Калькулятор расчета мощности насоса для скважины: погружные, поверхностные
В загородных домах подключиться к центральному водопроводу практически невозможно. Что же делать? Проводить собственную систему подачи воды, делать колодец или скважину. Второй вариант более удобный, но требует решения массы различных вопросов.
Как подобрать глубинный насос для скважины?
Благодаря нашим онлайн – калькуляторам расчета мощности насоса для скважин, можно за несколько минут решить заданный вопрос, учитывая несколько параметром для определения точности полученного ответа. Это будет справедливо для погружных и поверхностных насосов для скважин.
Параметры скважины:
- глубину;
- качество воды;
- объем воды, перекаченный за единицу времени;
- расстояние от уровня воды до поверхности грунта;
- диаметр трубы;
- ежедневный объем использованной жидкости.
Да, это дело очень хлопотное, требует точных инженерных подходов, а также исследование многих формул расчета мощности погружных и поверхностных насосов и таблиц, которые помогут точно определиться с необходимыми показателями.
Самостоятельный расчет мощности насоса
Как без профессиональной помощи подобрать насос для скважины по параметрам агрегата? Это возможно, в первую очередь, следует учитывать напор и расход скважины. Расход – объем воды за определенное количество времени, а напор – высота в метрах, на которую насос способен подавать воду.
Чтобы рассчитать мощность насоса для скважины необходимо взять средний показатель, норма воды на человека в сутки 1 кубометр, после умножить это число на количество проживающих людей в доме.
Пример расчета расчета мощности наноса для небольшого дома:
Вот и получается, семья из трех человек расходует 22 л в минуту, но следует учитывать и форс-мажорные обстоятельства, что увеличит потребность воды на человека. Потому некий средний показатель будет 2м кубических в сутки. Получается: 5 м кубических – ежедневный расход воды.
Далее определяется максимальная характеристика напора насоса, для этого высота дома в метрах увеличивается на 6 м и умножается на коэффициент потери напора в автономной системе водопровода, а это 1, 15.
Если идет расчет высоты на 9-метров дома, то делаем операцию расчета мощности наноса по формуле вот так: (9+6)*1.15=17,25. Это минимальная характеристика, теперь к расчетному напору нужно прибавить расстояние от зеркала воды в скважине до поверхности земли. Пусть будет число 40. Что получается? 40+17,25=57,25. Если источник водоснабжения находится от дома на 50 метров, то насос должен обладать силой напора: 57,25+5=62,25 метров.
Вот такая самостоятельная формула расчета мощности насоса для скважины в квт. Точно такие же цифры можно получить при онлайн расчете, с помощью несложной таблицы, в которую потребитель должен вписать данные про глубину скважины, зеркало воды, площадь участка, число проживающих людей в доме, а также предоставить дополнительную информацию о количестве душевых кабинок, раковин, ванной комнаты, умывальника, наличии стиральной машины, посудомойки и унитаза.
Расчеты делаются за один клик мышки. Они являются достоверными и актуальными на период действия полученных данных от потребителя.
Калькулятор расчёта мощности насоса для скважины
Советы специалистов по эксплуатации насосов
Что же еще нужно знать человеку, дабы качественно установить систему водоснабжения в доме? Насосы бывают нескольких типов: погружные, поверхностные, в виде станций.
- Поверхностные – имеют невысокую стоимость, рассчитаны на работу без погружения в жидкость. Рекомендованы для работы до 7 метров, в противном случае вода будет грязной и некачественной.
- Погружные – центробежные, надежные и производительные, помогают эффективно очистить воду от песка. На сегодняшний день это самые популярные и востребованные модели. Винтовые – работают не только в домашних условиях, но и в открытых водоемах.
- Насосные станции.
Важно:
недопустимо экономить на мощности насоса, таким образом, автономная система не сможет качественно промывать фильтры очистки, запуская дом грязную воду. Также нужно учитывать, что некоторые производители в паспорте изделия указывают максимальные характеристики товара, а нужно обращать внимание на номинальные параметры – рабочие, дабы производительность была в норме, без подводных камней и других неприятностей.Перед тем как сделать расчет мощности насоса для скважины, нужно позаботиться о качестве системы труб, которые будут пропускать воду при определенном напоре. Это металлические и полипропиленовые изделия. Последние – гораздо чаще используются в быту, но имеют низкую устойчивость при перепадах температур и давлении в системе.
Внимание: насос выбирается на долгое время, а потому важно хорошо ознакомиться со всеми рынковыми предложениями, выбирая известные марки с наличием сервисных центров по ремонту и обслуживанию Вашей системы.
Делайте расчеты мощности погружного и поверхностного насоса для скважины на нашем сайте, и экономьте время при установке водонапорного агрегата.
Основные принципы подбора насосов. Расчет насосов
Пример №1
Плунжерный насос одинарного действия обеспечивает расход перекачиваемой среды 1 м3/ч. Диаметр плунжера составляет 10 см, а длинна хода – 24 см. Частота вращения рабочего вала составляет 40 об/мин.
Требуется найти объемный коэффициент полезного действия насоса.
Решение:
Площадь поперечного сечения плунжера :
F = (π·d²)/4 = (3,14·0,1²)/4 = 0,00785 м²2
Выразим коэффициент полезного действия из формулы расхода плунжерного насоса:
ηV = Q/(F·S·n) = 1/(0,00785·0,24·40) · 60/3600 = 0,88
Пример №2
Двухпоршневой насос двойного действия создает напор 160 м при перекачивании масла с плотностью 920 кг/м 3. Диаметр поршня составляет 8 см, диаметр штока – 1 см, а длинна хода поршня равна 16 см. Частота вращения рабочего вала составляет 85 об/мин. Необходимо рассчитать необходимую мощность электродвигателя (КПД насоса и электродвигателя принять 0,95, а установочный коэффициент 1,1).
Решение:
Площади попреречного сечения поршня и штока:
F = (3,14·0,08²)/4 = 0,005024 м²
F = (3,14·0,01²)/4 = 0,0000785 м²
Производительность насоса находится по формуле:
Q = N·(2F-f)·S·n = 2·(2·0,005024-0,0000785)·0,16·85/60 = 0,0045195 м³/час
Далее находим полезную мощность насоса:
NП = 920·9,81·0,0045195·160 = 6526,3 Вт
С учетом КПД и установочного коэффициента получаем итоговую установочную мощность:
NУСТ = 6526,3/(0,95·0,95)·1,1 = 7954,5 Вт = 7,95 кВт
Пример №3
Трехпоршневой насос перекачивет жидкость с плотностью 1080 кг/м
Решение:
Найдем создаваемый насосом напор из формулы полезной мощности:
H = NП/(ρ·g·Q) = 4000/(1080·9,81·2,2)·3600 = 617,8 м
Подставим найденное значение напора в формулу напора, выраженую через разность давлений, и найдем искомую величину:
hп = H — (p2-p1)/(ρ·g) — Hг = 617,8 — ((1,6-1)·105)/(1080·9,81) — 3,2 = 69,6 м
Пример №4
Реальная производительность винтового насоса составляет 1,6 м3/час. Геометрические характеристики насоса: эксцентриситет – 2 см; диаметр ротора – 7 см; шаг винтовой поверхности ротора – 14 см. Частота вращения ротора составляет 15 об/мин. Необходимо определить объемный коэффициент полезного действия насоса.
Решение:
Выразим искомую величину из формулы производительности винтового насоса:
ηV = Q/(4·e·D·T·n) = 1,6/(4·0,02·0,07·0,14·15) · 60/3600 = 0,85
Пример №5
Необходимо рассчитать напор, расход и полезную мощность центробежного насоса, перекачивающего жидкость (маловязкая) с плотностью 1020 кг/м3 из резервуара с избыточным давлением 1,2 бара а резервуар с избыточным давлением 2,5 бара по заданному трубопроводу с диаметром трубы 20 см. Общая длинна трубопровода (суммарно с эквивалентной длинной местных сопротивлений) составляет 78 метров (принять коэффициент трения равным 0,032). Разность высот резервуаров составляет 8 метров.
Решение:
Для маловязких сред выбираем оптимальную скорость движения в трубопроводе равной 2 м/с. Рассчитаем расход жидкости через заданный трубопровод:
Q = (π·d²) / 4·w = (3,14·0,2²) / 4·2 = 0,0628 м³/с
w²/(2·g) = 2²/(2·9,81) = 0,204 м
При соответствующем скоростном напоре потери на трение м местные сопротивления составят:
HТ = (λ·l)/dэ · [w²/(2g)] = (0,032·78)/0,2 · 0,204 = 2,54 м
Общий напор составит:
H = (p2-p1)/(ρ·g) + Hг + hп = ((2,5-1,2)·105)/(1020·9,81) + 8 + 2,54 = 23,53 м
Остается определить полезную мощность:
NП = ρ·g·Q·H = 1020·9,81·0,0628·23,53 = 14786 Вт
Пример №6
Целесообразна ли перекачка воды центробежным насосом с производительностью 50 м3/час по трубопроводу 150х4,5 мм?
Решение:
Рассчитаем скорость потока воды в трубопроводе:
Q = (π·d²)/4·w
w = (4·Q)/(π·d²) = (4·50)/(3,14·0,141²) · 1/3600 = 0,89 м/с
Для воды скорость потока в нагнетательном трубопроводе составляет 1,5 – 3 м/с. Получившееся значение скорости потока не попадает в данный интервал, из чего можно сделать вывод, что применение данного центробежного насоса нецелесообразно.
Пример №7
Определить коэффициент подачи шестеренчатого насоса. Геометрические характеристики насоса: площадь поперечного сечения пространства между зубьями шестерни 720 мм2; число зубьев 10; длинна зуба шестерни 38 мм. Частота вращения составляет 280 об/мин. Реальная подача шестеренчатого насоса составляет 1,8 м3/час.
Решение:
Теоретическая производительность насоса:
Q = 2·f·z·n·b = 2·720·10·0,38·280·1/(3600·106) = 0,0004256 м³/час
Коэффициент подачи соответственно равен:
ηV = 0,0004256/1,8·3600 = 0,85
Пример №8
Насос, имеющий КПД 0,78, перекачивает жидкость плотностью 1030 кг/м3 с расходом 132 м3/час. Создаваемый в трубопроводе напор равен 17,2 м. Насос приводится в действие электродвигателем с мощностью 9,5 кВт и КПД 0,95. Необходимо определить, удовлетворяет ли данный насос требованиям по пусковому моменту.
Решение:
Рассчитаем полезную мощность, идущую непосредственно на перекачивание среды:
NП = ρ·g·Q·H = 1030·9,81·132/3600·17,2 = 6372 Вт
Учтем коэффициенты полезного действия насоса и электродвигателя и определим полную необходимую мощность электродвигателя:
NД = NП/(ηН·ηД) = 6372/(0,78·0,95) = 8599 Вт
Поскольку нам известна установочная мощность двигателя, определим коэффициент запаса мощности электродвигателя:
β = NУ/NД = 9500/8599 = 1,105
Для двигателей с мощностью от 5 до 50 кВт рекомендуется выдирать пусковой запас мощности от 1,2 до 1,15. Полученное нами значение не попадает в данный интервал, из чего можно сделать вывод, что при эксплуатации данного насоса при заданных условиях могут возникнуть проблемы в момент его пуска.
Пример №9
Центробежный насос перекачивает жидкость плотностью 1130 кг/м3 из открытого резервуара в реактор с рабочим давлением 1,5 бар с расходом 5,6 м3/час. Геометрическая разница высот составляет 12 м, причем реактор расположен ниже резервуара. Потери напора на трение в трубах и местные сопротивления составляет 32,6 м. Требуется определить полезную мощность насоса.
Решение:
Рассчитаем напор, создаваемый насосом в трубопроводе:
H = (p2-p1)/(ρ·g) + Hг + hп = ((1,5-1)·105)/(1130·9,81) — 12 + 32,6 = 25,11 м
Полезная мощность насоса может быть найдена по формуле:
NП = ρ·g·Q·H = 1130·9,81·5,6/3600·25,11 = 433 Вт
Пример №10
Определить предельное повышение расхода насоса, перекачивающего воду (плотность принять равной 1000 кг/м3) из открытого резервуара в другой открытый резервуар с расходом 24 м3/час. Геометрическая высота подъема жидкости составляет 5 м. Вода перекачивается по трубам 40х5 мм. Мощность электродвигателя составляет 1 кВт. Общий КПД установки принять равным 0,83. Общие потери напора на трение в трубах и в местных сопротивлениях составляет 9,7 м.
Решение:
Определим максимальное значение расхода, соответствующее максимально возможной полезной мощности, развиваемой насосом. Для этого предварительно определим несколько промежуточных параметров.
Рассчитаем напор, необходимый для перекачивания воды:
H = (p2-p1)/(ρ·g) + Hг + hп = ((1-1)·105)/(1000·9,81) + 5 + 9,7 = 14,7 м
Полезная мощность, развиваемая насосом:
NП = Nобщ/ηН = 1000/0,83 = 1205 Вт
Значение максимального расхода найдем из формулы:
NП = ρ·g·Q·H
Найдем искомую величину:
Qмакс = NП/(ρ·g·H) = 1205/(1000·9,81·14,7) = 0,00836 м³/с
Расход воды может быть увеличен максимально в 1,254 раза без нарушения требований эксплуатации насоса.
Qмакс/Q = 0,00836/24·3600 = 1,254
Мощность насоса – как вычислить и по каким формулам рассчитать
Полезная мощность насоса – мощность, сообщаемая насосом подаваемой жидкой среде.
1. Определить мощность двигателя насоса при следующих данных Q = 50 м³/ч; H = 30 м; ηn = 0.5; nd = 1460 об/мин.
2. Определить мощность двигателя, напор насоса и производительность, если двигатель вращается с частотой 965 об/мин.
кВт,
где 3600 — коэффициент перевода производительности из м³/ч в м³/с.
2. При частоте вращения насоса nd = 965 об/мин мощность двигателя, напор насоса и производительность:
м³/ч.
Подробнее, о номинальных данных электрических машин, здесь.
Подобные расчеты Расчет мощности электродвигателя вентилятораРасчет мощности двигателя транспортераРасчет мощности двигателя для пилорамыОпределение мощности двигателя круглопильного станкаВыбор электродвигателей по номинальной мощности
Источник: В.И. Дьяков. Типовые расчеты по электрооборудованию.
Формулы, правила, законы, теоремы, уравнения, решение примеровТОЭЭлектрические машиныТеоретическая механикаВысшая математика
Источник: http://electrichelp.ru/raschet-moshhnosti-dvigatelya-nasosa/
Гидравлическая мощность и КПД центробежных насосов
Центробежный агрегат – гидравлический механизм, который активность от мотора превращает в энергию водяного потока.
Центробежная помпа включает в себя электрический привод и часть, выкачивающую воду. Мощность насоса, подводимая к его валу, и есть подводимой.
Гидравлическая мощность – следствие работы помпы в виде затраты и напора воды. Измеряется в кВт. Обозначается Р4.
Центробежная помпаИсточник https://iwt.com.uaКоэффициент полезного действия представляет из себя взаимосвязь полезной мощности и потребляемой. КПД насоса никак не сможет превысить единицу.
Потери мощности в помпе включают в себя несколько потерь – гидравлические, механические и объемные. КПД насоса показывает степень высокого качества как в гидравлическом, так и в механическом порядке.
Потери силы делятся на:
- гидравлические;
- механические;
- объемные.
Если проанализировать, почему происходят потери в помпе, можно найти решение, как повысить КПД насоса.
Источник: http://makipa.ru/stati/nasosy-obshhaya/moshhnost-nasosa-kak-vychislit-i-po-kakim-formulam-rasschitat/
Как выяснить показатель расхода насоса
Формула расчета выглядит так: Q=0,86R/TF-TR
Q – расход насоса в м.куб./ч;
R – тепловая мощность в кВт;
TF – температура теплоносителя в градусах Цельсия на входе в систему,
Схема расположения циркуляционного насоса отопления в системе
Три варианта расчета тепловой мощности
С определением показателя тепловой мощности (R) могут возникнуть трудности, поэтому лучше ориентироваться на общепринятые нормативы.
Вариант 1. В европейских странах принято учитывать такие показатели:
- 100 Вт/м.кв. – для частных домов небольшой площади;
- 70 Вт/м.кв. – для многоэтажек;
- 30-50 Вт/м.кв. – для производственных и хорошо утепленных жилых помещений.
Вариант 2. Европейские нормы хорошо подходят для регионов с мягким климатом. Однако в северных районах, где бывают сильные морозы, лучше ориентироваться на нормы СНиП 2.04.07-86 «Тепловые сети», в которых учтена наружная температура до -30 градусов Цельсия:
- 173-177 Вт/м.кв. – для небольших зданий, этажность которых не превышает двух;
- 97-101 Вт/м.кв. – для домов от 3-4 этажей.
Вариант 3. Ниже предложена таблица, по которой можно самостоятельно определить необходимую тепловую мощность с учетом назначения, степени износа и теплоизоляции здания.
Таблица: как определить нужную тепловую мощность
Формула и таблицы расчета гидравлического сопротивления
В трубах, запорной арматуре и любых других узлах системы отопления возникает вязкое трение, которое приводит к потерям удельной энергии. Это свойство систем называют гидравлическим сопротивлением. Различают трение по длине (в трубах) и местные гидравлические потери, связанные с наличием клапанов, поворотов, участков, где изменяется диаметр труб и т.п. Показатель гидравлического сопротивления обозначают латинской буквой «H» и измеряют в Па (паскалях).
Формула расчета: H=1,3*(R1L1+R2L2+Z1+Z2+….+ZN)/10000
R1, R2 обозначают потери давления (1 – на подаче, 2 – на обратке) в Па/м;
L1, L2 – длина трубопровода (1 – подающего, 2 – обратного) в м;
Z1, Z2, ZN – гидравлическое сопротивление узлов системы в Па.
Чтобы облегчить расчеты потерь давления (R), можно воспользоваться специальной таблицей, где учтены возможные диаметры труб и приведены дополнительные сведения.
Таблица для определения потерь давления
Усредненные данные по элементам системы
Гидравлическое сопротивление каждого элемента системы отопления приведено в технической документации. В идеале следует воспользоваться характеристиками, указанными производителями. При отсутствии паспортов изделий можно ориентироваться на примерные данные:
- котлы – 1-5 кПа;
- радиаторы – 0.5 кПа;
- вентили – 5-10 кПа;
- смесители – 2-4 кПа;
- тепломеры – 15-20 кПа;
- обратные клапаны– 5-10 кПа;
- регулирующие клапаны – 10-20 кПа.
Сведения о гидравлическом сопротивлении труб из различных материалов можно вычислить по таблице ниже.
Таблица потерь давления в трубах
Источник: http://mr-build.ru/newteplo/mosnost-nasosa.html
1 Исходные данные для расчёта рабочего колеса.
Рабочее
колесо является наиболее важным элементом
центробежного насоса. Если возникает
необходимость аналитического расчёта
насоса, как в нашем случае, то расчёт
ведётся с учётом геометрии ранее
спроектированных насосов с высокими
энергетическими показателями.
Для
расчёта рабочего колеса необходимо
знать подачу Q,
напор Н, частоту вращения n.
При проектировании пожарного насоса n
принимают равной 2900 об/мин, что обеспечивает
рациональную конструкцию колеса,
развивающего достаточно высокий напор.
При этом ограничения по частоте вращения,
связанные с опасностью кавитации,
отсутствуют, т. к. пожарные насосы на
судах работают с подпором.
Для
оценки максимально допустимой с точки
зрения кавитации частоты вращения
рабочего колеса осушительного и
балластного насоса используется
кавитационный коэффициент быстроходности
с,
предложенный С. С. Рудневым:
где:
n
— частота вращение вала насоса, об/мин;
Q
— подача насоса, м3/с;
hкр
— критический кавитационный запас в
метрах, который можно определить по
формуле:
где:
РA
— атмосферное давление, Па;
Рn
— давление насыщенных паров воды,
зависящее от температуры (табл. 5), Па;
HВД
— максимально допустимая высота всасывания
в метрах, определяемая по результатам
гидравлического расчёта сопротивления
приёмного трубопровода осушительной
или балластной системы;
Vвход
— скорость жидкости на входе в насос,
равная скорости в приёмном трубопроводе,
м/с;
с
— кавитационный коэффициент быстроходности,
который лежит в пределах:
—
для пожарных насосов 700÷800;
—
для осушительных и балластных 800÷1000.
По
известным величинам Q,
c,
hкр
определяется максимально допустимая
частота вращения вала насоса nmax:
Давление
насыщенных паров Таблица 5
t, | 5 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | |
Рn/g | 0,6 | 0,9 | 1,2 | 2,3 | 4,2 | 7,4 | 12,3 | 19,9 | 31,2 |
Значение
nmaxможет
быть использовано для расчёта рабочего
колеса насоса, если между двигателем и
насосом используется промежуточная
передача (редуктор, ременная или т.п.),
позволяющая набрать необходимое
передаточное число i.
Однако,
в большинстве случаев на судах используется
непосредственный привод насоса от
асинхронного двигателя, имеющего частоту
1450 или 2900 об/мин.
Отсюда,
если nmax
> 2900 об/мин, то выбирается n
= 2900 об/мин, что позволяет существенно
сократить габариты проектируемого
насоса. Если nmaxmax.
Источник: http://mr-build.ru/newteplo/mosnost-nasosa.html
Калькулятор расчета мощности насоса для скважины: погружные, поверхностные
В загородных домах подключиться к центральному водопроводу практически невозможно. Что же делать? Проводить собственную систему подачи воды, делать колодец или скважину. Второй вариант более удобный, но требует решения массы различных вопросов.
Как подобрать глубинный насос для скважины?
Благодаря нашим онлайн – калькуляторам расчета мощности насоса для скважин, можно за несколько минут решить заданный вопрос, учитывая несколько параметром для определения точности полученного ответа. Это будет справедливо для погружных и поверхностных насосов для скважин.
Параметры скважины:
- глубину;
- качество воды;
- объем воды, перекаченный за единицу времени;
- расстояние от уровня воды до поверхности грунта;
- диаметр трубы;
- ежедневный объем использованной жидкости.
Да, это дело очень хлопотное, требует точных инженерных подходов, а также исследование многих формул расчета мощности погружных и поверхностных насосов и таблиц, которые помогут точно определиться с необходимыми показателями.
Самостоятельный расчет мощности насоса
Как без профессиональной помощи подобрать насос для скважины по параметрам агрегата? Это возможно, в первую очередь, следует учитывать напор и расход скважины. Расход – объем воды за определенное количество времени, а напор – высота в метрах, на которую насос способен подавать воду.
Чтобы рассчитать мощность насоса для скважины необходимо взять средний показатель, норма воды на человека в сутки 1 кубометр, после умножить это число на количество проживающих людей в доме.
Пример расчета расчета мощности наноса для небольшого дома:
Вот и получается, семья из трех человек расходует 22 л в минуту, но следует учитывать и форс-мажорные обстоятельства, что увеличит потребность воды на человека. Потому некий средний показатель будет 2м кубических в сутки. Получается: 5 м кубических – ежедневный расход воды.
Далее определяется максимальная характеристика напора насоса, для этого высота дома в метрах увеличивается на 6 м и умножается на коэффициент потери напора в автономной системе водопровода, а это 1, 15.
Если идет расчет высоты на 9-метров дома, то делаем операцию расчета мощности наноса по формуле вот так: (9+6)*1.15=17,25.
Это минимальная характеристика, теперь к расчетному напору нужно прибавить расстояние от зеркала воды в скважине до поверхности земли. Пусть будет число 40. Что получается? 40+17,25=57,25.
Если источник водоснабжения находится от дома на 50 метров, то насос должен обладать силой напора: 57,25+5=62,25 метров.
Вот такая самостоятельная формула расчета мощности насоса для скважины в квт.
Точно такие же цифры можно получить при онлайн расчете, с помощью несложной таблицы, в которую потребитель должен вписать данные про глубину скважины, зеркало воды, площадь участка, число проживающих людей в доме, а также предоставить дополнительную информацию о количестве душевых кабинок, раковин, ванной комнаты, умывальника, наличии стиральной машины, посудомойки и унитаза.
Расчеты делаются за один клик мышки. Они являются достоверными и актуальными на период действия полученных данных от потребителя.
Калькулятор расчёта мощности насоса для скважины
Советы специалистов по эксплуатации насосов
Что же еще нужно знать человеку, дабы качественно установить систему водоснабжения в доме? Насосы бывают нескольких типов: погружные, поверхностные, в виде станций.
- Поверхностные – имеют невысокую стоимость, рассчитаны на работу без погружения в жидкость. Рекомендованы для работы до 7 метров, в противном случае вода будет грязной и некачественной.
- Погружные – центробежные, надежные и производительные, помогают эффективно очистить воду от песка. На сегодняшний день это самые популярные и востребованные модели. Винтовые – работают не только в домашних условиях, но и в открытых водоемах.
- Насосные станции.
Важно: недопустимо экономить на мощности насоса, таким образом, автономная система не сможет качественно промывать фильтры очистки, запуская дом грязную воду.
Также нужно учитывать, что некоторые производители в паспорте изделия указывают максимальные характеристики товара, а нужно обращать внимание на номинальные параметры – рабочие, дабы производительность была в норме, без подводных камней и других неприятностей.
Перед тем как сделать расчет мощности насоса для скважины, нужно позаботиться о качестве системы труб, которые будут пропускать воду при определенном напоре. Это металлические и полипропиленовые изделия. Последние – гораздо чаще используются в быту, но имеют низкую устойчивость при перепадах температур и давлении в системе.
Внимание: насос выбирается на долгое время, а потому важно хорошо ознакомиться со всеми рынковыми предложениями, выбирая известные марки с наличием сервисных центров по ремонту и обслуживанию Вашей системы.
Совет: лучше брать насос с автоматикой, если мотор перегреется, система самостоятельно остановится, в противном случае – выйдет из строя.
Делайте расчеты мощности погружного и поверхностного насоса для скважины на нашем сайте, и экономьте время при установке водонапорного агрегата.
Источник: http://otopleniedo.ru/raschet-moshhnosti-nasosa.html
2. Измерьте высоту, на которую необходимо перекачивать воду.
Это расстояние по вертикали от верхнего уровня грунтовых вод (или верхнего уровня воды в первом резервуаре) до уровня конечного пункта назначения воды. Не принимайте во внимание расстояние по горизонтали, на которое необходимо перекачивать воду. Если уровень воды изменяется со временем, используйте максимально предолагаемое расстояние. Это «высота подачи воды» (напор), который должен будет создать ваш насос.
Пример: Когда садовый резервуар почти пуст (самый низкий предолагаемый уровень), его уровень воды на 50 футов ниже поверхности сада, который нуждается в поливе
Источник: http://krepcom.ru/blog/poleznye-sovety/raschet-moshchnosti-vodyanogo-nasosa/
Рабочие характеристики
Показатели рабочих характеристик насоса определяются кривой. Она обозначает зависимость подачи и напора насоса. Соприкасаются эти два измерения в одной точке. Если посмотреть на график выше, можно определить понятие рабочей точки.
Она представляет собой пересечение гидравлической характеристики сети и напора. Также на графике отображается области устойчивой работы оборудования. Выходящий над точкой соприкосновения отрезок Q-H определяет зону неустойчивой работы агрегата. На этом отрезке вероятны срывы в работе. При нулевой подаче воды включается мощность холостого хода.
Источник: http://cnp-center.ru/articles/tekhnicheskie-kharakteristiki/kak-opredelit-moshchnost-nasosa-kharakteristiki-nasosa-edinitsy-izmereniya-formula/
Устройство циркуляционного насоса
Циркулярная помпа необходима для циркуляции воды и поддерживания натиска в магистрали поставки воды. Если данный прибор установлен в обогревательной системе – температура тепла по трубам будет располагаться равномерным образом. Устройство предотвращает сбои в системе поставки воды и позволяет уменьшить расход электроэнергии.
Циркуляционная помпаИсточник https://cdnmedia.220-volt.ruУстройство циркуляционного насоса:
- металлический корпус;
- ротор;
- крыльчатка.
Для чего нужен циркуляционный насос
Данные устройства используются в таких сферах, как:
- система отопления;
- подача горячей воды;
- «теплый пол»;
- вентиляционная система;
- канализация.
Более подробную информацию о циркуляционных насосах смотрите в ролике:
Источник: http://makipa.ru/stati/nasosy-obshhaya/moshhnost-nasosa-kak-vychislit-i-po-kakim-formulam-rasschitat/
Номинальный напор
Напором именуют разность удельных энергий воды на выходе из агрегата и на входе в него.
Напор бывает:
- Объёмный;
- Массовый;
- Весовой.
Перед покупкой насоса стоит все узнать у продавца все по поводу гарантии
Весовой имеет значение в условиях определенного и постоянного гравитационного поля. Он повышается с сокращением ускорения свободного падения, а когда присутствует невесомость, равняется бесконечности. Поэтому весовой напор, активно применяемый сегодня, некомфортен для характеристик насосов объектов летательных, космических.
Полная мощность израсходуется на запуск. Она подходит извне в качестве энергии привода электродвигателя или с расходом воды, которая подается к струйному аппарату под особым напором.
Источник: http://mr-build.ru/newteplo/mosnost-nasosa.html
Краткий обзор насосов
Импеллерный насос – один из видов гидравлического механизма, имеющего гибкие пластины. Перекачивание воды происходит подобно работе пластинчатому устройству. Плюсы данной помпы:
- простота самого устройства;
- возможность перекачивать вязкие жидкости;
- возможность осуществлять реверс;
- простота в эксплуатации.
Недостатки:
- некоторые детали быстро выходят из строя;
- если прибор долго работает «на сухую», рабочее колесо быстро ломается;
- далеко не вся температура перекачиваемой среды подходит для аппарата.
Винтовой насос – гидравлический аппарат, главной деталью которого является шнековая пара, которая включает в себя винт и обойму.
Достоинства данных агрегатов:
- шнековые помпы не нуждаются в предварительном заполнении рабочей средой;
- винтовой насос имеет высокий коэффициент полезного действия;
- данные приборы могут функционировать в реверсе.
Недостатки:
- чуткие к работе на «сухом ходу»;
Эксплуатация данных приборов требует определенных знаний.
Промышленная шнековая помпаИсточник https://vipt.ruМембранно – пневматический насос – одни из самых надежных механизмов перекачивания жидкостей.
Плюсы:
- долговечность;
- герметичность;
- компактность;
- работа на «сухом ходу» без повреждений;
- простота в эксплуатации.
Насос с магнитной муфтой — механизм для перекачивания жидкости, крыльчатка которого под воздействием магнитного поля производит вращение в герметичной капсуле, которая предотвращает протечки.
Помпа с магнитной муфтойИсточник https://shop.aquafactor.ruИсточник: http://makipa.ru/stati/nasosy-obshhaya/moshhnost-nasosa-kak-vychislit-i-po-kakim-formulam-rasschitat/
Подбор насоса по конструкции и рабочей точке
Подбор общий. Погружаемый и не погружаемый в жидкость, которая подлежит перекачиванию.
Подбор по назначению. Одноступенчатые и многоступенчатые. Циркуляционные (система отопления), фекальные, дренажные (водоотведение), колодезные и скважинные (система водоснабжения).
Подбор по конструкции. С сухим и мокрым ротором (циркуляционные), вертикальные и горизонтальные, моноблочные и консольные (центробежные), с встроенным и выносным эжектором (центробежные), полупогружные, дренажные, канализационные станции.
Источник: http://makipa.ru/stati/nasosy-obshhaya/moshhnost-nasosa-kak-vychislit-i-po-kakim-formulam-rasschitat/
Основные типы электродвигателей
Существует множество типов и модификаций электродвигателей. Каждый из них обладает собственной мощностью и другими параметрами.
Основная классификация разделяет эти устройства на электродвигатели постоянного и переменного тока. Первый вариант применяется значительно реже, поскольку для его эксплуатации требуется обязательное наличие источника постоянного тока или устройства, преобразующего переменное напряжение в постоянный ток. Выполнение данного условия в современном производстве потребует значительных дополнительных затрат.
Но, несмотря на существенные недостатки, двигатели постоянного тока имеют высокий пусковой момент и стабильно работают даже при больших перегрузках. Благодаря своим качествам, эти агрегаты нашли широкое применение на электротранспорте, в металлургической и станкостроительной отрасли.
Тем не менее, большинство современного оборудования работает с двигателями переменного тока. В основе действия этих устройств лежит электромагнитная индукция, которую создает в магнитном поле проводящая среда. Магнитное поле создается с помощью обмоток, обтекаемых токами, или с применением постоянных магнитов. Электродвигатели, работающие на переменном токе, могут быть синхронными и асинхронными.
Использование синхронных электродвигателей практикуется в оборудовании, где требуется постоянная скорость вращения. Это генераторы постоянного тока, насосы, компрессоры и другие аналогичные установки. Различные модели отличаются собственными техническими характеристиками. Например, значение скорости вращения может находиться в пределах 125-1000 оборотов в минуту, а мощность достигает 10 тыс. киловатт.
Во многих конструкциях имеется короткозамкнутая обмотка, расположенная на роторе. С ее помощью, в случае необходимости, производится асинхронный пуск, после чего синхронный двигатель продолжает работу в обычном режиме, максимально сокращая потери электрической энергии. Эти двигатели отличаются небольшими размерами и высоким коэффициентом полезного действия.
Гораздо более широкое распространение в производственной сфере получили асинхронные двигатели переменного тока. Они отличаются очень высокой частотой вращения магнитного поля, значительно превышающей скорость вращения ротора. Существенным недостатком этих устройств считается снижение КПД до 30-50% от нормы при низких нагрузках. Кроме того, во время пуска параметры тока становятся в несколько раз больше по сравнению с рабочими показателями. Данные проблемы устраняются путем использования частотных преобразователей и устройств плавного пуска.
Источник: http://delta-instrument.ru/montazh/moshchnost-nasosa.html
5. Обратите внимание на удельный вес, если вы откачиваете жидкость отличную от воды.
В основной формуле расчета мощности насоса предполагается, что вы перекачиваете воду. Если вы перекачиваете другую жидкость, посмотрите ее «удельный вес» в Интернете или в техническом справочнике. Жидкости с более высокой удельной массой более густые и соответственно требуют от насоса большей мощности.
Пример: В нашем примере садовник перекачивает воду, соответственно удельный вес воды равен 1.
Источник: http://krepcom.ru/blog/poleznye-sovety/raschet-moshchnosti-vodyanogo-nasosa/
Режимы работы электродвигателей
Нагрузка на электродвигатель определяется режимом его работы. Она может оставаться неизменной или изменяться в зависимости от условий эксплуатации. При выборе двигателя обязательно учитывается характер и значение предполагаемой нагрузки. С учетом этого фактора выполняется расчет мощности электродвигателя.
Режимы, в которых работают электродвигатели:
- S1 – продолжительный режим. Нагрузка не меняется в течение всего периода эксплуатации. Температура двигателя достигает установленного значения.
- S2 – кратковременный режим. В этом случае в период работы температура не успевает достигнуть нужного значения. При отключении происходит охлаждение двигателя до температуры окружающей среды.
- S3 – периодически-кратковременный режим. В процессе работы двигателя производятся периодические отключения. В эти периоды температура двигателя не может достигнуть нужного значения или стать такой же, как в окружающей среде. При расчетах двигателя, в том числе и мощности, учитываются все паузы и потери, их продолжительность. Одним из важных критериев выбора агрегата, считается допустимое число включений за определенный отрезок времени.
- S4 – периодически-кратковременный режим с частыми пусками.
- S5 – периодически-кратковременный режим с электрическим торможением. Оба режима S4 и S5 работают также, как и S3.
- S6 – периодически-непрерывный режим с кратковременной нагрузкой. Эксплуатация двигателя осуществляется под нагрузкой, которая чередуется с холостым ходом.
- S7 – периодически-непрерывный режим с электрическим торможением.
- S8 – периодически-непрерывный режим, в котором одновременно изменяется нагрузка и частота вращения.
- S9–режим, когда нагрузка и частота вращения изменяются не периодически.
Источник
Источник: http://delta-instrument.ru/montazh/moshchnost-nasosa.html
Рекомендации по установке насосов
При монтаже помп в систему отопления, учитываются критерии:
- аппарат встраивается так, чтобы вал принимал горизонтальное положение;
- прикрепляется при помощи разводного ключа;
- подсоединение производится строго по схеме.
О установке насоса вам расскажет ролик:
Источник: http://makipa.ru/stati/nasosy-obshhaya/moshhnost-nasosa-kak-vychislit-i-po-kakim-formulam-rasschitat/
12 Испытание поршневого насоса
Испытание насоса
производится с целью определения затрат
мощности в отдельных частях насоса.
При испытании
снимаются индикаторная диаграмма,
показания мановакуумметра на всасывании
и манометра на нагнетании, расходомера
и по электроприборам фиксируется
мощность, потребляемая двигателем.
Наибольший интерес
представляет индикаторная диаграмма,
по которой можно выявить неисправности,
возникающие в гидравлической части
насоса.
Для слияния диаграмм
можно воспользоваться механическим
индикатором давления.
Рисунок
5.26
На рисунке 5.26
представлена принципиальная схема
механического индикатора, установленного
на цилиндре насоса. Индикатор состоит
из барабана 1, на который надевается
бумага, и гидроцилиндра 2, присоединяемого
к цилиндру насоса 4 через кран 3. При
открытии крана давление из полости
цилиндра насоса передается в гидроцилиндр
индикатора, вызывая перемещение поршня
последнего. Поршень индикатора на своем
штоке имеет тарированную на определенное
давление пружину 5 с рычагом, на конце
которой крепится карандаш 6. Барабан
тягой 7 соединен с одной из деталей
насоса, движущейся возвратно-поступательно
(шток 8), что приводит к возвратно-поступательному
движению барабана, соответствующему
ходу поршня.
На
бумаге барабана прочерчиваются линии,
равные или пропорциональные длине хода
поршня при атмосферном давлении Р
при открытом ранее З΄ и закрытом кране
З и линии давления за два хода поршня
РВ
и РН
при открытом кране З и закрытом кране
З΄. Полученная таким путем индикаторная
диаграмма имеет вид (рисунок 5.27),
где рв, рн, рi
— давления всасывания, нагнетания и
индикаторное; fD
— площадь диаграммы;
l—
длина диаграммы, равная или пропорциональная
длине хода поршня S.
Рисунок
5.27
Чтобы
определить среднеиндикаторное давление
по диаграмме, надо знать постоянную
пружины индикатора — масштаб диаграммы
пo
высоте т (мм=1кгс/см2).
.
На индикаторной
диаграмме, полученной при испытании
насоса в начале всасывания и нагнетания,
фиксируется и т.п. неоднократные колебания
клапанов, что вызывается изменением их
гидравлического сопротивления при
подъеме с седла и последующим свободным
движением; при значительных давлениях
линии подъема и падения давления не
строго вертикальны из-за сжимаемости
жидкости и выделения из нее пузырьков
газа.
По виду индикаторной
диаграммы можно установить различные
неисправности в работе насоса. На рисунке
5.28 показаны диаграммы при работе насоса
с различными неисправностями: 1 — насос
вместе с жидкостью всасывает воздух,
который сжимает по линии “a”
в начале процесса нагнетания; 2 — в
цилиндре имеется воздушный мешок,
который сжимается по линии- “a”
в начале процесса нагнетания и расширяется
по линии “в” в начале процесса всасывания;
3 – пропускает всасывающий клапан; 4 –
пропускает нагнетательный клапан; 5 –
недостаточный (отсутствует) объем
воздушной подушки пневмокомпенсаторов.
Рисунок 5.28
Источник: http://mr-build.ru/newteplo/mosnost-nasosa.html
Расчёт насоса для скважины: с формулами и примерами
Расчёт насоса для скважины — одно из основных условий при соблюдении, которого можно гарантировать длительное и бесперебойное использование скважины на участке. Произведя расчёт скважинного насоса, вы сможете соотнести ваши потребности в воде с условиями, в которых будет эксплуатироваться насосное оборудование. Только опираясь на результаты расчёта можно приобрести оптимальную модель насоса для скважины, которая не только удовлетворит все потребности, но и прослужит не один год.
Прежде чем непосредственно приступить к расчётам, необходимо детально разобрать все основополагающие факторы выбора скважинного насоса. И первое с чего мы начнем это сам источник воды.
Как известно, пробурить скважину можно либо самостоятельно, либо воспользовавшись услугами специалистов. В этой статье в качестве примера смоделируем ситуацию со вторым вариантом, а именно с готовой скважиной от специализированной организации. В этом случае у вас на руках уже имеется паспорт скважины с детальными характеристиками объекта. И первый параметр, который нас должен заинтересовать — это внешний диаметр обсадной колонны. Сегодня часто встречаются скважины, диаметр которых варьируется в пределах от 100 до 150 миллиметров. Вам необходимо знать точное значение диаметра скважинной трубы, ведь этот показатель позволит определить поперечный размер будущего насоса.
Важно Осуществляя подбор скважинного насоса по параметрам, помните, что между корпусом насоса и стенками скважины должен быть обеспечен зазор от 1 до 3 сантиметров в зависимости от модели. Пренебрежение данной рекомендацией приведёт к выходу из строя насосного оборудования ещё задолго до окончания гарантийного периода. Но не спешите радоваться — такой насос никто просто так менять не будет, ведь пользователь не обеспечил рекомендуемые условия эксплуатации, что полностью аннулирует все гарантийные обязательства со стороны производителя.
Следующей важной характеристикой скважины является её производительность или дебит. Дебит — это максимальное количество воды, которое может дать скважина в единицу времени. Соответственно, чем больше дебит источника, тем производительнее насос можно установить.
Сам же дебит имеет два важных значения — статический и динамический уровень жидкости. Статический показатель отображает уровень воды в скважине, когда не производится откачка жидкости. Динамический уровень определяет количество воды в источнике при эксплуатации насоса.
Если в ходе перекачивания воды динамический уровень остаётся неизменным, то смело можно утверждать, что производительность скважины равна производительности выбранного насоса. Если разница между статическим и динамическим уровнем составляет менее одного метра, то разрабатываемый источник воды обладает высокой производительностью, которая превышает характеристики установленного насосного оборудования. Но если при расчете мощности скважинного насоса будет допущена ошибка, и производительность выбранного насоса будет превышать дебит скважины, то динамический уровень жидкости будет постепенно уменьшаться, пока вода вовсе не иссякнет. В результате такого просчёта насос будет работать на «сухую», что пагубно скажется на его эксплуатационном периоде. Более того, все погружные скважинные насосы имеют особую моноблочную конструкцию, где охлаждение электрического двигателя осуществляется за счёт перекачиваемой жидкости, а в случае недостатка воды в скважине электромотор достаточно быстро нагреется и перегорит.
Расчёт производительности насоса для скважины
Осуществляя расчет производительности насоса для скважины, также стоит учитывать и естественные колебания жидкости, которые по тем или иным причинам могут влиять на уровень воды в скважине. Как показывает практика, в течение года, под действием таких метеорологических факторов как засуха, обильные ливни и паводки, уровень жидкости может увеличиваться или напротив уменьшаться от 1 до 5-6 метров в зависимости от интенсивности вышеперечисленных явлений. Насосы в таких скважинах необходимо устанавливать на несколько метров глубже, чем минимально возможный показатель динамического уровня жидкости. Таким образом, можно дополнительно подстраховать скважинное оборудование на случай возможного обмеления источника.
Разобрав основные характеристики скважины, можно приступать к выбору нужной модели насоса. Здесь нас будут интересовать эксплуатационные параметры оборудования, а именно:
- Производительность — это способность скважинного насоса перекачивать определенный объём воды за установленный промежуток времени.
На заметку Чтобы определить требуемый объём жидкости, можно воспользоваться усредненным значением, где в сутки один человек расходует примерно 1000 литров воды или один кубометр. Но не стоит забывать, что, как правило, в загородном доме несколько точек водоразбора. Это могут быть краны, смесители, стиральные и посудомоечные машины, ванные, душевые комнаты. И всегда есть вероятность их единовременного использования. Конечно же, не всех сразу (хотя такая вероятность также имеется), но нескольких — это уж точно. В общем, нам необходимо, чтобы насос, помимо среднего расхода, справлялся и с возможной пиковой нагрузкой.
- Напор, если не вдаваться в подробности, то напор скважинного насоса — это показатель создаваемого давления, которое может обеспечить конкретно взятый насос при перекачивании определенного количества жидкости. Если у вас интересуются, какой напор требуется, то под этим подразумевают, какое давление необходимо обеспечить насосу, чтобы перекачать определенный объём жидкости от начальной точки всасывания до конечной точки водораспределения, при этом преодолев все гидравлические сопротивления водопроводной системы.
Расчёт напора скважинного насоса
Расчёт напора осуществляется по следующей формуле:
Напор = (расстояние от точки установки насоса в скважине до поверхности земли + горизонтальное расстояние от скважины до ближайшей точки водоразбора* + высота самой высокой точки водоразбора в доме) × коэффициент водопроводного сопротивления**
Если скважинный насос будет эксплуатироваться вместе с накопительным резервуаром, то к приведенной выше формуле расчёта напора необходимо добавить значение давления в накопительной ёмкости:
Напор = (расстояние от точки установки насоса в скважине до поверхности земли + горизонтальное расстояние от скважины до ближайшей точки водоразбора + высота самой высокой точки водоразбора в доме + давление в накопительной ёмкости***) × коэффициент водопроводного сопротивления
Примечание * — при расчёте учтите, что 1 вертикальный метр равняется 10 горизонтальным;
** — коэффициент водопроводного сопротивления всегда равен 1.15;
*** — каждая атмосфера приравнивается к 10 вертикальным метрам.
Бытовая математика Для наглядности смоделируем ситуацию, в которой семье из четырёх человек необходимо подобрать насос для скважины глубиной 80 метров. Динамический уровень источника не опускается ниже 62 метров, то есть насос будет установлен на 60-ти метровой глубине. Расстояние от скважины до дома — 80 метров. Высота самой высокой точки водоразбора — 7 метров. В системе водоснабжения есть накопительный бак ёмкостью 300 литров, то есть для функционирования всей системы внутри гидроаккумулятора необходимо создать давление в 3,5 атмосфер. Считаем:
Напор=(60+80/10+3,5×10)×1,15=126,5 метров.
Какой насос нужен для скважины в данном случае? – отличным вариантом будет приобрести Grundfos SQ 3-105, максимальное значение напора которого составляет 147 метров, при производительности 4,4 м³/ч.
В этом материале мы детально разобрали, как рассчитать насос для скважины. Надеемся, что после прочтения данной статьи вы сможете без посторонней помощи рассчитать и выбрать скважинный насос, который благодаря грамотному подходу прослужит не один год.
Рекомендуем также прочесть:
Расчет мощности погружного насоса: пример, выбор оборудования
При выборе погружного насоса для организации полноценного бесперебойного водоснабжения частного дома или дачи нужно учитывать ряд важных моментов. В первую очередь необходимо разобраться, как рассчитать мощность оборудования и на какие дополнительные характеристики следует обращать внимание. Самые важные параметры – это мощность насоса, условия его эксплуатации и удобство конструкции. Расчет мощности можно выполнить самостоятельно, ничего сложного в этом нет.
Схема устройства погружного насоса.
Выбор погружного насоса с учетом потребностей жильцов
В процессе расчета мощности погружного насоса нужно обязательно принимать во внимание, какие потребности должно удовлетворять данное оборудование. Современные высокомощные насосы способны «доставать» воду даже с 300-400 м. Но нужно ли это на частных участках? Как правило, 40 м более чем достаточно в большинстве случаев. В процессе расчета мощности насоса обязательно принимается во внимание диаметр источника.
Конструкция вибрационного погружного насоса.
К числу важнейших характеристик, с учетом которых должен выполняться выбор агрегата, относятся расход и напор. То есть нужно постараться максимально точно определить потребности в скважинной воде для людей, проживающих в доме, и всего участка в целом, если вода будет использоваться для полива растений и прочих хозяйственных нужд. Расчет основных показателей насоса выполняется на основании числа мест водозабора и уровня расхода для каждой из таких точек. Как правило, для обычного частного дома принимаются следующие показатели:
- Для ванной в сумме – до 300 л/час.
- Для кухонных помещений – до 500 л/час.
- Для унитазного бачка – до 80 л/час. В современных экономных сливных системах этот показатель существенно снижается.
- Для каждого умывальника – до 60 л/час.
- Для душевой – до 500 л/час.
- Для сауны либо бани – до 1000 л/час.
- Для огорода, цветника и подобных мест – не менее 3-5 м³ воды на 1 м² площади насаждений.
Читайте также:
Каким должно быть обустройство скважины на воду.
Правила выбора погружного насоса.
О чистке скважин читайте здесь.
Пример расчета мощности погружного насоса
Схема водоснабжения дачи с применением скважинного погружного насоса.
Для большей простоты расчета мощности погружного насоса можете взять за основу следующий пример. Уровень воды в скважине составляет 10 м. В доме выполнен монтаж мембранного бака. Расстояние между скважиной и домом составляет 5 м. Для дома нужно добавить еще 2 м (от места расположения скважины). Потери в напоре в данном примере равны 3 м.
Производительность насоса для такой скважины рассчитывается следующим образом: суммируются уровень воды (10 м), добавленное расстояние (2 м), потери в напоре (3 м) и значение избыточного давления (оно равняется 2,5 атм, но в заводской спецификации указывается 25 м). В сумме получится 40 м. Зная это значение, вы сможете подобрать необходимую мощность агрегата из расчета 40 м от места водозабора.
Обязательно учитывайте то, что в спецификации обычно указываются максимальные значения производительности и напора. То есть при покупке вам нужно купить насос более высокой мощности, чем показал приведенный выше расчет. В противном случае производительности агрегата может оказаться недостаточно, и вы не сможете нормально пользоваться своей скважиной.
Какой тип насоса вам подойдет?
Помимо расчета мощности, нужно обращать внимание на ряд других, крайне важных параметров. Первый из них – это тип насоса.
Принцип действия погружного насоса таков, что он устанавливается не на поверхности, а в воде.
Схема устройства двигателя асинхронного погружного насоса.
И это большое преимущество, так как агрегат не будет занимать лишнее место, а звуки его работы обычно не слышны на поверхности.
Есть модели с очень высокой мощностью, рассчитанные на работу в максимально глубоких скважинах. Подбирать конкретный агрегат необходимо с учетом условий его эксплуатации.
В соответствии с принципом работы существующие на сегодня модели погружных насосов делятся на 2 основные большие группы.
Оборудование центробежного типа пользуется самой большой популярностью. Такие погружные насосы имеют предельно простую конструкцию. В ее основе лежит вал. На валу крепятся лопасти с выгребными колесами. Лопасти вращаются, в результате создается центробежная сила и обеспечивается подъем воды наверх. В процессе подкачки жидкость заполняет всю внутреннюю полость. Оборудование продается по сравнительно доступной стоимости и характеризуется высокой надежностью, качеством и длительным сроком службы. Устанавливать какие-либо дополнительные агрегаты для такого насоса в большинстве случаев не нужно. Оборудование предельно просто в эксплуатации.
Ко второй группе относятся вибрационные насосы. Оборудование имеет сравнительно небольшую стоимость. В основе конструкции лежат мембраны. С одной стороны мембраны находится вода, с другой – установлен специальный вибратор. В процессе работы мембрана подвергается деформации, под воздействием которой создается разница давления и вода поднимается наверх. Требует установки специального термовыключателя. Без него двигатель может перегреться и сломаться.
В зависимости от назначения скважины ее можно оборудовать и насосами других типов:
- Обыкновенными скважинными агрегатами, предназначенными для размещения в артезианских скважинах. Способны подавать чистую питьевую воду с большой глубины.
- Колодезными насосами. Такими агрегатами можно оснащать любые широкие колодцы, предназначенные для забора воды для разнообразных нужд, в том числе для обеспечения водоснабжения дома, полива и т. д.
- Дренажными. Предназначены для установки и использования в канализационных колодцах.
На что еще обращать внимание при выборе оборудования?
Схема подключения насоса.
Чтобы выбранный скважинный насос в полной мере соответствовал требованиям владельца и с достоинством выполнял все возлагающиеся на него задачи, нужно учитывать ряд дополнительных критериев, а именно:
Вам необходимо замерить глубину своей скважины, а затем при изучении характеристик насоса сверить замеренное значение с максимально допустимой глубиной погружения по паспорту. В продаже доступен большой выбор моделей погружных насосов с самыми разнообразными характеристиками, так что вы без проблем подберете подходящий агрегат.
Динамический уровень воды в скважине. От этого важнейшего показателя напрямую зависит производительность источника на участке. Данная характеристика указывает на максимально возможное расстояние между поверхностью воды и землей при непрерывной работе оборудования. Важно определить объем воды, который будет способен выдать источник за определенный временной промежуток. В случае если через 30 минут работы над поверхностью до сих пор сохраняется достаточное количество воды, то это очень хороший показатель.
Статический уровень воды в источнике указывает на расстояние между поверхностью дна и воды. Его можно без проблем определить своими силами. Для этого нужно несколько дней не пользоваться колодцем, а затем опустить в него груз, привязанный к достаточно длинной и прочной веревке. На веревке предварительно сделайте отметки для вычисления высоты. После достижения грузом поверхности зеркала вы услышите всплеск. Запишите отметку, а затем отнимите от суммарной глубины величину статического уровня. Так вы определите значение водяного столба.
Диаметр скважины на участке тоже имеет очень большое значение, так как насос нужно подбирать с учетом параметров скважины. В противном случае вы попросту не сможете его эффективно использовать.
С таким моментом, как потребление воды, нужно определиться еще до начала бурения скважины. При расчете можно использовать приведенные ранее данные или усредненное значение, в соответствии с которыми один человек расходует около 200 л воды за сутки. Обязательно учитываются наличие детей и домашних животных, а также характер проживания в доме, т.е. будут в нем жить люди постоянно или же будут приезжать на какое-то время. В расчете нужно учитывать наличие теплицы, огорода, сада и прочих насаждений. Как правило, на все это достаточно 2000 л/сутки. Аналогичными характеристиками обладает оборудование, способное выдавать 40 л воды за минуту.
Не менее важным параметром является напор. Его можно рассчитать своими силами. Для этого вам нужно вычислить глубину скважины, увеличить полученное значение на 30, а затем приплюсовать к результату еще 10% от него. К примеру, скважина на участке имеет глубину в 45 м. Расчетная величина водяного столба для такой скважины составит 75 м. Добавляете еще 10% и получаете значение, равное 83 м. Для этого примера нужно подбирать оборудование, способное обеспечить напор в 90 м.
При выборе такого оборудования нужно обращать отдельное внимание и на его стоимость. На этом этапе специалисты советуют обращать внимание не только на цену непосредственно насоса, но и на стоимость разного рода дополнительного оборудования. Монтаж выполняется с применением автомата для работы насоса, троса из нержавейки, дополнительной фурнитуры. Не рекомендуется покупать подозрительно дешевое оборудование и комплектующие от малоизвестных производителей. Но и в покупке чересчур дорогих агрегатов смысл есть далеко не всегда. Лучший вариант – это оборудование средней стоимости с оптимальными значениями цены и качества.
примеры расчетов и правила выбора
Циркуляционный насос — это небольшое по размеру устройство, главная задача которого заключается в улучшении работы и повышении производительности системы отопления. Он врезается непосредственно в трубопровод, оптимизируя скорость перемещения теплового носителя. Благодаря чему даже дом с большой жилой площадью будет обогреваться достаточно быстро.
Чтобы купить оптимальную модель, предстоит разобраться с тем, как рассчитать насос для отопления и на какие нюансы ориентироваться при выборе. Именно этим вопросам посвящена наша статья – в этом материале мы рассмотрели пример расчета оборудования, уделили внимание принципу работы и основным разновидностям насосов.
Также мы привели рекомендации по выбору, монтажу и безопасной эксплуатации насосного оборудования, снабдив статью наглядными и фото и подходящими видеороликами с расчетом необходимой мощности прибора и советами по его монтажу в отопительный контур.
Содержание статьи:
Принцип работы и назначение насоса
Основная проблема жителей последних этажей многоквартирной постройки и владельцев загородных коттеджей — это холодные батареи. В первом случае теплоноситель просто-напросто не доходит до их жилья, а во втором — не обогреваются самые дальние участки трубопровода. А все это из-за недостаточного .
Когда необходимо применять насос?
Единственным правильным решением в ситуации с недостаточным давлением будет модернизация отопительной системы с теплоносителем, циркулирующим под действием силы гравитации. Здесь поможет установка насоса. Основные схемы организации отопления с насосной циркуляцией .
Этот вариант будет эффективен и для владельцев частных домов, позволяя ощутимо уменьшить расходы на отопление. Существенное преимущество такого циркуляционного оборудования — возможность менять скорость движения теплоносителя. Главное, не превышать максимально допустимые показания для диаметра труб своей отопительной системы, чтобы избежать излишнего шума при работе агрегата.
Так, для жилых комнат при условном проходе труб в 20 и более мм скорость составляет 1 м/с. Если установить этот параметр на самое высокое значение, то можно за максимально короткое время прогреть дом, что актуально в случае, когда хозяева были в отъезде и постройка успела остыть. Это позволит получить максимальное количество тепла при минимальных затратах времени.
Насос — важный элемент системы обогрева дома. Он помогает повысить ее эффективность и снизить траты топлива
Принцип работы прибора
Циркуляционный агрегат функционирует за счет электродвигателя. Он забирает нагретую воду с одной стороны и подталкивает в трубопровод, находящийся с другой. А с этой стороны снова поступает новая порция и все повторяется.
Именно за счет центробежной силы тепловой носитель перемещается по трубам системы обогрева. Процесс функционирования насоса немного напоминает работу вентилятора, только циркулирует не воздух по комнате, а теплоноситель по трубопроводу.
Корпус устройства обязательно выполняется из устойчивых к коррозии материалов, а для изготовления вала, ротора и колеса с лопастями обычно используется керамика.
Основные виды насосов для отопления
Все предлагаемое производителями оборудование делится на две большие группы: насосы «мокрого» или «сухого» типа. Каждый вид имеет свои преимущества и недостатки, что обязательно нужно учитывать при выборе.
Оборудование «мокрого» типа
Насосы отопления, называемые «мокрыми», отличаются от своих аналогов тем, что их рабочее колесо и ротор помещен в тепловой носитель. При этом электрический мотор находится в герметичном боксе, куда влага попасть не может.
Этот вариант — это идеальное решение для небольших загородных домов. Такие устройства отличаются своей бесшумностью и не нуждаются в тщательном и частом техническом обслуживании. К тому же они легко ремонтируются, настраиваются и могут применяться при стабильном или слабо изменяющемся уровне расхода воды.
Отличительной чертой современных моделей «мокрых» насосов является простота их эксплуатации. Благодаря наличию «умной» автоматики можно без каких-либо проблем увеличить производительность или переключить уровень обмоток
Что касается недостатков, то указанная выше категория отличается низкой производительностью. Обуславливается этот минус невозможностью обеспечения высокой герметичности гильзы, разделяющей тепловой носитель и статор.
«Сухая» разновидность приборов
Для этой категории устройств характерно отсутствие прямого контакта ротора с, перекачиваемой им нагретой, водой. Вся рабочая часть оборудования отделена от электрического двигателя резиновыми защитными кольцами.
Главная особенность такого отопительного оборудования — большая эффективность. Но из этого преимущества вытекает существенный недостаток в виде высокой шумности. Решается проблема путем установки агрегата в отдельной комнате с хорошей звукоизоляцией.
При выборе стоит учитывать тот факт, что насос «сухого» типа создает завихрения воздуха, поэтому мелкие частицы пыли могут подниматься, что негативно скажется на уплотнительных элементах и, соответственно, герметичности устройства.
Производители решили эту проблему так: при работе оборудования между резиновыми кольцами создается тонкий водяной слой. Он выполняет функцию смазки и предотвращает разрушение уплотнительных деталей.
Приборы, в свою очередь, делятся на три подгруппы:
- вертикальные;
- блочные;
- консольные.
Особенность первой категории заключается в вертикальном расположении электродвигателя. Такое оборудование стоит покупать только в том случае, если планируется перекачка большого объема теплового носителя. Что касается блочных насосов, то они устанавливаются на ровной бетонной поверхности.
Предназначены блочные насосы для использования в промышленных целях, когда требуются большие расходные и напорные характеристики
Консольные устройства характеризуются расположением всасывающего патрубка с наружной стороны улитки, в то время как нагнетательный находится на корпусе с противоположной.
Более подробно об устройстве и принципе работы насосов мы говорили .
На что ориентироваться при выборе насоса?
Подбор насоса для автономного отопления нужно делать исходя из гидравлических характеристик системы обогрева загородного дома. Поэтому перед посещением магазина предстоит подсчитать оптимальное количество тепла, которое потребуется для поддержания в комнатах комфортной для проживания температуры.
Грамотно выполнить поможет дополнительная информация, с которой предстоит ознакомиться. Или можно воспользоваться советами компетентного специалиста.
На оптимальное для конкретного объекта количество тепла влияет множество факторов:
- материал, который использовался для возведения и утепления стен;
- климатические условия;
- особенности перекрытий и полов;
- наличие термостатических вентилей;
- характеристики стеклопакетов, установленных в коттедже.
При выборе насоса для автономного отопления особое внимание следует уделить сфере применения конкретной модели, количеству скоростей и уровню шума. Также не последнюю роль играет производитель и цена оборудования.
Выбирая устройство для организации принудительной циркуляции в системе отопления, нужно уделить особое внимание техническим характеристикам, чтобы избежать работы насоса вхолостую или на пределе своих возможностей
Критерий #1 — область применения оборудования
В большинстве случаев специалисты советуют устанавливать насосы отопления, роторы которых целиком погружены в тепловой носитель. Ведь помимо небольшого уровня шума такого рода агрегаты более успешно справляются с высокой нагрузкой.
Как результат, система с «мокрым» оборудованием прослужит дольше, будет легче поддаваться ремонту и не потребует к себе чрезмерного внимания.
Отдавайте предпочтение моделям, для изготовления которых используется прочная сталь и подшипники, а вал выполнен из керамики. Их преимущество заключается в сроке службы, который составляет не менее двух десятков лет.
Следует отказаться от покупки чугунного циркуляционного насоса. Ведь такое устройство быстро придет в негодность и потребует замены
Если выбор пал на насос отопления «мокрого» вида, то нужно учитывать, что его не стоит устанавливать в систему обогрева коттеджа открытого типа. Ведь в этом случае нагретая вода, которая смазывает механизм, содержит в своем составе разнообразные примеси.
Например, микрочастицы песка могут засорить зазор между ротором и статором, что приведет к скорой поломке насоса.
Что касается открытых систем, то в них такого рода оборудование может функционировать годами. При этом оно не будет нуждаться в каком-либо специализированном обслуживании.
Критерий #2 — расчет оптимальной мощности
Производительность насоса, предназначенного для работы в системе отопления, можно вычислить самостоятельно. Для этого понадобится общая длина трубопровода, по которому оборудованию предстоит перекачивать теплоноситель.
На каждые 10 метров длины берем 0,6 метра напора устройства. Так, для небольшого дома с длиной отопительного контура в 70 метров понадобится насос напором в 4,2 метра.
Можно пойти другим путем и посчитать этот показатель по формуле:
Q = 0,86*R/TF-TR,
Где:
- R — потребность помещения в тепле;
- TF и TR показывают температуру теплоносителя при подаче в систему и на ее выходе соответственно. При этом используются значения в градусах Цельсия.
В европейских странах в качестве параметра R преимущественно используются два значения: 100 Вт/м2 — для дома, где расположено одна или две квартиры, и 70 Вт/м2 — для многоквартирных построек.
Приведенный выше метод — это только один из множества способов вычисления оптимальной мощности циркуляционного насоса. Выполнить максимально точные расчеты сможет только квалифицированный специалист.
Когда нужно сделать расчеты с минимальной погрешностью, рекомендуется использовать специальные таблицы. В них приводятся значения, оптимальные для тех или иных домов и квартир
Критерий #3 — количество скоростей и шумность насоса
Основная особенность современных моделей насосов — это возможность их настройки. Регулировать мощность можно путем переключения скорости работы агрегата.
На сегодняшний день больше всего распространены модели с тремя скоростями. Это позволяет при резком похолодании максимально быстро обогреть жилые помещения, а в случае потепления уменьшить производительность прибора, сэкономив при этом электроэнергию.
Если нужно купить оборудование, издающее минимально возможный шум, то лучшим выбором будет насос «мокрого» типа.
В случае установки агрегата с «сухим» ротором при его работе будет слышен посторонний звук, появляющийся в результате вращения вентилятора, охлаждающего электрический двигатель. Поэтому такое устройство лучше устанавливать в отдельной комнате, а для жилой выбрать что-то менее громкое.
Низкий уровень шумности «мокрых» насосов — главная причина их популярности
Далеко не всегда посторонний шум, появляющийся при запуске, свидетельствует о неисправности. Довольно часто это происходит из-за воздуха, который остался в системе отопления. Для решения этой проблемы рекомендуется перед запуском при помощи специальных клапанов.
Критерий #4 — производитель и цена оборудования
После того как были осуществлены все необходимые расчеты, можно приступать к просмотру каталога с циркуляционными насосами. Лучше делать заказ на тех веб-ресурсах, где есть продуманная система фильтрации продукции. Это позволит быстро найти модели с оптимальными характеристиками.
На нынешнем рынке предлагается богатый выбор насосов для систем отопления. Сотни производителей говорят, что их продукция отличается надежностью, качеством и долговечностью. Но далеко не всегда заявленные характеристики соответствуют реальным. Поэтому лучше заказывать оборудование, изготавливаемое производителями, которые заявили о себе на весь мир.
В список известных и надежных фирм, занимающихся выпуском насосов для систем отопления, следует внести такие бренды:
- Halm;
- Wilo;
- Ebara;
- DAB;
- AlfaStar;
- Pedrolo;
- Grundfos.
Стоимость агрегатов для организации принудительной перекачки теплоносителя полностью зависит от мощности, вида насоса и бренда. Как правило, цена оборудования варьируется в диапазоне от 60 до 220 долларов. Рекомендуем ознакомиться с на отопление по мнению пользователей.
Что касается отечественных производителей, то они бытовое оборудование не изготавливают, а предлагают только модели, предназначенные для использования в промышленных целях.
Чаще всего циркуляционные насосы выпускаются серийно и обладают усредненными параметрами, что создает определенные проблемы при выборе оборудования. В этом случае лучше отдать предпочтение устройству, работающему в нескольких режимах
Особенности монтажа циркуляционного насоса
Чтобы обеспечить эффективную работу системы обогрева дома, следует правильно подобрать место в отопительном кольце для установки оборудования. Рекомендуется найти тот участок, где в области всасывания теплового носителя всегда наблюдается избыточное давление воды. Известно несколько методик, при помощи которых можно искусственным образом добиться этого условия.
Первый способ заключается в подъеме расширительного бака на 0,8 м по отношению к самому высокому участку трубопровода. Реализовать это можно только в том доме, где это позволяют сделать потолки. Неплохим решением будет установить расширительный бак на чердаке. Но в этом случае придется заняться утеплением крыши, чтобы избежать лишних потерь тепла.
Второй метод заключается в перенесении от расширительного бака трубки с подающего стояка и ее врезании в то место, где неподалеку стоит всасывающий патрубок насоса. За счет этого можно создать просто идеальные условия для организации принудительной перекачки горячей воды в системе обогрева дома.
Насос можно установить прямо в подающий трубопровод. Такое решение будет целесообразным только в том случае, когда циркуляционное оборудование сможет выдержать максимально возможную температуру теплового носителя
Подробные рекомендации по установке насоса, схема обвязки и пошаговая монтажная инструкция приведена .
Правила и нюансы эксплуатации оборудования
Циркуляционный насос покупается не на год и даже не на два. Поэтому каждый владелец загородного дома должен позаботиться, чтобы оборудование было исправно в течение долгих лет. Добиться надежности и корректности работы устройства можно только в случае правильного и своевременного обслуживания.
В список основных правил эксплуатации насоса отопления необходимо включить следующие аспекты:
- запрещено включать прибор с нулевой подачей;
- убедиться, что оборудование заземлено;
- проконтролировать, чтобы электрический мотор не нагревался выше допустимой нормы;
- проверить соединение в клеммном коробе на наличие/отсутствие повреждений, а все кабели должны быть полностью сухими;
- удостовериться, что во время старта устройства не возникает никакого постороннего шума или вибрации;
- оборудование должно работать с рекомендованным производителем уровнем расхода теплоносителя;
- запрещено запускать циркуляционный насос без воды.
Если оборудование простаивает на протяжении длительного времени, то рекомендуется каждый месяц включать его на 10-30 минут. Такое простое правило поможет избежать окисления и, как результат, блокировки вала.
В случае появления каких-либо сбоев или проблем в работе насоса следует в кратчайшее время вызвать мастера. Это поможет избавиться от множества проблем и незапланированных финансовых трат
Особое внимание необходимо уделить температуре . Она не должна превышать 60-65 градусов Цельсия. Если пренебречь этим правилом, то в трубах и внутри насоса будет появляться осадок, который негативно скажется на работе всей системы отопления.
Часто встречаемые поломки
Наиболее распространенная проблема, из-за которой оборудование, обеспечивающее принудительную перекачку теплоносителя, выходит из строя — это его длительный простой.
Чаще всего система отопления активно используется зимой, а в теплое время года отключается. Но так как вода в ней не отличается чистотой, то со временем в трубах выпадает осадок. Из-за накопления солей жесткости между крыльчаткой и насосом агрегат перестает работать и может выйти из строя.
Решается вышеуказанная проблема достаточно легко. Для этого нужно попытаться самостоятельно запустить оборудование, открутив гайку и вручную повернув вал насоса. Нередко такого действия бывает более чем достаточно.
Если прибор все-таки не запустился, то единственным выходом будет демонтаж ротора и последующая основательная чистка насоса от накопившегося осадка солей.
Выводы и полезное видео по теме
О расчете производительности циркуляционного оборудования повествует видео:
Правильная установка является залогом отличной работы любого прибора. Особенности монтажа насоса для отопления в видеоролике:
Система отопления, где для организации движения теплоносителя используется насос, имеет множество достоинств. Но чтобы безошибочно установить ее, придется потратить немного времени на разбор нюансов и выбор оборудования. Только в таком случае можно сделать свой дом поистине теплым и уютным.
Хотите добавить насос в систему отопления, но сомневаетесь в расчетах? Задайте интересующие вас вопросы в блоке комментариев – наши эксперты постараются вам помочь.
А может вы хотите дополнить наш материал полезными замечаниями? Или предложить другой вариант расчета отопительного насоса? Пишите свои замечания и рекомендации под этой статьей.
Производительность насоса и мощность: подбор по формуле расхода
Часто хозяева частного участка прибегают к обустройству собственного источника на воду — колодца или скважины. И, конечно же, для качественной подачи воды оттуда требуется установка хорошего насосного оборудования. Здесь важно правильно осуществить подбор устройства в соответствии не только с его конструкцией, способом монтажа и типом рабочего узла, но и определить номинальную производительность насоса именно для вашего источника.
Как это сделать, как выглядит формула расчёта мощности агрегата, и правила подбора погружного оборудования мы предлагаем в нашем материале.
Важно: при подборе погружного или поверхностного насоса для домашнего водоснабжения всегда стоит брать в расчёт глубину погружения или расположения агрегата, длину трубопровода и желаемый результат. То есть, либо вы хотите получить систему орошения участка по сезону и не более, либо вы делаете создать систему водоснабжения и загородного дома, что потребует учёта среднего потребления воды в час или сутки на человека.
Кроме того, при подборе погружного скважинного насоса всегда стоит помнить, что для неглубокого источника (не более 8-9 метров зеркала воды) можно использовать поверхностные насосы центробежного тира. Для более глубокого залегания зеркала воды необходимо использовать погружной центробежный или вибрационный насос.
Появилось лучшее мобильное приложение для опытных БИгроков и можно абсолютно бесплатно скачать 1xBet на Андроид телефон со всеми последними обновлениями и по новой открыть для себя ставки на спорт.Содержание
Важные расчёты
Лучшие условия, коэффициенты в линиях на спортивные мероприятия и это в приложении от 1xBet, скачать 1хБет на Андроид телефон можно по ссылке бесплатно и получить бонус по промокоду MyAndroid.Для того чтобы сделать правильный подбор насосного агрегата для системы частного водоснабжения, необходимо провести верные расчёты производительной мощности и напора агрегата.
Производительная мощность (производительность) позволяет насосу качать воду с требуемым для расхода в доме объемом. Стоит знать, что согласно СНИП, средний расход воды в сутки на одного проживающего в доме составляет 200 литров. При этом всегда нужно этот показатель умножать на количество человек,
Но необходимо принять во внимание при расчетах производительной мощности помпы и момент, при котором все водозаборные точки будут включены одновременно. К полученным данным стоит прибавлять и возможное потребление воды для полива огорода. Согласно СНИП этот показатель равен 3-6 литров на 1м3 участка.
Для справки: средний объем расхода воды на каждую водозаборную точку выглядит так:
- Душ или ванна — около 10 л/мин;
- Туалет — 5-6 л/мин;
- Кран в кухонной мойке — 6 л/мин.
При условии одновременного использования всех перечисленных сантехнических точек потребление воды составит в среднем 20-22 л/мин.
Рекомендуем к прочтению:
Расчёт производительной мощности
Для того чтобы произвести расчёт производительной мощности скважинного центробежного или вибрационного насоса и осуществить правильный подбор оборудования для перекачки воды, необходимо использовать два показателя:
Количество человек, проживающих в доме;
- Средний расход воды на человека в час, что составляет примерно 0,5 м3.
- Плюс к расчётам стоит подключить возможный расход воды для полива.
В результате будем иметь такие показатели:
- Для семьи из 3-4 человек производительная мощность скважинного насоса должна составлять 2-3 м3/час (при условии необходимости орошения огорода). Если же будет происходить забор воды из системы водоснабжения для полива, то производительная мощность скважинного насоса должна составлять 3-5 м3/час для семьи из того же количества человек.
Что касается напора
Этот немаловажный фактор, от которого зависит возможность скважинного насоса поднимать воду на заданную высоту от точки забора и транспортировать её без перебоев по всей длине трубопровода.
Важно: если технический показатель напора воды у конкретного центробежного или вибрационного скважинного насоса не будет соответствовать параметрам вашей системы водоснабжения, то, скорее всего, вас огорчит качество подачи воды в дом к каждой из водозаборных сантехнических точек.
Для того чтобы провести расчёт напора для центробежного или вибрационного скважинного насоса, необходимо выяснить глубину расположения насоса (глубину водозабора). Она определяется от поверхности земли (горизонтального трубопровода) до точки погружения/расположения агрегата. Кроме того, необходимо принимать во внимание и длину всего трубопровода от начальной горизонтальной точки до распределителя системы водоснабжения.
Важно: расчёт длины горизонтального трубопровода стоит производить с учётом того, что на каждые 10 метров протяженности труб будет происходить потеря 1 метра напора оборудования. К тому же всегда приходится брать в расчёт и диаметр водозаборной трубы. Чем он меньше, тем больше статическое сопротивление в системе водоснабжения, а значит, и снижается напор воды коммуникации.
Расчёт напора
Произвести расчёт напора для скважинного насоса центробежного или вибрационного типа вовсе не сложно. Для этого используют такую формулу:
H = Hgeo + (0,2 x L) + 10 [м],
в которой значения таковы:
Рекомендуем к прочтению:
- Н — итоговый напор для конкретного скважинного центробежного или вибрационного насоса;
- Hgeo м— высота трубы от места установки скважинного насоса до самой высокой вертикальной точки водозабора;
- 0,2 — коэффициент сопротивления трубопровода по всей его протяженности;
- L — горизонтальная длина трубы системы водоснабжения;
- 10-15 приблизительный показатель, необходимый для получения стабильного напора в системе, который требуется добавить к результату при расчёте.
Рассмотрим подсчёт напора для погружного скважинного насоса на примере
Имеем систему водоснабжения с колодцем, глубина зеркала воды в котором 10 метров. При этом сам колодец находится в 10 метрах от дома. Самая высокая водозаборная точка располагается над уровнем земли на 4 метра. В доме живут 4 человека. Кроме того предполагается полив участка и мойка авто.
У нас получается, что вертикальный участок трубопровода от точки забора воды насосом до самой высокой точки потребления воды составляет 14 метров. То есть Hgeo = 10+4 = 14 метров.
Здесь же берем в учёт потери в размере 20% от общей длины трубопровода, которая равна 26 метров (10 метров + 16 метров). Этот показатель будет равен приблизительно 5 метрам.
Прибавляем 10 метров на поправку.
Имеем такой результат:
Н = 14+5+10 = 29 метров.
Таким образом получаем напор для скважинного насоса 29 метров.
Производительность насоса для всех перечисленных нужд должна составлять 3-4 м3/час.
Важно: для качественной транспортировки воды по системе водоснабжения внутренняя поверхность водоприёмных труб должна быть гладкой.
Расчет, насос, гидравлика, нпш, всасывание, жидкость, вода, нетто
Энергия, обеспечиваемая насосом |
В гидравлической области нагрузка насоса выражается теоретически.
на высоте воды.
Поглощенная энергия насосом распадается:
Механическая энергия, передаваемая жидкости (замкнутый контур)
Это гидравлическая энергия, передаваемая жидкости в ее проходе.
через насос.
Эта механическая мощность определяется следующей формулой:
С:
- P = Мощность, передаваемая насосом жидкости в ваттах.
- Q = Расход в м3 / с.
- Hm = потеря энергии или давления в гидравлической сети, выраженная в м.
Механическая энергия при гидростатической нагрузке (жидкость в разомкнутом контуре)
С:
- P = Мощность, передаваемая насосом жидкости в ваттах.
- Q = Расход в м3 / с.
- p = плотность жидкости в кг / м3.
- H = Пьезометрическая высота в метрах водяного столба.
- 9,81 = Средняя сила тяжести.
Механическая энергия, передаваемая жидкости (например, распределение сеть питьевого водоснабжения) :
+ |
С:
- P = Мощность, передаваемая насосом жидкости в ваттах.
- Q = Расход в м3 / с.
- p = плотность жидкости в кг / м3.
- Hm = потеря гидравлического давления в сети, выраженная в м.
- H = Гидравлическая нагрузка в метре воды.
- 9,81 = Средняя сила тяжести.
Пониженная энергия, выраженная производительностью насоса (мощность на валу насоса)
Это мощность, измеренная на валу насоса.
Механическая энергия, необходимая для насоса, всегда выше, чем энергия, передаваемая жидкости при различных трениях тела вращения.
С:
- Pmec = Механическая мощность, необходимая для насоса.
- Pfl = мощность, передаваемая в жидкость.
- Rv = Мощность вентилятора.
- Rt = Выход коробки передач.
В центробежных насосах сущность деградированной энергии перегревается
перекачиваемая жидкость.
В поршневых насосах сущность деградации энергии заключается в механические приводы и не сообщаются с жидкостью.
Обычно разрешенные выходы:
- Поршневые насосы = 0.6 à 0,7
- Центробежные насосы = 0,4-0,8
Моторизация
При выборе двигателя это мощность всасывания. насосом, который определяет мощность, выдаваемую двигателем, и таким образом, также потребляемая мощность в сети. Необходимо таким образом принять охрану, чтобы двигатель имел достаточную мощность, чтобы удовлетворить все ситуации эксплуатации установки.
Возьмем насос с поглощающей способностью 8,5 кВт. Эти 8,5 кВт двигатель будет обеспечивать самостоятельно за счет Дело в том, что он задуман на 7 кВт или 10 кВт. Двигатель 7 кВт, который должен работать при 40 ° C, таким образом, всегда будет перегружен. 21,5%.
Прямое следствие перегрузки двигателя — увеличение
по температуре намотки.Обгон предельной
температура 8-10 ° C, сокращает срок службы изоляции
примерно половина. Обгон свыше 20 ° C означает сокращение
75%.
Двигатели стандартной конструкции рассчитаны на максимальное использование температура окружающей среды 40 ° C (и максимальная высота площадки 1000 м). Любое изменение требует корректировки номинала. выход.
Последнее обновление:
| Neutrium
Мощность потребляется насосом, вентилятором или компрессором для перемещения и увеличения давления жидкости. Потребляемая мощность насоса зависит от ряда факторов, включая КПД насоса и двигателя, перепад давления и плотность жидкости, вязкость и скорость потока. В этой статье представлены соотношения для определения необходимой мощности насоса.
: | Гидравлическая мощность насоса (кВт). | |
: | Мощность на валу насоса (кВт). | |
: | Требуемая мощность двигателя (кВт). | |
: | Объемный расход жидкости через насос (м 3 / ч). | |
: | Плотность перекачиваемой жидкости (кг / м 3 ). | |
: | Гравитация (9.81 м / с 2 ). | |
: | Напор, создаваемый насосом (м). | |
: | Перепад давления на насосе (кПа) | |
: | КПД насоса (%). | |
: | КПД двигателя (%). |
Гидравлическая мощность, также известная как поглощаемая мощность, представляет собой энергию, передаваемую перекачиваемой жидкости для увеличения ее скорости и давления.Гидравлическую мощность можно рассчитать по одной из приведенных ниже формул в зависимости от имеющихся данных.
Единицы | Formula |
---|---|
P — кВт Q — м 3 / ч ρ — кг / м 3 г — м / с 2 ч — м | |
P — кВт Q — м 3 / ч dP — кПа | |
P — кВт Q — л / мин dP — кПа | |
P — кВт Q — л / с dP — кПа |
Мощность на валу — это мощность, передаваемая двигателем на вал насоса.Мощность на валу — это сумма гидравлической мощности (обсужденной выше) и потерь мощности из-за неэффективности передачи мощности от вала к жидкости. Мощность на валу обычно рассчитывается как гидравлическая мощность насоса, деленная на эффективность насоса, следующим образом:
Мощность двигателя — это мощность, потребляемая двигателем насоса для вращения вала насоса. Мощность двигателя — это сумма мощности на валу и потерь мощности из-за неэффективности преобразования электрической энергии в кинетическую. Мощность двигателя можно рассчитать как мощность на валу, деленную на КПД двигателя.
Существует несколько других характеристик насоса и привода, которые увеличивают потребность в мощности для достижения конкретной передачи жидкости, в том числе:
- Редукторы
- Ременные приводы
- Приводы с регулируемой скоростью (VSD)
В таблице ниже представлены некоторые типичные значения КПД, которые можно использовать для оценки требований к мощности для выбора типов насосов.Эти значения предназначены для насосов правильного размера. Если насос слишком большого размера или плохо спроектирован, его эффективность может быть намного ниже, чем значения, указанные ниже, это особенно часто встречается в небольших насосах.
Тип насоса / компонент | Типичный КПД |
---|---|
Центробежный насос | 60-85% |
Пластинчатый насос | 60-90% |
Ременный привод | 70-96% |
Привод с регулируемой скоростью на полной скорости | 80-98% |
Привод с переменной скоростью на полной скорости 75% | 70-96% |
Привод с регулируемой скоростью при 50% полной скорости | 44-91% |
Привод с регулируемой скоростью при полной скорости 25% | 9-61% |
- Игорь Карасик, Руководство по насосам, четвертый Издание
- Perry’s Chemical Engineers ‘Handbook, восьмое издание
Теги статьи
Формула для расчета мощности насоса | Удельная частота вращения центробежного насоса
В этой статье обсуждаются основные формулы насоса с примерами, такими как расчет мощности насоса формула , удельная скорость центробежного насоса и законы сродства для центробежных и поршневых насосов .Также предоставляется онлайн-калькулятор для расчета мощности насоса
Формулы для расчета КПД и мощности насоса с примерами
КПД и потребляемая мощность насосаРабота, выполняемая насосом, равна весу перекачиваемой жидкости за единицу времени, умноженному на общий напор в метрах. Однако производительность насоса в M 3 / час и удельный вес жидкости используются, а не вес жидкости, перекачиваемой для работы, выполняемой насосом.
Входная мощность «P» насоса — это механическая мощность в кВт или Вт , потребляемая валом или муфтой.Таким образом, входная мощность насоса также называется Break Horse Power (BHP).
Входная мощность насоса BHP — это мощность, передаваемая на вал насоса, которая обозначается как тормозная мощность. поэтому входная мощность насоса также называется мощностью на валу насоса .
Выходная мощность насоса r называется мощностью водяных лошадиных сил (WHP ) или гидравлической мощностью , и это полезная работа, выполняемая насосом. и обычно выражается формулой
Гидравлическая мощность Ph = Расход X Общий развиваемый напор X Плотность X Гравитационная постоянная
КПД насоса — это соотношение входной и выходной мощности насоса.
т.е. КПД насоса — это отношение водяных лошадиных сил к тормозной мощности.
Формула расчета входной мощности насоса или формула расчета мощности на валу насоса
Входная мощность насоса = P
Формула — 1
P в Ваттах =
Здесь
Q = Расход в м 3 / с
H = Общий развитый напор в метрах
= Плотность в кг / м 3
г = Гравитационная постоянная = 9.81 м / с 2
η = КПД насоса (от 0% до 100%)
Формула — 2
P в кВт =
Здесь
Q = Расход в м 3 / час
H = Общий развитый напор в метрах
= Плотность в кг / дм 3 (1 кг / м 3 = 0,001 кг / дм 3 )
η = КПД от 0 до <1 (не в%)
Формула — 3
P в кВт =
Здесь
Q = Расход в литрах./ сек (1 м 3 / сек = 3,6 x л / сек)
H = Общий развитый напор в метрах
= Плотность в кг / дм 3 (1 кг / м 3 = 0,001 кг / дм 3 )
η = КПД насоса (от 0% до 100%)
Формула — 4
P в л.с. =
Здесь
Q = Расход в литрах / сек
H = Общий развитый напор в метрах
= Плотность в кг / дм 3
η = КПД насоса (от 0% до 100%)
Формула — 5 (единицы USCS)
P в л.с. =
Здесь
Q = расход в галлонах в минуту
H = общий развитый напор в футах
= плотность в фунтах / фут 3
η = КПД насоса (от 0% до 100%)
Для насосной установки с электродвигателем общий КПД составляет
Общий КПД = КПД насоса x КПД двигателя
Общая эффективность тогда становится тем, что обычно называют эффективностью «провод-вода », которая выражается формулой
Общий КПД =
Удельная скорость насоса
Удельная скорость «Nq» — это параметр, полученный в результате анализа размеров, который позволяет сравнивать рабочие колеса насосов различных размеров, даже если они работают в одном и том же диапазоне Q -H .Конкретная скорость может использоваться для определения оптимальной конструкции рабочего колеса.
Удельная скорость насоса (Nq) определяется как скорость в об / мин, с которой работало бы геометрически аналогичное рабочее колесо, если бы его размер был уменьшен пропорционально так, чтобы подавать 75 кг воды в секунду на высоту 1 м.
Nq также определяется как теоретическая скорость вращения, с которой работало бы геометрически аналогичное рабочее колесо, если бы оно было такого размера, чтобы производить 1 м напора при расходе 1 м 3 / сек с максимальной эффективностью.
Удельную скорость можно сделать действительно безразмерным характеристическим параметром с сохранением того же числового значения, используя следующее уравнение.
Метрическая система
Nq = =
Где Nq = безразмерный параметр
Н = частота вращения насоса
n = об / сек насоса
Q = Расход в м 3 / с
H = напор в метрах
g = Гравитационная постоянная (9,81 м / сек 2 )
Британских единиц
Nq =
Где N = частота вращения насоса
Q = скорость потока в галлонах в минуту (галлонов в минуту)
H = напор в футах
Примечание:
1.Для многоступенчатых насосов развиваемый напор (H) при лучшем КПД
2. Учитывайте половину полного напора в случае крыльчатки двойного всасывания.
Приблизительные справочные значения для удельной скорости центробежного насоса (Nq):
Радиальное рабочее колесо с высоким напором — до прибл. 25
Рабочее колесо среднего радиуса напора — до прибл. 40
Радиальное рабочее колесо с низким напором — до прибл. 70
Рабочее колесо смешанного типа — до прибл. 160
Рабочее колесо с осевым потоком (пропеллер) — ок.от 140 до 400
Законы сродства для насосов — перейдите по ссылке ниже
Законы родства для центробежных насосов | Законы сродства поршневого насоса | Законы сродства насоса на примере
Почему следует выбирать насос с большей эффективностью
КПД насоса является наиболее важным фактором при расчете энергопотребления. Поэтому, выбирая насос с более высокой мощностью, всегда выбирайте насосный агрегат с максимальной эффективностью.
Следующая формула поможет выбрать лучший тип насоса с рейтингом эффективности
N
N = Количество единиц энергосбережения в год в кВт / ч
= Более высокий и более низкий общий КПД двух насосных агрегатов.
P = Потребляемая мощность в кВт на двигатель (относится к насосу с низким КПД)
T = Наработка в год
Пример расчета КПД насоса= 75% и 65% соответственно
P = Потребляемая мощность = 40 кВт
T = 3000 часов в год
N = 18461 единиц (кВт · ч)
Таким образом, при той же мощности КПД насоса увеличится на 10%, тогда экономия электроэнергии составит 18461 кВтч в год.
Расчет мощности центробежного насоса онлайн
Примечание: 1000 кг / м 3 = 1 кг / дм 3
Нажмите здесь
Связанная статья:
Насос Расчет давления пара | Таблица давления водяного пара при различных температурах
Классификация насосов | Типы насосов и принцип их работы
Коэффициенты пересчета единиц измерения и таблицы для инженерных расчетов
РасчетNPSH | Потери напора в линиях всасывания и нагнетания насоса с онлайн-калькулятором
Спасибо, что прочитали эту статью.Надеюсь, он выполнит ваше требование. Оставляйте отзывы, комментарии и, пожалуйста, не забудьте поделиться ими
Калькулятор мощности насоса, формула, пример, расчет
Калькулятор мощности насоса:
Введите расход, плотность жидкости (отображается внизу), силу тяжести, напор и эффективность насоса. Затем нажмите кнопку расчета, чтобы получить мощность насоса, мощность двигателя. Также вы можете поменять силовой агрегат с кВт на л.с.
По умолчанию мы включили водяной насос с напором 10 м для подачи 50 тонн в час.3 / час = 1 тонна.
Формула расчета мощности насоса:
Мощность насоса P (кВт) в киловаттах равна произведению расхода q (м 3 / час) кубических метров в час на плотность жидкости ρ (кг / м 3 ) в килограммах на кубический метр, плотность g в м 2 / с, дифференциал насоса h (м) напор в метрах и перепад давления p (Па) в Паскалях или Н / м 2 разделить на 36,00,000.
Иногда вам может потребоваться купить автомобиль, автомобильные запчасти к вашим автомобилям, здесь Marker laserowy предоставляет высококачественные автомобильные запчасти, высокоскоростные подшипники и т. Д.
Следовательно, формула расчета мощности накачки может быть записана следующим образом:
Мощность насоса P (кВт) = q (м 3 / ч) x ρ (кг / м 3 ) xg (м 2 / с) xh (м) xp (Па) /3600000.
Точно так же мощность насоса в формуле мощности может быть записана как,
Мощность насоса P (л.с.) = q (м 3 / час) x ρ (кг / м 3 ) xg (м 2 / с) xh (м) xp (Па) /2685600.
Также выше мощность насоса требуется для подъема жидкости до напорных счетчиков. Но для расчета подходящего двигателя, вам необходимо рассчитать мощность на валу насоса.
Мощность на валу равна требуемой мощности насоса, деленной на КПД.
P (кВт — вал) = P (кВт) / η
Следовательно, требуемая мощность двигателя в кВт формула может быть записана как
P (кВт-двигатель) = q (м 3 / час) x ρ (кг / м 3 ) xg (м 2 / с) xh (м) xp (Па) / (3600000 x η)
Пример расчета мощности насоса:
Допустим, мы взяли насос высотой 10 метров, необходимый для подъема воды на 50 м 3 / час, а эффективность насоса составляет 67%.
Плотность воды 1000 кг / м 3
Следовательно, мощность насоса требуется,
P (кВт) = 50 x 1000 x 9,81 x 10/3600000
= 1,3 кВт
Требуемая мощность двигателя
P (кВт-двигатель) = 1,3 / 0,67
= 2,02 кВт
Преобразование в HP
= 2,02 / 0 / 0,746 = 2,7 л.с.
Приблизительно 2,2 кВт, но у нас стандартная конструкция мощностью 2,2 кВт или двигатель мощностью 3 л.с., который можно использовать для подъема на 50 м. 3 / час воды при 10-метровом напоре.
Диаграмма плотности жидкости:
Жидкость | Темп. | Плотность | Пар |
град. C | кг / м3 | Давление кПа. | |
Ацетальдегид | 20 | 788 | 105 |
Ацетальдегид | 30 | 748 | 148 |
Уксусная кислота | 20 | 1048 | 3.3 |
Ангидрид уксусной кислоты | 20 | 1084 | 1,3 |
Ацетон | 20 | 790 | 30 |
Аллиловый спирт | 20 | 852 | 2,4 |
Аллиловый спирт | 30 | 848 | 4,3 |
Аллиловый спирт | 40 | 844 | 7,4 |
Аллилхлорид | 20 | 940 | 30 |
Хлорид алюминия [5% раствор] | 20 | 1030 | 2.4 |
Нитрат алюминия [10% раствор] | 20 | 1051 | 2,4 |
Сульфат алюминия [10% раствор] | 20 | 1115 | 2,4 |
Амилацетат | 20 | 885 | 1,3 |
Анилин | 10 | 1030 | 0,5 |
Анилин | 20 | 1021 | 0,5 |
Пиво | 20 | 996 | 2.4 |
Бензол | 20 | 879 | 14 |
Бензол | 30 | 868 | 20,7 |
Бензол | 40 | 858 | 30 |
Бензол | 50 | 847 | 42,5 |
Бензол | 60 | 836 | 60 |
Бензиловый спирт | 20 | 1045 | 0.5 |
Бром | 20 | 3120 | 48 |
Бутилацетат | 20 | 885 | 3,3 |
Бутиловый спирт | 20 | 810 | 5,4 |
Бутиловый спирт | 30 | 803 | 8,7 |
Масляная кислота n | 977 | 0,5 | |
Масляная кислота n | 10 | 967 | 0.5 |
Масляная кислота n | 20 | 957 | 0,5 |
Хлорид кальция [25% раствор] | 20 | 1227 | 2,4 |
Хлорид кальция [5% раствор] | 20 | 1037 | 2,4 |
Карболовая кислота | 20 | 1078 | |
Карболовая кислота | 30 | 1069 | |
Карболовая кислота | 40 | 1059 | |
Карболовая кислота | 50 | 1050 | |
Дисульфид углерода | 1292 | 22 | |
Дисульфид углерода | 10 | 1277 | 33 |
Дисульфид углерода | 20 | 1262 | 48 |
Тетрахлорметан | 20 | 1595 | 20.7 |
Тетрахлорметан | 30 | 1525 | 30 |
Касторовое масло | 20 | 960 | |
Касторовое масло | 30 | 955 | |
Касторовое масло | 40 | 950 | |
Касторовое масло | 50 | 945 | |
Касторовое масло | 60 | 940 | |
Китайское древесное масло | 20 | 933 | |
Китайское древесное масло | 30 | 926 | |
Китайское древесное масло | 40 | 918 | |
Хлороформ | 20 | 1489 | 30 |
Хлороформ | 30 | 1471 | 43 |
Хлороформ | 40 | 1452 | 62 |
Хлороформ | 50 | 1434 | 87 |
Хлороформ | 60 | 1415 | 120 |
Масло семян хлопчатника | 20 | 926 | |
Масло семян хлопчатника | 30 | 921 | |
Масло семян хлопчатника | 40 | 916 | |
Циклогексанол | 20 | 952 | 0.5 |
Циклогексанон | 20 | 952 | 0,5 |
Цилиндровое масло | 20 | 940 | |
Диоксан | 20 | 1030 | |
Этилацетат | 20 | 905 | 14 |
Спирт этиловый | 20 | 772 | 9 |
Спирт этиловый | 30 | 754 | 14 |
Спирт этиловый | 40 | 737 | 20.7 |
Этилгликоль | 20 | 930 | 0,5 |
Этиленгликоль | 20 | 1112 | 0,5 |
Этиленгликоль | 30 | 1104 | 0,5 |
Муравьиная кислота | 20 | 1220 | 5,4 |
Муравьиная кислота | 30 | 1208 | 8,7 |
Мазут (эл.) Сверхлегкий | 20 | 850 | |
Мазут (л) легкий | 20 | 910 | |
Мазут (м) средний | 20 | 990 | |
Мазут тяжелый | 20 | 990 | |
Фурфурол | 20 | 1160 | 0.5 |
Фурфурол | 30 | 1149 | 1,5 |
Масло трансмиссионное | 20 | 905 | |
Глицерин | 20 | 1261 | |
Гептан | 702 | 0,02 | |
Гептан | 10 | 692 | 0,03 |
Гептан | 20 | 682 | 0.05 |
Гептан | 30 | 671 | 0,08 |
Гептан | 40 | 661 | 0,1 |
гексан | 678 | 0,02 | |
гексан | 10 | 668 | 0,03 |
гексан | 20 | 658 | 0,05 |
гексан | 30 | 649 | 0.08 |
гексан | 40 | 639 | 0,1 |
Керосин | 20 | 804 | 0,5 |
Керосин | 30 | 780 | 0,5 |
Масло льняное | 20 | 920 | |
Машинное масло светлое | 20 | 900 | |
Машинное масло — среднее | 20 | 940 | |
Меркурий | 20 | 13570 | |
Метилацетат | 20 | 959 | 48 |
Метилацетат | 30 | 937 | 68 |
Метилацетат | 40 | 916 | 95 |
Метиловый спирт | 810 | 13.4 | |
Метиловый спирт | 10 | 801 | 20 |
Метиловый спирт | 20 | 792 | 30 |
Метилгликоль | 20 | 975 | |
Метиленхлорид | 20 | 1326 | 72 |
Молоко | 20 | 1035 | 2,4 |
Нитробензин | 20 | 1203 | 0.5 |
Нонан | 733 | 0,5 | |
Нонан | 10 | 725 | 0,5 |
Нонан | 20 | 717 | 0,5 |
Нонан | 30 | 709 | 1,5 |
Нонан | 40 | 701 | 2,4 |
Октан | 719 | 0.5 | |
Октан | 10 | 711 | 0,5 |
Октан | 20 | 702 | 0,5 |
Октан | 30 | 694 | 1,5 |
Октан | 40 | 685 | 2,4 |
Масло SAE 10W — 30 | 20 | 875 | |
Масло SAE 10W | 20 | 870 | |
Масло SAE 20W — 20 | 20 | 885 | |
Масло SAE 30 | 20 | 890 | |
Масло SAE 40 | 20 | 900 | |
Масло SAE 50 | 20 | 902 | |
Оливковое масло | 20 | 910 | |
Парафиновое масло | 20 | 804 | 0.5 |
Парафиновое масло | 30 | 780 | 0,5 |
Пентан | 646 | 32 | |
Пентан | 10 | 636 | 50 |
Пентан | 20 | 626 | 72 |
Пентан | 30 | 616 | 101 |
Фенол | 20 | 1078 | 0.5 |
Фенол | 30 | 1069 | 0,5 |
Фенол | 40 | 1059 | 1 |
Фенол | 50 | 1050 | 1,6 |
Пропанол | 20 | 804 | 2,4 |
Пропанол | 30 | 795 | 4,3 |
Пропанол | 40 | 786 | 7.4 |
Пропанол | 50 | 777 | 12,3 |
Пропионовая кислота | 20 | 990 | 0,5 |
Пропиленгликоль | 20 | 1038 | |
Масло рапсовое | 20 | 920 | |
Морская вода | 1028 | 0,6 | |
Морская вода | 10 | 1028 | 1.3 |
Морская вода | 100 | 984 | 101,3 |
Морская вода | 20 | 1025 | 2,4 |
Морская вода | 30 | 1023 | 4,3 |
Морская вода | 40 | 1019 | 7,4 |
Морская вода | 50 | 1015 | 12,3 |
Морская вода | 60 | 1010 | 19.9 |
Морская вода | 70 | 1004 | 31,2 |
Морская вода | 80 | 998 | 47,4 |
Морская вода | 90 | 991 | 70,1 |
Хлорид натрия [25% раствор] | 20 | 1190 | 2,4 |
Гидроксид натрия [20% раствор] | 20 | 1226 | 2,4 |
Гидроксид натрия [30% раствор] | 20 | 1330 | 2.4 |
Масло соевое | 20 | 926 | |
Стирол | 20 | 926 | 0,5 |
Серная кислота | 20 | 1839 | 2,4 |
Тетрахлорэтан | 20 | 1593 | 1,3 |
Тетрахлорэтилен | 20 | 1621 | 3,3 |
Толуол | 20 | 867 | 5.4 |
Толуол | 30 | 858 | 8,7 |
Толуол | 40 | 849 | 13 |
Толуол | 50 | 840 | 19,5 |
Толуол | 60 | 831 | 28 |
Масло трансформаторное | 20 | 950 | |
Трихлорэтилен | 20 | 1463 | 14 |
Вода | 1000 | 0.6 | |
Вода | 10 | 1000 | 1,3 |
Вода | 100 | 958 | 101,3 |
Вода | 20 | 998 | 2,4 |
Вода | 30 | 996 | 4,3 |
Вода | 40 | 992 | 7,4 |
Вода | 50 | 988 | 12.3 |
Вода | 60 | 983 | 19,9 |
Вода | 70 | 978 | 31,2 |
Вода | 80 | 972 | 47,4 |
Вода | 90 | 965 | 70,1 |
Ксилол-о | 20 | 864 | |
Ксилол-о | 30 | 855 | |
Ксилол-о | 40 | 847 |
Основные формулы гидравлической жидкости / Гидравлика / Пневматика | ||
Переменная | Словесная формула с единицами | Упрощенная формула |
Давление жидкости — P | (фунт / кв. Дюйм) = сила (фунты) / площадь (кв.Дюймы) | P = F / A |
Расход жидкости — Q | галлонов в минуту = расход (галлоны) / единица времени (минуты) | Q = V / T |
Мощность жидкости в лошадиных силах — л.с. | лошадиных сил = давление (фунт / кв. Дюйм) × расход (галлонов в минуту) / 1714 | л.с. = PQ / 1714 |
Формулы привода | ||
Переменная | Словесная формула с единицами | Упрощенная формула |
Площадь цилиндра — A | (кв.В.) =? × Радиус (дюйм) 2 | А =? × R 2 |
(кв. Дюйм) =? × Диаметр (дюйм) 2 /4 | А =? × Г 2 /4 | |
Усилие цилиндра — F | (Фунты) = Давление (psi) × Площадь (кв. Дюйм) | F = P × A |
Скорость цилиндра — v | (футов / сек) = (231 × расход (галлонов в минуту)) / (12 × 60 × площадь) | v = (0.3208 × галлонов в минуту) / A |
Объем цилиндра — V | Объем =? × Радиус 2 × Ход (дюймы) / 231 | В =? × R 2 × L / 231 (L = длина хода) |
Расход цилиндра — Q | Объем = 12 × 60 × скорость (футы / сек) × полезная площадь (дюймы) 2 /231 | Q = 3,11688 × v × A |
Крутящий момент гидравлического двигателя — T | Момент затяжки (дюйм.фунты) = Давление (фунт / кв. дюйм) × дисп. (дюймы 3 / об.) / 6,2822 | T = P × d / 6,2822 |
Крутящий момент = л.с. × 63025 / об / мин | T = HP × 63025 / n | |
Крутящий момент = расход (галлонов в минуту) × давление × 36,77 / об / мин | T = 36,77 × Q × P / n | |
Скорость гидромотора — n | Скорость (об / мин) = (231 × GPM) / Дисп. (дюймы) 3 | n = (231 × галлонов в минуту) / день |
Гидравлический двигатель, л.с. | л.с. = крутящий момент (дюйм.фунтов) × об / мин / 63025 | HP = T × n / 63025 |
Формулы для насосов | ||
Переменная | Словесная формула с единицами | Упрощенная формула |
Выходной поток насоса — галлонов в минуту | галлонов в минуту = (Скорость (об / мин) × дисп.(куб. дюймов)) / 231 | галлонов в минуту = (n × d) / 231 |
Входная мощность насоса, л.с. | л.с. = галлонов в минуту × давление (фунт / кв. Дюйм) / 1714 × КПД | л.с. = (Q × P) / 1714 × E |
КПД насоса — E | Общий КПД = Выходная мощность / Входная мощность | E Общий = HP Out / HP In X 100 |
Общий КПД = Объемный КПД.× Механический эффект. | E Общий = Eff Vol. × Eff мех. | |
Объемный КПД насоса — E | Объемный КПД = Фактический выходной расход (галлонов в минуту) / теоретический выходной расход (галлонов в минуту) × 100 | Eff Vol. = Q Закон. / Q Тео. Х 100, |
Механический КПД насоса — E | Механический КПД = Теоретический крутящий момент для привода / Фактический крутящий момент для привода × 100 | Eff Mech = T Theo. / T Закон. × 100 |
Объем насоса — CIPR | Рабочий объем (дюймы 3 / оборот) = расход (галлонов в минуту) × 231 / частота вращения насоса | CIPR = GPM × 231 / об / мин |
Крутящий момент насоса — T | Крутящий момент = Мощность × 63025 / об / мин | T = 63025 × HP / RPM |
Крутящий момент = Давление (PSIG) × Объем насоса (CIPR) / 2? | T = P × CIPR / 6.28 |
Формулы для перекачки — Malcolm Thompson Pumps
В компании Malcolm Thompson Pumps мы хотим предоставить нашим клиентам все инструменты, необходимые для правильного выбора, эксплуатации и технического обслуживания своих насосов, в том числе предоставление им всех необходимых насосных формул.
Выбор правильных насосов для вашей работы является ключом к достижению максимальной эффективности и рентабельности вашей деятельности. Существуют различные способы расчета входной мощности насоса.Ниже мы приводим формулу мощности насоса для каждого конкретного измерения.
Чтобы наилучшим образом убедиться, что выбранный вами насос соответствует вашим требованиям, или по любым вопросам, касающимся приведенных ниже формул, не стесняйтесь обращаться к одному из наших опытных сотрудников службы поддержки клиентов по телефону 1800 439 607. Наша дружная команда будет рада помочь. с выбором насоса, техническими характеристиками и получением конкурентоспособного предложения.
Полезные термины
Срок | Обозначение | Блок |
Киловатт | кВт | |
Объемный расход | квартал | л / м или л / с или м³ / ч |
Головка | H | кв.м |
Скорость | v | м / с |
Давление | п. | кПа |
Плотность | ɛ | кг / м³ |
Скорость вращения | N | об / мин |
Удельный вес | с.Г. | SG |
Ускорение свободного падения | г | м / с² (9,8 м / с) |
Электрический ток | А | ампер |
Температура | ° С | |
КПД насоса | Ƞ | КПД насоса, десятичный |
Формулы перекачки любой жидкости
Объемный расход от массового расхода и плотности | ||
---|---|---|
Для любой жидкости | ||
Объемный расход (л / с) | = | 1000 * Массовый расход (кг / с) Плотность (кг / м 3 ) |
Напор жидкости от давления и плотности | ||
Для любой жидкости | ||
Напор (м) | = | 1000 * Давление (кПа) Плотность (кг / м 3 ) x г |
Входная мощность насоса зависит от производительности насоса | ||
Для любой жидкости | ||
Мощность (кВт) | = | Плотность (кг / м 3 ) * Объемный расход (л / с) * Напор (м) 1000 * 102.0 * КПД (десятичный) |
Потребляемая мощность насоса от счетчика киловатт-часов | ||
Мощность (кВт) | = | 36 * Disc.Revs. * Постоянный коэффициент расходомера * КПД двигателя (децибел) Время (с) * Метрический диск. Постоянная (об / кВт-ч) |
Потребляемая мощность насоса от тока и напряжения | ||
Мощность (кВт) | = | Ток (А) * Напряжение (В) * КПД двигателя (разл.) * КПД насоса (разл.) 57 735 |
Энергия, потребляемая двигателем на единицу объема перекачиваемой жидкости | ||
Для любой жидкости | ||
Энергия / объем (кВт-ч / кл) | = | Плотность (кг / м 3 ) * Напор (м) 367 347 * КПД двигателя (разл.) * КПД (разл.) |
Мощность на входе насоса от двигателя | ||
Мощность (кВт) | = | Pi * Крутящий момент (Н.м) * Скорость (об / мин) 30 000 |
= | Крутящий момент (Н-м) * скорость (об / мин) 9 549 |
Формулы перекачки воды при 20 ° C
Объемный расход от массового | ||
---|---|---|
Объемный расход (л / с) | = | 1,002 * Массовый расход (кг / с) |
Напор жидкости от давления | ||
Напор (м) | = | 0.1022 * Давление (кПа) |
Напор (фут) | = | 0,3354 * Давление (кПа) |
Входная мощность насоса зависит от производительности насоса | ||
Мощность (кВт) | = | объемный расход (л / с) * напор (м) 102,2 * КПД (десятичный) |
Энергия, потребляемая двигателем на единицу объема перекачиваемой жидкости | ||
энергия / объем (кВт-ч / кл) | = | Напор (м) 368.0 * КПД двигателя (разл.) * КПД (разл.) |
Скорость потока | ||
По круглому сечению | ||
Скорость потока (м / с) | = | 1273 * Объемный расход (л / с) (Диаметр (мм)) ² |
Напор скорости | ||
Напор (м) | = | 1000 * Объемный расход (л / с) Площадь (мм 2 ) |
КАК спроектировать насосную систему
предыдущее
Общий напор
Общий напор и расход являются основными критериями, которые используются для сравнения одного насоса с другим или для выбора центробежного насоса для применения.Общий напор связан с давлением нагнетания насоса. Почему мы не можем просто использовать давление нагнетания? Давление — понятие знакомое, мы знакомы с ним в повседневной жизни. Например, в огнетушителях создается давление 60 фунтов на квадратный дюйм (413 кПа), мы устанавливаем давление воздуха 35 фунтов на квадратный дюйм (241 кПа) в наших велосипедных и автомобильных шинах. По уважительным причинам производители насосов не используют давление нагнетания в качестве критерия при выборе насоса. Одна из причин — они не знают, как вы будете пользоваться помпой. Они не знают, какой расход вам нужен, и расход центробежного насоса не фиксирован.Давление нагнетания зависит от давления на всасывающей стороне насоса. Если источник воды для насоса находится ниже или выше всасывания насоса, для той же скорости потока вы получите другое давление нагнетания. Поэтому для устранения этой проблемы предпочтительно использовать разницу давлений на входе и выходе насоса. |
Производители пошли дальше, величина давления, которое может создать насос, будет зависеть от плотности жидкости, для раствора соленой воды, который плотнее, чем чистая вода, давление будет выше для того же скорость потока.Опять же, производитель не знает, какой тип жидкости находится в вашей системе, поэтому критерий, не зависящий от плотности, очень полезен. Есть такой критерий, и он называется ОБЩИЙ НАПОР, и он определяется как разница в напоре между входом и выходом насоса.
Вы можете измерить напор нагнетания, прикрепив трубку к напорной стороне насоса и измерив высоту жидкости в трубке относительно всасывания насоса. Для обычного бытового насоса трубка должна быть достаточно высокой.Если давление нагнетания составляет 40 фунтов на квадратный дюйм, высота трубки должна быть 92 фута. Это непрактичный метод, но он помогает объяснить, как напор соотносится с общим напором и как напор соотносится с давлением. Вы проделаете то же самое, чтобы измерить высоту всасывания. Разница между ними — общий напор насоса.
Рисунок 25
Жидкость в измерительной трубке на стороне нагнетания или всасывания насоса будет подниматься на одинаковую высоту для всех жидкостей независимо от плотности. Это довольно удивительное заявление, и вот почему. Насос ничего не знает о голове, голова — это понятие, которое мы используем, чтобы облегчить нашу жизнь. Насос создает давление, а разница в давлении на насосе представляет собой количество энергии давления, доступной для системы. Если жидкость плотная, такая как, например, солевой раствор, на выходе насоса будет создаваться большее давление, чем если бы текучей средой была чистая вода. Сравните два резервуара одинаковой цилиндрической формы, одинакового объема и уровня жидкости, резервуар с более плотной жидкостью будет иметь более высокое давление внизу.Но статический напор поверхности жидкости относительно дна такой же. Общий напор ведет себя так же, как статический напор, даже если жидкость более плотная, общий напор по сравнению с менее плотной жидкостью, такой как чистая вода, будет таким же. Это удивительный факт, посмотрите этот эксперимент на видео, которое показывает эту идею в действии.
По этим причинам производители насосов выбрали общий напор в качестве основного параметра, описывающего доступную энергию насоса.
Какая связь между напором и общим напором?
Общий напор — это высота, на которую жидкость поднимается на стороне нагнетания насоса, за вычетом высоты, на которую она поднимается на стороне всасывания (см. Рисунок 25).Почему меньше высота на стороне всасывания? Потому что нам нужна только энергия насоса, а не энергия, которая к нему подводится.
Что такое единица измерения головы? Сначала разберемся с единицей энергии. Энергия может быть выражена в фут-фунтах, что представляет собой количество силы, необходимой для поднятия объекта, умноженное на вертикальное расстояние. Хороший пример — поднятие тяжестей. Если вы поднимете на 100 фунтов (445 Ньютонов) 6 футов (1,83 м), требуемая энергия составляет 6 x 100 = 600 фут-фунт-сила (814 Н-м).
Напор определяется как энергия, деленная на вес перемещаемого объекта. Для штангиста энергия делится на смещенный вес составляет 6 x 100/100 = 6 футов (1,83 м), поэтому количество энергии на фунт гантель, которую должен предоставить штангист, составляет 6 футов. Это не очень полезно знать для штангиста, но мы увидим, насколько он полезен для вытеснения жидкостей.
Рисунок 26
Возможно, вам будет интересно узнать, что 324 фут-фунта энергии эквивалентны 1 калории.Это означает, что наш тяжелоатлет тратит 600/324 = 1,8 калории каждый раз, когда поднимает этот вес на 6 футов, не так много.
На следующем рисунке показано, сколько энергии требуется для вертикального вытеснения одного галлона воды.
Рисунок 27
На следующем рисунке показано, сколько напора требуется для выполнения той же работы.
Рисунок 28
Если мы используем энергию, чтобы описать, сколько работы нужно сделать насосу, чтобы вытеснить объем жидкости нам нужно знать вес.Если мы используем голову, нам нужно знать только вертикальное расстояние движения. Это очень полезно для жидкостей, потому что перекачивание — это непрерывный процесс, обычно когда вы перекачиваете оставьте насос включенным, вы не запускаете и не останавливаете насос на каждый фунт вытесненной жидкости. Мы в основном заинтересованы в установлении непрерывного расхода.
Другой очень полезный аспект использования головы заключается в том, что перепад высот или статический напор может использоваться как одна часть значения общего напора, а другая часть — напор трения как показано на следующем рисунке.Один показывает фрикционную головку на стороне нагнетания, а другой — фрикционную головку на стороне всасывания.
Какой статический напор необходим для перекачки воды с первого этажа на второй или на 15 футов вверх? Помните, что вы также должны учитывать уровень воды во всасывающем баке. Если уровень воды на 10 футов ниже всасывающего патрубка насоса, то статический напор будет 10 + 15 = 25 футов. Следовательно, общий напор должен быть не менее 25 футов плюс потеря напора на трение жидкости, движущейся по трубам.
Рисунок 29
Как определить высоту трения
Напор трения — это количество потерь энергии из-за трения жидкости, движущейся по трубам и фитингам. Требуется сила, чтобы переместить жидкость против трения, точно так же, как сила требуется для подъема груза. Сила действует в том же направлении, что и движущаяся жидкость, и расходуется энергия. Точно так же, как напор рассчитывался для подъема определенного веса, напор трения рассчитывается как сила, необходимая для преодоления трения, умноженная на смещение (длина трубы), деленная на вес вытесненной жидкости.Эти расчеты были выполнены для нас, и вы можете найти значения потерь напора на трение в Таблице 1 для различных размеров труб и расходов.
Стол 1
Загрузите версию для печати (британские или метрические единицы).
В таблице 1 приведены расход и потери напора на трение для воды, движущейся по трубе при типичная скорость 10 футов / с. В качестве целевой скорости я выбрал 10 футов / с, потому что она не слишком большая. который создаст большое количество трения и не будет слишком маленьким, что замедлит работу.Если скорость меньше, то потери на трение будут меньше, а если скорость выше, потери будут быть больше, чем показано в Таблице 1. Для всасывающей стороны насоса желательно быть более консервативными и иметь размер труб для более низкая скорость, например от 4 до 7 футов в секунду. Вот почему вы обычно видите большую трубу размер на стороне всасывания насоса, чем на нагнетании. Практическое правило — сделать всасывающую трубу того же размера или на один размер больше всасывающего патрубка.
Зачем беспокоиться о скорости, недостаточно информации, чтобы описать движение жидкости через система. Это зависит от сложности вашей системы, если напорный патрубок имеет постоянный диаметр, то скорость на выходе будет такой же. Затем, если вы знаете расход на основе таблиц потерь на трение, вы можете рассчитать потери на трение только по расходу. Если диаметр напорного трубопровода изменится, тогда скорость будет изменяться для той же скорости потока, и более высокая или более низкая скорость означает более высокую или более низкую потери на трение в этой части системы.Затем вам нужно будет использовать скорость для расчета потеря напора на трение в этой части трубы. Вы можете найти здесь калькулятор скорости веб-приложения. https://www.pumpfundamentals.com/web-apps.htm
Если вы хотите увидеть диаграмму расхода для 5 футов / с (британских или метрических) и 15 футов / с (британских или метрических), загрузите их здесь.
Для тех из вас, кто хотел бы провести свои собственные вычисления скорости, вы можете скачать формулы и пример расчета здесь.
Те, кто хочет произвести расчеты трения в трубе, могут скачать пример здесь.
Веб-приложение для определения потерь на трение в трубе доступно здесь https://www.pumpfundamentals.com/web-apps.htm
Производительность или характеристика насоса
Характеристическая кривая насоса выглядит так же, как и предыдущая кривая, которую я также назвал характеристической кривой, которая показывает взаимосвязь между давлением нагнетания ипоток (см. рисунок 21). Как я уже упоминал, это непрактичный способ описания производительности, потому что вам нужно знать давление всасывания, используемое для построения кривой. На рисунке 30 показана типичная кривая зависимости полного напора от расхода. Это тип кривой, которую все производители насосов публикуют для каждой модели насоса для данной рабочей скорости.
Не все производители предоставят вам кривую характеристик насоса. Однако кривая действительно существует, и если вы будете настаивать, вы, вероятно, сможете ее получить.Как правило, чем больше вы платите, тем больше технической информации вы получаете.
Рисунок 30
Как выбрать центробежный насос
Маловероятно, что центробежный насос, купленный в готовом виде, точно удовлетворит ваши требования к расходу. Скорость потока, которую вы получаете, зависит от физических характеристик вашей системы, таких как трение, которое зависит от длины и размера труб, а также от перепада высот, который зависит от здания и местоположения.Производитель насоса не может знать, какими будут эти ограничения. Вот почему купить центробежный насос сложнее, чем купить поршневой насос прямого вытеснения, который будет обеспечивать его номинальный расход независимо от того, в какой системе вы его устанавливаете.
Основными факторами, влияющими на производительность центробежного насоса, являются:
— трение, которое зависит от длины трубы и диаметра
— статический напор, зависящий от разницы высоты выхода конца трубы отвысота поверхности жидкости всасывающего бака
— вязкость жидкости, если жидкость отличается от воды.
Для выбора центробежного насоса необходимо выполнить следующие действия:
1. Определить расход
Чтобы определить размер и выбрать центробежный насос, сначала определите расход. Если вы владелец дома, выясните, кто из ваших потребителей воды является самым крупным потребителем. Во многих случаях это будет ванна, для которой требуется примерно 10 галлонов в минуту (0.6 л / с). В промышленных условиях расход часто зависит от уровня производства на предприятии. Выбор правильной скорости потока может быть таким же простым, как определение того, что для заполнения резервуара требуется 100 галлонов в минуту (6,3 л / с) за разумный промежуток времени, или скорость потока может зависеть от некоторого взаимодействия между процессами, которое необходимо тщательно проанализировать.
2. Определите статический напор
Это вопрос измерения высоты между поверхностью жидкости всасывающего резервуара и высотой конца выпускной трубы или отметкой поверхности жидкости нагнетательного резервуара.
3. Определить фрикционную головку
Высота трения зависит от расхода, размера и длины трубы. Это рассчитывается на основе значений в таблицах, представленных здесь (см. Таблицу 1). Для жидкостей, отличных от воды, вязкость будет важным фактором, и таблица 1 не применима.
4. Рассчитать общий напор
Полный напор — это сумма статического напора (помните, что статический напор может быть положительным или отрицательным) и фрикционного напора.
5. Выбрать насос
Вы можете выбрать насос на основе информации каталога производителя насоса, используя требуемый общий напор и расход, а также пригодность для применения.
Пример расчета общего напора
Пример 1 — Расчет насоса для домашнего использования
Опыт подсказывает мне, что для наполнения ванны за разумное время требуется скорость потока 10 галлонов в минуту.Согласно Таблице 1 размер медных трубок должен быть где-то между 1/2 «и 3/4», я выберу 3/4 «. Я спроектирую свою систему так, чтобы от насоса была медная трубка 3/4». распределителя, будет отвод 3/4 дюйма от этого распределителя на первом этаже до уровня второго этажа, где находится ванна. На всасывании я буду использовать трубу диаметром 1 дюйм, всасывающую трубу 30 футов длиной (см. рисунок 30).
Рисунок 31
Потери на трение на стороне всасывания насоса
Согласно расчету или использованию таблиц, которые здесь не представлены, потери на трение для 1-дюймовой трубы имеют потери на трение, равные 0.068 футов на фут трубы. В данном случае расстояние составляет 30 футов. Потери на трение в футах тогда составляют 30 x 0,068 = 2,4 фута. В фитингах есть некоторые потери на трение, предположим, что консервативная оценка составляет 30% от потерь напора на трение трубы, потеря напора на трение фитингов составляет = 0,3 x 2,4 = 0,7 фута. Если на всасывающей линии установлен обратный клапан, потери на трение обратного клапана должны быть добавлены к потерям на трение в трубе. Типичное значение потерь на трение для обратного клапана составляет 5 футов.Для струйного насоса не требуется обратный клапан, поэтому я предполагаю, что на всасывании этой системы нет обратного клапана. Суммарные потери на трение на стороне всасывания тогда составляют 2,4 + 0,7 = 3,1 фута.
Потери на трение для 1-дюймовой трубы при 10 галлонах в минуту можно найти в справочнике Cameron Hydraulic, отрывок из которого приведен на следующем рисунке:
Потери на трение на напорной стороне насоса
Согласно расчету или использованию таблиц, которые здесь не представлены, потери на трение для трубы 3/4 дюйма имеют потери на трение, равные 0.23 фута на фут трубы. В этом случае расстояние составляет 10 футов от главного распределителя и еще 20 футов от главного распределителя до ванны, общая длина составляет 30 футов. Потери на трение в футах тогда составляют 30 x 0,23 = 6,9 футов. В фитингах есть некоторые потери на трение, предположим, что консервативная оценка составляет 30% от потерь напора на трение трубы, потеря напора на трение фитингов составляет = 0,3 x 6,9 = 2,1 фута. Суммарные потери на трение на стороне нагнетания тогда составляют 6,9 + 2,1 = 9 футов.
Потери на трение для трубы 0,75 дюйма при 10 галлонах в минуту можно найти в справочнике Cameron Hydraulic, отрывком из которого является следующий рисунок:
Полные потери на трение для трубопровода в системе составляют 9 + 3,1 = 12,1 футов.
Статический напор согласно рисунку 41 составляет 35 футов. Следовательно, общий напор составляет 35 + 12,1 = 47 футов. Теперь мы можем пойти в магазин и купить насос с общим напором не менее 47 футов при 10 галлонах в минуту. Иногда общий напор называют общим динамическим напором (T.D.H.), имеет то же значение. Рейтинг помпы должен быть максимально приближен к этим двум цифрам, но при этом не надоедает. В качестве ориентира допускайте отклонение от общего напора на плюс или минус 15%. В потоке вы также можете разрешить изменение, но в конечном итоге вы можете заплатить больше, чем вам нужно.
Для тех из вас, кто хотел бы самостоятельно рассчитать трение фитингов, загрузите пример расчета здесь.
Какая мощность насоса? Производитель оценивает насос по его оптимальному общему напору и расходу, эта точка также известна как точка наилучшего КПД или B.E.P .. При таком расходе насос работает с максимальной эффективностью, а уровень вибрации и шума минимален. Конечно, насос может работать при других расходах, выше или ниже номинальных, но срок службы насоса пострадает, если вы будете работать слишком далеко от его нормального номинала. Поэтому в качестве ориентира стремитесь к максимальному отклонению плюс-минус 15% от общего напора.
См. Еще один пример конструкции и расчетов новой фонтанной насосной системы
Рисунок 32
Примеры обычных бытовых систем водоснабжения
На следующем рисунке показана типичная небольшая бытовая система водоснабжения.Желтый бак — это аккумулятор.
На следующих рисунках показаны различные распространенные водяные системы и указаны статический напор, фрикционный напор и общий напор насоса.
Рассчитайте давление нагнетания насоса по общему напору насоса
Чтобы рассчитать давление на дне бассейна, вам необходимо знать высоту воды над вами.Неважно, бассейн это или озеро, высота — это то, что определяет, какой вес жидкости находится выше, и, следовательно, давление.
Давление равно силе, деленной на поверхность. Часто выражается в фунтах на квадратный дюйм или фунтах на квадратный дюйм. Сила — это вес воды. Плотность воды составляет 62,3 фунта на кубический фут.
Вес воды в резервуаре A равен плотности, умноженной на ее объем.
Объем резервуара равен площади поперечного сечения A, умноженной на высоту H.
Площадь поперечного сечения равна π, умноженному на квадрат диаметра, разделенный на 4.
Площадь поперечного сечения резервуара А составляет:
Объем V составляет A x H:
Вес воды W A составляет:
Следовательно, давление:
Это давление в фунтах на квадратный фут, требуется еще один шаг, чтобы получить давление в фунтах на квадратный дюйм или psi.12 дюймов в одном футе, следовательно, 12×12 = 144 дюйма в квадратном футе.
Давление p на дне резервуара A в фунтах на квадратный дюйм составляет:
Если вы выполните расчет для резервуаров B и C, вы получите точно такой же результат: давление на дне всех этих резервуаров составляет 4,3 фунта на квадратный дюйм.
Общая зависимость давления от высоты резервуара:
SG или удельный вес — это еще один способ выражения плотности, это отношение плотности жидкости к плотности воды, так что вода будет иметь SG = 1.Более плотные жидкости будут иметь значение больше 1, а более легкие жидкости будут иметь значение меньше 1. Полезность удельного веса заключается в том, что он не имеет единиц измерения, поскольку он является сравнительной мерой плотности или соотношением плотностей, поэтому удельный вес будет иметь такое же значение. независимо от того, какую систему единиц измерения мы используем, британскую или метрическую
Для тех из вас, кто хотел бы увидеть, как обнаруживается эта общая взаимосвязь, перейдите к Приложению E в версии этой статьи в формате pdf.
Мы можем измерить напор на стороне нагнетания насоса, подключив трубку и измерив высоту жидкости в трубке.Поскольку на самом деле труба представляет собой лишь узкий резервуар, мы можем использовать уравнение зависимости давления от высоты резервуара.для определения давления нагнетания. В качестве альтернативы, если мы установим манометр на выходе насоса, мы сможем рассчитать напор на выходе.
Мы можем рассчитать давление нагнетания насоса на основе общего напора, который мы получаем из характеристической кривой насоса. Этот расчет полезен, если вы хотите устранить неполадки в насосе или проверить, производит ли он количество энергии давления, указанное производителем при вашей рабочей скорости потока.
Рисунок 37
Например, если характеристическая кривая насоса такая, как показано на рисунке 39, а расход в системе составляет 20 галлонов в минуту. Тогда общий напор составляет 100 футов.
Установка, показанная на рис. 37, представляет собой систему бытового водоснабжения, которая забирает воду из неглубокого колодца на 15 футов ниже уровня всасывания насоса.
Насос должен будет создавать подъемную силу, чтобы подавать воду к всасывающему патрубку.Это означает, что давление на всасывании насоса будет отрицательным (относительно атмосферного).
Почему это давление меньше атмосферного или низкое? Если вы возьмете соломинку, наполните ее водой, накройте один конец кончиком пальца и переверните его вверх дном, вы заметите, что жидкость не выходит из соломки, попробуйте! Жидкость тянется вниз под действием силы тяжести и создает низкое давление под вашим пальцем. Жидкость поддерживается в равновесии, потому что низкое давление и вес жидкости точно уравновешиваются силой атмосферного давления, направленной вверх.
То же явление происходит при всасывании насоса, который всасывает жидкость из нижнего источника. Как и в соломе, давление рядом с всасывающим патрубком насоса должно быть низким, чтобы жидкость поддерживалась.
Чтобы рассчитать напор на нагнетании, мы определяем общий напор по характеристической кривой и вычитаем это значение из напора на всасывании, это дает напор на выпуске, который затем преобразуется в давление.
Мы знаем, что насос должен создавать подъемную силу на 15 футов на всасывании насоса, подъем — это отрицательный статический напор. Фактически он должен быть немного больше 15 футов, потому что из-за трения потребуется более высокая высота всасывания. Но предположим, что труба большого размера и потери на трение невелики.
Рисунок 39
ОБЩАЯ НАПОР = 100 = H D — H S
или
H D = 100 + H S
Полный напор равен разнице между напором на нагнетании H D и напором на всасывании H S .H S равно –15 футов, потому что это лифт, следовательно:
H D = 100 + (-15) = 85 футов
Давление нагнетания составит:
Теперь вы можете проверить свой насос, чтобы убедиться, что измеренное давление нагнетания соответствует прогнозу.