Как определить фазу и ноль без приборов как найти мультиметром
В состав любого кабеля в обязательном порядке входит одна нулевая жила и одна либо несколько фазных.
От правильного определения функционального назначения жил кабеля зависит простота монтажа и эксплуатации системы электроснабжения, а также безопасность лиц, обслуживающих ее и производящих какие-либо электромонтажные работы.
Основные понятия
Давайте сперва разберемся, что такое ноль и фаза в электричестве.
Итак, фаза в электричестве – это проводник, по которому электрический ток движется в направлении энергопринимающего устройства. Ноль, в свою очередь, является проводником, по которому электрический ток движется в обратном направлении.
Современные требования, предъявляемые к безопасности организации электрических сетей, предполагают также наличие еще одного проводника в составе токоведущего кабеля, который будет выполнять защитную функцию. Заземляющий проводник – это элемент, преднамеренно соединенный с заземляющим контуром и предназначенный для того, чтобы уберечь человека от поражения электрическим током.
Неправильное определение, а также соединение нулевых и фазных жил токоведущего кабеля может привести к непредвиденным ситуациям – короткому замыканию, выходу из строя дорогостоящего оборудования и поражению человека электрическим током. По этой причине чрезвычайно важно уметь отличать фазный и нулевой проводники.
Как отличить фазу от нуля
Существует целый ряд способов – как профессиональных, так и не очень – для определения функционального назначения проводников, входящих в состав кабеля.
С применением мультиметра
Как мультиметром определить фазу и ноль
Просто и надежно определить, где ноль, а где фаза в электропроводке, можно при помощи мультиметра (тестера). Прежде всего, необходимо включить мультиметр в режим измерения переменного напряжения и выбираем подходящий предел измерения (выше напряжения в электрической сети). Далее вы можете избрать один из описанных ниже способов идентификации фазного проводника.
- Один из щупов мультиметра зажимается пальцами, другим необходимо коснуться той или иной жилы токоведущего кабеля. В случае соприкосновения щупа с фазой на дисплее мультиметра отобразится показание, приближенное к 220 В.
- Если вы ни в коем случае не желаете прикасаться к щупам мультиметра руками, то один из них, как и в предыдущем случае, скоммутируйте с идентифицируемым контактом, а другим дотроньтесь до оштукатуренной стены либо заведомо заземленной металлической поверхности.
- Как упоминалось выше, в современных системах электроснабжения предусмотрен также заземляющий проводник. Чтобы разобраться в назначении жил трехжильного либо многожильного кабеля следует попеременно касаться пар проводов щупами мультиметра. На его дисплее при контакте с фазой и нулем, а также с фазой и заземлением будет отображаться значение напряжения, близкое к 220 В (при этом фаза и заземление дают меньшее значение, нежели фаза и ноль). При одновременном касании щупами нулевого и заземляющего проводов, как и при касании двух фаз, на дисплее мультиметра будет «0».
Важно! При идентификации проводников по первому из вышеописанных методов обязательно убедитесь в том, что мультиметр включен в режим измерения напряжения, до того, как будете касаться пальцами одного из его щупов.
Как определить ноль и фазу индикаторной отверткой или отверткой для прозвонки сети
Со специальной индикаторной отверткой работать еще проще. Этот инструмент внешне очень похож на отвертку обыкновенную, но имеет относительно непростую внутреннюю конструкцию. Такую отвертку в народе также называют «контролькой».
Индикаторные отвертки
Важно! Не следует применять индикаторную отвертку для осуществления манипуляций над винтовыми соединениями (откручивания винтов и их закручивания). Такие действия являются наиболее распространенной причиной выхода из строя описываемого устройства.
Для того, чтобы определить функциональное назначение кабельных жил с ее помощью, нужно просто поочередно коснуться каждой из них жалом данного инструмента, нажимая при этом специальную кнопку в торцевой его части. Если в процессе указанных манипуляций светодиодная лампочка на отвертке загорится, значит, вы касаетесь фазного проводника, в противном случае – нулевого.
Не стоит путать индикаторную отвертку с отверткой, предназначенной для прозвонки сети. Последней также можно определить функционал той или иной жилы, однако нажимать на металлическую пластину в ее верхней части не нужно – иначе отвертка будет светиться в любом случае. Отвертка для прозвонки сети предусматривает в своей конструкции наличие батареек.
Визуальное определения фазы и нуля
При отсутствии вышеупомянутого инструментария вы можете задаться вопросом, как определить фазу и ноль без приборов. Одним из таких способов является их визуальная идентификация. Дело в том, что в соответствии с требованиями к монтажу электропроводки изоляция каждой жилы кабеля должна быть окрашена в свой собственный цвет.
При этом если с заземлением и нулем все понятно – они должны иметь желто-зеленую (желтую, зеленую) и синюю (голубую) окраску соответственно, то изоляционный слой фазного провода может быть выполнен в одном из следующих цветов: коричневый, черный, серый, а также красный, фиолетовый, розовый, белый, оранжевый, бирюзовый, — в зависимости от действующих на момент прокладки кабельной трассы нормативов.
По цвету проводки
Помимо цветовой, имеет место и буквенно-цифровая маркировка кабельных жил. В соответствии с ней ноль, фаза и земля обозначаются соответственно буквами N (neutral), L (line), PE (protectearth).
Контрольная лампочка
Еще один способ решения вопроса, как найти фазу и ноль без приборов, это самостоятельная сборка так называемой контрольной лампочки. Для ее изготовления потребуется обыкновенная лампа накаливания, подходящий к ней патрон, а также два отрезка медного провода (примерно по 50 сантиметров длиной).
Лампочка вкручивается в патрон, а проводники подключаются к его контактам. Другой конец одного из проводников необходимо закрепить на зачищенном до металлического блеска радиаторе системы отопления (либо на иной заведомо заземленной поверхности), а другим концом второго следует попеременно касаться проводников неопределенного функционала. При этом во время контакта с фазным проводом лампочка должна начать светиться.
Важно! В случае планирования систематического использования контрольной лампочки целесообразно ее саму поместить в защитный кожух, а к концам подсоединенных к патрону проводников прикрепить щупы (как у мультиметра).
Контрольной лампочкой
Контрольная картофелина
Название данного подраздела звучит весьма абсурдно, но тем не менее можно определить функциональное назначение токоведущих жил электрического кабеля и при помощи обыкновенной картофелины. Как и в вышеописанном методе с использованием самодельной контрольной лампочки, нам понадобятся два пятидесятисантиметровыхпровода.
Картофель разрезается пополам и в срез овоща на довольно приличном друг от друга расстоянии вставляются подготовленные проводники. Далее конец одного размещается на отопительной батарее(либо на иной заведомо заземленной поверхности), а конец другого соединяется с идентифицируемой жилой кабеля. Чтобы получить результат, придется подождать пять-десять минут. Если по прошествии указанного времени на срезе картофелины образовалось темное пятно, значит вы проверяли фазный проводник. Если изменений не произошло – нулевой.
Важно! Последние два из вышеописанных методов идентификации функционала токоведущих проводников кабеля системы электроснабжения вы используете на свой страх и риск. При работе с такого рода конструкциями следует соблюдать предельную осторожность, чтобы не получить поражение электрическим током.
Разобравшись с тем, что такое фаза и ноль в электричестве, а также найдя для себя сразу несколько ответов на вопрос, как найти эти самые фазу и ноль в проводке, вы можете выбрать любой подходящий для вас способ. Тем не менее, для того, чтобы проверить фазу и ноль, рекомендуем вам такие методы, как проверка тестером либо специализированной отверткой.
Как определить фазу и ноль без приборов?
Я электрик с большим стажем. Тридцать лет работаю с электричеством. Бывает, что меня спрашивают, как отличить фазу от нуля в отсутствии приборов. Вопрос не простой. Сейчас я попытаюсь рассказать все, что об этом знаю.
Фаза и ноль. В чем разница?
Строго говоря, фазный и нулевой проводники не имеют больших различий. В цепях переменного тока за одну секунду ток меняет направление пятьдесят раз. Как тут отличишь, какую функцию выполняет тот или иной провод? Единственное отличие между фазным и нулевым проводниками состоит в том, что «ноль» (нулевой проводник) соединен с Землей. Именно так. В землю закопан электрический контур и на подстанции один из выводов трансформатора соединен с этим контуром. Такая электрическая схема называется сетью с глухо заземленной нейтралью. В такой схеме нулевой провод имеет потенциал земли. Мы с вами тоже имеем потенциал земли. Поэтому, коснувшись заземленного проводника мы не получаем удар током.
Теперь, когда вы имеете представление о «нуле» перейдем к «фазе». Напряжение фазного проводника 50 раз в секунду меня меняет свою полярность относительно «нуля». В цепи фаза-ноль ток изменяет свое направление тоже 50 раз в секунду. Если ток потечет через тело человека, то это закончится очень плохо. Поэтому проявляйте крайнюю осторожность.
На самом деле нет ни одного прибора, который бы «чувствовал» «фазу». Все приборы фиксируют, течет ли ток от данного конкретного провода на «землю» или нет. Даже однополюсный пробник, которым часто пользуются для обнаружения фазных проводов, работает по этому принципу. Сейчас мы не станем вдаваться в подробности работы таких пробников.
Ищем «фазу»
Если нам необходимо отличить фазу от ноля, то мы должны создать электрическую цепь, при помощи которой мы будем однозначно знать, течет ли ток от выбранного нами провода на «землю» или нет. На ум приходит несколько приборов, которые смогут нам помочь:
- лампочка,
- еще одна лампочка, неоновая,
- светодиод.
Есть еще один способ, очень ненадежный. В последнее время провода стали маркировать по расцветке изоляции. Нулевой провод имеет синий цвет, изоляция заземляющего провода имеет желто-зеленую расцветку. Но кто поручиться, что электрик выполнил подключение согласно правилам или он не был дальтоником?
«Дедовский» способ
Многие десятилетия электрики использовали электрическую лампочку в качестве измерительного прибора. Лампа накаливания, патрон и два провода. Этот прибор назывался «контролькой». Для определения «фазы» одним выводом контрольки касались провода, другим металлического предмета, который заведомо соединен с землей. Это мог быть корпус щитка освещения, или другого распределительного устройства. По правилам они все заземляются. К сожалению, найти заземленный предмет не всегда возможно. Встречал советы, когда в качестве земли предлагали использовать трубы отопления или водопровода. Не советую категорически! Можно ударить током ни чего не подозревающего человека. Поверьте на слово. Если вы в собственном доме, на даче роль «земли» может выполнить металлический штырь забитый в землю, другие металлические предметы, имеющие надежное соединение с землей.
Контрольку запрещено использовать потому, что ее можно присоединить к двум фазным проводам. В этом случае напряжение на ней будет 1.7 раза выше напряжения сети, лампочка может просто взорваться. Если вы уверены, что один из проводов контрольки присоединен к земле, то опасаться взрыва не стоит.
Существуют более безопасные приборы. Случайно под рукой может оказаться индикаторная лампа от старой связной аппаратуры. Эти лампочки, «инки», начинают светиться, если один из выводов присоединен к фазному проводу. Однополюсные пробники оснащены подобными лампами.
Более серьезным прибором будет комбинация светодиода и соединенного с ним последовательно токоограничительного резистора. Понятно, что этот случай для людей, дружащих с паяльником, например радиолюбителей. Резистор должен иметь сопротивление несколько десятков килоомм.
Во избежание поражения током нужно следовать одному простому правилу. Во время измерений не касаться проводов и металла ни одной частью тела.
Как определить фазу и ноль индикатором-пробником. Цвета фазного провода
Генераторы, вырабатывающие на электростанциях электроэнергию, имеют три обмотки, по одному из концов которых соединяют вместе, и этот общий провод называют Ноль. Оставшиеся три свободных конца обмоток называются Фазами.
Цвета и обозначение проводов
Для того, чтобы без приборов найти фазный, нулевой и заземляющий провод электропроводки, они, в соответствии с правилам ПУЭ покрываются изоляцией разный цветов.
На фотографии представлена цветовая маркировка электрического кабеля для однофазной электропроводки напряжением переменного тока 220 В.
На этой фотографии представлена цветовая маркировка электрического кабеля для трехфазной электропроводки напряжением переменного тока 380 В.
По представленным схемам в России начали маркировать провода с 2011 года. В СССР цветовая маркировка была другая, что необходимо учитывать при поиске фазы и нуля при подключении установочных электроизделий к старой электропроводке.
Таблица цветовой маркировки проводов до и после 2011 года
В таблице представлена цветовая маркировка проводов электрической проводки, принятая в СССР и России.
В некоторых других странах цветовая маркировка отличается, за исключением желто — зеленого провода. Международного стандарта пока нет.
Обозначение L1, L2 и L3, обозначают не один и тот же фазный провод. Напряжение между этими проводами составляет 380 В. Между любым из фазных и нулевым проводом напряжение составляет 220 В, оно и подается в электропроводку дома или квартиры.
В чем отличие проводов N и PE в электропроводке
По современным требованиям ПУЭ в квартиру кроме фазного и нулевого проводов, должен подводиться еще и заземляющий провод желто — зеленого.
Нулевой N и заземляющий провода PE подключаются к одной заземленной шине щитка в подъезде дома. Но функцию выполняют разную. Нулевой провод предназначен работы электропроводки, а заземляющий – для защиты человека от поражения электрическим током и подсоединяется к корпусам электроприборов через третий контакт электрической вилки. Если произойдет пробой изоляции и фаза попадет на корпус электроприбора, то весь ток потечет через заземляющий провод, перегорят плавкие вставки предохранителей или сработает автомат защиты, и человек не пострадает.
В случае, если электропроводка проложена в помещении кабелем без цветовой маркировки то определить, где нулевой, а где заземляющий проводник приборами невозможно, так как сопротивление между проводами составляет сотые доли Ома. Единственной подсказкой может послужить тот факт, что нулевой провод заводится в электрический счетчик, а заземляющий проходит мимо счетчика.
Внимание! Прикосновение к оголенным участкам схемы подключенной к электрической сети может привести к поражению электрическим током.
Индикаторы-пробники для поиска фазы и ноля
На неоновой лампочке
Представляет собой диэлектрический корпус, внутри которого находятся резистор и неоновая лампочка. Касаясь по очереди к проводам электропроводки отверточным концом индикатора, Вы по свечению неоновой лампочки находите фазу. Если лампочка засветилась от прикосновения, значит, это фазный провод. Если не светится, значит, это нулевой провод.
Корпуса индикаторов бывают разных форм, цветов, но начинка у всех одинаковая. Для исключения случайного замыкания, советую на стержень отвертки надеть трубку из изоляционного материала. Не следует индикатором откручивать или затягивать винты с большим усилием. Корпус индикатора сделан из мягкой пластмассы, стержень отвертки запрессован неглубоко и при большой нагрузке корпус ломается.
Светодиодный индикатор-пробник
Индикатор-пробник для определения фазы на светодиодах появились сравнительно недавно и завоевывают все большую популярность, так как позволяют не только найти фазу, но и прозванивать цепи, проверять исправность лампочек накаливания, нагревательных элементов бытовых приборов, выключателей, сетевых проводов и многое другое. Есть модели, с помощью которых можно определять местонахождение электропровода в стенах (чтобы не повредить при сверлении) и найти, в случае необходимости, место их повреждения.
Конструкция светодиодного индикатора-пробника, такая же, как и на неоновой лампочке. Только вместо нее используются активные элементы (полевой транзистор или микросхема), светодиод и нескольких малогабаритных батареек постоянного тока. Батареек хватает на несколько лет работы.
Для нахождения фазы светодиодным индикатором-пробником, отверточным его концом прикасаются последовательно к проводникам, при этом
Ярко засветившийся светодиод укажет на наличие фазы. По правилам, фазный провод должен быть с правой стороны розетки. Как проверять контакты и цепи таким индикатором-пробником, подробно изложено в прилагаемой к нему инструкции.
Как самому сделать индикатор-пробник
для поиска фазы и ноля на неоновой лампочке
При необходимости можно своими руками сделать индикатор-пробник для поиска и определения фазы.
Для этого нужно к одному из выводов любой неоновой лампочки, даже стартера от светильника дневного света, припаять резистор номиналом 1,5-2 Мом и на него надеть изолирующую трубку.
Лампочку с резистором можно разместить в ручку отвертки или корпус от шариковой ручки. Тогда внешний вид самодельного индикатора-пробника, мало чем будет отличаться, от промышленного образца.
Поиск или определение фазы выполняется точно так же, как и промышленным индикатором-пробником. Удерживая лампочку за цоколь, концом резистора прикасаются к проводнику.
При подборе резистора иногда возникают трудности с определением его номинала, если на корпусе резистора вместо числа нанесены цветные кольца. С этой задачей поможет справиться онлайн калькулятор.
Почему индикатор светится
при прикосновении к нулевому проводу
Такой вопрос мне задавали многократно. Одной из причин является неправильное применение светодиодного индикатора. Как правильно держать светодиодный индикатор-пробник при поиске фазы, написано в статье выше.
Второй возможно причиной такого поведения индикатора является обрыв нулевого провода. Например, сработал автомат защиты, установленный после счетчика на нулевом проводе. В старых квартирах это не редкость и является грубым нарушением обустройства электропроводки. Необходимо в обязательном порядке удалить автомат с нулевого провода или закоротить его выводы перемычкой.
При обрыве нулевого провода на него через включенные в электросеть приборы, например, через индикатор подсветки выключателя, телевизор в дежурном режиме, любое зарядное устройство, выключенный только кнопкой пуск компьютер и другие электроприборы, поступает фаза. Индикатор это и показывает. В таком случае нулевой провод может быть опасным и прикосновение к нему недопустимо. Нужно найти и устранить обрыв нулевого провода, который может находиться и в распределительных коробках.
Как найти фазу и ноль с помощью контрольки электрика
Контролька электрика на лампочке накаливания
Для проверки наличия питающего напряжения в электрической сети ранее электрики использовали самодельную контрольку, представляющую собой маломощную лампочку накаливания, вкрученную в электрический патрон. К патрону подсоединены два проводника из многожильного провода длиной около 50 см.
Для того, чтобы проверить наличие напряжения, нужно проводниками контрольки прикоснуться к проводам электропроводки. Если лампочка засветилась, напряжение есть.
Контролька электрика на светодиоде
Контролька электрика на лампочке требует бережного отношения и занимает много места. Гораздо удобнее сделать контрольку электрика на светодиоде по нижеприведенной схеме.
Схема простая, последовательно с любым светодиодом включается токоограничивающее сопротивление. Светодиод любого типа и цвета свечения. Пользоваться ней так же, как и контролькой электрика на лампочке.
Светодиод и резистор можно разместить в корпусе от шариковой ручки подходящего размера. На фото контролька для автомобилиста. Схема такой контрольки такая же. Только в зависимости от типа используемого светодиода, резистор R1 ставится номиналом около 1 кОм.
Проверить наличие напряжения на проводах в бортовой сети автомобиля такой контролькой просто, правый конец по схеме соединяется с массой, а левым касаетесь любого контакта. Если напряжение на контакте есть, светодиод засветится. Если к положительной клемме аккумулятора прикоснуться одним концом предохранителя, а ко второму прикоснуться контролькой, то если светодиод не будет светить, значит, предохранитель в обрыве. Так можно проверять и лампочки накаливания, и наличие контакта в переключателях.
Поиск фазы при наличии нулевого и заземляющего проводников
Если требуется найти фазу в электропроводке, которая имеет фазный, нулевой и заземляющий провода, то с помощью контрольки это легко сделать. Достаточно выполнить три касания проводами контрольки. Нужно присвоить каждому проводу условный номер, например 1, 2 и 3 и по очереди прикасаться к парам проводов 1 – 2, 2 – 3, 3 – 1.
Возможно следующее поведение лампочки. Если при прикосновении к 1 – 2 лампочка не засветилась, значит, провод 3 фазный. Если светит при прикосновении к 2 – 3 и 3 – 1, значит 3 фазный. Смысл простой, при прикосновении к нулевому и заземляющему проводнику лампочка светить не будет, так как практически это проводники, на щитке соединенные вместе.
Вместо контрольки можно включить любой вольтметр переменного тока, рассчитанный на измерение напряжения не менее 300 В. Если одним щупом вольтметра прикоснуться к фазному проводу, а другим к нулевому или заземляющему, то вольтметр покажет напряжение питающей сети.
Поиск фазы и нуля контролькой
Внимание, прикосновение к любым оголенным проводникам при поиске фазы контролькой может привести к поражению электрическим током.
Делается все очень просто, один конец провода контрольки подсоединяется к зачищенной до металла трубе центрального отопления или водопровода, а другим по очереди касаетесь проводам или контактам электропроводки. При прикосновении к фазному проводу лампочка засветит.
Если до металла трубы не добраться, то можно воспользоваться водой, текущей из смесителя. Для этого включаете воду и один провод контрольки помещаете под струю воды как можно ближе к смесителю. Вторым концом провода касаетесь проводов электропроводки. Слабый свет лампочки подскажет Вам, где фаза.
В контрольку лучше всего вкрутить самую маломощную лампочку, я использовал лампочку от подсветки холодильников мощностью 7,5 Вт. Для того, чтобы дотянуться до воды, можно использовать кусок любого провода или стандартный удлинитель.
Поиск фазы и ноля вольтметром или мультиметром
Нахождение фазы вольтметром или мультиметром проводится так же способом, как и контролькой электрика, только вместо концов контрольки подключается щупы прибора.
Для определения нуля в трехфазной сети с помощью тестера или мультиметра достаточно измерять напряжение между проводами, которое между фазами будет равно 380 В, а между нулем и любой из фаз – 220 В. То есть провод, относительно которого вольтметр будет на остальных трех показывать 220 В и есть нулевой.
Поиск фазы и ноля с помощью картошки
Если у Вас под рукой не оказалось технических средств для поиска фазы, то можно с успехом воспользоваться экзотическим или народным, иначе не назовешь, способом определения фазы, посредством картошки. Не подумайте, что это шутка. Для кого-то это может быть единственно доступный метод, который можно с успехом применить на практике.
Конец одного проводника нужно подсоединить к водопроводной трубе (если она не пластиковая) или батарее отопления. Если труба окрашена, то нужно место присоединения зачистить до металла, чтобы обеспечить электрический контакт. Противоположный его конец воткнуть в срез картошки. Другой проводник тоже втыкается одним концом на максимальном расстоянии от предыдущего в картошку, вторым концом через резистор номиналом не менее 1 Мом по очереди прикасаются к проводам электропроводки. Некоторое время нужно подождать. Если на срезе картошки реакции нет, это ноль, если есть – фаза. Я не рекомендую пользоваться этим методом, если не знаете правил безопасности работы с электрическими установками.
Как видите, на фото вокруг проводов при подсоединении к фазному проводу электропроводки на поверхности среза картошки произошли изменения. При прикосновении к нулевому проводу реакции не последует.
Андрей 19.09.2012
Здравствуйте, я в хрущевке полностью поменял проводку, протянул трехжильный кабель ВВГ 3×2,5. Можно ли на этажном распределительном щитке закрепить к корпусу желтый провод заземления? Электрик с ЖЭУ сказал сделать именно так.
АлександрВ квартирах хрушевок и сталинок обычно так и делают, электрик сказал правильно.
Как определить фазу и ноль
При выполнении ремонтно-строительных работ важным этапом является подключение помещений и зданий к системе электроснабжения. В этом случае, кроме электропроводки, устанавливается большое количество другого оборудования, в том числе розеток и выключателей. При выполнении подключений довольно часто возникает вопрос, как определить фазу и ноль, а также заземляющий проводник в электрической сети. Определить назначение каждого проводника возможно с помощью нескольких простых и доступных способов рассмотренных ниже.
Как определить фазу и ноль индикаторной отверткой
Наиболее простым и распространенным способом, позволяющим точно определить фазу и ноль, является использование индикаторной отвертки. Данная операция не представляет каких-либо сложностей и требует лишь соблюдения определенного алгоритма действий.
Решая вопрос, как определить где фаза, а где ноль, прежде всего необходимо обесточить линию и отключить автомат, через который питается домашняя электросеть. После отключения следует зачистить проверяемые провода, сняв примерно 1-2 см изоляции. Далее проводники разводятся между собой на безопасное расстояние. Это необходимо сделать, чтобы исключить возможность короткого замыкания при случайном соприкосновении после подачи напряжения. После всех подготовительных мероприятий можно приступать к определению фазы и нуля. Предварительно следует включить автомат и подать напряжение в сеть.
Непосредственная проверка фазы и нуля тестером осуществляется следующим образом. Индикатор зажимается между большим и средним пальцем. При этом нельзя касаться пальцами открытой, неизолированной части жала отвертки во избежание удара электрическим током.
Указательный палец должен касаться круглого металлического выступа, расположенного в конце рукоятки. После этого жало отвертки прикладывается к зачищенным концам проводников. Если тестер коснулся фазного проводника, в этом случае загорается светодиод. Следовательно, второй провод является нулевым. Нулевой провод определяется когда индикаторная лампочка не загорелась изначально.
Как определить фазу и ноль мультиметром
Кроме индикаторной отвертки, определение фазы и нуля может быть выполнено с помощью мультиметра. В этом случае также необходима зачистка проводников, подлежащих проверке. Предварительно следует обесточить электрическую сеть путем выключения автомата. Таким образом исключается вероятность короткого замыкания при случайном соприкосновении проводников фазы и нуля. Сами провода нужно немного раздвинуть. После этого автомат следует снова включить.
Далее на мультиметре устанавливается предельная величина для измерений переменного напряжения, составляющая более 220 В. Затем нужно посмотреть, какую маркировку имеют гнезда со щупами прибора. Щуп в гнезде СОМ не подходит для определения фазы, следовательно, использоваться будет оставшийся щуп, обозначенный символом V. Определившись со щупами, можно приступать к определению назначения проводов.
Нужно взять щуп, коснуться им одного из проводов в розетке и посмотреть на показания мультиметра. При отображении данных с небольшим значением напряжения (менее 20 В), провод будет считаться фазным. Если же измерительный прибор показывает нулевое значение, то и сам провод соответственно будет нулевым.
Для измерений может использоваться любой тип мультиметра – с цифровым табло или стрелочный. Точность измерений мультиметром значительно выше, чем индикаторной отверткой. При определение фазы и нуля мультиметром запрещается одновременно касаться фазного и заземляющего провода. Такие действия могут вызвать короткое замыкание и травматические ожоги.
Как определить фазу и ноль без приборов
Довольно часто возникают ситуации, когда отсутствует индикаторная отвертка и мультиметр, а выяснить назначение проводов нужно, чтобы не останавливать электромонтажные работы. В таких случаях приходится решать проблему, определения фазы и ноля без прибора.
Наиболее простым способом считается определение назначения проводов по их маркировке и по цвету изоляции. Данная методика приносит положительный результат лишь тогда, когда проводка выполнена с соблюдением всех технических правил. В этом случае цвет изоляции прямо указывает на принадлежность того или иного провода.
В желто-зеленый цвет окрашивается заземляющий провод, а нулевой проводник чаще всего бывает голубого или синего цвета. Для фазного проводника выбирается черный, белый или коричневый провод. Правильность подключения можно проверить визуально, не только в щитке, но и в распределительных коробках, в люстре и других точках.
Второй способ определения фазы и нуля, предполагает использование так называемой контрольной лампочки. Можно воспользоваться обычной лампой накаливания и двумя отрезками проводов, по 50 см длиной каждый. Жилы проводов через патрон подключаются к лампочке и конструкция готова к работе. Одним концом провода нужно коснуться трубы отопления, а другим – проверяемых проводов. Если во время прикосновения лампочка загорается, значит этот провод является фазным.
Данный способ в домашних условиях считается опасным в связи с высокой вероятностью поражения электрическим током. Его нельзя применять, когда в сети присутствует предельное напряжение. Более безопасным является использование неоновых лампочек, позволяющих с не меньшей точностью определить назначение проводов.
Как узнать где фаза, а где ноль без индикатора, тестера и мультиметра
Как узнать где фаза, а где ноль без индикатора, тестера и мультиметра
Иногда возникают такие ситуации, когда нужно узнать, где фаза, а где ноль на проводе, а под рукой ничего нет, даже индикаторной отвёртки. Например, вам нужно подсоединить розетку так, чтобы фаза по правилам была с правой стороны.
Далеко не все знают, как определить, где фаза, а где ноль без специальных приборов на это. На самом же деле все достаточно просто, ведь определить фазный проводник не составит труда, даже ничего не имея для этих целей под рукой: ни тестера, ни индикатора, ни мультиметра.
Визуальный осмотр и определение фазы
Итак, наиболее надежный способ определить, на каком конкретно проводе фаза, это цвет изоляции. Фазу обычно подключают либо к коричневому, либо к черному проводу. Это общеизвестное правило ПУЭ, которое должен беспрекословно соблюдать каждый электрик.
Цветовая маркировка проводов является очень важной нормой в электрике. Просто недопустимо бросать фазу на синий провод, поскольку синяя маркировка предназначена только для рабочего нуля. Ниже будет представлена таблица цветовой маркировки проводов в электрике.
Как видно из таблицы, фаза всегда, это либо коричневый, либо черный, либо красный провода. К проводу же с синей или голубой изоляцией подсоединяется рабочий нуль, а к жёлто-зелёному или зеленому проводнику подсоединяется заземляющая система.
Поиск фазного проводника контролькой
Вторым способом найти, где фаза, а где ноль, является использование контрольки. Сделать её очень просто, для этого понадобится лампа с патроном и провода с зачищенными концами. Подсоединяем провода к патрону, после чего вкручиваем в него лампочку — простейшая контролька готова.
Как найти фазу контрольной лампой? Здесь также существует несколько способов. Самый безопасный из них, это подсоединение одного из проводов, идущих от патрона к системе заземления, а второго к остальным двум проводам. Таким образом, когда лампа загорится, 100% будет найдена именно фаза.
Данный способ найти фазный проводник без индикатора не подходит в том случае, если нет заземления. В таком случае можно подкинуть один из проводов от патрона, к металлической трубе отопления, а затем прощупать вторым проводом, по аналогии с предыдущим способом, фазный проводник.
Очень важно! Данный способ поиска фазы небезопасный, поскольку в результате можно получить удар током. Ни в коем случае не стоит прикасаться к оголённой жиле проводов или проделывать данную операцию в многоквартирном доме, где в результате могут пострадать и его жильцы в том числе.
Существуют и некоторые другие способы найти фазу и ноль без индикатора или мультиметра. Однако в виду опасности выполнения описывать их нельзя. На сайте elektriksam.ru были перечислены только самые достоверные способы поиска фазы, но некоторые из них все равно остаются рискованными.
Лучшим вариантом проверки будет купить простейший индикатор фазы, который стоит недорого.
Как определить фазу и нуль
Как определить фазу и ноль без приборов
Иногда бывают ситуации, когда отвертки для определения фазы либо мультиметра под рукой нет, но нужно выяснить, какой провод чему соответствует. Поэтому следует ориентироваться по цветовой маркировке проводов силового кабеля. В отношении маркировки проводов существует стандарт IEC 60446-2004, которого должны придерживаться производители кабелей, а также электромонтажники, выполняющие подключение той или иной электроарматуры.
Чтобы определить по цвету провода, какому проводнику он соответствует, нужно придерживаться следующей маркировки:
- синий или голубой – ноль;
- коричневый – фаза;
- заземление – зелено-желтый.
Однако фазный провод бывает не только коричневым. Часто встречаются и другие расцветки, например белая или черная, но она будет отличной от земли и нуля. Визуально определить провода можно в распределительной коробке, люстре и других точках запитки.
Есть еще один вариант, как определить, где фаза и ноль при отсутствии приборов. Для этого потребуется лампа накаливания с патроном и двумя небольшими отрезками проводов. После подсоединения проводников к патрону можно начинать работу. Краем одного провода касаются трубы отопительной системы, другим – проверяемых проводников. Если в момент контакта лампа зажигается, то это указывает на наличие фазы. Труба для проведения подобного мероприятия должна быть металлической, поскольку пластиковая не проводит ток.
Нужно учитывать, что этот способ хоть и позволяет выявить фазу и ноль, но является опасным, поскольку велика вероятность получить удар электрическим током. Поэтому более безопасно для рассматриваемых целей использовать неоновые лампочки.
Выполняя работы по дому, часто возникает необходимость отремонтировать розетку или выключатель, перевесить люстру или установить новую розетку. Для подключения дополнительного электрооборудования необходимо уметь отличить фазу от нуля. Это довольно просто, если дом построен недавно, а электропроводку делали квалифицированные специалисты.
Для того чтобы самому найти назначение каждого проводника достаточно знать правила цветового обозначения электропроводов. Современные коттеджи должны иметь контур заземления. А это значит, что разводка выполнена трехпроводным кабелем, а цвета должны соответствовать:
- Желто-зеленая оплетка обозначает подключение жилы к контуру заземления;
- Синий или голубой цвет говорит, что это нулевая жила;
- Фазный провод обозначают любым другим цветом. Он может быть красным, белым, коричневым, фиолетовым и т. п.
Таким образом, в идеале должна маркироваться вся электропроводка. Однако нет гарантии, что ее монтаж производил действительно специалист или на вводе не переключались электропровода.
Инструменты и материалы для выполнения работы
Прежде чем приступить к работе, необходимо приготовить инструменты и материалы, которые могут потребоваться во время ремонта:
- индикаторная отвертка для определения фазы и нуля;
- тестер или мультиметр, но ими нужно знать, как определить фазу ноль или землю;
- плоскогубцы и кусачки — бокарезы;
- маркировочный материал. Это могут быть цветной термоусадочный кембрик или маркировочные клипсы.
Всегда перед началом работы необходимо определить ноль и фазу.
Особенности определения фазы и нуля
В двухпроводной сети
Идентификация проводников в двухпроводной сети является гораздо более простой, поскольку осуществляется самым простым способом, для этого потребуется:
- Определить только фазу, поскольку известно, что второй проводник будет являться нулевым.
- Для определения фазы в двухпроводной сети идеально подходит индикаторная отвертка, подробный порядок действий был описан выше.
В трехпроводной сети
Немного сложнее ситуация обстоит с современными видами трехпроводных сетей, поскольку в них имеется еще и заземление.
Для определения назначения проводников необходимо придерживаться следующего алгоритма действий:
- Фаза определяется при помощи индикаторной отвертки методом, описанным выше. После этого рекомендуется нанести пометку при помощи маркера, чтобы в дальнейшем не перепутать провод.
- Для работы с нулем и землей потребуется задействовать мультиметр. Нулевой проводник также может обладать напряжением, что вызывается перекосом фаз, но его показатели никогда не превышают 30 В. Мультиметр нужно переключить в режим работы для измерения напряжения переменного тока, после чего один щуп подключается к фазе, а второй поочередно к оставшимся проводникам. Нуль будет там, где зафиксируется наименьший параметр напряжения.
- Иногда оба проводника обладают одинаковыми показателями напряжения. В таком случае, фазу необходимо изолировать, а мультиметр переключить в режим, предназначенный для определения уровня сопротивления. Также, потребуется подобрать внешний заземленный элемент и прикоснуться к нему один щупом прибора, а вторым по очереди к каждому из проверяемых проводников. В том случае, когда мультиметр покажет сопротивление 4Ом или меньше, подключение совершено к земле, если показатель выше, то это нуль.
- Однако, показатели сопротивления не являются точными, если нейтраль была подвержена заземлению еще внутри электрощита. Тогда потребуется обнаружить и отключить заземляющий элемент, который подключен к шине. После этого, взять контрольную лампу и поставить описанный ранее эксперимент по ее подключению. Ее загорание происходит только при подключении нулевого проводника.
Способ №3 – Картошка в помощь!
Забавная, но все же эффективная идея, которая позволяет определить фазу и ноль без индикатора, мультиметра либо другого тестера. Все, что Вам нужно – картошина, 2 провода по 50 см и резистор на 1 МОм. Найти напряжение можно по методике, описанной выше. Конец первого проводника подключается к трубе, второй конец вставляется в срез картошки, как показано на фото. Что касается второго провода, один его конец нужно вставить в тот же срез, на максимально возможном расстоянии от уже вставленной жилы, а вторым Вы будете щупать те выводы, на которых Вам нужно найти фазу и ноль без приборов. Определение происходит следующим образом:
- Если на срезе образовалось небольшое потемнение – это фазный проводник;
- Никакой реакции не произошло – Вы «нащупали» ноль.
Следует сразу же отметить, что в данном случае определение должно происходить с небольшой выдержкой времени при контакте жилы со срезом картошки. Вы должны дотронуться проводом к картошине и подождать около 5-10 минут, после чего будет виден результат!
Наглядный видео урок по определению полярности без приборов своими руками
По похожей методике можно определить полярность контактов в цепи постоянного тока. Для этого два провода опускаются в чашку с водой и если возле одного из них начинают образовываться пузыри, как показано на фото ниже, значит, это минус и, соответственно, вторая жила – плюс.
Вот мы и предоставили наиболее простые способы, как определить фазу и ноль без приборов
Еще раз обращаем Ваше внимание на то, что безопасным является только первый способ
При использовании последних двух нужно соблюдать меры предосторожности, чтобы Вас не ударило током!
Определение мультиметром или тестером
Начнем с того, что определить фазу лучше всего с помощью отвертки, совмещенной с индикатором. Будем исходить из того, что если в хозяйстве есть мультиметр, индикатор найдется наверняка. В крайнем случае, можно сделать следующее. В некоторых случаях может помочь определение с помощью мультиметра напряжения между проводом и трубой отопления или водоснабжения. К сожалению, результат здесь не всегда предсказуем. Чаще всего, напряжение между фазой и системой отопления близко к 220 В, во всяком случае, оно должно быть выше, чем между тем же отоплением и нулем. Картина может измениться, например, если вороватый сосед использует трубы отопления как рабочее заземление.
В трехпроводных схемах мультиметр покажет рабочее напряжение между проводником, на который подана фаза и любым из двух других. Определение, какой ноль рабочий, а какой – земля, можно проводить по методике, изложенной выше, то есть, отсоединив на щитке один из приходящих нулей и воспользовавшись контрольной лампой.
Как проверить мультиметром напряжение в розетке 220в
Для измерения напряжения в розетке цифровым тестером, необходимо вставить щупы в гнезда розеток, полярность при этом неважна, главное при этом — не касаться руками токопроводящих частей щупов.
Еще раз напомню, что на мультиметре должен быть выставлен режим определения напряжения переменного тока, предел измерения выше 220в, в нашем случае 500В, щупы подключены в разъемы «COM» и «VΩmA».
Если мультиметр рабочий и нет проблем с подключением розетки или перебоев с электроснабжением, то прибор покажет вам напряжение близкое к 220-230В.
Такого простого теста достаточно чтобы продолжить поиск фазы тестером. Сейчас, в качестве примера, мы определим какой из двух проводов, например, выходящих из потолка для люстры, фазный.
Если бы провода было три – фаза, ноль и заземление, то достаточно было бы измерить напряжение на каждой из пар, точно так же, как мы определяли его в розетке. При этом между двумя проводами напряжения практически бы не было – между нолем и заземлением, соответственно оставшийся третий провод фазный. Ниже представлена наглядная схема определения.
Если же провода, для подключения светильника, только два и вы не знаете какой из них каакой, то опознать их таким образом не получится. Тогда нам и приходит на помощь метод определения фазы мультиметром, который я сейчас опишу.
Всё достаточно просто, мы просто должны создать условия для протекания через тестер электрического тока, и зафиксировать его. Для этого просто создаём электрическую цепь, по тому же принципу, что и у индикаторной отвертки.
В режиме проверки напряжения переменного тока, с выбранном пределом 500В, красным щупом прикасаемся к проверяемому проводнику, а черный щуп зажимаем пальцами рук либо касаемся им заведомо заземленной конструкции, например, радиатора отопления, стального каркаса стены и т.п. При этом, как вы помните, черный щуп у нас воткнут в разъем COM мультиметра, а красный в VΩmA.
Если на проверяемом проводе будет фаза, мультиметр покажет на экране достаточно близкую к 220 Вольтам величину напряжения, в зависимости от условий тестирования она может быть разной. Если же провод не фазный, значение будет или нулевым, или очень низким, до нескольких десятков вольт.
Еще раз напомню, ОБЯЗАТЕЛЬНО УБЕДИТЕСЬ ПЕРЕД НАЧАЛОМ ПРОВЕРКИ, ЧТО НА МУЛЬТИМЕТРЕ ВЫБРАН РЕЖИМ ОПРЕДЕЛЕНИЯ НАПРЯЖЕНИЯ ПЕРЕМЕННОГО ТОКА, а не какой-нибудь другой.
Вы, должно быть скажете, что метод достаточно рискованный, становится частью электрической цепи и добровольно попасть под напряжение захочет не каждый. И хотя такой риск есть, он минимальный, ведь, как и в случае с индикаторной отверткой, напряжение из сети проходит через большое сопротивление резистора, встроенного в мультиметр и удара током не происходит. А работоспособность этого резистора, мы проверили, предварительно измерив напряжение в розетке, если бы его там не было, сложились бы все условия для короткого замыкания, которое, уверяю вас, вы бы сразу обнаружили.
Конечно, как я уже писал выше, лучше вместо руки использовать заземленные конструкции – радиаторы и трубы отопления, стальной каркас здания и т.д. но, к сожалению, такая возможность есть не всегда и нередко приходится браться за щуп самому. Бывалые электрики советуют в таких случаях всё же принять дополнительные меры безопасности: стоять на резиновом коврике или в диэлектрической обуви, касаться щупа сперва кратковременно, правой рукой и лишь не обнаружив опасных воздействий тока, выполнить измерение.
В любом случае это единственный, самый надежный и простой способ определить фазу бытовым мультиметром самому.
Индикаторная отвертка
В хозяйстве любого запасливого хозяина должна иметься индикаторная отвертка, воспользовавшись которой удается легко распознать фазный провод.
При обращении с этим инструментом необходимо придерживаться следующих простых правил:
Очень важно чтобы отвертка была исправна, то есть действительно показывала наличие фазы.
Для этого ее следует заранее проверить на нагрузке, включенное состояние которой различается визуально (на настольной лампе, например).
При прикосновении к фазному контакту встроенная в нее неоновая лампочка начинает слабо светиться (фото ниже).
При введении жала в «земляную» клемму индикатор гореть не будет.
Использование индикаторной отвертки
Также важно отметить, что проводить проверку не рекомендуется при ярком солнечном свете, не позволяющем различить слабое свечение неонки
Способ 2 — контролька
Второй способ, который поможет определить, где фаза, а где ноль, является 100% рабочим. Для его реализации необходимо будет собрать самую простейшую контрольку. Для её изготовления понадобится обычный патрон, кусок двухжильного кабеля и лампочка.
Необходимо будет зачистить концы кабеля и подсоединить их к патрону. С другой стороны кабеля, концы должны быть также зачищены. Вкручиваем лампу в патрон, и вот, простейшая контролька — готова!
Как определить при помощи контрольной лампы фазу и ноль? Все очень просто. Берём один конец провода и подсоединяем его к заземлению, а вторым проводом находим фазу. Лампочка загорится только в том случае, если вторая жила провода будет подсоединена к фазе.
Нельзя для поиска фазы, таким образом, использовать и металлическую трубу отопления. Это очень рискованно, поскольку подключение провода к трубе, может привести к поражению электрическим током, не только вас, но и ваших соседей. Необходимо быть максимально осторожным и не прикасаться в данный момент к металлу.
Самодельный тестер для определения фазы
Ну а при отсутствии лампочки, можно собрать самый простой тестер, который поможет определить фазу и ноль в электропроводке. Таким образом, можно также будет определить полярность проводов.
Схема самодельного тестера. Ничего сложного в его изготовлении своими руками, нет.
Устройство бытовых электрических сетей
Поступление электроэнергии в любые жилые строения происходит через трансформаторные подстанции, которые изменяют поступающее высоковольтное напряжение, и на выходе оно уже имеет показатель равный 380 В.
Бытовые электросети современного образца выглядят и функционируют следующим образом:
- Трансформаторная обмотка на подстанции имеет особый вид соединения, который придает ей сходство со звездой. Три вывода подключаются к одной общей точке нуля, а другие три на соответствующие клеммы.
- Выводы, подключенные к нулю, соединяются и подключаются к заземлению трансформаторной подстанции.
- В этом же месте общий нуль разделяется на рабочий нуль и специальный защитный PE-проводник.
- Описанная система получила обозначение TN-S, но в старых домах до сих пор действует схема TN-C, которая отличается в первую очередь отсутствием защитного PE-проводника.
- Фаза и нуль, после вывода из трансформатора, протягиваются к жилым домам для подключения к вводному электрощиту. Здесь происходит создание трехфазной системы напряжения с показателями 320/220В.
- Далее разводка осуществляется по подъездным электрощитам, куда поступает напряжение с фазы 220В и защитный PE-проводник, если его наличие было предусмотрено.
- Нулем в квартирной электросети будет являться проводник, который имеет соединение с землей в схеме трансформаторной подстанции и предназначенный для создания необходимого уровня нагрузки от фазы, которая также имеет подсоединение к трансформаторной обмотке, но с противоположной стороны. Главной функцией защитного нуля является отвод токов повреждений, которые могут возникнуть при аварийной ситуации внутри сети.
- Происходит равномерное распределение нагрузки, это осуществляется благодаря наличию этажной разводки, а также подключению квартирных электрощитов к определенным линиям на 220 В внутри центрального распределителя в подъезде.
- Система, по которой осуществляется подведение напряжения к жилому дому, с точностью повторяет векторные характеристики трансформаторной подстанции и также обладает формой звезды.
- Сумма всех токов в трехфазной разновидности электросети складывается в соответствии с векторной графикой внутри нулевого проводника, после чего она возвращается на трансформаторную обмотку в подстанции.
Если внутри жилого помещения отключить все потребители электроэнергии и отключить их от рабочих розеток, то электрический ток внутри сети перестанет протекать даже при подведенном к электрощиту напряжении.
Описанная система устройства бытовой электросети является наиболее оптимальной из всех существующих на сегодняшний день, но и она не застрахована от возможных неисправностей. В большинстве случаев они связаны с нарушением соединений контактов либо обрывом проводников.
Определение с помощью картошки
Еще одним известным методом определения без специальных приборов является вариант, в котором задействуется обычная сырая картошка. Многие специалисты относятся к таким действиям довольно скептически, но подобное решение все равно является действенным.
Для его осуществления необходимо осуществить следующую последовательность:
- Взять одну сырую картофелину и разрезать ее на две части.
- Зачистить концы двух проводников и воткнуть их в одну из частей картофелины.
- Подождать около 10 минут, после чего вытащить оба провода.
- Осмотреть картофелину: в месте, где образовался зеленоватый след, был воткнут фазный проводник.
Определение нуля и фазы
Для того чтобы не перепутать нуль и фазу на выключателе, или при проведении других электромонтажных работ нужно пользоваться специальными фазоуказывающими инструментами или пробниками. Наиболее простым способом будет использование индикаторной отвертки.
Индикаторная отвертка
Чтобы знать, как определить фазу и ноль индикаторной отверткой, нужно понять принцип ее работы. Она настроена таким образом, что внутренняя неоновая лампа загорается при появлении разности потенциалов между рабочим контактом отвертки и металлическим выводом на конце ее ручки. Для правильного указания фазы отверткой нужно выполнить простые действия:
- Отключить питание от электросети автоматом;
- Зачистить концы испытываемых проводников и развести их на безопасное расстояние;
- Подать питание в электросеть;
- Прикоснуться жалом пробника к концу испытываемого проводника;
- Пальцем нажать на металлический вывод на конце ручки отвертки, касаться жала отвертки во время работы запрещается;
- Если тестируется фаза — лампочка внутри пробника должна засветиться.
Кроме обычной индикаторной, существует отвертка для прозвонки. Она отличается тем, что имеет в своем составе батарейки и указывает фазу без касания пальцем ее противоположного металлического конца. Также существует индикаторная отвертка с функцией обнаружения скрытой проводки. Она может определить, где внутри стены проходит электрическая сеть квартиры. В ней используется бесконтактный способ определения по электромагнитному полю, возникающему вокруг проводника.
Контрольная лампа
Еще один способ, как определить фазу и нуль без приборов — это изготовление контрольной лампы. Такой индикатор создается просто: нужно припаять провода достаточной длины к выводам патрона и вкрутить в него лампу накаливания или неоновую. Один из выводов такого определителя фазы присоединяется к батарее, а вторым можно проверить наличие питающего напряжения в сети. Для этого зачищенным концом провода нужно коснуться испытываемого проводника. Если это фаза — лампа должна вспыхнуть. Этот способ весьма опасен, поэтому им нужно пользоваться только в исключительных случаях, к тому же он запрещен Правилами Безопасной Эксплуатации Электроустановок.
Измерение мультиметром
При отсутствии индикаторной отвертки и для более точных измерений напряжения питания сети используется мультиметр, еще его называют тестер. С помощью него можно определить фазовый, нулевой и заземляющий проводник в трехпроводной сети. Дело в том, что индикаторная отвертка может показать только большие различия в потенциалах, то есть показывает только фазу. Мультиметр работает с различными сигналами: высокого и низкого уровня, положительными и отрицательными. Его задача — показывать параметры электроцепи.
Чтобы узнать, как найти фазу и ноль мультиметром, а также заземляющий провод, нужно правильно настроить и подключить это устройство измерения. Проводится это так:
- Установить черный щуп мультиметра в гнездо, маркированное COM, а красный щуп — в гнездо с надписью U, Ω, Hz ;
- Ручкой на передней панели выбрать режим измерения переменного тока, предел измерения больше 220 В.
После настройки нужно одновременно прикоснуться двумя концами щупов к двум тестируемым выводам. Значение на экране мультиметра:
- Более 100 В — найдены фаза и ноль;
- Более 160 В — найдены фаза и заземляющая линия;
- Менее 70 В — это ноль и заземляющий.
Протестировав таким образом все три линии, можно с уверенностью определить, где присутствует искомый потенциал.
Более простой способ, как определить фазу мультиметром, заключается в том, чтобы щупом, установленным в отверстие U, Ω, Hz поочередно прикоснуться ко всем концам электросети. В случае соприкосновения с фазовым проводником мультиметр будет показывать напряжение 8 -15 В. В остальных случаях показания будут на уровне 0 — 3 вольта
Пользоваться мультиметром надо с осторожностью, используя изолирующую обувь и никогда не прикасаться руками к концам щупов без изоляции
При любых работах с электрической проводкой нужно соблюдать технику безопасности, то есть обесточивать помещение при монтаже и ремонте электрики, а во время теста на работоспособность при включенном автомате обеспечивать себе надежную защиту изоляцией.
Originally posted 2018-04-18 12:26:17.
Использование индикаторной отвертки
Последовательность действий зависит от того, какая система проводки смонтирована в помещении. Рассмотрим правила определения фазного и нулевого провода в разных случаях.
Двухпроводная сеть
Этот вариант электропроводки встречается в старых домах. По современной терминологии данная система обозначается TN-C. Суть ее заключается в том, что нулевой рабочий провод, заземленный на питающей подстанции, совмещает роль защитного заземляющего (PEN). В системе IT также присутствует только фазный и рабочий нулевой проводник, но в обычных жилых и производственных помещениях она не применяется. В двухпроводной сети отдельный заземляющий провод просто отсутствует, то есть, имеется только фаза и ноль. Определить их очень просто: прикасаемся индикатором последовательно к каждой из токоведущих жил, фаза вызывает зажигание индикаторной лампы, как показано на фото ниже:
Система является устаревшей. На вилке любого современного электроприбора имеется три клеммы. Проводка должна выполняться трехпроводной, исключение — группа освещения.
Трехпроводная сеть
В этом варианте, в дом или квартиру заходит три провода. Такие сети имеют несколько разновидностей. В системе TN-S рабочий ноль и защитное заземление раздельно идут от питающей подстанции, где оба соединены с рабочим заземлением. При таком типе проводки, определение назначения проводов можно осуществить следующим образом:
- в щитке или в распределительной коробке индикатором определить провод, на котором присутствует фаза;
- два оставшихся – это рабочий и защитный ноль (земля), отсоединяем на щитке один провод из них;
- если отсоединить рабочий ноль, все электрооборудование в квартире перестанет работать, значит, оставшийся проводник – это земля, или защитное заземление.
Теперь остается определить в розетке среди трех проводов, на котором из них фаза, ноль и земля. Если не удается найти по цвету изоляции, определение их функций может быть выполнено подручными средствами, без приборов. Для этого нужно взять патрон с вкрученной лампой и выведенными наружу проводами. Определение проводим следующим образом. Одним проводником от патрона прикасаемся к фазному проводу (фаза уже найдена с помощью индикатора), вторым поочередно прикасаемся к двум оставшимся. Если на щитке отключен рабочий ноль, лампа зажжется только при соединении с защитным заземлением, и наоборот.
На видео ниже наглядно показывается, как определить фазу, ноль и землю индикаторной отверткой:
Другой разновидностью системы TN является разводка TN-C-S. В этом случае нулевой провод расщепляется на рабочий ноль и защитное заземление на вводе в дом. Здесь, чтобы определить назначение проводников, можно применить последовательность действий, описанную для системы TN-S. Добавляется дополнительная возможность, обследовав место разделения PEN, определить, где рабочий и защитный ноль (земля) по сечению жилы в проводе.
В случае, если заземление выполнено по системе TT, объект (частный дом) имеет собственное заземляющее устройство, от которого выполнена разводка защитного заземления. В этих условиях, как правило, определить фазу, ноль и землю можно путем отслеживания заземляющего проводника по трассе его прокладки.
Оцените статью:Как найти ноль в распределительной коробке
При монтаже розеток, выключателей, бытовых потребителей приходится сталкиваться с определением фазы и нуля в электропроводке. Если для электромонтажников с опытом эта задача не является проблемой, то у тех, кто впервые коснулся этого вопроса, возникает много непонятных моментов. Поэтому следует разобраться, как и чем можно выявить фазу и ноль в розетке, каково назначение жил электропроводки и можно ли обойтись без специального оснащения.
Понятия ноля и фазы
Электрическая энергия в жилой дом поступает от трансформаторной подстанции, основное назначение которой – преобразование высокого напряжения чаще всего в 380 В. К домам электроэнергия подземным или воздушным способом подводится на вводной распределительный щит. Затем напряжение подается к щиткам каждого подъезда. В квартиру от него заходит только одна фаза с нулем, т.е. 220 В и защитный проводник (зависит от конструкции электрической проводки).
Таким образом, проводник, обеспечивающий подачу тока к потребителю, называется фазным. Внутри трансформатора обмотки соединены в звезду с общей точкой (нейтраль), заземленной на подстанции. К нагрузке она подводится отдельным проводом. Ноль, представляющий собой общий проводник, предназначен для обратного протекания тока к источнику электроэнергии. Кроме этого, нулевой провод выравнивает фазное напряжение, т.е. значение между нулем и фазой.
Заземление, которое часто называют просто землей, не подключается к напряжению. Его назначение – защита человека от воздействия электрического тока в момент возникновения неполадок с потребителем, т.е. при пробое на корпус. Это может происходить при повреждении изоляции проводников и касании поврежденного участка корпуса прибора. Но поскольку потребители заземляются, при возникновении опасного напряжения на корпусе заземление притягивает опасный потенциал к безопасному потенциалу земли.
Как определить фазу и ноль индикаторной отверткой
Один из способов выявить, где фаза и ноль в розетке либо в силовом кабеле, – использовать индикаторную отвертку. Инструмент внешне напоминает отвертку, но внутри у него есть специальная начинка со светодиодом. Прежде чем приступить к измерениям, нужно отключить рубильник, через который напряжение подается в помещение. После этого требуется зачистить концы проверяемых проводов, для чего снимают 1,5 см изолирующего материала.
Во избежание короткого замыкания между проводами после включения автомата их следует направить в разные стороны. Когда все подготовительные мероприятия будут выполнены, необходимо включить автомат для подачи напряжения. Чтобы понять, как найти фазу и ноль, необходимо выполнить следующие действия:
- Отвертку зажимают между двумя пальцами – средним и большим, избегая касания оголенной части жала инструмента.
- Указательным пальцем касаются металлического наконечника с противоположной стороны отвертки.
- Плоским концом индикатора поочередно дотрагиваются до зачищенных проводников.
- При касании тестером фазы светодиод загорится. Второй провод будет соответствовать нулевому. При отсутствии индикации изначально проводник будет являться нулевым.
Как определить фазу и ноль мультиметром
Прибор, которым измеряют напряжение, ток и сопротивление, называется мультиметром. Чтобы выявить фазный и нулевой провод с его помощью, сперва нужно настроить устройство, для чего выбирают необходимый предел измерений. В случае с цифровыми приборами устанавливают 600, 750 или 1000 «
V» или «ACV».
Определение фазы производится следующим образом: один из щупов прибора подключают к контакту розетки или кабеля, а до второго щупа дотрагиваются рукой. При отображении на дисплее значения около 200 В это будет указывать на наличие фазы. Показания могут отличаться, что зависит от отделки пола, обуви и т.п. Если прибор отображает нули либо напряжение в пределах 5-20 В, значит, контакт соответствует нолю.
Как определить фазу и ноль без приборов
Иногда бывают ситуации, когда отвертки для определения фазы либо мультиметра под рукой нет, но нужно выяснить, какой провод чему соответствует. Поэтому следует ориентироваться по цветовой маркировке проводов силового кабеля. В отношении маркировки проводов существует стандарт IEC 60446-2004, которого должны придерживаться производители кабелей, а также электромонтажники, выполняющие подключение той или иной электроарматуры.
Чтобы определить по цвету провода, какому проводнику он соответствует, нужно придерживаться следующей маркировки:
- синий или голубой – ноль;
- коричневый – фаза;
- заземление – зелено-желтый.
Однако фазный провод бывает не только коричневым. Часто встречаются и другие расцветки, например белая или черная, но она будет отличной от земли и нуля. Визуально определить провода можно в распределительной коробке, люстре и других точках запитки.
Есть еще один вариант, как определить, где фаза и ноль при отсутствии приборов. Для этого потребуется лампа накаливания с патроном и двумя небольшими отрезками проводов. После подсоединения проводников к патрону можно начинать работу. Краем одного провода касаются трубы отопительной системы, другим – проверяемых проводников. Если в момент контакта лампа зажигается, то это указывает на наличие фазы. Труба для проведения подобного мероприятия должна быть металлической, поскольку пластиковая не проводит ток.
Нужно учитывать, что этот способ хоть и позволяет выявить фазу и ноль, но является опасным, поскольку велика вероятность получить удар электрическим током. Поэтому более безопасно для рассматриваемых целей использовать неоновые лампочки.
При монтаже розеток и выключателей освещения, подключении бытовых электроприборов возникает необходимость в определении назначения жил проводки. Как определить фазу и «ноль», а также заземляющий проводник? Эта несложная для профессиональных электромонтеров задача порой ставит в тупик тех, кто мало знаком с правилами устройства электрических сетей. Попробуем разобраться в этом вопросе.
Устройство бытовых электрических сетей
Бытовые электрические сети на входе в распределительный щиток имеют линейное напряжение 380В трехфазного переменного тока. Проводка в квартирах, за редким исключением, имеет напряжение 220В, так как она подключена к одной из фаз и нулевому проводнику. Кроме того, правильно смонтированная бытовая проводка должна быть обязательно заземлена. В домах старой застройки заземляющего проводника может не быть. Таким образом, при монтаже проводки и электроприборов необходимо знать назначение каждого из двух или трех проводов.
Также следует знать правила подключения различных приборов. При монтаже обычной розетки подключение фазного и нулевого проводника производится к клеммам в произвольном порядке, а заземляющий провод, при его наличии, подключают к медной или латунной шине. Выключатель подключают в фазный провод, чтобы при его отключении в патроне осветительного прибора не было напряжения – это обеспечит безопасность при смене ламп. Сложные бытовые приборы в металлическом корпусе необходимо подключать в обязательном соответствии с маркировкой проводов, в противном случае безопасность их использования не гарантирована.
Приборы и инструменты
Прежде чем приступить к электромонтажным работам и определить фазу и ноль в проводке, необходимо подготовить необходимые приборы и инструмент:
- Мультиметр стрелочный или цифровой;
- Индикаторную отвертку или тестер;
- Маркер;
- Пассатижи;
- Нож для зачистки изоляции.
Также вам необходимо выяснить, где расположена защитная аппаратура: автоматические выключатели или пробки, УЗО. Обычно их устанавливают в распределительном щитке на площадке или у входа в квартиру. Все операции по подключению электроаппаратуры и зачистку проводов необходимо проводить при отключенных автоматах!
Правила работы с тестером и мультиметром
Проверку фазы с помощью индикаторной отвертки проводят так: отвертку зажимают между большим и средним пальцем руки, не касаясь неизолированной части жала. Указательный палец ставят на металлическийпятачок с торца рукоятки. Жалом задевают оголенные концы проводов, при касании к фазному проводнику загорается светодиод.
Мультиметром измеряют напряжение между проводниками. Для этого прибор устанавливают на предел измерения переменного тока со значком «
V» или «ACV» и значением больше 250 В (обычно у цифровых приборов выбирают предел 600, 750 или 1000 В). Щупами одновременно прикасаются к двум проводникам и определяют напряжение между ними. В бытовых электросетях оно должно быть 220В±10%.
Иногда для определения заземляющего проводника необходимо бывает измерить сопротивление. Для этого на мультиметре выставляют предел измерения «Ω» или со значком звонка.
Внимание! В режиме измерения сопротивления прикосновение к фазному проводу и заземляющему контуру вызовет короткое замыкание! При этом возможны электротравмы и ожоги!
Визуальный метод определения
Если проводка выполнена по всем правилам, определить фазу, ноль и заземляющий проводник можно по цвету изоляции. Заземление имеет двухцветную желто-зеленую окраску, изоляция нулевого провода бывает синей или голубой, а фазный провод может быть белым, черным или коричневым. Убедиться в правильности подключения можно с помощью визуального осмотра, при этом необходимо проверить соответствие цвета изоляции не только в щитке, но и в распределительных коробках.
Последовательность визуального осмотра
- Откройте щиток и осмотрите автоматические выключатели. В зависимости от расчетной нагрузки их количество может быть разным. Через автоматы могут быть подключены только фазный или фазный и нулевой провод. Заземляющий проводник подключают всегда сразу к шине. Проверьте соответствие цветовой маркировки всех проводов.
- Если в щитке цвет изоляции кабеля, уходящего в квартиру, соответствует правилам, вскройте все распределительные коробки и осмотрите скрутки. В них цвета изоляции нуля и заземляющего провода также не должны быть перепутаны.
- К фазе в распределительных коробках бывают подключены выключатели. Часто монтаж выполняют двужильным проводом, имеющим другие цвета изоляции, например, белый и бело-голубой. Это не должно вас смутить.
- Если монтаж выполнен с полным соответствием цвета изоляции, достаточно проверить фазный провод с помощью индикаторной отвертки.
Определение фазы и нуля в двухпроводной сети
Если ваша проводка выполнена без заземляющего проводника, вам необходимо найти только фазный провод. Сделать это проще всего с помощью индикаторной отвертки.
- Отключите автоматический выключатель и зачистите изоляцию проводов на расстоянии 1-1,5 см с помощью ножа. Разведите их на расстояние, исключающее случайное касание проводов.
- Включите автоматический выключатель. Индикаторной отверткой поочередно касайтесь зачищенных концов проводов. Светящийся диод укажет на фазный провод.
- Отметьте его маркером или цветной изолентой, отключите автоматический выключатель и выполните необходимые подключения.
- При подключении осветительных приборов необходимо также убедиться, что выключатель подключен к фазному проводу, в противном случае при смене лампочек недостаточно будет отключить выключатель, придется каждый раз полностью обесточивать квартиру отключением автомата.
Определение фазы, нуля и заземляющего провода
Если сеть трехпроводная, но выполнена проводом одного цвета, либо вы не уверены в правильности их подключения, необходимо определять назначение проводников перед установкой каждого элемента сети.
- Определите описанным выше способом фазный провод с помощью индикаторной отвертки и отметьте его маркером.
- Для определения нулевого и заземляющего провода понадобится мультиметр. Как известно, из-за перекоса фаз в нулевом проводе может появиться напряжение. Его величина обычно не превышает 30В. Установите мультиметр в режим измерения напряжения переменного тока. Одним щупом прикоснитесь к фазному проводу, вторым поочередно к двум другим проводам. Там, где значение напряжения окажется меньше, вторым проводом будет являться нулевой проводник.
- Если значение напряжения одинаково, необходимо измерить сопротивление заземляющего провода. Для этого уже определенный фазный провод лучше изолировать, чтобы избежать случайного прикосновения к нему. Мультиметр ставят в режим измерения сопротивления. Находят заведомо заземленный элемент, например, трубу или батарею. Зачищают при необходимости краску и прикасаются одним щупом мультиметра к металлу, а другим поочередно к проводникам, назначение которых неясно. Сопротивление заземляющего провода по отношению к заземленным элементам не должно превышать 4 Ом, сопротивление нулевого провода будет больше.
- Измерение сопротивления может также быть недостоверным, если нейтраль заземлена в щитке. В этом случае вам нужно найти заземляющий проводник, присоединенный к шине внутри щитка, и отключить его. После этой операции необходимо взять патрон с лампой и подключенными проводами, зачистить их концы и подключить один провод лампы к фазному проводу, а второй – поочередно к двум другим. Лампа загорится при касании нулевого проводника.
Если все указанные мероприятия не привели к желаемому результату, лучше обратиться к профессиональным электрикам, которые с помощью специальных приборов произведут вызвонку всех цепей. Не забывайте, что речь идет, прежде всего, о безопасности.
Современные отвертки-индикаторы избавят от головной боли человека, пытающегося осмыслить, как определить фазу, ноль, землю. Замечены сложности, расскажем ниже. Для тестирования применяется сигнал, генерируемый отверткой. Понятно, внутри стоят батарейки. Старая советская отвертка-индикатор на базе единственной газоразрядной лампочки негодна. Позволит безошибочно определить фазу. Следовательно, другая цепь — ноль или земля.
Правильно определить фазу
Начнем терминами. Слова ноль русский язык лишен. Зато употреблялось обиходом за счет легкого произношения. Ноль — искаженный нуль, восходящий корнями к латинскому языку. Программист знает: под термином NULL принято подразумевать пустые, неопределенные переменные (лишенные типа). Иногда вид данных удобен для составления алгоритмов (при передаче значений функции).
Теперь попробуем найти фазу. Типичная отвертка-индикатор образована стальным щупом, вслед идет высокоомное сопротивление (к примеру, углерода), ограничивающее ток, источником света выступает газоразрядная лампочка малого размера. Мелочи, но незнающие термина контактная кнопка, определить ноль бессильны. На конце ручки отвертки-индикатора металлическая площадка. Это контактная кнопка, которую потрудитесь касаться пальцем. Иначе лампочка при прикосновении к фазе светиться откажется.
Объясним происходящее. Тело человека наделено емкостью. Не столь велика, хватает пропустить мизерный ток. Фаза начинает колебания, электроны идут в сеть и обратно. Создается небольшой ток. Размер сильно ограничен резистором, убиться, взявшись рукой за контактную площадку отвертки-индикатора, другой за трубу снабжения водой непросто. Обнаружить при помощи инструмента непосредственно землю невозможно.
Обнаружение фазы имеет основополагающее значение, напряжение не должно выходить на патрон люстры при выключенном выключателе. В противном случае обычный процесс замены лампочки может стать опасным, последним. По нормативам, фаза розетки слева. Если выключатели стоят, как принято (включается нажатием вверх), способы определения фазы вырождаются умением найти левую руку, понять, где находится низ:
- В розетке фаза занимает левое гнездо. Соответственно, правое считается нулем. Остается провод, изоляция желто-зеленая — земля (в противном случае — резервный провод питания напряжением 220 вольт).
Неверное положение нуля и фазы евророзетки
Определение положения фазы по цвету изоляции жил провода
Нулевой рабочий провод снабжен синей изоляцией, земля желто-зеленая. Соответственно, на фазу приходится красный (коричневый) цвет. Правило может грубо нарушаться. Дома старой застройки часто оснащались проводами двух жил. Цвет изоляции в каждом случае белый. Отдельные устройства, наподобие датчиков освещенности или движения, имеют другую раскладку. К примеру, нулевой провод черный. Здесь приготовьтесь смотреть руководство по эксплуатации, вариантов раскладки бесчисленное количество.
Найти нулевой провод в квартире
По правилам, корпус подъездного щитка заземлен. Выполняется при помощи солидных размеров клеммы, затянутой мощным болтом в домах старой постройки, жителям современных зданий проще ориентироваться количеством жил. Нулевая шина имеет самое большое число подключений, фазы разводятся по квартирам (добрые электрики вешают стикеры А, В, С; злые — не вешают). Легко проследим по раскладке автоматов защиты, счетчиков.
Штекер 230 вольт Великобритании
В каждом случае общий провод будет нулевым. Цвет не играет решающей роли. Хотя по нормам современные кабели снабжены разукрашенной изоляцией. Обратите внимание – если в доме обустроено заземление, жил на входе минимум 5. Корпус щитка сажается на желто-зеленую. Нулевой провод послужит отводу рабочего тока от приборов (замыкает цепь). Объединение ветвей на стороне потребителя запрещено. Вот тройка правил, помогающих разобраться в подъездном щитке (обратите внимание, по правилам, жилец туда не должен казать носу вовсе – предупредили):
- Автомат защиты рвет фазу. Встречаются двухполюсные модели, используются сравнительно редко для помещений с особой опасностью (санузел). Поэтому по положению провода удастся сказать: это фаза. Потом стоит автомат вырубить, жилу прозвонить на стороне квартиры. Однозначно даст положение фазы.
- Напряжение меж нулевым проводом, любой фазой составляет 230 вольт. По ключевому признаку выделим жилу, на другую дающая указанную разницу. Разброс меж фазами составляет 400 вольт. Значения процентов на 10 выше, российские сети стараются соответствовать европейским стандартам.
- Токовыми клещами измерим значения на жилах. По каждой фазе проявится значение, сумма которых (по трем) должна течь обратно в сеть по нулевому (либо подходящему фазному). Заземление редко используется, ток здесь близкий нулевому при равномерной загрузке веток. Место, где значение больше всего, традиционно является нулевым проводником.
- Клемма заземления распределительного щитка на виду. Признаку поможет найти нулевой провод в домах с NT-C-S. В других случаях сюда подводится заземление.
Дополнительные сведения о нахождении земли, фазы, нулевого провода
Напоминаем, рассматривались случаи, когда под рукой нет отвертки-индикатора, зато присутствуют токовые клещи, мультиметр. Затем до входа в квартиру обнаруживают землю, фазу, нулевой провод, домашняя сеть прозванивается. Жилы три, методика лежит на поверхности: меж фазой и другим проводом разность потенциалов составит 230 вольт. Обратите внимание, методика непригодна в других случаях. К примеру, разница напряжений меж двумя одинаковыми фазными жилами составляет круглый нуль. Тестером измерить и определить сложно.
Добавим другой способ — промышленностью запрещен. Лампочка в патроне с двумя оголенными проводами. При помощи инструмента находят фазу, возможно жилу замыкать на заземление. Нельзя использовать водопроводные, газовые, канализационные трубы, прочие инженерные конструкции. По правилам, оплетка кабельной антенны снабжена занулением (заземлением). Относительно нее допустимо тестером (запрещенной стандартами лампочкой в патроне) находить фазу.
Для решительных людей порекомендуем пожарные лестницы, стальные шины громоотводов. Нужно зачистить металл до блеска, звонить на участок фазу. Обратите внимание, далеко не все пожарные лестницы заземлены (хотя обязаны быть), шины громоотводов 100%. Если обнаружите столь вопиющий произвол, обратитесь в управляющие организации, при отсутствии реакции – сообщите государственным инстанциям. Указывайте нарушение правил защитного зануления зданий.
Современные отвертки-индикаторы определения фазы, нулевого провода, земли
Когда нельзя понять, какого цвета провода, полезно пользоваться отверткой-индикатором. Инструкция диковинки на батарейках говорит: удастся при помощи щупа найти землю. Спешим огорчить читателей – любой длинный проводник определяется ложно. Разорванная в области пробок фаза, нулевой провод, настоящая земля – ответ один. Не каждая отвертка-индикатор способна выполнять функции одинаково эффективно. Смысл операции следующий:
- Активная отвертка-индикатор способна обнаружить длинный проводник путем излучения туда сигнала, ловли отклика.
- На практике при плохом качестве контактов волна быстро затухает. Отвертка-индикатор показывает наличие земли на разомкнутой пробке фазы.
- Для определения земли существует условие – нужно пальцем коснуться контактной площадки. В этом разница меж активной и пассивной отвертками-индикаторами. В первой возможно по этому принципу найти фазу, во второй правильное определение происходит при условии отсутствия контакта с данной областью.
Современная отвертка-индикатор на расстоянии позволит судить, течет ли по проводу ток. Существует специальный дистанционный режим. Обычно даже два: повышенной и пониженной чувствительности. Позволит отсеять неиспользуемую часть проводки. Допустим, известны случаи: строители заводили в дом две фазы вместо одной, путали местами. Пользоваться проводкой нужно с большой осторожностью.
Хочется отметить, на практике измерить сопротивление проводки, прозвонить непросто. Гораздо удобнее определять наличие фазы. Нет опасности сжечь китайский тестер (бывает временами при попытках измерить сопротивление жилы под током). Следует также знать, низкоомные цепи определяются с ошибкой. К примеру, большинство тестеров при прямом замыкании щупов не дают нуль шкалы. Зато если не получится определить землю при помощи активной отвертки-индикатора, плохие контакты – запросто. Если при выключенных пробках огонек горит с пальцем, прижатым к контактной площадке, время задуматься о покупке нового автомата распределительной коробки, скрутки замените современными колпачками.
Часто занимающимся ремонтом рекомендуем выход из положения: маркировка проводов. Лучше делать краской принтера, цвета примерно совпадают:
- Красный – фаза.
- Синий – нулевой провод.
- Желтый – земля.
Обычно водорастворимая краска смывается с трудом. Цвета электрических проводов допустимо проставить колерами принтеров. Приведенная выше система не одинока, часто встречается. В продаже найдем черный цвет. Можете использовать, как заблагорассудится. Обозначение проводов выполняется один раз навсегда. Смыть маркировку проще концентрированной уксусной кислотой, вещество понадобится вознамерившимся отчистить руки (не всегда просто выходит на практике). Напоследок – старайтесь не заляпать одежду.
Знайте разницу между трехфазным и однофазным питанием
По всей Северной Америке дома питаются от однофазной электросети напряжением 120 вольт. Типичная коробка автоматического выключателя в жилых помещениях показывает четыре провода, идущие в наши дома: два «горячих» провода, нейтральный провод и заземление. Два «горячих» провода несут 240 В переменного тока, который используется для тяжелых бытовых приборов, таких как электрические плиты и сушилки. Однако напряжение между горячим проводом и нейтральным проводом составляет 120 В переменного тока, от которого питается все остальное в наших домах.
Однако производственные предприятия по производству электроэнергии в Северной Америке передают трехфазную энергию сверхвысокого напряжения в диапазоне от 230 кВ до 500 кВ. При внимательном рассмотрении линий электропередач высокого напряжения можно обнаружить три отдельных проводника, каждый из которых проводит ток, а также нейтральный провод. Распределение трехфазной энергии обходится дешевле, поскольку для линий передачи трехфазной энергии не требуются такие же толстые медные провода, как для однофазной линии передачи. Кроме того, трехфазное соединение обеспечивает гибкость при подключении к сервису и может предоставить клиентам не только обычную услугу 120 В переменного тока, но также и 208 В переменного тока.Практически каждое промышленное здание, включая ваше, получает трехфазное питание, так как оно имеет много преимуществ перед однофазным.
Проектирование или переоборудование центра обработки данных для использования трехфазного питания окупается, но некоторые центры не понимают преимуществ, которые дает трехфазное питание. Давайте посмотрим на различия между однофазным и трехфазным питанием, чтобы понять, почему трехфазное питание не только обеспечивает реальную экономию затрат, но и создает более эффективный центр обработки данных.
Проблема с однофазным двигателем
Обычная однофазная сеть на 120 В переменного тока, работающая при 60 Гц, не может обеспечить непрерывное питание.На этой частоте синусоидальная волна переменного тока пересекает нулевую точку 120 раз в секунду. Лучше понимать, что мощность измеряется в ваттах, а ватты — это произведение приложенного напряжения на амперы тока, протекающего в цепи (W = V x A).
Когда напряжение или ток пересекает нулевую точку, подаваемая электрическая мощность падает до нуля. На практике эти мгновенные падения до нуля не оказывают заметного влияния на оборудование в цепи. Например, если оборудование представляет собой двигатель, механическая инерция его вращающегося якоря «проезжает» через нулевые точки.(Однако эти пересечения нулевой точки действительно складываются. Двигатели, работающие от однофазного источника питания, имеют более короткий срок службы, чем двигатели, рассчитанные на трехфазное питание). Точно так же, если оборудование под нагрузкой представляет собой твердотельную электронику, сглаживающие конденсаторы в фильтре источника питания «буферизуют» эти нулевые точки.
Трехфазное питание, с другой стороны, состоит из трех синусоид, разделенных на 120 градусов. Эта форма мощности создается генератором переменного тока с тремя независимыми обмотками, каждая из которых разнесена точно на 120 градусов.Каждый ток (фаза) проходит по отдельному проводнику. Из-за фазового соотношения ни напряжение, ни ток, приложенные к IT-нагрузке, никогда не падают до нуля. Это означает, что трехфазное питание при заданном напряжении может обеспечить большую мощность. Фактически, это примерно в 1,7 раза больше мощности однофазного источника питания.
В последние годы увеличилась вычислительная мощность, которую можно сконфигурировать в одной стойке. Не так давно в стойке могло быть до десяти серверов, потребляющих 5 кВт. Теперь, из-за непрекращающейся миниатюризации и неудержимого развития технологий, та же самая стойка может вмещать четыре или пять десятков серверов и потреблять более 15 кВт.
Для однофазного питания стойки мощностью 15 кВт при 120 В переменного тока требуется 125 А. Медь, необходимая для безопасного проведения этого тока, AWG 4, имеет диаметр почти четверть дюйма. [1] С ним сложно работать, и это дорого. Понятно, что однофазный режим для таких нагрузок нецелесообразен. Однако в трехфазной системе каждый проводник AWG 11 диаметром всего 0,09 дюйма может выдерживать только около 42 ампер. Если вы хотите подробнее изучить арифметику, стоящую за этим, прочтите наш блог «Трехфазные разветвители питания на 208 В (стоечные блоки распределения питания), раскрытие тайны, часть II: понимание емкости».
Как трехфазное питание может помочь
Ваш выбор энергосистемы может принести вам эффективность и экономию или негибкость и чрезмерные затраты. Однофазное питание идеально подходит для бытовых пользователей, у которых наибольшая нагрузка приходится на сушилку или электрическую плиту. Однако центрам обработки данных необходимо учитывать преимущества трехфазного питания. К ним относятся:
- Может работать как с устройствами на 120 В переменного тока, так и на 208 В переменного тока от одного источника питания, при необходимости смешивая и согласовывая блоки PDU.
- Трехфазный позволяет вам использовать все ваши устройства на 120 В переменного тока сегодня, но обновите до 208 В переменного тока, просто заменив PDU, что вы можете сделать быстро и без значительных простоев.
- Стоимость кабельной разводки резко снижается, если трехфазное питание подается непосредственно в серверные шкафы.
- Уменьшаются объемы работы электриков, устанавливающих кабели переменного тока, и общее время монтажа.
Если вы ищете способы обеспечить соответствие вашего центра обработки данных требованиям будущего, используя трехфазное питание, узнайте, как блоки распределения питания вписываются в набор необходимых вам решений.
Спонсором этого сообщения в блоге является Raritan.
Как проверить свои обмотки 101
Обмотки двигателя представляют собой токопроводящие провода, намотанные на магнитопровод; они обеспечивают путь прохождения тока для создания магнитного поля для вращения ротора.Как и любая другая часть мотора, обмотка может выйти из строя. Когда обмотки двигателя выходят из строя, сами проводники выходят из строя очень редко, скорее, это происходит из-за полимерного покрытия (изоляции), окружающего проводники. Полимерный материал является органическим по своему химическому составу и может изменяться из-за старения, карбонизации, нагрева или других неблагоприятных условий, которые вызывают изменение химического состава полимерного материала. Эти изменения невозможно обнаружить визуально или даже с помощью традиционных инструментов для электрических испытаний, таких как омметры или мегомметры.
Внезапный отказ какой-либо части двигателя приведет к потере производительности, увеличению затрат на техническое обслуживание, потере или повреждению капитала и, возможно, к травмам персонала. Поскольку большая часть нарушений изоляции происходит со временем, технология MCA обеспечивает измерения, необходимые для выявления этих небольших изменений, которые определяют состояние системы изоляции обмотки. Знание того, как проверить свои обмотки, позволит вашей команде проявить инициативу и предпринять соответствующие действия, чтобы предотвратить нежелательный отказ двигателя.
Как проверить изоляцию грунтовых стен
Замыкание на землю или короткое замыкание на землю происходит, когда значение сопротивления изоляции заземленной стены уменьшается и позволяет току течь на землю или открытую часть машины. Это создает проблему безопасности, поскольку обеспечивает путь питающего напряжения от обмотки до рамы или других открытых частей машины. Для проверки состояния изоляции грунтовых стен производятся измерения от выводов обмоток Т1, Т2, Т3 до земли.
Передовой опыт проверяет извилистый путь к земле. Этот тест обеспечивает подачу постоянного напряжения на обмотку двигателя и измеряет, сколько тока проходит через изоляцию на землю:
1) Проверить двигатель без напряжения с помощью исправно работающего вольтметра.
2) Подключите оба измерительных провода прибора к заземлению и проверьте надежность соединения провода прибора с землей. Измерьте сопротивление изоляции относительно земли (IRG). Это значение должно быть 0 МОм. Если отображается любое значение, отличное от 0, повторно подключите тестовые провода к земле и повторите тест, пока не будет получено нулевое показание.
3) Снимите один из тестовых проводов с земли и подключите к каждому из проводов двигателя. Затем измерьте значение сопротивления изоляции каждого вывода относительно земли и убедитесь, что значение превышает рекомендованное минимальное значение для напряжения питания двигателя.
NEMA, IEC, IEEE, NFPA предоставляют различные таблицы и инструкции по рекомендуемому испытательному напряжению и минимальным значениям изоляции относительно земли в зависимости от напряжения питания двигателя. Этот тест выявляет любые слабые места в системе изоляции грунтовых стен.Коэффициент рассеяния и проверка емкости относительно земли обеспечивают дополнительную индикацию общего состояния изоляции. Процедура испытаний для этих испытаний такая же, но вместо подачи напряжения постоянного тока применяется сигнал переменного тока, чтобы обеспечить лучшую индикацию общего состояния изоляции заземляющей стены.
Как проверить свои обмотки на наличие проблем с подключением, обрывов или коротких замыканий
Проблемы с подключением: Проблемы с подключением создают дисбаланс тока между фазами в трехфазном двигателе, что вызывает чрезмерный нагрев и преждевременное нарушение изоляции.
Обрыв : Обрыв происходит, когда проводник или проводники разрываются или разъединяются. Это может помешать запуску двигателя или заставить его работать в «однофазном» состоянии, которое потребляет избыточный ток, перегрев двигателя и преждевременный выход из строя.
Короткое замыкание: Короткое замыкание возникает при разрыве изоляции, окружающей проводники обмотки между проводниками. Это позволяет току течь между проводниками (короткими), а не через проводники. Это вызывает нагрев в месте повреждения, что приводит к дальнейшему разрушению изоляции между проводниками и, в конечном итоге, к выходу из строя.
Проверка на наличие повреждений обмотки требует выполнения серии измерений переменного и постоянного тока между выводами двигателя, и сравниваются измеренные значения, если измерения соответствуют симметричной обмотке, если показаны несимметричные неисправности.
Рекомендуемые размеры:
1) Сопротивление
2) Индуктивность
3) Импеданс
4) Фазовый угол
5) Частотная характеристика тока
Проверьте состояние обмотки, проверив следующие соединения:
- T1 до T3
- T2 до T3
- T1 — T2
Показание должно быть в пределах 0.От 3 до 2 Ом. Если 0, значит короткое замыкание. Если оно больше 2 Ом или бесконечно, есть обрыв. Вы также можете высушить разъем и повторно протестировать его, чтобы получить более точные результаты. Проверьте вставки на наличие следов пригорания, а кабели на износ.
Несимметрия сопротивления указывает на проблемы с подключением, если эти значения не сбалансированы более чем на 5% от среднего, это указывает на слабое соединение с высоким сопротивлением, коррозию или другие отложения на клеммах двигателя. Очистите провода двигателя и повторите тест.
Обрыв обозначается бесконечным значением сопротивления или импеданса.
Если фазовый угол или частотные характеристики тока не сбалансированы более чем на 2 единицы от среднего, это может указывать на короткое замыкание обмотки. На эти значения может повлиять положение ротора с короткозамкнутым ротором во время испытаний. Если импеданс и индуктивность не сбалансированы более чем на 3% от среднего, рекомендуется повернуть вал примерно на 30 градусов и провести повторное испытание. Если дисбаланс следует за положением ротора, дисбаланс может быть результатом положения ротора.Если дисбаланс остается прежним, указывается неисправность статора.
Традиционные приборы для испытания двигателей не могут эффективно тестировать или проверять обмотки двигателя
Традиционными приборами, используемыми для проверки двигателей, были мегомметр, омметр или иногда мультиметр. Это связано с наличием этих инструментов на большинстве заводов. Мегомметр используется для проверки безопасности электрического оборудования или систем, а мультиметр используется для выполнения большинства других электрических измерений.Однако ни один из этих инструментов по отдельности или вместе не предоставляет информацию, необходимую для правильной оценки состояния системы изоляции двигателя. Мегомметр может определить слабые места в изоляции заземления двигателя, но не может определить общее состояние системы изоляции. Он также не дает информации о состоянии системы изоляции обмоток. Мультиметр выявляет проблемы с подключением и обрыв в обмотках двигателя, но не предоставляет информации об изоляции между обмотками.
Испытательные обмотки с анализатором цепи двигателя (MCA ™)
Анализ цепи двигателя (MCA ™) — это метод без напряжения, с помощью которого можно тщательно оценить состояние двигателя путем проверки обмоток и других деталей. Он прост в использовании и быстро дает точные результаты. ALL-TEST PRO 7 ™, ALL-TEST PRO 34 ™ и другие продукты MCA ™ можно использовать на любом двигателе, чтобы выявить потенциальные проблемы и избежать дорогостоящего ремонта. MCA полностью проверяет систему изоляции обмотки двигателя и выявляет раннее повреждение системы изоляции обмотки, а также неисправности в двигателе, которые приводят к отказу.MCA также диагностирует неплотные и неисправные соединения, когда тесты выполняются с контроллера мотора.
Запросите ценовое предложение на оборудование для испытаний двигателей сегодня
Тестирование двигателей необходимо, поскольку двигатели выходят из строя, и тестирование может выявить проблемы, которые помогут предотвратить отказ. В ALL-TEST Pro у нас есть широкий выбор продуктов для тестирования двигателей, подходящих для многих отраслей промышленности. Мы работали с техниками из пищевой промышленности, небольших моторных мастерских, электротехнического ремонта и многого другого. По сравнению с конкурентами наши машины являются самыми быстрыми и легкими, обеспечивая при этом ценные результаты без необходимости дополнительной интерпретации данных.
Запросите расценки на нашем веб-сайте сегодня, чтобы получить информацию о ценах на наши продукты для тестирования двигателей. Для получения дополнительной информации о том, как проверить свои обмотки, свяжитесь с нашей командой онлайн.
Что такое обрыв фазы? Как я могу защитить свое оборудование?
Вопрос:
Что такое обрыв фазы? Как я могу защитить свое оборудование?
Ответ:
Когда одна фаза трехфазной системы потеряна, происходит потеря фазы.Это также называется «однофазным». Обычно обрыв фазы вызван перегоревшим предохранителем, тепловой перегрузкой, обрывом провода, изношенным контактом или механическим отказом. Обрыв фазы, который не обнаруживается, может быстро привести к небезопасным условиям, отказам оборудования и дорогостоящим простоям.
В условиях обрыва фазы двигатели, насосы, воздуходувки и другое оборудование потребляют чрезмерный ток на оставшихся двух фазах, что приводит к быстрому перегреву обмоток двигателя. Выходная мощность значительно снижается, и запуск в таких условиях невозможен.Это потенциально может оставить оборудование в состоянии «заблокированного ротора», что приведет к перегреву и еще более быстрому повреждению оборудования.
Часто бывает сложно быстро найти неисправность при потере фазы и определить основную причину. Напряжения и токи в трехфазной системе обычно не просто падают до нуля при потере фазы. Часто измерения дают сбивающие с толку значения, для правильной интерпретации которых требуется сложный анализ. Между тем, поломки и простои оборудования продолжают расти.
Трехфазное реле контроля, также называемое реле обрыва фазы, является экономичным вложением, которое легко установить. Трехфазное реле контроля защищает от повреждений, вызванных обрывом фазы, а также другими условиями трехфазного короткого замыкания. Эти реле уведомляют об условиях неисправности и предоставляют управляющие контакты для отключения двигателей или другого оборудования до того, как произойдет повреждение. Кроме того, реле обеспечивает четкую индикацию наличия неисправности, что позволяет быстро устранять неисправности и сокращать время простоя.
Трехфазные реле контроля могут быть спроектированы в новых установках или легко модернизированы в существующие установки. Доступно несколько моделей, обеспечивающих различные типы защиты, и предлагается несколько диапазонов напряжения для большинства трехфазных приложений.
Трехфазные двигатели и другое оборудование широко используются в различных отраслях промышленности:
- ОВК
- Горное дело
- Насос
- Лифт
- Кран
- Подъемник
- Генератор
- Орошение
- Петро-Хим
- Сточные воды
- И более
Macromatic предлагает единственный в своем роде фазовый монитор, который сохраняет индикацию неисправности и продолжает контролировать все напряжения даже при наличии потери фазы.Проиграйте любую фазу. Видеть это. Каждый раз. Узнайте больше о трехфазных контрольных реле Macromatic, чтобы предотвратить повреждение важных двигателей и оборудования.
Демистификация фазы
Фазовые взаимодействия хорошо известны своей способностью разрушительно вмешиваться в записанные сигналы, но понимание процесса может превратить его в один из самых мощных творческих инструментов, доступных вам.
Для приличной микрофонной техники нужно больше, чем знать, как работают разные микрофоны и в каких направлениях звучат музыкальные инструменты, потому что в тот момент, когда вы используете два или более микрофона одновременно, вы обнаружите, что их записанные сигналы не просто складываются вместе — они может также вычитать и взаимодействовать сложными, а иногда и противоречащими интуиции способами.Чтобы понять, почему это так, вам нужно понять концепцию фазы и то, как она применяется к различным настройкам микрофона — что, кстати, и является предметом этой статьи!
Начнем с синусоиды — самой простой формы звуковой волны. Любую другую звуковую волну теоретически можно разбить на набор синусоидальных волн на разных частотах, поэтому, сначала рассмотрев концепцию фазы в терминах синусоидальных волн, мы можем экстраполировать их на то, как они влияют на более сложные звуковые сигналы реального мира. обнаружу выход из заднего конца микрофона.
Синусоидальная волна генерирует только одну звуковую частоту в зависимости от того, сколько раз ее форма повторяется в секунду. Например, синусоидальный сигнал частотой 1 кГц повторяет свою форму волны 1000 раз в секунду, причем каждое повторение формы волны длится 1 мс. Представьте, что у вас есть два канала микшера, каждый из которых питается от одного и того же источника синусоидальной волны на одной и той же частоте. Пики и впадины двух сигналов будут точно на одной линии, и их смешивание просто даст одну и ту же синусоидальную волну, только громче.В этой ситуации мы говорим о двух синусоидальных волнах, находящихся «в фазе» друг с другом.
Однако, если вы постепенно задерживаете звук, проходящий через второй канал, пики и впадины двух синусоидальных волн не совпадают. Из-за уникальных свойств синусоидальных волн комбинация двух каналов теперь по-прежнему будет производить синусоидальную волну той же частоты, но ее уровень будет ниже, чем если бы два канала были в фазе, и мы говорим, что частичное подавление фазы имеет произошел.Когда второй канал задерживается так, что его пики точно совпадают с впадинами первого канала (и наоборот), две формы волны объединяются, чтобы создать тишину. В этот момент мы говорим, что формы сигналов полностью «не совпадают по фазе» друг с другом и что произошла полная погашение фазы.
Когда происходит полное подавление фазы, вы иногда слышите, как инженеры говорят, что сигналы «сдвинуты по фазе на 180 градусов». Это фраза, которую не всегда используют правильно, и поэтому она может немного сбивать с толку.Чтобы описать фазовое соотношение между двумя идентичными сигналами, независимо от их частоты (то есть, как быстро они повторяются), математики часто определяют смещение между ними в градусах, где 360 градусов равны продолжительности повторения каждой формы сигнала. Следовательно, фазовое соотношение между двумя синусоидальными волнами при нулевом градусе делает их идеально синхронизированными по фазе, обеспечивая наивысший уровень комбинированного сигнала, тогда как фазовое соотношение на 180 градусов помещает их совершенно не в фазе, что приводит к полному подавлению фазы — и, следовательно, к тишине как комбинированный выход.Все другие возможные фазовые соотношения приводят к частичному смещению фаз сигналов друг с другом, что приводит к частичному подавлению фазы.
Что сбивает с толку в термине «сдвиг по фазе на 180 градусов», так это то, что он иногда используется для обозначения ситуации, когда второй канал не был задержан, но его форма волны была перевернута вверх ногами, так что пики стали впадинами и наоборот — процесс, более однозначно называемый изменением полярности. Этот сценарий также приводит к тишине на комбинированном выходе, отсюда общая путаница в терминологии, но очень важно понимать, что полное фазовое подавление здесь вызывается инвертированием одного из сигналов, а не его задержкой.В этом примере может показаться, что мы рассыпаемся по голове, но на практике различие между задержками по времени и полярностью становится гораздо более важным.
Легко настроить ухо на эффекты простой гребенчатой фильтрации, поместив один и тот же звук на две дорожки в секвенсоре и вставив задержку плагина на один из каналов. Очень полезно ознакомиться с типами звуков, которые это производит, потому что звук гребенчатой фильтрации часто является первым индикатором множества нежелательных проблем с задержкой и маршрутизацией в цифровых системах.
Например, если вы используете какой-то прямой мониторинг с «нулевой задержкой» на вашем аудиоинтерфейсе, вы услышите все, что записываете напрямую, без какой-либо заметной задержки. Однако, если вы забудете выключить программный мониторинг в вашем секвенсоре во время этого, вы также услышите другую версию того, что вы записываете, с задержкой в соответствии с задержкой звуковых драйверов вашей звуковой карты — и это будет фаза: отменить с прямой версией.
Другая проблема, связанная с фазой, которую я видел, заключается в том, что люди записывают и контролируют со своего компьютера через аппаратный микшер и ошибочно направляют выходной сигнал компьютера обратно на его вход для записи вместе со всем, что они хотят записать.Это создает петлю обратной связи, где звук задерживается из-за задержки звуковой карты каждый раз, когда он проходит по петле. Если контур в целом увеличивает усиление проходящего вокруг него сигнала, вы быстро узнаете об этом, потому что разовьется пронзительный «вой», но если контур обратной связи снизит усиление, вы получите неприятный звук. Вместо этого используется гребенчатая фильтрация, которая должна дать вам понять, что что-то не так.
Если ваш секвенсор не реализует компенсацию задержки плагина, это еще один потенциально богатый источник проблем с фазовой компенсацией.В этом случае, если вы попытаетесь настроить эффект отправки и забудете установить его управление микшированием на 100 процентов влажного, часть необработанного звука будет задержана при его возвращении в микс из-за задержки обработки плагина. Большинство эффектов send в любом случае включают в себя некоторый элемент задержки, а это означает, что дополнительная задержка обработки редко является проблемой, если управление микшированием эффекта send установлено на 100 процентов влажного — подумайте об этом как о небольшом бонусе, отброшенном предварительной задержкой бесплатно! Однако, если вы используете процессы, не основанные на задержке, такие как сжатие или искажение, в качестве эффектов отправки, то подавление фазы становится реальной проблемой без компенсации задержки плагина, независимо от настройки любого элемента управления микшированием.
Даже если ваше записывающее программное обеспечение компенсирует задержки плагинов, вам все равно нужно быть начеку, потому что некоторые плагины не объявляют должным образом свою задержку обработки для хост-приложения, и поэтому они препятствуют попыткам секвенсора компенсируйте это — поэтому, пожалуйста, убедитесь, что вы используете свои уши! Некоторые карты внешней обработки также могут вызывать проблемы с программными подключаемыми системами компенсации задержки, и если вы отправляете на какое-либо внешнее оборудование эффекты с использованием резервных соединений на вашем аудиоинтерфейсе, это также приведет к задержкам через аудиоинтерфейс (и, возможно, через внешний блок). сам).Некоторые секвенсоры включают средства для измерения задержки и ее компенсации (например, средство внешних эффектов Cubase), некоторые просто для ее измерения, а другие не имеют такой возможности. Короче говоря, стоит узнать, как звучит отмена фазы, чтобы вы могли избежать искажения звуков ваших миксов.
Давайте снова масштабируем вещи, чтобы иметь дело со звуками реального мира, состоящими из кучи разных синусоидальных волн на разных частотах, каждая из которых постепенно усиливается и затухает по мере изменения высоты тона и тембра.Если мы подадим петлю ударных на наши два канала микшера вместо одной синусоидальной волны, любая задержка во втором канале будет иметь драматический эффект на тональность объединенного сигнала, а не просто изменить его уровень. Причина этого в том, что для данной задержки фазовые отношения между синусоидальными волнами на первом канале и на втором канале зависят от частоты каждой отдельной синусоидальной волны. Так, например, задержка 0,5 мс во втором канале приведет к сдвигу любых компонентов синусоидальной волны 1 кГц (формы волны которых повторяются каждые 1 мс) на 180 градусов по сравнению с фазами на первом канале, что приведет к полному подавлению фазы.С другой стороны, любые составляющие синусоидальной волны 2 кГц (формы волны которых повторяются каждые 0,5 мс) будут оставаться идеально синфазными. Когда частота компонентов синусоидальной волны увеличивается с 1 кГц до 2 кГц, полное подавление фазы становится только частичным, а уровень увеличивается в направлении идеального выравнивания фазы на 2 кГц.
Конечно, выше 2 кГц компоненты синусоидальной волны снова начинают частично подавлять фазу, и если вы быстро научитесь считать в уме, то заметите, что полное подавление фазы также будет происходить на частотах 3 кГц, 5 кГц, 7 кГц и т. Д. вверх по частотному спектру, в то время как на 4 кГц, 6 кГц, 8 Гц и т.д. компоненты синусоидальной волны будут точно в фазе.Это создает характерную серию равномерно разнесенных пиков и впадин в комбинированной частотной характеристике нашего барабанного цикла — эффект, называемый гребенчатой фильтрацией (см. Рамку ниже).
Задержка всего 0,000025 с (40-я миллисекунда) между двумя каналами вызовет полное подавление фазы на частоте 20 кГц, но вы также услышите частичное подавление фазы на частотах ниже этой. По мере увеличения задержки ответ гребенчатого фильтра продвигается дальше вниз по частотному спектру, следуя за своим рисунком пиков и впадин, которые сами становятся все ближе и ближе друг к другу.Однако, когда время задержки превышает примерно 25 мс или около того (в зависимости от рассматриваемого звука), наши уши начинают различать более высокие частоты задержанного сигнала как отдельные эхо, а не как изменение тембра, и по мере увеличения времени задержки. Подавление фазы ограничивается все более низкими частотами.
Учитывая, что звук проходит примерно миллисекунду, чтобы пройти фут, легко увидеть, как запись одного и того же инструмента с более чем одним микрофоном может быстро привести к проблемам с фазовой компенсацией, если микрофоны находятся на разном расстоянии от источника звука.Однако даже если бы все, что мы когда-либо делали в студии, было записывать с одним микрофоном, фазовая компенсация все равно повлияла бы на нашу запись из-за того, как звук отражается от твердых поверхностей, таких как стены. Например, если вы установите микрофон в кабинете электрогитары, значительная часть уловленного звука будет фактически отражением от пола. Если расстояние от диффузора динамика корпуса составляет всего шесть дюймов, а пол находится на фут ниже микрофона, прямые и отраженные звуки диффузора будут встречаться в микрофонном капсюле примерно на 1.Задержка между ними 5 мс. Теоретически это даст эффект гребенчатой фильтрации с полным подавлением фазы на частотах около 300 Гц, 900 Гц, 1,5 кГц, 2,1 кГц и так далее.
Сложная форма волны (график A) состоит из простых составляющих синусоидальных волн, показанных на графиках B1, B2 и B3, но это не работает точно так по ряду причин. Во-первых, отраженный звук почти наверняка будет иметь немного другой тембр из-за характеристик звукопоглощения пола. Звуковые отражения также будут попадать в микрофонный капсюль вне оси, что изменит их частотный баланс.Кроме того, есть влияние отражений от других близлежащих поверхностей, которые еще больше усложняют аномалии частотной характеристики. Тем не менее, даже если на практике вы не получите идеального эффекта гребенчатой фильтрации, отражения от пола по-прежнему вносят важный вклад в звук кабины с близким микрофоном, и многие продюсеры экспериментируют с подъемом и поворотом кабины по отношению к кабине. этаж по этой причине. Если вы хотите услышать это сами, перейдите к моей статье о записи гитары на сайте www.soundonsound.com/sos/aug07/ article / guitaramprecording.htm и послушайте аудиофайлы в поле «Комната и расположение», которые демонстрируют, насколько сильно может измениться перемещение кабины относительно границ комнаты.
Конечно, фазовая компенсация между прямым и отраженным звуком может вызвать проблемы при записи любого инструмента, а с акустическими инструментами это становится, во всяком случае, более хлопотным — слушатели, как правило, имеют менее конкретные ожидания относительно того, как должна звучать электрогитара, поэтому Подавление фазы можно использовать для формирования тона по вкусу, тогда как с акустическими инструментами у слушателя обычно более четкие ожидания, поэтому тональные эффекты гребенчатой фильтрации обычно менее приемлемы.К счастью, избежать подобных проблем не так уж сложно, если вы стараетесь держать исполнителей и микрофоны на расстоянии, по крайней мере, нескольких футов от границ комнаты и других больших отражающих поверхностей. Это может быть немного сложнее, когда пространство ограничено, и в этом случае также может помочь использование мягкой мебели или акустической пены, чтобы перехватить худшие из отражений в комнате. В нашей обширной статье об акустике DIY в SOS December 2007 (www.soundonsound.com/sos/dec07/articles/acoustics.htm) есть много полезных советов, если вы окажетесь в такой ситуации.Еще одна вещь, которую можно попробовать в небольших помещениях, — это граничные микрофоны, потому что их конструкция позволяет избежать проблем с фазовой компенсацией, связанных с любой поверхностью, на которой они установлены.
Ряд инструментов обычно записываются одновременно акустически и электрически. Например, электрический бас часто записывается как через DI box, так и через микрофонный усилитель, в то время как пьезоэлектрическая система звукоснимателя акустической гитары может быть записана вместе с сигналом от конденсаторного микрофона, расположенного перед инструментом, в некоторых ситуациях.В таких случаях форма волны DI или записи звукоснимателя будет предшествовать микрофонному сигналу из-за времени, которое требуется для прохождения звука от динамика корпуса или инструмента до микрофона. Результирующая отмена фазы может легко испортить запись.
Быстрое решение этой проблемы — инвертировать полярность одного из сигналов и посмотреть, дает ли это более удобный тон. Почти так же легко настроить расстояние микрофона для получения дополнительных опций, если ни одна из настроек полярности не работает. Однако лучший метод — это каким-то образом повторно выровнять два сигнала, задерживая DI или канал звукоснимателя, либо используя блок эффектов во время записи, либо сдвигая одну из записанных дорожек постфактум, используя аудиоредактор вашего секвенсора. инструменты.
Если вы используете более одного микрофона для записи одного инструмента, самый простой способ минимизировать эффекты фазового подавления — это физически расположить микрофонные капсюли как можно ближе друг к другу — это часто называется совпадением микрофонов. Однако, учитывая, что для получения глубокой выемки с подавлением фазы на частоте 20 кГц требуется всего лишь около 8 мм разницы между положениями капсюлей, очень аккуратно выстраивать микрофонные капсюли — процесс, который многие люди называют « согласованием фазы ». микрофонов »или« согласование микрофонов по фазе ».На практике это лучше всего делать на слух, потому что часто бывает трудно точно сказать, где находится капсюль микрофона, не разбирая ее. Один из удобных приемов для этого — инвертировать полярность одного из микрофонов, а затем отрегулировать положение микрофонов во время игры инструмента, чтобы достичь самого низкого комбинированного уровня. После восстановления нормальной полярности сигналы микрофона должны сочетаться с минимальным подавлением фазы.
Синусоидальная волна с фазовым подавлением, когда задержанные и не задержанные версии одного и того же сигнала на Графике A смешиваются вместе.Красные кривые показывают задержанные версии каждой формы сигнала на графиках A, B1, B2 и B3. Графики C1, C2 и C3 показывают результат комбинирования различных компонентов синусоидальной волны: волны на Графике B1 лишь слегка компенсируют фазу, создавая комбинированную синусоидальную волну почти в два раза выше уровня каждой из отдельных синусоидальных волн; волны на Графике B2 более сильно подавляются по фазе, создавая комбинированную синусоидальную волну только того же уровня, что и каждая из отдельных синусоидальных волн; и волны на Графике B3 сдвинуты по фазе на 180 градусов друг с другом, поэтому фаза полностью подавлена.Очевидно, что расположенные на одинаковом расстоянии от источника звука положения микрофонов также будут захватывать его прямой звук без временной задержки, но некоторая фазовая компенсация отраженных звуков неизбежно произойдет, поэтому некоторая регулировка положений микрофонов может оказаться полезной здесь для поиска подходящего окружающего тембра. Тем не менее, стоит иметь в виду, что если вы одновременно подавите любой источник звуковых колебаний спереди и сзади, полярность сигнала от заднего микрофона может измениться. Это очень часто случается, например, при подключении микрофона к передней и задней части гитарного кабинета с открытой спинкой или к верхней и нижней части малого барабана, и вы обычно обнаружите, что эти два микрофона будут лучше всего сочетаться (особенно с точки зрения звука). низкие частоты), если вы компенсируете это с помощью переключателя инверсии фазы на одном из двух каналов во время записи.
Несмотря на возможность фазового подавления, многие продюсеры, тем не менее, записывают инструменты с двумя (или более) микрофонами на разных расстояниях от источника звука. Если два микрофона расположены сравнительно близко друг к другу, это обеспечивает некоторый творческий контроль над звуком, потому что изменение расстояния между ними слегка сдвигает частоты, на которых происходит гребенчатая фильтрация. Инверсия полярности одного из микрофонов дает еще один целый набор тембров, переключая частоты, на которых синусоидальные компоненты в двух микрофонных сигналах отменяются и усиливаются, поэтому потенциал для тональной регулировки с помощью нескольких микрофонов огромен.
Жесткость гребенчатой фильтрации здесь обычно немного снижается, потому что обычно выбираются две совершенно разные модели микрофонов для увеличения звуковых параметров, и если эти микрофоны находятся на разных расстояниях или имеют разные диаграммы направленности, они будут также улавливают разные уровни звука в помещении, и оба эти фактора делают сигналы менее похожими. И если микрофоны используются на разных уровнях микса, это также снижает слышимость гребенчатой фильтрации.
Творческое использование гребенчатой фильтрации с помощью нескольких микрофонов имеет тенденцию лучше работать с электрическими инструментами, опять же, чем с более «естественными» звуками.Кроме того, с помощью этой техники легче получить стабильный звук на большинстве электрических инструментов, потому что кабина остается неподвижной по отношению к двум микрофонам, в то время как многие игроки, играющие на акустических инструментах, перемещаются во время выступления, изменяя относительное расстояние между инструментом и различными микрофонами. в процессе. Например, установка микрофона на акустической гитаре с одним микрофоном на звуковом отверстии и одним микрофоном на грифе может усложнить жизнь, если гитарист вообще поворачивает инструмент во время игры (а это делает большинство игроков), потому что это изменит относительные расстояния между ними. инструмент и два микрофона, отсюда задержка между микрофонами и, следовательно, частоты, на которых происходит гребенчатая фильтрация.Сведение подобных записей может оказаться кошмаром, потому что никакой эквалайзер в мире не может компенсировать такого рода постоянно меняющийся тональный баланс.
Подавление фазы по-прежнему остается проблемой при использовании одного микрофона. На этой диаграмме показано, как звук из гитарного усилителя захватывается как напрямую, так и отражается от пола (и других поверхностей), что вызывает некоторую погашение фазы — хотя, хорошо это или плохо для звука, будет вопросом вкус! Мульти-микрофон лучше работает с акустическими инструментами, когда один из микрофонов находится значительно дальше от инструмента, чем другой, в частности, чтобы улавливать больше атмосферы комнаты.Гребенчатая фильтрация здесь снижена, потому что сложная комбинация различных отраженных звуков в комнате придает сигналу окружающего микрофона записанную форму волны, сильно отличающуюся от записанной формы сигнала близкого микрофона, и также часто бывает, что окружающий микрофон находится на более низком уровне. Иногда продюсеры с большим пространством под рукой берут второй микрофон на расстоянии 20-30 футов от источника звука, тем самым увеличивая задержку между микрофонами до такой степени, что сигнал окружающего микрофона начинает восприниматься отдельно от сигнала близкого микрофона, звучая как добавленный набор ранних отражений вместо того, чтобы сливаться со звуком близкого микрофона и вызывать изменение тембра.
Если, как большинство владельцев небольших студий, у вас нет роскоши огромной концертной комнаты, с которой можно поиграть, вы можете попробовать взять листок из книги продюсера Стива Альбини, вместо этого искусственно задержав фоновый микрофон: «Я» «Я иногда задерживаю микрофоны окружения на несколько миллисекунд», — прокомментировал он еще в SOS Сентябрь 2005 года, — «и это дает эффект избавления от некоторой небольшой фазировки, которую вы слышите, когда микрофоны находятся на расстоянии и близко. … Когда вы отодвигаете их достаточно далеко, они начинают звучать как акустические отражения, что они и есть.«
С другой стороны, вы можете задержать сигнал более близкого микрофона, чтобы выровнять его звуковую волну с сигналом более удаленного микрофона, метод, который я считаю наиболее полезным там, где удаленный микрофон более важен для составного звука. И есть ничто не мешает вам поэкспериментировать с другими промежуточными временами задержки, чтобы поэкспериментировать с гребенчатой фильтрацией для художественных целей — тональный эффект намного сложнее, чем может быть легко достигнуто с помощью эквалайзера.
Есть одна ситуация, в которой фазовое подавление может быть настоящим другом. студию, и именно здесь вы хотите проверить, идентичны ли два аудиофайла в точности или нет.Просто выровняйте два файла так, чтобы их сигналы точно совпадали по фазе друг с другом, а затем инвертируйте полярность одного — если они идентичны, вы должны получить полное подавление фазы (другими словами, полную тишину) при их объединении. . Это отличный способ проверить, действительно ли процесс, который должен быть прозрачным (например, преобразование аудиоформата или режим обхода подключаемого модуля или аппаратного цифрового процессора), является прозрачным.
Когда дело доходит до подключения более чем одного инструмента в одной комнате — от небольшой ударной установки до Holst The Planets — есть два основных подхода.Либо вы можете настроить одну стереомикрофонную установку для захвата всего ансамбля, когда они звучат в комнате, либо вы можете поставить отдельные микрофоны перед каждым музыкантом или небольшой группой музыкантов. В каждой из этих ситуаций фазовые соображения часто рассматриваются по-разному, поэтому я рассмотрю их по очереди.
Стереозаписи могут быть записаны с помощью пары микрофонов несколькими способами: первый — использовать совпадающие направленные микрофоны, чтобы инструменты, смещенные от центра, создавали разницу уровней между микрофонами; и второй — использовать разнесенные микрофоны, чтобы звук от инструментов, расположенных не по центру, попадал в микрофоны в разное время.Как разница уровней, так и разница во времени между левым и правым каналами могут создать иллюзию стереопозиционирования при прослушивании записи через громкоговорители или наушники, и, в зависимости от обстоятельств, оба подхода (или действительно их комбинация) могут быть действительными. .
Отмена фазы — не обязательно плохо. В технике «фазового эквалайзера» используются три микрофона, расположенные в форме треугольника. Затем фейдеры на пульте (или в DAW) можно поднимать или опускать для каждого сигнала, изменяя фазовое соотношение между сигналами — и это может быть менее навязчивой альтернативой обычному эквалайзеру.К настоящему времени должно быть ясно, что любой метод записи с разнесенными микрофонами может производить гребенчатую фильтрацию, если два его микрофонных сигнала объединены. Однако, когда вы панорамируете два микрофона разнесенной стереопары на отдельные громкоговорители, ваши уши не просто складывают два сигнала вместе, чтобы создать гребенчатую фильтрацию — вместо этого они обрабатывают их по отдельности, используя любую информацию о временной задержке для определения положения различные ансамблевые инструменты в стереополе.
Проблемы возникают с этим, однако, если моно-совместимость ваших записей важна (как это имеет место для многих целей вещания), потому что преобразование стерео в моно включает прямое объединение двух микрофонных сигналов — в этот момент гребенчатая фильтрация может нанести ущерб тональность, несмотря на то, что стереозапись звучит нормально.Даже если вас в принципе не беспокоит моно-совместимость, вы все равно можете отклеиться, если обнаружите, что хотите сузить стереоизображение записи с разнесенной парой в миксе, потому что панорамирование микрофона сигнализирует о чем угодно, кроме жесткого левого и правого объединит их до некоторой степени, давая вам тональное изменение наряду с регулировкой ширины изображения.
Там, где моно-совместимость имеет первостепенное значение, очевидно, что наиболее подходящим выбором являются методы совпадающего стерео. Тем не менее, многие инженеры обнаруживают, что отсутствие какой-либо информации о разнице во времени в таких записях заставляет их звучать довольно клинически и эмоционально неинтересно, поэтому вместо этого они придумали несколько способов максимизировать моно-совместимость записей с разнесенными парами.
Хотя может показаться хорошей идеей изменить полярность одного из микрофонов для достижения лучшего монофонического звука, это создает очень странный эффект на стереозаписи, так что здесь от этого мало пользы. Поэтому самое простое, что вы можете сделать, — это сначала настроить разнесенную стереопару так, как вам нравится, а затем быстро переключиться на монофонический мониторинг и тонко отрегулировать расстояние между микрофонами для улучшения тонального баланса монофонического звука. Небольшие движения микрофона значительно повлияют на моно микс, но не повлияют на стереозвук.Цель состоит в том, чтобы найти положения микрофона, которые сохраняют тональность как можно более согласованной при переключении между моно и стерео мониторингом.
Еще одна хитрость заключается в том, чтобы расположить разнесенные микрофоны на одинаковом расстоянии от наиболее важных элементов ансамбля (помещая их точно посередине стереоизображения), обеспечивая наилучший переход в моно. Этот принцип используется некоторыми инженерами при настройке накладных микрофонов для ударных и особенно ассоциируется с супер-продюсером Глином Джонсом — идея состоит в том, чтобы разместить микрофоны на одинаковом расстоянии от малого барабана, бас-барабана или того и другого.
Знаменитая техника Decca Tree является примером другой тактики: более широкое расстояние между микрофонными парами, а затем установка другого микрофона между ними с центральным панорамированием. (Подробнее об этом можно прочитать во второй части статьи Хью Робджона о стереомикрофонах в SOS , март 1997 г. (www.soundonsound.com/sos/1997_articles/mar97/stereomictechs2.html). центральный микрофон для большей части записи и левый и правый микрофоны для стереоэффекта, когда вы суммируете запись до моно, звук с центрального микрофона остается неизменным (он уже был моно!), а фазовая компенсация между разнесенными микрофонами производит меньшее впечатление, потому что они ниже по уровню.Однако недостатком таких методов является то, что фазовое подавление между центральным микрофоном и каждым из других микрофонов может немного усложнить поиск подходящих положений для стереосистемы — бесплатного обеда не существует!
Последний стоящий вариант — это попробовать один из методов, который объединяет информацию о разнице во времени и уровне с помощью разнесенных направленных микрофонов — например, таких как стандарты ORTF или NOS. Хотя звук смещенных от центра инструментов по-прежнему будет поступать на два микрофона в разное время, уровни двух сигналов будут различаться полярными диаграммами микрофонов, что поможет снизить слышимость гребенчатой фильтрации.Однако это не повод не проверять звук в моно во время записи.
На протяжении основной части этой статьи я сосредоточился в основном на проблемах с подавлением фазы, которые возникают, когда две версии практически одного и того же звука смешиваются с задержкой между ними. Однако фазовое подавление также может происходить в некоторой степени между синусоидальными компонентами любых двух подобных звуков, которые накладываются друг на друга. При наложении человеческих действий на настоящие инструменты это не проблема; Напротив, когда вы накладываете вокал или гитарные наложения, колеблющиеся фазовые погашения между разными, естественно меняющимися треками — все это часть привлекательности.Однако, если вы попытаетесь наложить сэмплы или синтезированные звуки вместе в запрограммированном треке, вы можете столкнуться со всевозможными ловушками.
Первая распространенная проблема возникает, когда вы вводите одни и те же ноты MIDI в два разных инструмента на основе семплов, будь то аппаратное или программное обеспечение. Звуки, которые вы выбираете для двух разных частей, будут звучать вместе гораздо точнее, чем у людей-исполнителей, а ноты будут более однородными по тону, чем у реальных инструментов. Даже если якобы нет задержки между началом двух разных звуков, фазовые отношения их различных синусоидальных компонентов могут все еще сильно отличаться, и результирующие фазовые погашения не будут меняться естественным образом, как это было бы с многослойными живыми выступлениями.Это часто придает слоистому пластырю своего рода «пустоту», которую вы редко найдете привлекательной.
Тем не менее, я обнаружил, что избежать неприятных комбинаций в таких ситуациях не так уж сложно, если вы избегаете пар звуков, которые одновременно являются перкуссионными и похожими по звучанию (скажем, два разных фортепиано) — и с такими вещами, как развитие пэды, вы можете без труда обойтись всевозможными комбинированными звуками. Вы также должны проявлять осторожность при наложении звуков с выступающими низкими частотами (такими как басы и бас-барабаны), потому что это может действительно высосать мощность из дорожки, если комбинация нейтрализует даже один мощный низкочастотный синусоидальный компонент.(Фактически, это такая же проблема с живыми инструментами, и это объясняет сравнительную редкость наслоенных басовых звуков на записи.)
Проблема может быть усугублена, если вы также получите задержку между двумя слоями инструментов. Вы можете спросить: «Как это может произойти, если я отправляю каждому из них одни и те же MIDI-данные?» Чаще всего это может произойти, если вы используете аппаратные звуковые модули вместе с компьютерным секвенсором. Для начала, внутренние инструменты компьютера не должны иметь дело с задержкой вывода MIDI вашей звуковой карты, но есть также тот факт, что аппаратные звуковые модули тоже страдают от задержки, и каждый из них, вероятно, будет иметь разное значение задержки.Если вы затем контролируете выходы своих аппаратных звуковых модулей через запасные входы на аудиоинтерфейсе, вам придется бороться с дополнительной задержкой от звуковой карты.
Однако самые большие трудности возникают, когда вы накладываете слои баса или бас-барабана, и между этими двумя слоями есть задержка, которая меняется от момента к моменту. В результате получается звук, который практически невозможно смешивать: тембр инструмента меняется от ноты к ноте, а некоторые ноты полностью теряют свою силу из-за подавления важных низких частот.Вы могли подумать, что это довольно необычная проблема, но я дважды сталкивался с ней в недавних проектах Mix Rescue, что заставляет меня подозревать, что это может быть довольно широко распространенным явлением. Один из способов обхода — использовать только один из слоев для передачи низких частот путем фильтрации верхних частот другого, но, по моему опыту, это имеет тенденцию быть более успешным с басовыми звуками, чем с басовыми барабанами. Для последнего имеет гораздо больше смысла накладывать два семпла бочки в одном инструменте сэмплера (аппаратном или программном), так как это с большей вероятностью гарантирует, что они всегда запускаются в одно и то же время, тем самым сохраняя фазовую компенсацию между звуками. , и их составной тембр, согласованный.
Когда подавление фазы действительно может все испортить, так это когда вы начинаете подключать отдельные инструменты в ансамбле по отдельности. В идеале вы бы хотели, чтобы микрофон каждого инструмента улавливал только тот инструмент, на который он указывает, но на самом деле он будет улавливать разливы со всех инструментов вокруг него. Звук каждого инструмента через свой собственный микрофон в некоторой степени будет погашен по фазе, разлившись по всем другим микрофонам, так что перемещение любого отдельного микрофона может изменить звук других инструментов невероятно сложным образом.
Есть некоторые инженеры, которые (благодаря золотым ушам, многолетнему опыту и договору с неким рогатым джентльменом) приобрели навык управления этой массой фазовых отмен, так что они могут активно использовать разлив для усиления и склеивания вместе ‘крупномасштабные записи с несколькими микрофонами. По этой причине такие светильники часто предпочитают использовать в первую очередь омни-микрофоны, несмотря на повышенный уровень утечки. Для остальных из нас, простых смертных, ключом к успеху в этом виде сеанса записи является снижение уровня утечки настолько, насколько это возможно, тем самым сводя к минимуму слышимые эффекты гребенчатой фильтрации.
Фаза может быть проблемой при стереомикрофоне нестационарных источников. Например, акустический гитарист обычно будет двигать гитару хотя бы немного во время выступления, поэтому близко расположенные совпадающие пары, как правило, предпочтительнее, чем разнесенные стереофонические техники. микрофонов и ансамблевых инструментов, и в целом имеет смысл держать каждый микрофон ближе к инструменту, который он покрывает, чем к источникам утечки.Эта идея часто формулируется как « правило 3: 1 », а именно: для того, чтобы предотвратить утечку, расстояние между микрофонами на разных инструментах должно быть как минимум в три раза больше расстояния между каждым микрофоном и инструментом, которым оно должно быть. покрытие.
Хотя правило 3: 1 является удобным руководством для некоторых инженеров, я лично не считаю его очень полезным, потому что оно не принимает во внимание разницу в громкости между разными инструментами и любые акустические факторы в комнате. , или эффекты диаграмм направленности микрофона.Действительно, разумное расположение инструментов и некоторое внимание к обработке помещения, по моему опыту, так же важны для борьбы с утечками, как выбор и размещение микрофона. На мой взгляд, более разумный путь состоит в том, чтобы работать с соотношением между уровнем ближнего микрофона для каждого инструмента и общим уровнем утечки, полученным для этого инструмента всеми другими микрофонами. Вы можете легко проверить это, попросив каждого подключенного к микрофону музыканта или группу музыкантов играть по очереди со всеми открытыми микрофонами — если приглушение закрытого микрофона этого инструмента снижает общий уровень микса примерно на 9 дБ, вы должны быть довольно хорошо слышны.
Очевидно, что направленные микрофоны могут облегчить задачу по уменьшению уровней утечки, потому что нули подавления могут быть нацелены на соседние инструменты — глубокие боковые нули микрофонов в форме восьмерки действительно могут пригодиться здесь. Однако все направленные микрофоны (особенно менее дорогие модели) в некоторой степени окрашивают внеосевой звук, что иногда вызывает больше проблем, чем решает направленность, потому что с меньшим количеством неприятно звучащего разлива может оказаться труднее справиться (даже если он вызывает меньшее погашение фазы), чем большее количество сравнительно неокрашенного разлива.Этот принцип лежит в основе полезной техники (описанной Майком Ставру в его увлекательной книге Mixing With Your Mind ), которая включает в себя микширование каждого инструмента, чтобы он звучал как можно лучше, а затем изменение положения этого инструмента. и его микрофон вместе (без изменения их относительного положения) для достижения сбалансированной тональности для любого разлива.
При подключении малого барабана сверху и снизу два сигнала будут не в фазе, поэтому используйте переключатель полярности на вашем столе (или в вашей DAW) на одном из них.Тем не менее, что бы вы ни делали, на большинство микрофонов вы все равно будете попадать тем или иным образом. Это означает, что даже если вы добьетесь хорошего звучания каждого близкого микрофона для инструмента, на который он номинально назначен, вполне вероятно, что некоторые из этих тщательно отточенных микрофонных сигналов будут страдать от неблагоприятного фазового подавления, когда все микрофоны микшируются вместе. В такой ситуации первое, что нужно попробовать, — это поменять полярность различных комбинаций микрофонов, возможно, начиная с наиболее плохо звучащих микрофонов ближнего боя.В этой ситуации нет «правильных» настроек полярности, поэтому вам следует искать комбинацию, которая обеспечивает лучший тональный баланс для всех инструментов ансамбля. Однако важно помнить, что инвертирование полярности любого микрофона не приведет только к изменению звука инструмента, на который он указывает, поэтому внимательно следите за тональными изменениями любого инструмента, особенно тех, которые находятся в непосредственной близости от микрофона. вопрос.
Если у вас хороший звук на каждом закрытом микрофоне и вы будете осторожны с тембром и уровнем любого разлива, вы сможете найти комбинацию переключателей полярности, которая даст вам хороший ансамблевой звук.Если переключатели полярности не работают с конкретным инструментом, вам, вероятно, придется потрудиться над настройкой качества попадания сигнала этого инструмента на другие микрофоны. Быстрое отключение нескольких вероятных претендентов может помочь определить, кто из них способствует наиболее проблемному разливу.
Тщательно записанный ансамбль с несколькими микрофонами может позволить в значительной степени управлять микшированием инструментального баланса, но к настоящему времени должно быть довольно очевидно, что настройка всего может быть сложной и трудоемкой.Однако, если ансамбль и так уже довольно хорошо сбалансирован внутри, вы можете немного упростить себе задачу, пытаясь зафиксировать этот баланс с помощью основного стереомикрофона, а затем используя близкие микрофоны только для поддержки и регулировки баланса как требуется. Это позволяет уменьшить вклад микса от каждого из близких микрофонов или даже при необходимости увеличивать их только на один или два за раз, и делает точный характер гребенчатой фильтрации между ними немного менее критичным для общего звука.Подавление фазы между близкими микрофонами и основной стереопарой тогда становится основным фокусом внимания.
Для многих владельцев домашних студий слово «фаза» в отношении микрофонной техники несет в себе некоторую загадочность; магия и угроза в равной степени. Хотя фаза действительно способна превращать пустышки в бриллианты и наоборот, я надеюсь, что мне удалось продемонстрировать, что проблема сравнительно проста для понимания и что правильное ее решение поможет вам получать лучшие результаты каждый раз, когда вы ставите микрофон для записи.
Гребенчатая фильтрация, возникающая из-за подавления фазы, часто может быть желательным эффектом, и хотя простая задержка может использоваться для «корректировки» расстояний по времени прибытия между (например) сигналами от двух разных микрофонов, записывающих один и тот же источник , он не дает вам контроля над выравниванием частот.
Некоторые устройства, включая Neve Portico 5016, Radial Phazer и Audient Mico, а также программное обеспечение, такое как Phase Tone от Tritone Digital, позволяют вам решать, какие частоты конструктивно добавляют к вашему звуку, а какие — подавляют фазу.Аппаратные устройства, такие как Neve Portico 5016, Little Labs IBP, Audient Mico и Radial Phazer, позволяют выполнять переменную регулировку фазы. Они используют схему фазового сдвига, которая позволяет пользователю в основном решать, какие частоты добавляют конструктивно, а какие по-прежнему отменяют, что позволяет оптимизировать субъективный « фокус » звука или качество звука от комбинации DI и микрофонных сигналов до быть настроенным удовлетворительным образом. Подобные варианты формирования тона предлагаются в программном обеспечении, таком как Phase Tone от Tritone Digital, и могут использоваться для настройки звука на стадии микширования — хотя, конечно, лучше добиться правильного звучания во время записи.
Удары плавающей нейтрали в распределительной сети
Обрыв (ослабленная) нейтраль
Если нейтральный провод разомкнут, сломан или потерян на одной из сторон источника (распределительный трансформатор, генератор или на стороне нагрузки — распределительный щит потребителя), распределение нейтральный провод системы будет « плавать » или потеряет контрольную точку заземления.
Удары плавающей нейтрали в распределителе мощности (фото Mardix Limited; Fickr)Состояние плавающей нейтрали может привести к тому, что напряжения могут достигать максимального значения, равного среднеквадратичному значению фазового напряжения относительно земли, в зависимости от состояния несимметричной нагрузки.Состояние плавающей нейтрали в электросети имеет разное влияние в зависимости от типа источника питания, типа установки и балансировки нагрузки в распределительной сети.
Обрыв нейтрали или Ослабленная нейтраль может повредить подключенную нагрузку или создать опасное напряжение прикосновения на корпусе оборудования.
Здесь мы пытаемся понять состояние плавающей нейтрали в системе распределения T-T.
Что такое плавающая нейтраль?
Если точка звезды несбалансированной нагрузки не соединена с точкой звезды ее источника питания (распределительного трансформатора или генератора), то фазное напряжение не остается одинаковым для каждой фазы, а изменяется в зависимости от несимметричной нагрузки.
Поскольку потенциал такой изолированной точки звезды или нейтральной точки всегда меняется и не фиксируется, он называется Floating Neutral .
Нормальное состояние электропитания и состояние плавающей нейтрали
Нормальное состояние электропитания
В трехфазных системах точка звезды и фазы имеют тенденцию стремиться к ‘ уравновешивать ‘ в зависимости от коэффициента утечки для каждой из них. Фаза к Земле. Точка звезды будет оставаться близкой к 0 В в зависимости от распределения нагрузки и последующей утечки (более высокая нагрузка на фазе обычно означает более высокую утечку).
Трехфазные системы могут иметь или не иметь нейтральный провод. Нейтральный провод позволяет трехфазной системе использовать более высокое напряжение, поддерживая при этом однофазные устройства с более низким напряжением. В ситуациях распределения высокого напряжения обычно не бывает нейтрального провода, поскольку нагрузки можно просто подключить между фазами (соединение фаза-фаза).
Схема здоровой энергосистемыТрехфазная трехпроводная система
Трехфазная система имеет свойства, которые делают ее очень востребованной в электроэнергетических системах.
Во-первых, фазные токи имеют тенденцию нейтрализовать друг друга (суммирование до нуля в случае линейной сбалансированной нагрузки). Это позволяет исключить нейтральный провод на некоторых линиях. Во-вторых, передача мощности в линейную сбалансированную нагрузку постоянна.
3-фазная 4-проводная система для смешанной нагрузки
Большинство бытовых нагрузок являются однофазными. Обычно трехфазное питание либо не поступает в жилые дома, либо разделяется на главном распределительном щите.
Текущий закон Кирхгофа гласит, что подписанная сумма токов, входящих в узел, равна нулю .Если нейтральная точка является узлом, то в сбалансированной системе одна фаза совпадает с двумя другими фазами, в результате чего ток через нейтраль отсутствует. Любой дисбаланс нагрузки приведет к протеканию тока по нейтрали, так что сумма будет равна нулю.
Например, в сбалансированной системе ток, входящий в нейтральный узел с одной стороны фазы, считается положительным, а ток, входящий (фактически выходящий) из нейтрального узла с другой стороны, считается отрицательным.
Это усложняется с трехфазным питанием, потому что теперь мы должны учитывать фазовый угол, но концепция в точности та же.Если мы соединены звездой с нейтралью, то нейтральный проводник будет иметь нулевой ток на нем только в том случае, если три фазы имеют одинаковый ток на каждой. Если мы проведем векторный анализ этого, сложив sin (x) , sin (x + 120) и sin (x + 240) , мы получим ноль .
То же самое происходит, когда мы соединены треугольником без нейтрали, но затем возникает дисбаланс в распределительной системе, за пределами сервисных трансформаторов, потому что распределительная система обычно соединяется звездой.
Нейтраль никогда не должна быть подключена к заземлению, за исключением точки обслуживания, где нейтраль изначально заземлена (на распределительном трансформаторе). Это может настроить землю в качестве пути, по которому ток возвращается обратно в службу. Любой разрыв цепи заземления может привести к возникновению потенциала напряжения.
Заземление нейтрали в трехфазной системе помогает стабилизировать фазные напряжения. Незаземленная нейтраль иногда называется «плавающей нейтралью » и имеет несколько ограниченных применений.
Состояние плавающей нейтрали
Электроэнергия входит и выходит из помещения клиентов из распределительной сети, входя через фазу и покидая нейтраль. В случае обрыва нейтрального обратного пути электричество может двигаться по другому пути. Поток энергии, поступающий в одну фазу, возвращается через оставшиеся две фазы. Нейтральная точка не находится на уровне земли, но находится на уровне напряжения сети.
Эта ситуация может быть очень опасной, и клиенты могут серьезно пострадать от поражения электрическим током, если они коснутся чего-либо, где присутствует электричество.
Состояние плавающей нейтралиОбрыв нейтрали может быть трудно обнаружить, а в некоторых случаях может быть нелегко идентифицировать. Иногда на сломанные нейтрали могут указывать мерцающие огни или покалывание.
Если у вас в доме мерцает свет или дребезжит постукивание, вы можете получить серьезные травмы или даже смерть.
Измерение напряжения между нейтралью и землей
Практическое правило , используемое многими в промышленности, гласит, что напряжение 2 В или меньше на розетке между нейтралью и землей — это нормально, а несколько вольт или более указывают на перегрузку; 5 В считается верхним пределом.
Низкое показание
Если напряжение между нейтралью и землей низкое в розетке, значит система исправна. Если оно высокое, то вам все равно необходимо определить, в основном ли проблема на уровне ответвленной цепи или в основном на уровне панели .
Напряжение нейтрали относительно земли существует из-за падения IR тока, проходящего через нейтраль обратно в соединение нейтрали с землей. Если система правильно подключена, не должно быть заземления нейтрали, за исключением трансформатора источника (в том, что NEC называет источником раздельно производной системы или SDS, который обычно является трансформатором).
В этой ситуации заземляющий провод не должен иметь тока и, следовательно, на нем не должно быть падения IR . Фактически, заземляющий провод используется в качестве длинного тестового провода, ведущего назад к заземлению нейтрали.
Высокое показание
Высокое показание может указывать на общую нейтраль ветви , то есть нейтраль, совместно используемую более чем одной цепью ответвления. Эта общая нейтраль просто увеличивает возможности для перегрузки, а также для воздействия одной цепи на другую.
Нулевое показание
Определенное напряжение между нейтралью и землей является нормальным для нагруженной цепи. Если показания стабильны и близки к 0В. Есть подозрение на незаконное соединение нейтрали с землей в розетке (часто из-за потери жилы нейтрали, касающейся какой-либо точки заземления) или на субпанели.
Любые соединения нейтрали с землей, кроме тех, которые находятся у источника трансформатора (и / или главной панели), должны быть удалены, чтобы предотвратить обратные токи, протекающие через заземляющие проводники.
Различные факторы, вызывающие плавающее положение нейтрали
Существует несколько факторов, которые определяют как причину плавающего положения нейтрали. Воздействие плавающей нейтрали зависит от положения, в котором нейтраль нарушена:
1) На трехфазном распределительном трансформаторе
Неисправность нейтрали в трансформаторе в основном связана с выходом из строя проходного изолятора нейтрали.
Использование ответвителя на вводе трансформатора определено как основная причина выхода из строя нейтрального провода на вводе трансформатора.Гайка на линии отвода со временем ослабляется из-за вибрации и разницы температур, что приводит к горячему соединению. Проводник начал плавиться и в результате оборвался нейтраль.
Плохая работа монтажников и технического персонала также одна из причин отказа нейтрали.
Обрыв нейтрали на трех фазах трансформатора приведет к скачку напряжения до линейного напряжения в зависимости от балансировки нагрузки в системе. Этот тип нейтрального положения может повредить оборудование клиента, подключенное к источнику питания.
В нормальных условиях ток течет от фазы к нагрузке к нагрузке обратно к источнику (распределительный трансформатор). При обрыве нейтрали ток из красной фазы вернется в синюю или желтую фазу, в результате чего между нагрузками будет напряжение между линиями.
У некоторых клиентов будет повышенное напряжение, а у других — низкое.
2) Обрыв провода нейтрали в линии низкого напряжения
Воздействие обрыва нейтрального проводника на воздушном распределении низкого напряжения будет таким же, как и при обрыве провода на трансформаторе .Напряжение питания увеличивается до линейного напряжения вместо фазного. Этот тип неисправности может привести к повреждению оборудования клиента, подключенного к источнику питания.
3) Обрыв провода нейтрали обслуживания
Обрыв провода нейтрали обслуживания приведет только к потере питания в точке обслуживания. Никаких повреждений оборудования заказчика.
4) Высокое сопротивление заземления нейтрали на распределительном трансформаторе:
Хорошее сопротивление заземления Нейтральная яма обеспечивает путь с низким сопротивлением для тока нейтрали для утечки в землю.Высокое сопротивление заземления может обеспечить путь высокого сопротивления для заземления нейтрали на распределительном трансформаторе.
Предельное сопротивление заземления должно быть достаточно низким, чтобы обеспечить достаточный ток короткого замыкания для срабатывания защитных устройств во времени и уменьшить смещение нейтрали.
5) Перегрузка и разбалансировка нагрузки
Распределительная сеть Перегрузка в сочетании с плохим распределением нагрузки является одной из основных причин отказа нейтрали. Нейтраль должна быть правильно спроектирована так, чтобы минимальный ток проходил через нейтральный проводник.Теоретически предполагается, что ток в нейтрали равен нулю из-за отмены из-за сдвига фаз фазового тока на 120 градусов.
IN = IR <0 + IY <120 + IB <-120
В перегруженной несбалансированной сети много тока будет протекать в нейтрали, которая разрывает нейтраль в самом слабом месте.
6) Общие нейтрали
В некоторых зданиях разводка проводов такова, что две или три фазы совместно используют одну нейтраль. Первоначальная идея заключалась в том, чтобы продублировать на уровне ответвлений четырехпроводную (три фазы и нейтраль) разводку панелей управления.Теоретически на нейтраль вернется только несимметричный ток. Это позволяет одной нейтрали выполнять работу для трех фаз. Этот способ подключения быстро зашел в тупик с ростом однофазных нелинейных нагрузок. Проблема в том, что ток нулевой последовательности
от нелинейных нагрузок, в первую очередь третьей гармоники, будет арифметически складываться и возвращаться на нейтраль. Помимо потенциальной проблемы безопасности из-за перегрева нейтрали меньшего размера, дополнительный ток нейтрали создает более высокое напряжение нейтрали относительно земли.
Это напряжение нейтрали относительно земли вычитается из напряжения линии на нейтраль, доступного для нагрузки. Если вы начинаете чувствовать, что общие нейтралы — одна из худших идей, когда-либо воплощенных в меди.
7) Плохое качество изготовления и технического обслуживания
Обычно обслуживающий персонал не уделяет внимания сетям низкого напряжения. Ослаблено или Неадекватная затяжка нейтрального проводника повлияет на непрерывность нейтрали, что может привести к смещению нейтрали.
Как определить состояние плавающей нейтрали на панели?
Давайте возьмем один пример, чтобы понять состояние плавающего положения нейтрали . У нас есть трансформатор, вторичная обмотка которого соединена звездой, фаза-нейтраль = 240 В, и фаза-фаза = 440 В, .
Условие (1) — нейтраль не плавает
Независимо от того, заземлена ли нейтраль, напряжения остаются неизменными: 240 В между фазой и нейтралью и 440 В между фазами. Нейтраль не плавает.
Условие (2) — нейтраль находится в плавающем состоянии
Все устройства подключены: Если нейтральный провод цепи отсоединяется от основной панели электропитания дома, в то время как фазный провод цепи все еще остается подключенным к панели и в цепи есть электроприборы, включенные в розетки. В этой ситуации, если вы поместите тестер напряжения с неоновой лампой на нейтральный провод, он будет светиться так же, как если бы он был под напряжением, потому что на него подается очень небольшой ток, идущий от фазового источника через подключенное устройство ( s) к нейтральному проводу.
Все устройства отключены: Если вы отключите все приборы, освещение и все остальное, что может быть подключено к цепи, нейтраль больше не будет казаться находящейся под напряжением, потому что от нее больше нет пути к фазовому питанию.
- Междуфазное напряжение: Измеритель показывает 440 В переменного тока. (Никакого влияния на трехфазную нагрузку)
- Напряжение между фазой и нейтралью: Измеритель показывает от 110 В до 330 В переменного тока.
- Напряжение нейтрали относительно земли: Измеритель показывает 110 В.
- Напряжение между фазой и землей: Измеритель показывает 120 В.
Это связано с тем, что нейтраль «плавает» над потенциалом земли (110 В + 120 В = 230 В переменного тока) . В результате выход изолирован от системного заземления, и полный выход 230 В устанавливается между линией и нейтралью без заземления.
Если внезапно отключить нейтраль от нейтрали трансформатора, но оставить цепи нагрузки такими, какие они есть, тогда нейтраль на стороне нагрузки станет плавающей, поскольку оборудование, подключенное между фазой и нейтралью, станет между фазой и фазой (R — Y, Y — B). ), и поскольку они не имеют одинаковых номиналов, полученная в результате искусственная нейтраль будет плавающей, так что напряжения, присутствующие на различном оборудовании, больше не будут составлять 240 В, а будут где-то между 0 (не точно) и 440 В (также не совсем точно). ).
Это означает, что на одной линии от фазы к фазе у некоторых будет меньше 240 В, а у других — почти до 415 В. Все зависит от импеданса каждого подключенного элемента.
В системе с дисбалансом, если нейтраль отключена от источника, нейтраль становится плавающей нейтралью и смещается в такое положение, чтобы она была ближе к фазе с более высокими нагрузками и от фазы с меньшей нагрузкой. Предположим, что несимметричная трехфазная система имеет нагрузку 3 кВт в фазе R, нагрузку 2 кВт в фазе Y и нагрузку 1 кВт в фазе B.Если нейтраль этой системы отключена от сети, плавающая нейтраль будет ближе к R-фазе и дальше от B-фазы.
Таким образом, нагрузки с фазой B будут испытывать большее напряжение, чем обычно, в то время как нагрузки с фазой R будут испытывать меньшее напряжение. Нагрузки в фазе Y будут испытывать почти одинаковое напряжение. Выключатель нейтрали для несбалансированной системы опасен для нагрузок. Из-за более высокого или более низкого напряжения наиболее вероятно повреждение оборудования.
Здесь мы видим, что состояние нейтрального плавающего положения не влияет на трехфазную нагрузку, а влияет только на однофазную нагрузку.
Как устранить нейтральное плавающее положение?
Есть некоторые моменты, которые необходимо учитывать, чтобы предотвратить нейтральное смещение.
a) Используйте 4-полюсный выключатель / ELCB / RCBO в распределительном щите
Плавающая нейтраль может быть серьезной проблемой. Предположим, у нас есть панель выключателя с трехполюсным выключателем для трех фаз и шиной для нейтрали для трехфазных входов и нейтрали (здесь мы не использовали четырехполюсный выключатель). Напряжение между каждой фазой — 440, а напряжение между каждой фазой и нейтралью — 230. У нас есть одиночные выключатели, питающие нагрузки, требующие 230 вольт. У этих нагрузок 230 Вольт одна линия питается от выключателя и нейтраль.
Теперь предположим, что нейтраль ослабла, окислилась или каким-то образом отсоединилась в панели или, возможно, даже отключилась от источника питания. Нагрузки 440 В не будут затронуты, однако нагрузки 230 В могут иметь серьезные проблемы. В этом состоянии «плавающая нейтраль» вы обнаружите, что одна из двух линий упадет с 230 вольт до 340 или 350, а другая линия упадет до 110 или 120 вольт. Половина вашего оборудования на 230 В будет повышена из-за перенапряжения, а другая половина не будет работать из-за низкого напряжения.Так что будьте осторожны с плавающими нейтралами.
Просто используйте ELCB, RCBO или 4-полюсный автоматический выключатель в качестве источника питания в 3-фазной системе питания, поскольку при размыкании нейтрали отключится все питание без повреждения системы.
b) Использование стабилизатора напряжения
Каждый раз, когда нейтраль выходит из строя в трехфазной системе, подключенные нагрузки будут подключаться между фазами из-за плавающей нейтрали. Следовательно, в зависимости от сопротивления нагрузки на этих фазах, напряжение продолжает колебаться от 230 В до 400 В.
Подходящий сервостабилизатор с широким диапазоном входного напряжения с высокой и низкой отсечкой может помочь в защите оборудования.
c) Хорошее качество изготовления и техническое обслуживание
Дайте более высокий приоритет техническому обслуживанию сети низкого напряжения. Затяните или примените соответствующий крутящий момент для затяжки нейтрального проводника в системе низкого напряжения
Заключение
Состояние неисправности «плавающая нейтраль» (отключенная нейтраль) — ОЧЕНЬ НЕБЕЗОПАСНО , потому что, если устройство не работает, и кто-то, кто не знает о «плавающем» нейтральном положении, может легко прикоснитесь к нейтральному проводу, чтобы узнать, почему приборы не работают, когда они подключены к цепи и получают сильный ток.Однофазные устройства рассчитаны на работу с нормальным фазным напряжением, когда они получают линейное напряжение. Устройства могут быть повреждены.
Неисправность нейтрали отключена — это очень опасное состояние, и ее следует устранить как можно раньше путем поиска неисправностей именно тех проводов, которые необходимо проверить, а затем правильно подключить.
Публикуется в электрических заметках и статьях
Разница между нейтральным проводником и заземляющим проводом в электротехнике
Нейтральный и заземляющий провода часто путают вне электроснабжения, так как оба провода имеют нулевое напряжение.На самом деле, если вы по ошибке подключите заземляющий провод как нейтраль, большинство устройств будет работать правильно. Однако такое соединение противоречит правилам, поскольку каждый проводник выполняет свою функцию в электрической установке.
Национальный электротехнический кодекс (NFPA 70 NEC) устанавливает цвета изоляции для нейтрального и заземляющего проводов. Стандартные цвета упрощают электромонтаж , делая его более безопасным .
- Цвета нейтрального провода: белый или серый
- Цвета заземляющего провода: зеленый, желто-зеленый или голый
Эти цвета изоляции разрешены только для нейтрального и заземляющего проводов, и их использование для любой из фаз под напряжением противоречит нормам.Электрики работают с предположением, что проводка этих цветов находится под нулевым напряжением, и использование белой или зеленой изоляции для проводника под напряжением было бы смертельной ловушкой (и в первую очередь против норм).
Получите профессиональный электрический дизайн для вашего следующего строительного проекта.
Роль нейтрального проводника в электрических цепях
Чтобы наглядно представить, как работает нейтральный проводник, представьте, что электроэнергия доставляется в виде тока через разность напряжений.Напряжение передается по токоведущему проводнику, но нейтральный провод также необходим для двух важных функций:
- Служит точкой отсчета нулевого напряжения.
- Завершает цепь, обеспечивая обратный путь для тока, подаваемого токоведущим проводом.
Если к электрическому устройству подключен только токоведущий провод, он не активируется, потому что ток не может циркулировать независимо от приложенного напряжения. Это похоже на то, как гидроэлектрической турбине требуется выход для движения: если выпуск турбины заблокирован, вода не может течь и турбина не может вращаться.
Когда установка использует трехфазное питание , могут быть случаи, когда нейтральный проводник не требуется.
- Трехфазная система с линейным напряжением 120 В обеспечивает 208 В между фазами, и вы можете подключить нагрузку 208 В между двумя фазами без использования нейтрального провода. Оба токоведущих проводника несут напряжение, но ток может течь, потому что они имеют различных напряжений.
- Трехфазные нагрузки, такие как электродвигатели, часто рассчитаны на работу с тремя токоведущими проводниками и без нейтрального проводника.Здесь действует тот же принцип: между токоведущими проводниками может протекать ток при разном напряжении.
Даже если некоторые нагрузки не используют нейтральный провод в трехфазной установке, это необходимо для однофазных нагрузок, которые используют только одно из линейных напряжений. Теоретически, когда к трем фазам подключены одинаковые нагрузки, их токи нейтрализуются, и нейтральный проводник проводит нулевой ток. Однако это невозможно в реальных установках, и нейтральный проводник несет дисбаланс тока между тремя фазами.
Роль заземляющего проводника в электрических цепях
Заземляющий провод имеет нулевое напряжение, как и нейтральный проводник, но выполняет другую функцию. Как следует из названия, этот проводник обеспечивает заземленное соединение для всех приборов и оборудования.
- В нормальных условиях весь ток возвращается через нейтральный проводник, а заземляющий провод не имеет тока.
- Когда происходит короткое замыкание в линии, заземляющий провод обеспечивает обратный путь для тока замыкания.Устройства электрической защиты могут обнаружить это состояние, и они немедленно отключают цепь от источника питания.
Без заземления приборы и оборудование будут находиться под напряжением, если к ним случайно прикоснется токоведущий провод. Неисправность не отключается, поскольку защитные устройства могут среагировать только при наличии тока короткого замыкания в заземляющем проводе. В этом случае любой, кто прикоснется к поверхности под напряжением, получит удар электрическим током.
Поскольку замыкание на землю может повлиять на любую цепь, заземляющий провод необходим даже при отсутствии нейтрального провода.Например, если в двигателе используются три токоведущих провода и нет нейтрали, заземление все равно требуется, потому что любой из токоведущих проводов может вызвать неисправность.
Правильный выбор размеров нейтрального и заземляющего проводов
Провода под напряжением подбираются с учетом ожидаемого тока, и то же самое относится к нейтральным проводам в однофазных цепях (они пропускают тот же ток, что и провод под напряжением). Однако для трехфазных цепей применяются другие правила: обычно используется тот же размер провода, что и для фазных проводов, но в некоторых случаях требуется больший размер провода для нейтрального проводника.
- Заземляющие проводники для параллельных цепей подбираются в зависимости от мощности устройства защиты от сверхтоков с использованием таблиц, приведенных в NEC.
- С другой стороны, размеры заземляющих проводов для главного служебного входа рассчитываются в зависимости от мощности служебных проводников. NEC предоставляет таблицы для обоих случаев.
Работая с квалифицированными инженерами-электриками с самого начала проекта, вы можете быть уверены, что все компоненты указаны в соответствии с NEC и местными нормами.Это не только обеспечивает безопасность, но и быстрое согласование проекта с местными властями. Инженеры-электрики также могут предложить меры по повышению энергоэффективности, чтобы сэкономить на счетах за электроэнергию.
Фаза переменного тока | Базовая теория переменного тока
Все начинает усложняться, когда нам нужно связать два или более переменного напряжения или тока, которые не совпадают друг с другом. Под «несоответствием» я подразумеваю, что две формы сигнала не синхронизированы: их пики и нулевые точки не совпадают в одни и те же моменты времени.График на рисунке ниже иллюстрирует это.
Сигналы вне фазы.
Две волны, показанные выше (A и B), имеют одинаковую амплитуду и частоту, но они не совпадают друг с другом. Технически это называется фазовым сдвигом . Ранее мы видели, как можно построить «синусоидальную волну», вычислив тригонометрическую синусоидальную функцию для углов от 0 до 360 градусов, то есть полного круга.
Начальной точкой синусоидальной волны была нулевая амплитуда при нулевом градусе, прогрессирующая до полной положительной амплитуды при 90 градусах, нуля при 180 градусах, полной отрицательной при 270 градусах и возврата к начальной точке нуля при 360 градусах.
Мы можем использовать эту угловую шкалу вдоль горизонтальной оси нашего графика формы волны, чтобы выразить, насколько далеко одна волна не совпадает с другой: Рисунок ниже
Волна A опережает волну B на 45 °
Сдвиг между этими двумя формами волны составляет около 45 градусов, причем волна «A» опережает волну «B». Выборка различных фазовых сдвигов представлена на следующих графиках, чтобы лучше проиллюстрировать эту концепцию: Рисунок ниже
Примеры фазовых сдвигов.
Поскольку формы сигналов в приведенных выше примерах имеют одинаковую частоту, они будут отклоняться от шага на одинаковую угловую величину в каждый момент времени. По этой причине мы можем выразить фазовый сдвиг для двух или более сигналов одной и той же частоты как постоянную величину для всей волны, а не просто выражение сдвига между любыми двумя конкретными точками вдоль волн.
То есть можно с уверенностью сказать что-то вроде: «Напряжение« A »сдвинуто по фазе на 45 градусов с напряжением« B ».Какая бы форма волны ни была впереди в своем развитии, говорят, что опережают , а вторая — отстает от .
Фазовый сдвиг, как и напряжение, всегда является измерением относительно двух вещей. На самом деле не существует такой вещи, как сигнал с абсолютным измерением фазы и , потому что не существует известного универсального эталона для фазы.
Обычно при анализе цепей переменного тока форма волны напряжения источника питания используется в качестве эталона для фазы, это напряжение указано как «xxx вольт при 0 градусах.”Любое другое переменное напряжение или ток в этой цепи будет иметь фазовый сдвиг, выраженный в терминах относительно этого напряжения источника.
Это то, что делает расчеты цепей переменного тока более сложными, чем вычисления постоянного тока. При применении закона Ома и закона Кирхгофа величины переменного напряжения и тока должны отражать фазовый сдвиг, а также амплитуду. Математические операции сложения, вычитания, умножения и деления должны оперировать этими величинами фазового сдвига, а также амплитуды.
К счастью, существует математическая система величин, называемая комплексными числами , идеально подходящая для этой задачи представления амплитуды и фазы.
Поскольку комплексные числа так важны для понимания цепей переменного тока, следующая глава будет посвящена только этому предмету.
ОБЗОР:
- Фазовый сдвиг — это когда две или более формы сигналов не совпадают друг с другом.
- Величина фазового сдвига между двумя волнами может быть выражена в градусах, как определено в градусах на горизонтальной оси графика формы волны, используемой при построении тригонометрической синусоидальной функции.
- Сигнал , опережающий сигнал , определяется как один сигнал, который опережает другие в своем развитии. Сигнал , отстающий от , — это сигнал, который отстает от другого. Пример:
- При расчетах для анализа цепей переменного тока необходимо учитывать как амплитуду, так и фазовый сдвиг сигналов напряжения и тока, чтобы быть полностью точными. Это требует использования математической системы под названием комплексных чисел .
СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:
.