь у вас есть полная развернутая эквивалентная длина цепи, и вы умножаете ее на 0,04. Это число соответствует 4 футам напора на 100 футов медной трубы. Это значение напора применяется до тех пор, пока размер трубы соответствует рекомендациям по скорости, показанным в предыдущем абзаце. Конечным продуктом является потеря напора для зоны. 120 х 1,5 х 0,04 = 7,2 фута головы. Теперь мы должны найти циркуляционный насос, который будет подавать 3 галлона в минуту при напоре 7,2 фута.

Посмотреть таблицу в формате PDF здесь

Если мы посмотрим на график производительности серии Taco «00», мы сможем определить, какой циркуляционный насос следует использовать для этой зоны. Пока точка, в которой работает система, находится внутри или на линии, где работает насос, вы можете быть уверены, что насос будет подавать в зону тепло нужной температуры. Если эта точка выходит за пределы кривой насоса, ваш насос не сможет обеспечить максимальное количество БТЕ, необходимое для расчетных условий.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *