Количество керамзита на 1 квадратный метр: Ничего не найдено для d0 ba d0 b5 d1 80 d0 b0 d0 bc d0 b7 d0 b8 d1 82 d1 80 d0 b0 d1 81 d1 85 d0 be d0 b4 d0 bd d0 b0 1 d0 bc2 d0 ba d0 b0 d0 bb d1 8c d0 ba d1 83 d0 bb d1 8f d1 82 d0 be d1 80

Содержание

Количество керамзита на 1 квадратный метр. Расчет керамзита на стяжку пола

[REQ_ERR: SSL] [KTrafficClient] Something is wrong. Enable debug mode to see the reason.

Для приобретения в строительных магазинах доступны два вида мешков по 25 кг и 50 кг.

Как рассчитать расход керамзита для стяжки пола на 1 м2?

Для нашего примера, выходит, что на данное помещение в 20 м2 для сухой стяжки в 15 см, потребуется кг или 24 мешка керамзита, весом 50 кг. На практике, это значение может отличаться в большую сторону, так как поверхность имеет перепады, выбоины и углубления.

При устройстве стяжки самым экономичным и экологичным материалом считается керамзит. Его получают из вспененной глины путем обжига в специальных печах, поэтому керамзит — самый что ни на есть экологичный стройматериал.

В процессе подготовки раствора, разрешается корректировать пропорции исходя из консистенции. При использовании сухой смеси с различной величиной зерна, пропорции могут отличаться, так как наполнитель будет иметь более высокую плотность.

В строительстве применяются самые разные материалы, но одним из наиболее востребованных является керамзит. Наибольшее количество керамзита используется для производства следующих видов работ:. Для выполнения каждой из этих работ требуется разное количество керамзита, определяемое с помощью соответствующих формул. Но на практике чаще всего используется онлайновый калькулятор керамзита. С его помощью не нужно выполнять сложные вычисления.

Для того, чтобы правильно сделать стяжку пола с керамзитом, потребуется провести комплекс подготовительных действий, которые будут включать в себя следующее — демонтаж старых конструкций, уборка и очистка поверхности, расчет толщины слоя и общего количества направляющих.

Необходимо провести разбор старой конструкции пола и напольного покрытия, убрать все ненужные элементы и сопутствующий строительный мусор. Далее произвести визуальную оценку технического состояния поверхности, выяснить наличие и степень повреждения основания, выполнить работы по их устранению.

Особенности и преимущества данного метода

Для незначительных повреждений в виде выбоин, сколов и трещин, используют обычную цементно-песчаную смесь, которую наносят на основание после его грунтовки. При сильных сколах и глубоких трещинах, выполняют расшивку повреждения, грунтовку в несколько слоев и заделку строительными смесями.

Перед укладкой полиэтиленовой пленки проклейки ленты, поверхность очищается от грязи, а повреждения затираются при помощи цементного раствора. Расчет и разметка толщины выравнивающего слоя, начинается с определения ее основных функций.

Общие сведения по результатам расчетов

Для утепления и звукоизоляции пола рекомендуется использовать не менее 15 см выравнивающего слоя. При простом выравнивании и корректировки поверхности, будет достаточно см. Разметка производится с использованием карандаша, рулетки и уровня.

Для этого, от поверхности основания отступают вверх 1 м и ставят отметку на плоскости стены. По метке, с соблюдением уровня, прочерчивают линию параллельную поверхности пола.

После, от прочерченной линии выполняют измерение расстояний до плоскости основания.

Находят минимальное значение, от него откладывают см вверх и отбивают линию по всей площади помещения. В процессе измерений, следует учитывать, что минимальная толщина в самом тонком месте, не должны быть менее 5 см. В процессе вычислений, следует понимать, что длина правила ДП уменьшается на см, так как при выравнивании оно должно перекрывать соседний ряд.

Расстояние между стеной и крайней направляющей Р2 должно быть равно см. В ходе вычислений по данным формулам, мы получаем количество направляющих не включая крайние.

Подготовительные работы — проклейка кромочной ленты и обустройство гидроизоляции. Стяжка пола с керамзитом предусматривает укладку гидроизоляционного слоя и проклейку расширительно шва.

Подбор материала и размер применяемых фракций

Для гидроизоляции могут быть использованы рулонные материалы, жидкая гидроизоляция на основе битумной мастики или полиэтиленовая пленка. Для гостиных, спален и помещений с незначительной степенью воздействия влаги будет достаточно укладки полиэтиленовой пленки плотности мкм. Пленка укладывается с напуском на стены, места стыковки проклеиваются строительным скотчем.

В нижней части стены на высоту см по периметру помещения, проклеивается демпферная лента. Такой подход позволит исключить впитывание влаги в основание пола, предотвратит возможные повреждения стяжки во время высыхания и снизит проникновения внешних шумов через стены, и прилегающие перекрытия.

Расход керамзита необходимо узнать перед закупкой материала. Это исключит чрезмерные финансовые затраты и оптимизирует смету.

Последовательность действий для стяжки пола с керамзитом при выполнении своими руками, будет состоять из следующих этапов:. Существует второй способ обустройства мокрой стяжки с керамзитом.

Для этого наполнитель засыпают на гидроизоляционный слой, распределяют по поверхности и слегка утрамбовывают. Возьмем, к примеру, среднюю толщину в 10 см, а площадь комнаты в 18 кв.

Константой в этом уравнении будет вес мешка керамзита, необходимого для стяжки 0,05 куб.

Получается, что вес 1 куб. Для дальнейших расчетов используем формулы:. Не тратьте время, оставьте контакты и мы все сделаем за Вас! Главная Керамзит Как рассчитать количество керамзита для стяжки пола Как рассчитать расход керамзита для стяжки пола на 1 м2?

Как рассчитать количество керамзита при сухой стяжке?

Как рассчитать количество керамзита при сухой стяжке? Очень часто строительные компании, да и обычные люди, используют именно сухую стяжку пола, так как она имеет ряд неоспоримых преимуществ: Простота монтажа; Отсутствие мусора и строительной пыли; Дальнейшее обустройство пола можно продолжать сразу после монтажа.

Как рассчитать количество керамзита при мокрой стяжке? В нашем примере это получается 18 кв.

Как сделать стяжку для пола из керамзита своими руками? Фото, этапы

Опубликовано: 8 марта 2021

Для чего же применяют стяжку пола? Стяжка пола производится для выравнивания и придания жёсткости его поверхности. Без правильно сделанной стяжки напольное покрытие будет неровным, особенно тяжело на неровную поверхность будет тяжело уложить плитку в ванной или санузле.

Также в случае необходимости с её помощью можно скрыть проложенные в полу трубы или электропроводку. С помощью стяжки можно утеплить пол, повысить его шумоизоляционные, тепло- и гидроизоляционные свойства. Для стяжки пола применяют цементно-песчаный раствор. Наиболее недорогим наполнителем данного раствора, повышающим его изоляционные характеристики, является керамзит.

Свойства керамзита

Керамзит – широко известный прочный, лёгкий и пористый строительный материал. Благодаря своей лёгкости и отличным теплоизоляционным свойствам уже много лет используется в качестве утеплителя при засыпке пола. Также керамзит пожаробезопасен, не боится воды, не подвержен воздействию микроорганизмов.

Изготавливается путём обжига легкоплавкой вспучивающейся глины при температуре 1100-1200 градусов Цельсия, благодаря отсутствию синтетики является экологически чистым строительным материалом.

Стяжка с керамзитом отлично подходит для современного домостроения. Несмотря на то, что по ряду эксплуатационных параметров керамзит проигрывает современным утеплителям, благодаря его доступности, дешевизне и удобству в применении до сих пор многие предпочитают использовать керамзит в строительстве.

Какие фракции керамзита используются в стяжке?

При изготовлении керамзита путём обжига глины гранулы получаются разных размеров, называемых фракциями. Их подразделяют на гравий с округлыми гранулами размером 5-10, 10-20 и 20-40 миллиметров, щебень, получаемый путём дробления вспененной массы керамзита, имеющий угловатую форму и размеры от 5 до 40 миллиметров, и песок, также получаемый путём дробления более крупных фракций керамзита и имеющим размер до 5 миллиметров.

Керамзитовый гравий и щебень крупных фракций в стяжке используют в том случае, если в подпольном пространстве вам необходимо скрыть различного вида коммуникации. Их наличие подразумевает стяжку высотой 20-30 сантиметров. В такую стяжку добавляют керамзитовый песок, так как крупный керамзит не может заполнить все углы и полости, в то время как песок проникает в труднодоступные места. Как самостоятельный теплоизоляционный материал керамзитовый песок чаще применяют в качестве засыпки небольших поврежденных поверхностей или в тонкой стяжке высотой до 10 сантиметров.

Виды стяжек с керамзитом

В стяжке для выравнивания и теплоизоляции керамзит может использоваться как в виде наполнителя в цементно-песчаной заливке, так и в сыпучем виде. В зависимости от этого и различают виды стяжек с керамзитом – сухая, полусухая и мокрая.

Сухая стяжка с керамзитом

Керамзит для сухой стяжки пола используется всех трёх фракций. К керамзитовому щебню или гравию добавляют керамзитовый песок, более мелкие гранулы которого заполнят все пустоты между гранулами более крупных фракций. Для защиты слоя керамзита от влаги проводят гидроизоляцию строительного основания.

В зависимости от материала основания и типа помещения может использоваться рубероид, плотная плёнка либо обмазочная гидроизоляция. Сам керамзит воды не боится, но присутствие влаги в пустотах может привести к распространению грибковых микроорганизмов. Сухая стяжка бывает двух видов – бескаркасная и каркасная.

В первом случае на гидроизоляцию засыпается керамзит, который необходимо уплотнить и как следует выровнять.

Во втором случае на гидроизоляционный слой укладываются деревянные лаги, которые делят основание на секции. Между ними засыпается слой керамзита. Керамзит утрамбовывается, при этом нужно учесть, чтобы он не лежал выше верхнего уровня каркаса. В обоих случаях поверх слоя керамзита укладывают ГВЛ (гипсоволокнистый лист). Стыки листов промазывают клеем и совмещают, сами листы дополнительно фиксируют с помощью саморезов.

Сухую стяжку с керамзитом несложно сделать своими руками за довольно короткое время. Не нужно ждать отвердевания цементно-песчаного раствора. Сразу после закрепления гипсоволокнистых листов можно наносить напольное покрытие. Недостатком такой стяжки является низкая стойкость к механическим воздействиям, поэтому рекомендуется укладывать ГВЛ в два слоя.

Полусухая стяжка с керамзитом

При этом виде стяжки также сначала проводят гидроизоляцию строительного основания. На гидроизоляционный слой укладывают и фиксируют направляющие. Поверхность засыпается керамзитом, утрамбовывается и выравнивается.

Далее всю поверхность проливаем цементным молочком, предназначенным для фиксации керамзита и воспрепятствования попадания его в верхний финишный слой тонкой стяжки. Цементное молочко делаем путём смешивания небольшого количества цемента с водой, без добавления песка.

Поверх слоя керамзита можно установить армирующую решётку, это повысит прочности стяжки. После фиксации поверх керамзита заливается цементно-песчаный раствор.

Мокрая стяжка с керамзитом

В мокрой стяжке кроме цемента и песка в качестве наполнителя используется керамзит. Для такого вида стяжки можно использовать керамзит крупных фракций без добавления керамзитового песка, так как функцию заполнения пустот возьмёт на себя песок обычный.

Проводим гидроизоляцию строительного основания. Поверх слоя гидроизоляции укладываем армирующую сетку. Для приготовления раствора керамзит с помощью промышленного миксера смешивают с раствором из песка и бетона до однородной консистенции. Сам керамзит предварительно пропитывается водой.

Выставляем рейки-маячки на необходимую высоту заливки пола. Далее производим заливку пола керамзитом с пескобетоном, равномерно распределяем раствор по армирующей сетке, оставив несколько сантиметров для заливки чистовой стяжки. Все неровности выравниваются с помощью правила.

Крупнофракционный керамзит по цене дешевле, чем мелкофракционный, но стоит учесть, что слой с крупным керамзитовым гравием или щебнем подходит для черновой стяжки, чтобы подготовить основание под укладку плитки или ламината, его придётся выравнивать цементным раствором чистовой стяжки.

Избежать лишних затрат цементного раствора и, соответственно, лишнего веса стяжки позволит трамбовка и выравнивание поверхности керамзитобетона. Не дожидаясь отвердевания раствора керамзитобетона, заливаем его цементным раствором чистовой стяжки. Его наносят до нулевой отметки и выравнивают правилом. Извлекаем рейки-маяки, полости от них заливаем цементом.

Далее стяжку оставляют сохнуть. Как мы видим, заливка керамзита своими руками не такое уж и сложное дело. Смесь керамзита с пескобетоном чаще применяется при ремонте квартир, так как за счёт небольшого веса керамзита позволяет сильно облегчить нагрузку на перекрытия. Также такой вид стяжки наиболее стоек к механическим видам воздействия.

Сколько керамзита нужно для стяжки?

Для приготовления раствора для мокрой стяжки соблюдают те же пропорции, что и при приготовлении классического раствора из цемента и песчано-гравийной смеси. Соотношение цемента, песка и керамзита 1:3:4.

Расход керамзита на квадратный метр

Для расчёта потребности керамзита для сухой стяжки умножаем площадь поверхности на высоту слоя керамзита и получаем приблизительную потребность в кубических метрах.

Один квадратный метр керамзита с условной высотой поверхности 1 сантиметр соответствует 0,01 кубического метра. Соответственно, для комнаты площадью 20 квадратных метров с высотой слоя керамзита 10 сантиметров нам потребуется 20х0,1=2 кубических метра керамзита.

При плотности керамзита в среднем 400 килограмм на кубический метр получаем расход в 800 килограмм керамзита средней и мелкой фракции, что соответствует 50 стандартным мешкам объёмом в 40 литров. Соответственно, на 1 квадратный метр слоя керамзита высотой 10 сантиметров у нас уйдёт 2,5 стандартных мешка или 40 килограмм керамзита.

Потребность керамзита для мокрой стяжки приблизительно равна потребности керамзита для сухой стяжки, потому как остальные составляющие раствора, а это цемент, песок и вода, составляют в нём больше массу, чем объём, и заполняют собой пустоты между гранулами керамзита.

Не забывайте, что данные расчёты приблизительны в связи с неидеальной рабочей поверхностью, а также немало зависят от фракции приобретаемого вами керамзита.

Стандартные 40-литровые мешки с крупной фракцией керамзита марки М250-М450 весят от 8 до 18 килограмм, такие же мешки с мелкой фракцией марок М500-М1200 весят от 18 до 48 килограмм. То есть при одинаковом занимаемом объёме вес может отличаться в 2-2,5 раза.

Оцените статью: Поделитесь с друзьями!

пескобетона, цемента, керамзита, сухой смеси

Практически ни один ремонт или строительство не обходятся без заливки стяжки. Это крайне ответственный этап в ремонте. При выполнении этой работы нужно не только тщательно придерживаться проверенных технологий, но и правильно выбрать и рассчитать количество необходимого материала. Предварительный расчет материалов для стяжки пола избавит вас как от лишних затрат, так и от неприятной нехватки материала в самый ответственный момент.

Специалисты отмечают, что основные ошибки при создании стяжки связаны с расчетом пропорций компонентов для приготовления раствора. А именно от этого момента зависит качество будущего покрытия. Рассмотрим, как правильно рассчитать необходимое количество ингредиентов и как сделать стяжку пола.

Растворы для стяжки

Перед домашним мастером, решившим залить стяжку своими руками, прежде всего, встает вопрос выбора раствора для стяжки. Растворы и смеси для заливки пола различаются своим составом, но каждый из них обязательно содержит гипс или цемент, которые являются связывающими ингредиентами. Наполнителем раствора для стяжки служит песок.

Для улучшения качества смеси и придания ей определенных свойств добавляют различные минеральные и полимерные добавки. Смеси разводят чистой водой и получают раствор нужной консистенции, который, как правило, имеет густоту сметаны.

В зависимости от состава смесь будет иметь определенные свойства:
  • Наиболее универсальными являются цементные составы. Их можно применять в любых помещениях. Полы, выполненные на основе таких смесей, не боятся влаги. Однако нужно учитывать, что при высыхании цементные растворы дают большую усадку, поэтому при работе с такими смесями нужно тщательно перемешивать раствор и хорошо его утрамбовывать. При невыполнении этих требований могут возникать трещины. Снизить возможность растрескивания стяжки поможет армирование поверхности с помощью арматурной сетки.
  • Гипсовые растворы (ангидридные) – это быстросохнущие, простые в приготовлении и укладке растворы. Эти растворы не дают усадки, поэтому могут быть уложены тонким слоем.

Следует учесть! Гипсовые растворы нельзя применять в помещениях с повышенной влажностью.

Цементные и гипсовые растворы можно приготовить самостоятельно или купить уже готовые сухие смеси. Несмотря на более высокую цену покупать такие смеси выгодно, так как, во-первых, они имеют сбалансированный состав, а во-вторых, производители для упрощения замеса и улучшения свойств раствора добавляют в них модифицированные добавки. Растворы, приготовленные из готовых смесей, быстрее затвердевают и дают меньшую усадку.

В готовых смесях производитель уже побеспокоился о правильном соотношении компонентов и полезных добавках

Приготовление раствора на основе цемента

Состав раствора для стяжки

Цементная стяжка пола готовится из следующих компонентов:

  • Цемент. Как правило, применяют марку 400.

    Обратите внимание! Во время хранения качество цемента резко снижается, поэтому необходимо проверять дату выпуска и использовать для стяжки пола только свежий цемент.

    Самый популярный цемент марки 400

  • Песок. Выбирают сухой кварцевый песок без примесей глины. Перед использованием песок просеивают для очистки от мусора и камней.
  • Пластификатор, который существенно улучшит свойства раствора.
  • Фибра позволяет увеличить прочность будущего покрытия. Она играет роль армирующего компонента.

Рекомендуемые пропорции

Расчет цемента на стяжку пола делают на основании марки используемого цемента и марки раствора, который хотят получить.

Марка цементаСоотношение цементапескаМарка раствора
6001:3М300
6001:4М200
5001:2М300
5001:3М200
4001:1М300
4001:3М150
3001:1М200
3001:3М100

Следует учесть! Для стяжки пола марка раствора не должна быть ниже М150. Наиболее популярной для этих целей является марка раствора М200.

Определить марку раствора очень просто, для этого марку цемента делят на количество добавляемого в смесь песка. Например, для приготовления раствора марки М150 вам понадобится 1 ведро цемента марки 400 и 3 ведра песка.

Правила приготовления цементного раствора

Если вы пользуетесь готовой сухой смесью, то следует придерживаться инструкции, написанной производителем на упаковке. При составлении смеси для стяжки из отдельных ингредиентов необходимо сначала отдельно, в разных емкостях смешать сухие и жидкие элементы.

Порядок действий будет такой:
  • Тщательно смешать в одной емкости песок, цемент и фибру.
  • Смешать с водой пластификатор. На мешок цемента весом 50 кг берут около 190 грамм пластификатора.
  • В емкость с жидкостью постепенно, при непрерывном помешивании добавлять сухую смесь. Вливать жидкость в смесь нельзя, так как в этом случае образуются трудно растираемые комки.

Для замешивания раствора лучше применять дрель с насадкой или строительный миксер. Использование инструментов не только ускорит работу, но и позволит получить раствор лучшего качества.

Для качественного замеса раствора используют строительній миксер или дрель с насадкой

Раствор готов к применению. Необходимо учесть, что чем более он вязкий, тем труднее с ним работать, но такой раствор, как правило, дает поверхность с минимальным количеством трещин.

Наш совет! Чтобы исключить появление трещин на поверхности стяжки, необходимо после окончания работы накрыть ее пленкой и ежедневно, до полного отвердевания, смачивать водой.

Расход смеси на стяжку пола

Подсчитать количество необходимых компонентов достаточно просто:

  • определяется, какой объем будет иметь готовое покрытие. Для вычисления этого значения необходимо площадь пола умножить на планируемую толщину стяжки. Например, площадь пола 40 м2 и предполагается сделать стяжку толщиной 5 см. Получаем, что для этого случая понадобится: 40*0.05=2 м3;
  • рассчитав необходимый объем стяжки, считают, сколько необходимо будет взять цемента и песка. Будем делать раствор марки М150. Из цемента марки 400 его делают в соотношении 1:3. То есть нам понадобится 5 м3 цемента и 1.5 м3 песка. Один куб цемента весит около 1300 кг, то есть нам понадобится приблизительно 650 кг цемента или 13 мешков по 50 кг.

Выполнив таким образом расчеты вы получите количество необходимых материалов.

Расход сухой стяжки

Технологию сухой стяжки, предложенную компанией Кнауф, применяют сравнительно недавно. Такая стяжка может быть выполнена в более сжатые сроки и с меньшими трудозатратами. Она беспыльная, дает полу дополнительную теплоизоляцию и проста в монтаже. Минус такой стяжки заключается в высокой стоимости расходных материалов. Кроме того, толщина такой стяжки по сравнению с цементной намного больше и значит ее нельзя применять в помещениях с невысокими потолками.

Порядок действия при выполнении такой стяжки следующий:

  • На основание пола укладывается слой гидроизоляции. Для бетонного пола применяют полиэтиленовую пленку, а на деревянных полах рубероид.
  • На слой гидроизоляции засыпают керамзитобетон.
  • Далее на пол укладываются специальные гипсоволокнистые листы Кнауф Суперпол, которые крепятся в пазах и фиксируются саморезами.
  • Сверху наносят тонкий выравнивающий слой.

«Пирог» сухой стяжки

Иногда допускают замену гипсоволокнистых листов ДСП, асбоцементными плитами или толстой фанерой. Керамзит можно заменить шлаком или песком.

Рассчитаем расход материалов для стяжки пола в стандартной комнате площадью 17 м2  (3х5.65 м).

Гидроизоляция

Для гидроизоляции берут как листовые материалы: полиэтиленовую пленку, специальный мембранный материал гидробарьер, рубероид, так и применяют специальные мастики на основе жидкого стекла или битума. Сделаем расчет для гидроизоляции из обычной полиэтиленовой пленки. Этот материал продается сложенный рукавами, в рулонах по 1,5 м. Пленку нужно брать с запасом около 15%, так как необходимо будет сделать припуски.

Мы за основу возьмем гидроизоляцию именно листовым материалом — полиэтиленовой пленкой. Пленка рассчитывается на площадь помещения с запасом на припуски, то есть больше на 15%. Если положить пленку вдоль, то на припуски ее ширины не хватит, поэтому будем укладывать пленку поперек комнаты. В итоге необходимо пленки 3,20 * 2 = 6,4 м. Лучше округлить в большую сторону и взять 6.5 полиэтиленовой пленки.

Гипсоволокнистые листы

При расчете тоже необходимо учитывать небольшой запас на раскрой. С учетом запаса около 5% получаем площадь пола – 18.2 м. Площадь одного ГВЛ: 1,2*0,6=0,72 м2. Делим площадь пола на площадь одного элементы и получаем необходимое количество листов: 18,2 / 0,72 = 25,3 шт. Округляем в большую сторону до целого листа и получаем, что нам нужно приобрести 26 листов.

Укладка гипсоволокнистых листов

Если учитывать коэффициент инженерной погрешности, то получим, что нужен еще 1 запасной лист, то есть нам понадобится 27 листов ГВЛ. Если гипсоволокнистые листы заменяются другим материалом, то расчеты ведутся аналогично.

Кромочная лента и клей

Длина необходимой кромочной ленты равна периметру комнаты за минусом ширины дверных проемов. Таким образом, учитывая запас нам необходимо купить 17 метров кромочной ленты. Ленту для этих целей лучше брать толщиной 8-12 мм.

При расчете количества клея учитывают, что его необходимо 50 граммов на каждый квадратный метр ГВЛ. Таким образом, для нашей комнаты будет достаточно одной килограммовой упаковки. Если клей приобретается в тюбиках, то их количество рассчитывается в зависимости от веса 1 упаковки.

Саморезы для крепления

На малоформатный лист понадобится минимум 6 штук саморезов. С учетом стыковки увеличим это количество до 10 шт. на один лист. В итоге получаем, что нам понадобится около 270-300 саморезов.

Согласно технологии сухой стяжки длина саморезов должна быть 19 мм. В отдельных случаях могут применяться саморезы длиной 25 или 30 мм.

Керамзит

По проекту на каждый квадратный метр площади пола толщиной 1 см расходуется 0,01 кубометра керамзита. Учитывая, что комната имеет площадь 17 м2, а высота засыпки составит минимум 3-4 см в высоту получаем, что потребуется 0,51-0,68 м2. Это составляет около 500-700 л. С учетом разбега берем большую цифру и получаем, что нужно приобрести 0,7 м2 или 14 мешкам по 50 кг.

Если комната имеет уклон, то расход керамзита увеличится, так как встанет попутная задача выравнивания поверхности комнаты. Кроме того, вам потребуются еще профили для маяков и различный инструмент для выполнения сухой стяжки.

Выполнив все рекомендации специалистов вы получите ровную крепкую основу пола

На конкретных примерах мы показали вам, как посчитать количество необходимых материалов как для классической цементной, так и для сухой стяжки. Правильно рассчитав материалы и выполнив все операции с учетом рекомендаций специалистов, вы получите ровное монолитное покрытие, которое прослужит долгие годы.

 

Сколько весит керамзит?

Одним из самых востребованных материалов является керамзит, который прекрасно подходит для теплоизоляционных работ. Но стоит иметь четкое представление о том, что керамзит бывает разной марки, что существенно влияет на вес.

Одним из важнейших показателей для керамзита является его насыпная плотность, которая влияет на удельный вес керамзита на один кубический метр. Существует ГОСТ за номером 9757-90, в нем определены все стандарты на различные марки, которых насчитывается около десятка. Самой меньшей насыпной плотностью обладает марка 250 кг/м3 (вес 1м3 керамзита составляет 250 кг).

Марка керамзитаВес 1 куб. м. керамзита
М250 200-250 кг
М450 400-450 кг

Самым распространенным считается марка среднего показателя в 450 кг/м3 (вес 1 м3 керамзита составляет уже 450 кг). И самым плотным считается марка М1000 (вес куба керамзита равняется одной тонне). Наивысшее значение марки не означает, что этот материал самый лучший. Повышенная насыпная плотность говорит только о том, что данный керамзит имеет более плотную структуру, а значит и повышенную прочность, но при этом теряются его теплоизоляционные свойства. Самый меньший по плотности керамзит обладает высокой пористостью, а значит теплоизоляция у такого материала лучше всех. Наша компания как раз и занимается продажей суперлегкого керамзита. Ссылку на прайс вы можете найти ниже.

 

Поэтому, при покупке керамзита стоит уделить внимание марке. Если возникнут проблемы с маркировкой, то стоит помнить, что вес 1 куба керамзита совпадает с его маркировкой.

 

Посмотрите, как производится керамзит:

 

Чтобы купить керамзит, звоните: +7 (499) 638-45-78

Стяжка пола с керамзитом — расход керамзита на стяжку пола

Стяжка пола с керамзитом имеет свои особенности, требующие точного соблюдения технологии и применения материалов. Сохранение тепла в помещении во многом зависит как от правильности подобранных материалов, так и от технологии их применения.

В отличие от стандартных видов стяжек, с применением обычного бетона, утепление пола керамзитом позволит существенно сэкономить как на материалах (ведь керамзит один из самых доступных видов природных утеплителей), так и получить пол, не уступающий по прочности и теплопроводности другим аналогичным конструкциям.

Стяжка пола с керамзитом в отличие от стандартной бетонной стяжки обладает более низким коэффициентом теплопроводности за счет использования в качестве наполнителя бетонного раствора обычным керамзитом.

Керамзит позволяет при одинаковом количестве бетона получить стяжку на 15-25% толще по сравнению с обычным гравийным наполнителем.

Кроме того, утепление пола керамзитом при применении армирования позволяет получить стяжку с возможностью выдерживать нагрузку в 450-500 кг на 1 м площади.

Стяжка пола с керамзитом

Работы по устройству стяжки пола с керамзитом позволяют работать как на подготовленной поверхности, так и без подготовки. Классическим вариантом утепления пола керамзитом выступает укладка на поверхность плиты перекрытия или на гравийную подушку слоя керамзита толщиной 25-30 см.

Учитывая то, что под керамзит необходимо в обязательном порядке положить слой гидроизоляции, такие работы рекомендуется проводить с наличием всех необходимых инструментов. Керамзит разравнивается по всей площади без прогибов и поднятий. В процессе работы по утеплению пола керамзитом слой керамзита уплотняется с помощью катка или трамбовки.

Для укрепления поверхности слоя керамзита иногда рекомендуют слегка притрусить поверхность цементом и потом смочить ее водой, но при устройстве стяжки пола с керамзитом и слоем армирования такая операция смысла не имеет. Легче застелить площадь полимерной армирующей сеткой, поверх которой приступить к установке маяков и металлического каркаса.

Для устройства стяжки пола с керамзитом, когда стяжка планируется в 5-7 см, ячейки сетки рекомендуется брать 100*100 мм, а при 10 см от арматуры можно отказаться вообще. Готовый раствор разравнивается по всей площади помещения и выравнивается с помощью правила.

Расход керамзита на стяжку пола

Расход керамзита для стяжки пола следующий. При толщине слоя керамзита 1 см требуется 0,01 м3 на квадратный метр площади. При закупке в магазинах или на рынка керамзит в мешках считается литрами. Тогда считаем так: 1 см керамзита в стяжке = 10 литров на м2.

Чтобы точно узнать, сколько необходима керамзита на стяжку пола, необходимо узнать, какой толщины будет теплоизоляционный слой. В помещениях на первом этаже или над неотапливаемым помещением для обеспечения достаточной теплоизоляции толщина слоя в стяжке должна быть не менее 10 см. В жилых помещениях для достаточной теплоизоляции обычно делают толщину керамзита не менее 3-4 см.

Таким образом расход керамзита на устройство стяжки в квартире составит 3*0,01= 0,03 при толщине слой 3см  и 4*0,01= 0,04 при толщине 4см или 30-40 литров на м2.

Расчет керамзита для стяжки на 1м2 — пример

Предположим, необходимо сделать стяжку, толщина керамзитового слоя которой составляет 10 см, в комнате площадью 20 м2 на 1 — м этаже. Значит:

20 м2 * 10* 0,01 м3 = 2 м3 — объем керамзита в кубах
20 м2 * 100 л= 2000 — объем керамзита в литрах или 16 мешков объемом 50 литров.

На самом деле расход керамзита при устройстве стяжки получается немного больше. причем чем больше площадь под просыпку, тем больше отклонений в расчетах. Это связано с тем, что поверхность помещения может иметь неровность и уклоны, а также при установке маяков, потому что профиль поднимается выше, тем самым увеличивая расход керамзита.

Поэтому к расчету необходимо прибавлять дополнительный объем на ваше усмотрение, все зависит от ситуации. Например в примере выше я бы купил не 2м3 а 2.2м3

Расчет керамзита для стяжки пола калькулятор

Учитывая все расходы на устройство утепления пола по такой технологии, нетрудно убедиться что устройство стяжки пола с керамзитом – это самый эффективный и доступный способ сделать теплую стяжку.

Читайте также

Сухая стяжка пола цена за м2 работ в Москва от бригады Метр Ремонта

Для ускорения процесса устройства стяжки существует много современных методик – использование специальных механизмов, засыпка полусухой смеси или применение специальных панелей Кнауф. Последний вариант имеет много преимуществ и может применяться как в частных домах, так и в квартирах.

Сухая стяжка Knauf создает идеально ровное основание, которое имеет относительно большую прочность на сжатие. Процесс укладки плит и других элементов черного пола занимает минимум времени, что очень ценится владельцами. При этом создается поверхность, которая сразу готовая к эксплуатации.

Не нужно ждать несколько суток, пока схватится и наберет достаточную прочность цементно-песчаный раствор.

Технология выполнения работ

Перед монтажом сухой стяжки снимается старое напольное покрытие, которое могло потерять свои эксплуатационные характеристики. Если на основании присутствуют какие-то дефекты, необходимо их устранить. Все щели и выбоины заделываются цементно-песчаным раствором.

На подготовительном этапе работ выставляются отметки по периметру помещения, которые будут соответствовать верху чернового пола. После завершения этих операций можно перейти к следующим работам:

  1. На поверхность укладывают полиэтиленовую пленку, которая исполняет роль парогидроизоляции.
  2. Делается засыпка из керамзита с размером частиц от 1 до 5 мм. Материал равномерно распределяется по основанию с использованием правила. Высота засыпочного слоя должна быть меньше от ориентированной толщины стяжки. Для облегчения данного процесса на основание можно устанавливать направляющие маяки из деревянных реек или металлического профиля.
  3. Сама поверхность чернового пола формируется из специальных гипсокартонных листов Кнауф. Для их соединения используется специальная фальцевая кромка. Место ее захода на соседний лист проклеивается специальным клеем и привинчивается шурупами.
  4. Если чистовое покрытие эксплуатируется в помещении с повышенной влажностью, на его поверхность укладывается дополнительный слой гидроизоляции, после чего переходят к монтажу плитки.
  5. При укладке плитки или других напольных покрытий в обычных помещениях никаких дополнительных операций не нужно выполнять.

Сколько будет стоять монтаж сухой стяжки

Наша компания предлагает самые низкие цены в Москве на установку сухой стяжки Кнауф любого типа в помещениях с разными условиями эксплуатации. Стоимость монтажа одного квадратного метра чернового пола определяется индивидуально для каждого заказчика на основании перечня выполняемых работ. Для ознакомления с расценками компании можно просмотреть прайс-лист.

Наименование работЕд. изм/Цена
Монтаж сухой стяжки от 30 м2м2350
Монтаж сухой стяжки менее 30 м2м2400
Монтаж дополнительного слоя ГВЛВм2150
Сухая засыпка Kerafloor (40 л.)мешок210
Сухая засыпка Компевит (40 л.)мешок240
Сухая засыпка Кнауф (40 л.)мешок260
Сухая засыпка РДС (50 л.)мешок260
Сухая засыпка для пола г. Рязань (40 л.)мешок170
Элемент пола Кнауфшт.295
Лист ГВЛВ Кнауф (1200×2500)шт.480
Кромочная лента (20 метров)шт.350
Саморезы Кнауф (1 кг.)шт.350
Клей ПВА (2.5 л.)шт.200
Пена монтажнаяшт.250

Варианты стяжек под ключ

Недостатки сухой стяжки пола

Решая, какой метод выравнивания пола подойдет для Вашего дома или квартиры, хочется знать не только плюсы, но и минусы каждого способа (мокрая, сухая и полусухая стяжка). Далее речь пойдет о недостатках сухой стяжки пола и о причинах их появления.

    Боязнь воды

  • Главный минус сухого способа выравнивания пола – боязнь большого количества воды. Не смотря на наличие гидроизоляционного слоя, может возникнуть проблема набухания керамзита из-за просочившейся внутрь воды. Поэтому такой пол можно монтировать только в помещениях с малым уровнем влажности, где очень мала вероятность затопления.
  • Подходит не любая погода

  • Для монтажа пола лучше выбирать сухую теплую погоду.
  • Финишное покрытие

  • Также на такую стяжку нельзя укладывать плитку, так как для приготовления клея требуется большое количество воды.
  • Возникновение неприятных звуков

  • Люди, у которых дома пол выравнивался методом сухой стяжки, говорят о том, что через время пол начинает местами «хрустеть» и местами «постукивать». Эксперты, анализируя эти недостатки, говорят о том, что хруст появляется по причине того, что была выбрана слишком крупная неоднородная фракция засыпки, что приводит к недостаточно плотному засыпанию, а стук может появиться, если в процессе монтажа засыпка была плохо утрамбована.

Вывод

Учитывая эти минусы, можно прийти к следующим выводам:

    Только для жилых помещений

  • Сухая стяжка пола подходит только для жилых помещений. Ее не устанавливают в санузлах, в ванной комнате или на кухне.
  • Ограничение перепада по уровню

  • Используйте этот метод для выравнивания полов в помещениях, где перепады по уровню не больше 5 – 7 см. Слишком большой слой засыпки приводит к упомянутым выше проблемам в процессе эксплуатации.
  • Дорогие материалы

  • При выборе засыпки очень важно не экономить, а приобретать качественную керамзитную крошку однородной мелкой фракции.
  • Качественная укладка

  • Слой засыпки перед настилом листов из гипсоволокна должен, как следует трамбоваться, чтобы избежать усадки.
  • Качество листового материала

  • Листовой материал также должен быть достаточно качественным.
  • Беречь пол от влаги

  • В процессе эксплуатации пол необходимо беречь от попадания на него большого количества влаги.

Легкий наполнитель из вспененной глины — обзор

7.4.4.1 Технические характеристики

При переработке алюминия образуется шлак и окалины. , оба обычно классифицируемые как опасные отходы, могут происходить через керамические изделия. Свойства побочного продукта алюминиевого шлака обсуждаются в главе 6.

Несмотря на его потенциально опасный характер, высокое содержание глинозема является привлекательным аспектом, способствующим его переработке. В основном изучаются две области повторного использования (Yoshimura et al., 2008): (i) огнеупоры и (ii) композиты (алюминиево-глиноземные композиты).

Легкие заполнители керамзита были произведены из природных пластичных отходов переработки глины и алюминиевого лома (ASRW), которые были получены в результате извлечения металлического алюминия из черного шлака с использованием обычного металлургического процесса (Bajare et al., 2012). ASRW содержит нитрид алюминия (AlN — в среднем 5 мас.%), Хлорид алюминия (AlCl 3 — в среднем 3 мас.%), Хлориды калия и натрия (всего 5 мас.%) И сульфит железа (FeSO 3 — на в среднем 1 мас.%).Его средний химический состав приведен в таблице 7.25, а элементный анализ — в таблице 7.26.

Таблица 7.25. Средний химический состав отходов переработки алюминиевого лома (мас.%) (Bajare et al., 2012)

LOI, 1000 ° C Al 2 O 3 SiO 2 CaO SO 3 TiO 2 Na 2 O K 2 O MgO Fe 2 O 3 Прочие
6.21 63,19 7,92 2,57 0,36 0,53 3,84 3,81 4,43 4,54 & gt; 2,6

Таблица 7.26. Элементный анализ отходов переработки алюминиевого лома (мас.%) (Bajare et al., 2012)

Al Si Ca Mg Fe Na K Cl S Cu Pb Zn
34.4 4,4 1,32 2,44 3,60 1,69 2,31 4,23 0,07 0,99 0,14 0,6

Разложение летучих элементов, присутствующих в нитриде, сульфит и хлориды будут выделять газы при сжигании, а отходы переработки алюминиевого лома могут действовать как порообразователь. Керамические заполнители были изготовлены из смесей углеродистой глины и ASRW в различных пропорциях (ASRW от 9 до 37.5 мас.%). Подготовленные агрегаты сушили 3 ч при 105 ° C, а затем прокаливали 5 мин при различных температурах от 1150 ° C до 1270 ° C. Скорость нагрева поддерживали постоянной (15 ° C / мин). Затем были оценены физические и микроструктурные свойства спеченных агрегатов.

Кажущаяся плотность агрегатов колебалась от 0,4 до 0,6 г / см 3 . Структура пор показана на рис. 7.7 и состоит из макропор со средним диаметром 1 мм и микропор (размер менее 0,2 мкм).

Фиг.7.7. Пористая структура агрегатов, полученных из смеси глины и отходов переработки молотого и алюминиевого лома (показаны мас.%) И обожженных при различных (заданных) температурах (Bajare et al., 2012).

Согласно Pereira et al. (2000a), солевой шлак, образующийся при плавке вторичного алюминия, можно использовать в огнеупорных кирпичах. Соблюдались типичные условия промышленной обработки. Добавление шлака улучшает физические и механические характеристики керамического материала из-за его флюсования.Допускаются более высокие уровни включения (около 10% масс.). Те же авторы протестировали включение солевого шлака, богатого алюминием, в огнеупоры бокситового типа (Pereira et al., 2000b). Сделан вывод о возможности включения промытых шлаков солей алюминия в бокситовые огнеупоры. В общем, физические свойства обожженного материала имеют тенденцию улучшаться с увеличением содержания шлака (например, более высокой прочности на изгиб). Этот эффект можно объяснить характеристиками флюсования шлака. С функциональной точки зрения допускаются значительные уровни включения (18 мас.%).

Процессы анодирования и порошкового покрытия поверхности требуют больших затрат воды не только для каждой последующей партии химикатов, но и для надлежащей промывки промежуточных деталей. Как прямое следствие, образуется огромное количество сточных вод, которые после надлежащей очистки приводят к чистой воде и большому количеству твердых отходов, называемых алюминиевым шламом (BREF, 2006; Magalhães et al., 2005).

Производство керамических блоков из глиняного кирпича может стать интересной альтернативой утилизации осадка на суше.Marques et al. (2012) стремились разработать термостойкий кирпич за счет переработки алюминиевого шлама в производстве кирпича. Они использовали производственный цикл кирпичного завода и провели полномасштабные испытания кирпичной кладки, произведя 10 тонн настоящего кирпича. В заключение, добавление анодирующего шлама улучшает тепловые характеристики кирпича на 26% без увеличения стоимости производства кирпича, что приводит к значительному повышению теплового комфорта зданий. Остальные физико-механические свойства (водопоглощение и прочность на сжатие) кирпича по-прежнему имеют приемлемые значения (Marques et al., 2012).

Цель Khezri et al. (2010) заключалась в том, чтобы найти применение для использования осадка на установках анодирования алюминия для предотвращения загрязнения окружающей среды и получения экономической выгоды для заводов. Для этого были изготовлены кирпичи с различным сочетанием шлама, глины и песка, которые были испытаны в соответствии с имеющимися стандартами. Результат показал, что кирпичи, содержащие 40 мас.% Шлама, обладают лучшими и ближайшими стандартизованными параметрами качества по сравнению с обычным внутренним кирпичом. Эти кирпичи имеют меньший вес, чем кирпичи, при той же массе и более низкой цене, а также предотвращают распространение осадка в окружающей среде.

Ozturk (2014) изучил использование шлама анодирования, который производится в больших объемах на одной из алюминиевых компаний в Турции (Таблица 7.27). Целью исследования было производство муллитовой керамики из богатого алюминием шлама, содержащего 15–30 мас.% Твердого вещества (90 мас.% Твердого вещества составляет бемит (AlOOH), а остальное — тенардит (Na 2 SO 4). ) и барит (BaSO 4 )).

Таблица 7.27. Химический состав богатого алюминием анодирующего шлама (мас.%, XRF) (Ozturk, 2014)

Алюминиевый шлам Al 2 O 3 SiO 2 Fe 2 O 3 CaO SO 3 Na 2 O K 2 O MgO BaO
70.9 0,78 0,31 2,06 20,2 2,95 0,03 0,97 1,20

Муллит — стабильная кристаллическая алюмосиликатная фаза в Al 2 O 3 — SiO 2 и способствует высокой прочности, сопротивлению ползучести, химической инертности и термической стабильности керамических материалов (Martins et al., 2004).

Ozturk (2014) применил процесс промывки, фильтрации и сушки анодированного шлама с целью удаления натрия перед производством муллитовой керамики.Цикл удаления натрия повторяли до полного удаления натрия из ила. Затем порошок без натрия прокаливают при 1400 ° C в течение 1 ч при скорости нагрева 5 ° C / мин для получения порошка с фазой альфа-оксида алюминия (α-Al 2 O 3 ). Полученный порошок α-Al 2 O 3 смешивали (42 мас.%) С каолином, диатомитом и глиной в пропорциях 15, 28 и 15 мас.% Соответственно. Смесь прессовали и спекали при 1450–1550 ° C в течение 1–5 ч (код образца M1).Результаты сравнивают с другой смесью, приготовленной с использованием коммерческого порошка Alcoa α-Al 2 O 3 (код образца M2). В результате работы было обнаружено, что при соответствующей обработке и смешивании с природными минеральными добавками анодирующий шлам может быть использован в производстве керамических материалов на основе муллита (таблица 7.28) (Ozturk, 2014).

Таблица 7.28. Физико-механические свойства спеченных образцов М1 и М2

Состав Условия спекания Прочность на изгиб (МПа) Плотность (г / см 3 ) Пористость (%) Водопоглощение (%) ) Плотность (%)
M1 1450 ° C — 1 ч 53 2.02 26,1 12,88 63,9
1500 ° C — 1 ч 54 2,27 13,1 5,76 71,8
1550 ° C — 1 ч 80 2,47 0,72 0,29 78,2
1550 ° C — 3 ч 81 2,49 0,71 0,29 78,8
1550 ° C — 5 ч 84 2.49 0,72 0,29 78,8
M2 1450 ° C — 1 ч 72 2,15 0,81 0,81 70,3
1500 ° C — 1 ч 80 2,13 1,02 1,02 68,7
1550 ° C — 1 ч 75 2,11 1,69 1,69 66,8
1550 ° C — 3 ч 72 2.11 1,75 1,75 66,8
1550 ° C — 5 ч 72 2,10 6,36 2,36 66,5

Рибейро и др. (2004a, b, 2006), Ribeiro и Labrincha (2008) и Labrincha et al. (2006) провели подробные исследования по использованию шламов анодирования алюминием в производстве огнеупорной и электроизоляционной керамики. Огнеупорные керамические материалы на основе муллита и кордиерита получали из составов, содержащих 42 и 25 мас.% Шлама соответственно.Каолин, шариковая глина, диатомит и тальк завершили составы. Цилиндрические образцы, обработанные методом одноосного сухого прессования, спекались при различных температурах. Были оценены свойства материалов после обжига (усадка при обжиге, водопоглощение, прочность на изгиб, коэффициент теплового расширения, огнеупорность и микроструктура на сканирующем электронном микроскопе) и продемонстрировано, что оптимальные свойства были получены при 1650 ° C для муллита и 1350 ° C для тел кордиерита (Ribeiro и Лабринча, 2008). Последние могут использоваться в качестве огнеупорных кирпичей при температуре до 1300 ° C.

Составы, полностью состоящие из ила, были также произведены и испытаны, что выявило образование α-оксида алюминия и β-оксида алюминия (NaAl 11 O 37 ) на образцах, спеченных при 1450 ° C или выше (Ribeiro et al., 2004a , б). Их электроизоляционные характеристики описаны в отдельных работах (Labrincha et al, 2006; Ribeiro et al., 2004a, b). Составы на основе муллита (содержащие 42 мас.% Шлама) демонстрируют электрическую проводимость примерно на четыре порядка выше, чем составы на основе оксида алюминия (100% шлама).Последние обладают изоляционными характеристиками, сравнимыми с образцами глинозема чистотой 90%. На рис. 7.8 показаны тела, обработанные в ходе этих работ.

Рис. 7.8. Тела на основе алюминиевого шлама, обработанные экструзией и шликерным литьем (Ribeiro et al., 2004a).

Тот же самый шлам также исследовался в составе неорганических пигментов (Leite et al., 2009; Hajjaji et al., 2009), в некоторых случаях в сочетании с другими отходами (например, шламы при волочении проволоки Fe и шламы хромоникелевых покрытий. , резка мрамора / полировка шламов / мелочи).Составы, полностью основанные на отходах, образуют стабильные структуры при более низких температурах, чем коммерческие (химически чистые реагенты) пигменты, и могут быть получены различные цвета, как показано на рис. 7.9 (Hajjaji et al., 2012; Costa et al., 2007).

Рис. 7.9. Отличительные пигменты, полученные из отходов (Hajjaji et al., 2012).

Практические правила аквапонического садоводства | Источник аквапоники

Сильвия Бернштейн и доктор Уилсон Леннард

Многие в нашем сообществе садоводов-аквапоников указали, что нам нужны базовые практические правила аквапоники.Почему? Потому что новички среди нас могут использовать некоторую помощь, чтобы начать работу, не тратя недели на то, чтобы исследовать, что им делать. За последние несколько недель мне выпала особая честь сотрудничать с доктором Уилсоном Леннардом из Австралии в разработке именно такого набора руководящих принципов.

В 2006 году доктор Леннард получил одну из немногих в мире докторских степеней по аквапонике. После этого он спроектировал, сконструировал и управлял Minnamurra Aquaponics, первой в Австралии действительно коммерческой системой аквапоники. Доктор Леннард много писал об аквапонике как для научных, так и для профессиональных журналов.

Ничто из того, что мы говорим ниже, не высечено на камне, и есть исключения почти из каждого из перечисленных практических правил при определенных условиях. Тем не менее, они предлагают набор общепринятых принципов, которые, если их придерживаться, направят вас на путь успешного аквапонического садоводства.

И последнее предостережение. Эти правила предназначены только для мультимедийных систем заднего двора или хобби. Если вы подумываете о коммерческом аквапоническом земледелии, мы настоятельно рекомендуем вам пройти наш курс по аквапонике от Flourish Farms.

Приступим

Тип системы — Медиа-кровать рекомендуется для начинающих гроверов-любителей. Почему не NFT или Deep Water Culture (также известный как плот или DWC)?
Слой среды выполняет три (3) фильтрующие функции:

    1. механический (удаление твердых частиц)
    2. минерализация (разложение твердых частиц и возврат в воду)
    3. биофильтрация

Поскольку среда для выращивания растений также служит местом для роста растений, она в основном делает все в одном компоненте, что упрощает работу.

  • Среда также обеспечивает лучшую поддержку растений и более тесно связана с традиционным садоводством, поскольку есть среда для посадки.
  • Стоимость построения системы ниже из-за меньшего количества компонентов.
  • Это легче понять и изучить.

Грядка

  • Промышленный стандарт должен иметь глубину не менее 12 дюймов (30 см), чтобы можно было выращивать самые разные растения и обеспечивать полную фильтрацию.
  • Должен быть изготовлен из безопасных для пищевых продуктов материалов и не должен влиять на pH вашей системы (опять же, остерегайтесь бетона).

Аквариум

  • Если у вас есть здесь гибкость, 250 галлонов (1000 литров) или больше, кажется, создают наиболее стабильную систему аквапоники. Большие тома лучше для новичков, потому что они оставляют больше места для ошибок; на больших объемах все происходит медленнее.
  • Должен быть изготовлен из безопасных для пищевых продуктов материалов и не должен влиять на pH вашей системы (например, остерегайтесь бетона).

Плотность поголовья

  • 1 фунт рыбы на 5-7 галлонов воды в аквариуме (0,5 кг на 20-26 литров)

Этапы планирования системы

  1. Определите общую площадь грядки в кв. Футах (или кв. М)
  2. По площади грядки определите требуемый вес рыбы (фунты или кг), используя правило соотношения: 1 фунт (0,5 кг) рыбы на каждый 1 кв. Фут (0,1 кв. М) площади поверхности грядки, при условии, что грядки глубиной не менее 12 дюймов (30 см).
  3. Определите объем аквариума по приведенному выше правилу плотности посадки (1 фунт рыбы на 5-7 галлонов объема аквариума или 0,5 кг на 20-26 литров). Когда ваша рыба молодая и маленькая, уменьшите количество растений пропорционально размеру рыбы и их соответствующей норме корма / отходам.

Например, если вы планируете иметь 2 грядки 2х4 фута, то у вас будет 16 квадратных футов площади для выращивания. Запланируйте запасы таким образом, чтобы у вас была зрелая рыба весом 16 фунтов, для которой требуется аквариум на 80–112 галлонов.

Медиа

  • Должен быть инертным, т. Е. Не разлагать или изменять pH системы.
  • LECA (легкий наполнитель из вспененной глины, AKA Hydroton), Lava Rock и Gravel являются наиболее широко используемыми типами сред. Если вы выбираете гравий, знайте его источник и избегайте известняка и мрамора, поскольку они могут повлиять на ваш pH.

Расход воды

  • Вы должны затопить, а затем осушить грядки. Дренажное действие вытягивает кислород через грядки.Наименее сложный способ создать надежную систему водостока — использовать таймер. Хотя сифоны более сложные, они также являются отличным вариантом для аквапоники.
  • Если вы используете свою систему с таймером, вы должны запустить его на 15 минут и 45 минут на паузу.
  • Вы хотите, чтобы весь объем аквариума пропускался через грядки каждый час, если это возможно. Следовательно, если вы запускаете помпу на 15 минут каждый час (см. Выше) и у вас есть резервуар на 100 галлонов, вам понадобится помпа со скоростью не менее 400 галлонов в час (галлонов в час).Теперь подумайте о «подъемной силе» или о том, насколько далеко от силы тяжести вам нужно переместить эту воду, и используйте скользящую шкалу, которая находится на упаковке насоса, чтобы увидеть, сколько энергии вам нужно, сверх 400 галлонов в час.

Запуск системы или «Велоспорт»

  • Велоспорт без рыбы рекомендуется, потому что он разовьет прочную базу бактерий и позволит вам полностью заполнить аквариум за пару недель по сравнению с традиционным методом использования рыбы, который занимает больше месяца и является очень стрессовым для рыб.
  • Для получения инструкций см. Сообщение в блоге Aquaponic Garestive по велоспорту без рыб.

Аммиак, нитриты, нитраты — после цикла,

  • Уровни аммиака и нитритов должны быть менее 0,75 частей на миллион
  • Если вы видите внезапное повышение уровня аммиака, возможно, в вашем аквариуме есть мертвая рыба.
  • Если вы видите повышение уровня нитритов, возможно, вы повредили среду обитания бактерий в вашей системе.
  • Если произойдет одно из вышеперечисленных обстоятельств, прекратите кормить рыбу до тех пор, пока уровень не стабилизируется, и, в крайнем случае, выполните подмену воды на 1/3, чтобы разбавить существующий раствор.
  • Нитраты могут подниматься до 150 частей на миллион, не вызывая проблем, но намного выше этого уровня, вам следует подумать о добавлении еще одной грядки в вашу систему.

Кислород

  • Убедитесь, что в аквариуме достаточно кислорода. Вы можете сделать это с помощью отдельного устройства для аэрации, а также путем отвода части воды от затопления и осушения грядок прямо в аквариум.
  • Единственный способ получить слишком много кислорода в аквариуме — это буквально выдуть рыбу из аквариума.
  • Если в ваш аквариум поступает недостаточно кислорода, ваша рыба будет задыхаться от воздуха у поверхности воды, но если вы достигнете этой стадии, вы, возможно, нанесли необратимый вред дыхательной системе вашей рыбы.

Когда добавлять растения

  • Как только вы начнете ездить на велосипеде в своей системе, но примите тот факт, что они могут плохо развиваться в течение нескольких недель, необходимых для того, чтобы цикл заработал.
  • Если вы добавите Maxicrop Liquid Seaweed в ваш аквариум при посадке (австралийцы называют это Seasol) из расчета 1 литровая бутылка на 250 галлонов (1000 литров), ваши растения приживутся гораздо быстрее.

Когда добавлять рыбу, если вы используете велосипедную технику без рыбы

  • Добавляйте рыбу, когда присутствуют нитраты и уровни аммиака и нитритов достигли пика и упали ниже 1,0 ppm.

Скорость кормления

  • Ровно столько, сколько ваша рыба съест за 5 минут, 1–3 раза в день. Взрослая рыба съедает примерно 1% своего веса в день. Мальки рыбы (младенцы) съедят до 7%. Будьте осторожны, не перекармливайте рыбу.
  • Если ваши рыбы не едят, они, вероятно, испытывают стресс, за пределами оптимального диапазона температур, или им не хватает кислорода.

Черви

  • Добавьте горсть компостирующих красных червей на каждую грядку после того, как ваша система полностью заработает и будет добавлена ​​рыба.

pH

  • Задайте нейтральный pH, или 7,0, в вашей аквапонической системе. Это компромисс между оптимальным диапазоном содержания рыб, растений и бактерий.Для рыб это pH от 6,5 до 8,0. Для растений это pH от 5,0 до 7,0, а для бактерий — от 6,0 до 8,0.
  • Проверяйте pH не реже одного раза в неделю и не реже 3–4 раз в неделю с помощью набора для тестирования API Freshwater Master.
  • Во время езды на велосипеде pH будет повышаться.
  • После цикла ваших систем pH, вероятно, будет регулярно опускаться ниже 7,0, и его необходимо поддерживать в буферном растворе. Если вам необходимо снизить pH, это обычно связано с источником воды (например, жесткими грунтовыми водами) или потому, что у вас есть базовый буфер в вашей системе (яичная скорлупа, устричная скорлупа, ракушечник, неправильная среда).
  • Лучший метод повышения (буферизации) pH, если он опускается ниже 6,6
    • Гидроксид кальция — «гашеная известь» или «строительная известь».
    • Карбонат (или бикарбонат) калия или гидроксид калия («перлаш» или «поташ»)
    • По возможности чередуйте эти два параметра каждый раз, когда вашей системе требуется повышение pH. Они также добавляют кальций и калий, что оценят ваши растения.
    • Пока они работают, будьте осторожны при использовании натуральных продуктов из карбоната кальция (яичная скорлупа, раковина улиток, морские раковины).Они не причиняют никакого вреда, но растворяются долго и влияют на pH. Итак, вы добавляете его, проверяете pH через два часа, и ничего не изменилось, поэтому вы добавляете еще. Затем внезапно, pH резко возрастает, потому что вы так много добавили.
  • Лучшие методы снижения pH в порядке предпочтения, если он превышает 7,6
    • pH Down для гидропоники — (будьте осторожны при использовании версии для аквариума, поскольку в ней содержится натрий, вредный для растений).
    • Другие гидропоновые кислоты, такие как азотная или фосфорная, поскольку растения могут использовать производимые нитраты или фосфаты.
    • Другие кислоты, такие как уксус (слабая), соляная (сильная) и серная (сильная) — последнее средство, так как прямое добавление этих кислот в организм может вызвать стресс у рыб.
  • Не добавляйте в вашу систему что-либо, содержащее натрий, так как он со временем накапливается и вреден для растений.
  • Не используйте лимонную кислоту, так как она обладает антибактериальными свойствами и убивает бактерии в вашем биофильтре.

Комментарии закрыты.

% PDF-1.5 % 1 0 obj> эндобдж 2 0 obj> эндобдж 3 0 obj> / Метаданные 741 0 R / Pages 6 0 R / StructTreeRoot 361 0 R >> эндобдж 4 0 obj> эндобдж 5 0 obj> эндобдж 6 0 obj> эндобдж 7 0 obj> эндобдж 8 0 obj> эндобдж 9 0 obj> / MediaBox [0 0 595.276 841.89] / Parent 6 0 R / Resources> / ExtGState> / Font> / ProcSet [/ PDF / Text / ImageB / ImageC / ImageI] >> / StructParents 0 / Tabs / S> > эндобдж 10 0 obj> эндобдж 11 0 obj> эндобдж 12 0 obj> эндобдж 13 0 obj> эндобдж 14 0 obj> эндобдж 15 0 obj> эндобдж 16 0 obj> эндобдж 17 0 obj> эндобдж 18 0 obj> эндобдж 19 0 obj> эндобдж 20 0 obj> эндобдж 21 0 obj> эндобдж 22 0 obj> эндобдж 23 0 obj> эндобдж 24 0 obj> эндобдж 25 0 obj> эндобдж 26 0 obj> эндобдж 27 0 obj> эндобдж 28 0 obj> эндобдж 29 0 obj> эндобдж 30 0 obj> эндобдж 31 0 объект> эндобдж 32 0 obj> эндобдж 33 0 obj> эндобдж 34 0 объект> / MediaBox [0 0 595.276 841.89] / Parent 6 0 R / Resources> / Font> / ProcSet [/ PDF / Text / ImageB / ImageC / ImageI] >> / StructParents 1 / Tabs / S >> эндобдж 35 0 obj> эндобдж 36 0 obj> эндобдж 37 0 obj> эндобдж 38 0 obj> эндобдж 39 0 obj> эндобдж 40 0 obj> эндобдж 41 0 объект> эндобдж 42 0 obj [45 0 R] эндобдж 43 0 obj> эндобдж 44 0 obj> эндобдж 45 0 obj> эндобдж 46 0 obj> эндобдж 47 0 obj> эндобдж 48 0 obj> эндобдж 49 0 obj> эндобдж 50 0 obj> эндобдж 51 0 obj> эндобдж 52 0 obj> эндобдж 53 0 obj> эндобдж 54 0 объект> / MediaBox [0 0 595.276 841.89] / Parent 6 0 R / Resources> / Font> / ProcSet [/ PDF / Text / ImageB / ImageC / ImageI] >> / StructParents 2 / Tabs / S >> эндобдж 55 0 obj> эндобдж 56 0 obj> эндобдж 57 0 obj> эндобдж 58 0 obj> эндобдж 59 0 obj> эндобдж 60 0 obj> эндобдж 61 0 объект> эндобдж 62 0 obj> эндобдж 63 0 obj> эндобдж 64 0 obj> эндобдж 65 0 obj> эндобдж 66 0 obj> эндобдж 67 0 obj> эндобдж 68 0 obj> / MediaBox [0 0 595.276 841.89] / Parent 6 0 R / Resources> / Font> / ProcSet [/ PDF / Text / ImageB / ImageC / ImageI] >> / StructParents 3 / Tabs / S >> эндобдж 69 0 obj> эндобдж 70 0 obj> эндобдж 71 0 объект> эндобдж 72 0 obj> эндобдж 73 0 объект> / MediaBox [0 0 595.276 841.89] / Parent 6 0 R / Resources> / Font> / ProcSet [/ PDF / Text / ImageB / ImageC / ImageI] / XObject >>> / StructParents 4 / Tabs / S >> эндобдж 74 0 obj> эндобдж 75 0 obj> эндобдж 76 0 obj> эндобдж 77 0 obj> эндобдж 78 0 obj> эндобдж 79 0 obj> эндобдж 80 0 obj> эндобдж 81 0 объект> эндобдж 82 0 объект> транслировать xSWsNUSuN ծ / B $ H «& ƘHVUĄEEAQ I8 «(rs0̅

Размерный эффект в испытаниях на прочность при сжатии образцов с наполнителем из легких заполнителей материалов

(Базель).2020 Март; 13 (5): 1187.

Строительный факультет, Краковский технологический университет, 31-155 Краков, Польша; lp.ude.kp@alagamodl

Поступила в редакцию 15 января 2020 г .; Принято 3 марта 2020 г.

Лицензиат MDPI, Базель, Швейцария. Эта статья представляет собой статью в открытом доступе, распространяемую в соответствии с условиями лицензии Creative Commons Attribution (CC BY) (http://creativecommons.org/licenses/by/4.0/). Эта статья цитировалась другими статьями в PMC. .

Abstract

Целью данной статьи является обсуждение нераспознанной проблемы эффекта масштаба в испытаниях прочности на сжатие, определенных для образцов из легкого заполнителя с сердечником (LWAC), на фоне имеющихся данных о влиянии для нормального бетона (NWAC ).Эффект масштаба анализировался с учетом влияния гибкости ( λ = 1,0, 1,5, 2,0) и диаметра (d = 80, 100, 125 и 150 мм) образцов с сердечником, а также типа легкого заполнителя. (керамзит и спеченная зола) и тип цементной матрицы (w / c = 0,55 и 0,37). Анализ результатов для четырех легких бетонов из заполнителя не выявил эффекта масштаба при испытаниях прочности на сжатие, определенных на образцах с сердечником. Ни стройность, ни диаметр сердечника, похоже, не повлияли на результаты прочности.Этот факт следует объяснить значительно лучшей структурной однородностью исследуемых легких бетонов по сравнению с нормальными. Тем не менее, наблюдались явные различия между результатами, полученными на формованных образцах и образцах с сердцевиной одинаковой формы и размера.

Ключевые слова: эффект масштаба , размер образца, легкий бетон, легкий заполнитель, керамзит, спеченная летучая зола, прочность на сжатие

1. Введение

Бетон из легкого заполнителя (LWAC) был одним из самых популярных и универсальных зданий материалы в мире на протяжении десятилетий.Наиболее важными преимуществами его применения по сравнению с обычным бетоном (NWAC) того же класса прочности являются следующие:

  • Более высокая теплоизоляция и лучшее звукопоглощение [1,2,3];

  • Возможность строительства конструкций с более длинными пролетами и / или большей высотой и / или меньшим поперечным сечением элементов конструкции [4,5,6];

  • Возможность устранения аутогенной усадки [7,8,9];

  • Лучшая долговечность: более высокая огнестойкость, возможно более высокая устойчивость к замораживанию-оттаиванию, возможно более низкая карбонизация и, возможно, более низкая водопроницаемость [10,11,12,13,14,15,16];

  • Меньше вероятность появления трещин в результате усадки, ползучести, термической деформации или нагрузок [17,18,19,20].

Лучшая долговечность и меньшая вероятность растрескивания LWAC являются результатом большей однородности структуры LWAC.

Тем не менее, бетон на легком заполнителе редко используется в качестве конструкционного материала по сравнению с наиболее популярным вариантом — бетоном с нормальным весом. Наиболее важными причинами такой ситуации являются некоторые технологические проблемы с исполнением конструкции LWAC, то есть более высокий риск потери удобоукладываемости и расслоения бетона, а также обычно более высокая цена за единицу объема и, главным образом, отсутствие универсальных процедур для проектирования, исполнения, тестирование и оценка.Между тем, использование конструкционного легкого бетона, изготовленного из готовых или переработанных заполнителей, в ближайшем будущем должно получить широкое распространение из-за истощения запасов природных заполнителей и упора на экологически безопасные, менее энергоемкие конструкции.

Влияние размера и формы испытуемых образцов на оценку свойств LWAC является одной из менее признанных качественно и количественно проблем. Как правило, согласно теории Гриффита и Вейбулла [3,21], разрушение начинается с любого критического дефекта («самой слабой цепи»), содержащегося в материале.Следовательно, образцы большего объема выявляют большую вероятность наличия такого дефекта и, как следствие, характеризуются меньшей прочностью. Более того, хорошо известно, что эффект масштаба более выражен, если материал менее однороден [3,21,22]. Однородность бетона в основном зависит от распределения включений (заполнителя) в цементной матрице, размера и формы заполнителя, разницы прочности и модуля упругости заполнителя и цементной матрицы, а также связи между этими двумя компонентами.Масштабный эффект определяется также геометрическими характеристиками самих образцов. Из-за значительных различий в жесткости бетонного образца и плит машины для испытания на сжатие в зоне их контакта одноосное напряженное состояние нарушается трением и давлением. В результате образцы с большей площадью поперечного сечения демонстрируют меньшую прочность. При этом форма поперечного сечения образца и его гибкость ( λ = высота ( h ) / размер поперечного сечения ( d )) не являются незначительными.Круглое поперечное сечение обеспечивает более равномерное распределение напряжений по сравнению с квадратным, поскольку на его разрушение меньше влияет торцевое ограничение образца. Кроме того, на прочность цилиндров в меньшей степени влияют свойства крупного заполнителя из-за более однородного состава бетона по круговой кромке по сравнению с образцами квадратного поперечного сечения, обнаруживающими более высокое содержание цементного теста в углах. Следовательно, цилиндрические образцы при одинаковой гибкости и площади поперечного сечения могут обладать большей прочностью, чем кубики [3].Снижение гибкости образца также способствует увеличению прочности. Для обычного бетона типичное соотношение прочности, определенное для формованных цилиндров с λ = 2,0 и 1,0, составляет около. 0,85–0,95 и ниже для бетона меньшей прочности. Эффект масштаба в случае нормального бетона разных типов — простого, обычного, самоуплотняющегося, высокопрочного и сверхвысокого (реактивный порошковый бетон), армированного фиброй — был доказан в многочисленных исследованиях, например, [23, 24,25,26,27,28,29,30,31,32,33,34].Из этого исследования можно сделать два общих вывода, касающихся бетона с нормальным весом: (1) чем выше прочность бетона, тем меньше эффект масштаба; (2) тонкость образца является решающим параметром, определяющим масштабный эффект.

В целом следует ожидать, что эффект масштаба от LWAC будет менее выраженным по сравнению с NWAC, потому что структура легкого бетона на заполнителях обычно более однородна по сравнению с бетоном с нормальным весом. Основными причинами большей однородности LWAC являются следующие:

  • Более правильная форма и размер производимых агрегатов;

  • Меньшая разница между значениями прочности и модуля упругости пористого заполнителя и цементной матрицы;

  • Лучшая связь между пористым заполнителем и цементным тестом в результате лучшей адгезии, поглощения воды при замесе пористым заполнителем и, в некоторых случаях, пуццолановой реакции.

Подтверждение менее выраженного масштабного эффекта LWAC было обнаружено в некоторых исследованиях [3,13,35,36,37]. Более низкая значимость эффекта масштаба при испытаниях легкого заполнителя бетона на сжатие отражается также в классификации прочности согласно европейскому стандарту EN 206 [38]. Соотношение характеристической прочности LWAC, определенной на стандартных образцах цилиндра и куба ( f ck , cyl / f ck , cube ), полученное в результате классов прочности, указанных в EN 206 [38], колеблется от 0.От 89 до 0,92 и не зависит от класса прочности бетона. Более того, в стандарте указано, что для LWAC могут использоваться другие значения, если взаимосвязь между кубом и эталонной силой цилиндра установлена ​​и задокументирована. Между тем, для NWAC f ck , cyl / f ck , cube варьируются от 0,78 до 0,87 и выше для более высоких классов прочности. Тем не менее, есть сообщения, указывающие на противоположные тенденции.В [39,40] было показано, что размерный эффект был сильнее в LWAC, чем в NWAC, и эта тенденция была более выраженной при гибкости образца 2,0, чем при гибкости 1,0. Поперечный размер образцов также сильно повлиял на результаты испытаний на прочность как NWAC, так и LWAC. С другой стороны, было доказано, что на размерный эффект минимально влияет форма сечения образца при том же λ . Кроме того, в случае LWAC размер агрегата не имел значения для эффекта масштаба.Вероятной причиной такого расхождения в качественной оценке масштабного эффекта LWAC, представленной в [39,40] и [3,16,35,36,37], является тип агрегата. Авторы [39,40] заявили, что использованный для исследования керамзит характеризовался замкнутой поверхностью с гладкой текстурой. Такой тип легкого заполнителя может вызвать слабое сцепление с цементным тестом, особенно по сравнению с гранитным щебнем, используемым для NWAC. Более того, если пористый заполнитель изначально насыщен, адгезия цементного теста может быть чрезвычайно ограничена, и легкий бетон, приготовленный с таким заполнителем, больше не следует рассматривать как материал с хорошей однородностью.

Основное различие в масштабном эффекте, определенном для формованных и порошковых образцов, состоит в отсутствии «эффекта стенки» в последнем случае. Кроме того, образцы, взятые из конструкции, обычно имеют другие, менее благоприятные условия уплотнения и отверждения по сравнению с формованными образцами. Более того, процесс сверления образцов сам по себе может вызвать появление микротрещин в образцах с сердечником. В результате в стандарте EN 13791 [41] предполагается, что для всех типов конструкционных бетонов образцы с сердечником показывают ок.Прочность на 15% ниже, чем у формованных. Между тем, из-за лучшей структурной однородности по сравнению с обычным бетоном, LWAC в конструкции, даже если она массивная, может быть менее восприимчивой к растрескиванию в результате как процесса бурения, так и повышения температуры во время гидратации цемента. Как было показано в [17,18], LWAC, из-за лучшей структурной однородности, показал более низкую концентрацию напряжений под нагрузкой и был менее подвержен растрескиванию по сравнению с бетоном с нормальным весом.В работе [19], посвященной изучению соотношения начальных и стабилизированных секущих модулей упругости, используемых в качестве индикатора восприимчивости бетона к микротрещинам, доказана более высокая стойкость конструкционного легкого бетона к микротрещинам или микротрещинам, вызванным напряжением. растрескивание, вызванное сверлением, по сравнению со структурным бетоном с нормальным весом. С другой стороны, есть многочисленные отчеты об испытаниях, показывающие, что при высоких температурах LWAC работает лучше, чем NWAC. Например, результаты исследований, представленные в [15,16], показали, что LWAC при температурах до 200 ° C или даже 300 ° C, соответственно, не показали развития микротрещин и снижения прочности.Следовательно, более высокая температура (до 90 ° C), возникающая во время гидратации цемента в конструкции из LWAC, обычно не может вызвать микротрещины. Более того, из-за внутреннего отверждения водой, содержащейся в пористом заполнителе, LWAC в конструкции обычно проявляет меньшую чувствительность к внешним условиям отверждения по сравнению с бетоном с нормальным весом. Таким образом, структура легкого заполнителя бетона в формованных образцах, отвержденных в лабораторных условиях, и в конструкции может быть менее разнообразной, чем в случае бетона с нормальной массой.Таким образом, можно ожидать, что разница между прочностями, определенными на образцах LWAC с формованными и заполненными сердцевинами, будет меньше, чем предполагается в стандарте EN 13791 [41] для всех типов бетона.

Хотя европейский стандарт EN 13791 [41] содержит принципы и руководство по оценке прочности бетона на сжатие in situ в конструкциях и сборных железобетонных элементах, он скорее сосредоточен на бетоне с нормальным весом, а также на некоторых конкретных данных, полученных из масштабный эффект дан только для NWAC.Обычно предполагается, что диаметр сердечника от 75 до 150 мм не влияет на результат испытания на прочность. Однако стройность ядра сказывается на достигнутом значении. В случае нормального и тяжелого бетона соотношение прочности, определенное для цилиндров с сердечником λ = 2,0 и 1,0, можно принять равным 0,82, в то время как для легкого бетона нет соответствующей информации. Для LWAC EN 13791 [41] рекомендует применять положения, действующие в месте использования, или подтверждать некоторые взаимосвязи путем испытаний.Такая ситуация вызвана отсутствием достаточных надежных данных о масштабном эффекте образцов с сердцевиной LWAC, что подтверждается отсутствием литературных сообщений по этому поводу. Между тем, есть некоторые предпосылки, указывающие на то, что, как и в случае формованных образцов, эффект масштаба при испытаниях на прочность образцов с сердечником из LWAC менее значителен, чем в случае NWAC.

Поскольку не существует конкретных руководств по испытаниям и оценке прочности легкого бетона в конструкции или сборных элементах, основная цель исследования заключалась в оценке нераспознанного эффекта масштаба в испытаниях прочности на сжатие, проводимых на образцах LWAC с сердечником.Дополнительная цель исследования состояла в том, чтобы проверить, действительно ли предполагаемое снижение прочности на 15% для образцов с сердечником по сравнению с формованными также и для LWAC. Для этих целей были подготовлены четыре серии легкого заполнителя бетона с замкнутой структурой разного состава, и для каждой серии бетона были испытаны как стандартные формованные образцы, так и 12 типов цилиндров с сердечником для определения прочности на сжатие. Проведенная программа исследований позволила количественно и качественно оценить масштабный эффект порошковых образцов LWAC на фоне имеющихся данных о влиянии на бетон нормального веса.Он также дал некоторую информацию о выборе типов образцов с сердечником для достижения надежных результатов прочности на сжатие легкого бетона, встроенного в конструкцию или сборный элемент. Такая информация может иметь практическое значение в случае оценки прочности на сжатие для структурной оценки существующей конструкции или оценки класса прочности на сжатие LWAC в случае сомнения.

2. Материалы и методы

Составы приготовленных LWAC различались типом легкого заполнителя (LWA) и прочностью цементной матрицы, а также их объемной долей.Были выбраны два типа крупного легкого заполнителя: керамзит (КЭ) и спеченная зола-унос (SFA) (). Эти типы являются наиболее популярными пористыми заполнителями, используемыми для конструкционного легкого бетона в мире. Однако керамзит, использованный в этом исследовании, характеризовался гораздо меньшей плотностью частиц и более пористой внешней оболочкой по сравнению с спеченной летучей золой. Поэтому на практике такой агрегат больше используется для изготовления сборных элементов из изоляционно-конструкционного бетона, чем для типовых конструктивных целей.В этом исследовании применение слабого керамзитового заполнителя было в основном направлено на то, чтобы показать эффект масштаба также в случае LWAC с меньшей прочностью и меньшей однородностью по сравнению с бетоном из спеченного заполнителя из золы-уноса. Основные свойства применяемых легких заполнителей представлены в. Заполнители перед нанесением на бетон сначала увлажняли до уровня, соответствующего их абсорбции после погружения в воду на 1 час. Такое содержание влаги — 34,4% и 17,0% соответственно для керамзита и агломерированной золы-уноса — с одной стороны защищало свежий бетон от потери удобоукладываемости, а с другой стороны, обеспечивало хорошую адгезию цементного теста.

Легкие заполнители, используемые для испытания бетона: ( a ) спеченная зола-унос и ( b ) керамзит.

Таблица 1

Свойства крупных легких заполнителей.

Тип заполнителя Фракция, мм Плотность частиц, кг / м 3 Водопоглощение,% Сопротивление раздавливанию, МПа
Керамзит 4/8 550 41.2 1,4
Спеченная зола уноса 4/8 1350 24,3 8,0

Остальные материалы для бетонных смесей были следующими: портландцемент CEM I 42,5 R, природный песок 0/2 мм в качестве мелкого заполнителя, водопроводная вода и суперпластификатор. Цементные растворы, являющиеся цементной матрицей для приготовленных легких бетонов, характеризовались существенно различным водоцементным соотношением (в / ц), равным 0.55 и 0,37. Доля крупного легкого заполнителя в готовых бетонах составляла от 52 до 55% соответственно для w / c = 0,37 и 0,55. Бетонные составы представлены в.

Таблица 2

Составы строительных растворов и легких бетонов. LWA, легкий заполнитель; ЭК, керамзит; ОТВС, спеченная зола-унос.

Серия LWA Тип Номинал с / с Цемент, кг / м 3 Вода, кг / м 3 Superplast., кг / м 3 LWA 1 , кг / м 3 Песок, кг / м 3
I раствор 0,55754 4 0,0 906
II раствор 0,37 912 335 18,4 937
I EC Exp. глина 0.55 338 186 0,0 308 406
II EC Exp. глина 0,37 446 164 9,0 287 458
I SFA Sint. зола уноса 0,55338 186 0,0 749 406
II SFA Синт. зола уноса 0,37 446 164 9.0 699 458

Из каждой бетонной серии в качестве контрольных образцов были отформованы 6 стандартных кубов (d = 150 мм) и 6 цилиндров (d = 150 мм и h = 300 мм). Кроме того, для сравнительных целей были отлиты стандартные кубы с растворами состава, соответствующего тем, которые использовались в бетонах. Кроме того, было отлито 4 больших бетонных блока размерами 400 × 600 × 1000 мм для сверления порошковых образцов (). Образцы после извлечения из формы хранились до дня испытания в условиях T = 20 ± 2 ° C, RH = 100 ± 5%, соответствующих требованиям EN 12390-2 [42].В то же время большие блоки были сбрызнуты водой, чтобы обеспечить аналогичные условия отверждения. Тем не менее в первые дни отверждения температура блоков была намного выше температуры стандартных формованных образцов. На верхней поверхности блоков она достигала 50 ° C и 70 ° C соответственно для бетона I и II серии из-за больших размеров элементов. Температура внутри была, конечно, еще выше.

Подготовка бетонных блоков к сверлению кернов.

После 28 дней отверждения из блоков высверливали стержни и разрезали на образцы в соответствии с EN 12504-1 [43].Применялись четыре буровые установки диаметром d = 80, 100, 125 и 150 мм (). Этот диапазон диаметров чаще всего используется для оценки прочности конструкций на сжатие на месте. Керны были разрезаны на образцы с гибкостью 1,0 и 2,0, которые обычно используются для оценки прочности на сжатие на месте, и, кроме того, 1,5. Типы и количество образцов, подготовленных для испытаний, представлены в и. Из каждой серии бетона было вырезано семь образцов с сердцевиной определенного типа (диаметр и гибкость): 6 в качестве основного набора для испытаний на эффект масштаба в условиях естественной влажности (в исходном состоянии) и 1 для контрольных испытаний в сухих условиях.Образцы в высушенном в печи состоянии в основном использовались для испытания плотности после высушивания (основного для легкого бетона), а затем они были дополнительно использованы для дополнительной оценки эффекта масштаба. На практике образцы с сердечником, высверленные из конструкции, испытывались в условиях влажности при поступлении или, если это требовалось, в состоянии насыщения. В случае этого исследования состояние образцов было таким, как было получено, но оно было очень близко к состоянию насыщения из-за отверждения.Температура сушки образцов составляла всего 50 ° C, чтобы избежать риска микротрещин в бетоне.

Типы применяемых буровых установок (d = 80, 100, 125, 150 мм) и вырезания стержней из бетонного блока.

12 типов порошковых образцов различного диаметра d и гибкости λ для испытаний на прочность на сжатие.

Таблица 3

Типы и количество образцов, подготовленных для испытаний каждой конкретной серии.

Тип образца Диаметр / сторона d , мм Высота h , мм Гибкость λ = h / d Количество образцов
Литой
куб 150 150 1.0 6
цилиндр 150 300 2,0 6
полый
цилиндр 150 150 1.0 7
цилиндр 150 225 1,5 7
цилиндр 150 300 2.0 7
цилиндр 125 125 1.0 7
цилиндр 125 187,5 1,5 7
цилиндр 12568 12568 2,0 7
цилиндр 100 100 1,0 7
цилиндр 100 150 1.5 7
цилиндр 100 200 2.0 7
цилиндр 80 80 1.0 7
цилиндр 80 1,5 7
цилиндр 80 160 2,0 7

Общее количество образцов с сердечником, подлежащих испытанию, составило 336.Плотность и прочность на сжатие отформованных во влажном состоянии образцов и образцов с сердечником были испытаны в возрасте 28 дней в соответствии с EN 12390-7 [44] и EN 12390-3 [45], соответственно. Высушенные образцы были испытаны в соответствии с теми же процедурами, но в возрасте 35 дней, когда они достигли состояния сушки в печи.

3. Результаты

Результаты испытаний формованных образцов представлены в. Результаты испытаний на плотность во влажных и сухих условиях, а также на влажность образцов с сердцевиной представлены в.Значения, приведенные в таблице, являются средними значениями, определенными для данного бетона для всего набора из 72 и 12 образцов с сердечником, соответственно, во влажных и высушенных в печи условиях.

Таблица 4

Средние значения прочности на сжатие и плотности, определенные на формованных образцах.

Серия LWA Тип Номинал w / c Плотность 1 D м , w , кг / м 3 Сжатие см , куб , МПа Прочность на сжатие, f см , цилиндр , МПа
I раствор 0.55 2080 45,0
II раствор 0,37 2200 65,2
I EC Exp. глина 0,55 1290 14,5 13,8
II EC Exp. глина 0,37 1410 18,1 16,9
I SFA Синт. зола уноса 0.55 1800 37,5 37,1
II SFA зола уноса 0,37 1890 49,5 47,6

Таблица 5

Определены средние значения плотности и влажности бетона на порошковых образцах.

Серия LWA Тип Номинальная w / c Плотность 1 D м , w , кг / м 3 2 D м , d , кг / м 3 Влагосодержание, м3 м ,%
I EC Exp.глина 0,55 1300 1140 14,0
II EC Exp. глина 0,37 1410 1250 12,8
I SFA Синт. зола уноса 0,55 1790 1570 14,0
II SFA Синт. зола-унос 0,37 1880 1680 11,9

Результаты испытаний прочности на сжатие, определенных для образцов с сердечником, представлены во влажном и сухом состоянии соответственно.Следует отметить, что средние значения прочности ( f см ), рассчитанные как средние для шести сердечников одного типа, представлены в. Глобальное среднее значение прочности ( f CM ) было рассчитано как среднее из средних значений всех типов стержней. Между тем, результаты прочности, представленные в, были определены на единичных высушенных в печи образцах. Следовательно, эти результаты могут рассматриваться только как дополнительные, и они не могут быть основой количественного анализа эффекта масштаба.

Средние значения прочности на сжатие, определенные для образцов с влажным сердечником различного диаметра d и гибкости λ .

Отдельные результаты испытаний прочности на сжатие, определенной для образцов с сухим порошком различного диаметра d и гибкости λ .

4. Обсуждение

Анализ результатов показал, как и предполагалось, существенно разные уровни прочности на сжатие и плотности четырех бетонных серий.Прочность бетона составляла от 14,5 до 49,5 МПа при определении для формованных кубических образцов и от 13,8 до 47,6 МПа для формованных цилиндров. Плотность бетона после высушивания в печи составляла от 1140 до 1680 кг / м 3 , а во влажном состоянии соответствующий диапазон составлял 1290–1880 кг / м 3 . «Эффект стены», казалось, имел незначительное влияние на плотность бетона; поэтому практически не было различий между результатами, полученными для формованных образцов и образцов с сердечником. Более того, аналогичные результаты испытаний плотности, проведенных на формованных образцах, отвержденных в воде, и образцах с сердцевиной, показали, что состояние стержней было аналогично состоянию насыщения из-за внешнего отверждения, но в основном из-за внутреннего отверждения с водой, размещенной в пористом заполнителе.Особый интерес вызвали значения влажности бетонов. Несмотря на то, что керамзит характеризовался водопоглощением почти в два раза выше, чем у спеченной золы-уноса, содержание влаги в испытанных легких бетонах, по-видимому, зависело в основном от плотности цементных матриц. Если бы заполнители использовались изначально насыщенными, их водопоглощение, безусловно, повлияло бы на водопоглощение / влагосодержание композитов. В случае испытанных бетонов заполнители были только первоначально увлажнены до содержания влаги, что обеспечило хорошее сцепление и герметизацию структуры заполнителя цементным тестом.Такой эффект был доказан в [46].

Как правило, бетон, сделанный из более прочного спеченного заполнителя золы-уноса (I ОТВС и II ОТВС), достигает более высокой плотности и прочности на сжатие (почти в три раза), чем бетон из керамзита (I EC и II EC). Повышение прочности за счет применения более прочного раствора (II w / c = 0,37) в качестве цементной матрицы также было намного более эффективным в случае бетонов SFA, чем для бетонов EC (). В случае последних бетонов применение столь слабого заполнителя ограничивало возможность повышения прочности бетона за счет значительного увеличения прочности цементной матрицы.Следует отметить, что прочность всех легких бетонов была ниже прочности цементных растворов, используемых в качестве их матриц, что характерно для LWAC с закрытой структурой.

Влияние применения различных цементных растворов в качестве матриц для легких бетонов с агломерированной золой-уносом (SFA) и керамзитом (EC) на их плотность и прочность (влажное состояние).

Соотношение прочности, определенное для стандартных кубов и цилиндров ( f см , цилиндр / f см , куб ), зависело от однородности бетона: чем меньше разница в прочность заполнителя и цементной матрицы, тем выше соотношение.Средние значения отношения составляли 0,95, 0,93, 0,99 и 0,96 соответственно для бетонов I EC, II EC, I SFA и II SFA. Таким образом, эти значения были явно выше, чем значения, полученные в соответствии с EN 206 [38], и подтвердили гораздо менее выраженный эффект масштаба и формы испытанных легких бетонов по сравнению с бетонами с нормальной массой. Особо следует отметить, что бетон II ЕС с наименьшим значением отношения вообще не должен использоваться на практике по материальным и экономическим причинам. Для целей этого исследования он был приготовлен из высокопрочной цементной матрицы и очень слабого легкого заполнителя, чтобы получить легкий композит плохой однородности.Из полученных значений отношения f см , цилиндр / f см , куб можно сделать еще один вывод: оценка прочности легкого заполнителя бетона, определенная для стандартных цилиндров, может привести к более высокому классу, чем в случае, когда он определен для стандартных кубиков.

В случае порошковых образцов размерный эффект оказался практически незаметным (). Эта тенденция может наблюдаться даже в случае результатов одиночных образцов с сухой сердцевиной ().Тем не менее, по очевидным причинам, результаты, полученные на единичных образцах в сухих условиях, не должны использоваться в дальнейшем количественном анализе эффекта масштаба. При анализе средних значений прочности, представленных в, казалось, что тип образцов с сердечником не влияет на результат прочности независимо от типа бетона. Как предполагалось в EN 13791 [41], диаметр сердечника в испытанном диапазоне, 80–150 мм, при заданной гибкости не оказывал заметного влияния на результаты прочности. Более того, в отличие от NWAC, стройность тестируемого LWAC, похоже, также не оказала заметного влияния на результаты.Однако в случае менее однородных, более слабых бетонов, изготовленных из керамзита, разброс значений средней прочности ( f см, ) был немного больше по сравнению с бетоном с агломерированной золой-уносом. Для подтверждения этих наблюдений был проведен более детальный анализ. Анализ охватывал разброс результатов для конкретного типа образца с сердечником, а также соотношение средних значений прочности, определенных для эталонного цилиндра с сердечником (d = 150 мм, h = 300 мм) и конкретного типа образца с сердечником.

Исследование разброса результатов прочности показало, что для всех испытанных бетонов значения стандартного отклонения ( σ f ) и коэффициента вариации (v f = σ f / f c ) были довольно независимы от объема и тонкости образцов с сердцевиной. Правило большего разброса результатов испытаний на прочность образцов меньшего объема здесь не подтвердилось. Коэффициенты вариации для конкретного типа порошкового образца представлены в.Значения v f варьировались от 0,01 до 0,15, а их средние значения составляли 0,07, 0,08, 0,05 и 0,03 соответственно для бетонов I EC, II EC, I SFA и II SFA. Значения σ f для конкретного типа порошкового образца составляли от 0,3 до 2,2 МПа, а их средние значения составляли 1,1 МПа, 0,9 МПа, 1,5 МПа и 1,2 МПа соответственно для бетонов I EC, II EC. , I ОТВС и II ОТВС. Эти значения были практически такими же, как стандартные отклонения значений средней прочности ( f см ) по отношению к среднемировой ( f CM ), представленные в.Такая сходимость дисперсии предполагает, что различия в результатах, представленных в, были вызваны скорее разбросом результатов, чем каким-либо эффектом масштаба. Очень низкие значения v f доказали превосходную структурную однородность испытанных легких бетонов, особенно композитов с агломерированным заполнителем золы-уноса. Результаты также указали на возможность использования даже самых маленьких образцов ядра (в пределах рассматриваемого диапазона) для оценки прочности в легкой бетонной конструкции без увеличения количества образцов.

Взаимосвязь между объемом образца с сердечником ( V ) и коэффициентом вариации прочности, определенным для конкретных типов образцов ( V f ) (влажное состояние).

Результаты анализа соотношений средних значений прочности, определенных на эталонном порошковом цилиндре (d = 150 мм и h = 300 мм) и на порошковых образцах определенного типа (R = f см, сердцевина 300: 150 / f см, в: г сердцевина ) представлены в. Они подтвердили гораздо лучшую структурную однородность испытанных легких бетонов, особенно из спеченного заполнителя золы-уноса, по сравнению с обычными или тяжелыми бетонами.Для всех LWAC стандартный коэффициент длины жилы ( f см 300: 150 жил / f см 150: 150 жил ) был значительно выше (в среднем 0,98), чем 0,82, принятый EN 13791 [41] для нормального -тяжелые и тяжеловесные бетоны. Для обеих серий спеченных бетонов из золы-уноса (I FSA и II FSA) среднее значение коэффициента прочности R равнялось точно 1,00, и никакого влияния гибкости или диаметра сердцевины не наблюдалось. Это означает, что в случае таких бетонов тип образцов с сердечником может считаться не имеющим отношения к результатам прочности на месте.Однако в случае керамзитобетонов интерпретация результатов по соотношению прочности была не столь однозначной. Среднее значение отношения составляло 1,06 и 0,94 для бетона I EC и II EC, соответственно, и в целом разброс значений отношения был намного больше по сравнению с бетоном с ОТВС. Чтобы определить достоверное значение коэффициента прочности для таких слабых бетонов, необходимо провести дополнительные проверочные испытания.

Соотношение R = f см, 300: 150 сердцевина / f см, сердцевина h: d (влажное состояние).

Следует отметить, что состояние образца с сердечником, которое не указано в EN 12504-1 [43] и не принимается во внимание в EN 13791 [41], может в определенной мере повлиять на оцененный класс прочности бетона. Между тем, исследование также показало, что высушенные в печи образцы с сердечником показали более высокую прочность на 5% и прибл. Для бетонов SFA и EC, соответственно, на 8%, чем для бетонов, испытанных во влажном состоянии. Снижение прочности влажных образцов, вероятно, было вызвано в большей степени значительным содержанием влаги, чем более ранним возрастом испытаний (сухим образцам для высыхания требовалось еще семь дней помимо стандартного возраста 28 дней).

Несмотря на продемонстрированное отсутствие эффекта размера и формы в испытаниях на прочность на сжатие легких бетонов, наблюдались явные различия между результатами, полученными для формованных образцов и образцов с сердечником. Соотношение значений прочности, определенных для цилиндров с сердечником и формованных f см , сердечника / f см , цилиндров , для бетонов составило 0,91, 0,75, 0,88 и 0,91 соответственно. I EC, II EC, I ОТВС и II ОТВС.Наименьшее значение коэффициента в случае бетона II EC может быть результатом его наименьшей однородности по сравнению с другими бетонами. Как уже упоминалось ранее, такой бетон, сделанный из очень слабого заполнителя и прочной цементной матрицы, использовался в этом исследовании только для сравнительных целей и не должен применяться на практике. Другие бетоны (I EC, I SFA и II SFA), которые были примерами типичных LWAC, используемых для изготовления или строительства сборных элементов, показали более высокое соотношение f см , сердцевина / f см , цилиндр (в среднем 0.90), чем предполагается в стандарте (0.85). Как правило, из-за различных технологий производства LWAC и различных типов конструкции из легких заполнителей, применяемых в мире, значение коэффициента 0,85 может быть сохранено в общих рекомендациях по оценке прочности бетона в конструкции или сборном элементе. Тем не менее, в случае легковесного бетона с более однородной структурой следует учитывать завышение класса прочности LWAC, встроенного в конструкцию или сборные элементы.Таким образом, стандартная рекомендация о формировании положений, действующих в месте использования LWAC, была полностью оправдана. Для испытанных LWAC, за исключением бетона II EC, «эффект стены» и разная температура отверждения, по-видимому, были доминирующими факторами, определяющими разницу между прочностями, указанными для образцов с сердечником и формованных образцов. Состояние влажности бетона (из-за внутреннего твердения) и склонность к микротрещинам в результате процесса сверления или высокой температуры, вероятно, имели здесь меньшее значение, чем в случае NWAC.

5. Выводы

Проведенная программа исследований и анализ полученных результатов не выявили эффекта масштаба при испытаниях прочности на сжатие, определенных на порошковых образцах четырех типов легких бетонов с закрытой структурой. Ни стройность, ни диаметр сердечника, похоже, не повлияли на результаты прочности. Этот факт следует объяснить несравненно лучшей структурной однородностью исследуемых легких бетонов по сравнению с нормальными.Более того, здесь не подтвердилось правило большего разброса результатов испытаний на прочность образцов меньшего объема. Это означает, что, в отличие от NWAC, можно было надежно оценить прочность на сжатие таких типов LWAC, встроенных в конструкцию или сборные элементы, используя даже самые маленькие сердечники (в пределах рассматриваемого диапазона) без увеличения количества образцов. Кроме того, в случае таких бетонов казалось достаточным использовать стержни с гибкостью 1,0 вместо требуемых 2.0, если результаты испытаний на прочность должны относиться к формованным цилиндрам 2: 1. Тем не менее, следует предположить, что в случае легкого бетона, приготовленного с изначально насыщенным заполнителем или с частицами заполнителя из более плотного и / или более гладкого внешнего сланца, размерный эффект может быть более выраженным. Следовательно, количественные результаты этого исследования не могут быть обобщены для всех типов LWAC.

Несмотря на продемонстрированное отсутствие эффекта масштаба при испытаниях легких бетонов на сжатие, наблюдались явные различия между результатами, полученными на формованных образцах и образцах с сердечником.Однако для испытанных LWAC, за исключением бетона II EC, соотношение f см , сердечника / f см , цилиндров было немного выше (в среднем 0,90), чем 0,85 предполагается в стандартах. В результате применение стандартного соотношения для оценки прочности на сжатие существующей конструкции из таких типов LWAC может привести к завышению оценки. Таким образом, стандартная рекомендация о формировании положений, действующих в месте использования LWAC, была полностью оправдана.

Анализ зависимости между прочностью, указанной на стандартных формованных образцах, показал, что из-за гораздо менее выраженного масштабного эффекта LWAC по сравнению с NWAC оценка прочности легкого заполнителя, определенная на стандартных цилиндрах, может привести к более высокому классу прочности, чем в том случае, когда он определяется на стандартных кубиках.

Благодарности

Автор благодарит англ. Ян Шпак и англ. Maciej Rajtar за техническую поддержку в проведенных исследованиях.

Финансирование

Это исследование не получало внешнего финансирования.

Конфликт интересов

Автор заявляет об отсутствии конфликта интересов.

Список литературы

1. Валор Р. Расчет значений коэффициента теплопередачи для пустотелой бетонной кладки. Concr. Int. 1980; 2: 40–63. [Google Scholar] 2. ACI 213 R-03. Руководство для конструкционного легкого заполнителя. ACI; Фармингтон-Хиллз, Мичиган, США: 2003. [Google Scholar] 3. Невилл А. Свойства бетона. 5-е изд. Pearson Education Limited; Лондон, Великобритания: 2011.[Google Scholar] 4. Шпицнер Дж. Обзор развития легких агрегатов — история и реальный обзор; Материалы Конгресса по конструкционным легким заполнителям; Сандефьорд, Норвегия. 20-24 июня 1995 г .; С. 13–21. [Google Scholar] 5. Чандра С., Бернтссон Л. Легкий заполненный бетон. Публикации Нойеса; Нью-Йорк, Нью-Йорк, США: 2003. [Google Scholar] 6. Кларк Дж. Конструкционный легкий бетон. Чепмен и Холл; Глазго, Великобритания: 1993. [Google Scholar] 7. Бентур А., Игараси С., Ковлер К. Предотвращение автогенной усадки высокопрочного бетона за счет внутреннего твердения с использованием влажных легких заполнителей. Джем. Concr. Res. 2001; 31: 1587–1591. DOI: 10.1016 / S0008-8846 (01) 00608-1. [CrossRef] [Google Scholar] 8. Куссон Д., Хоогевен Т. Внутреннее отверждение высокоэффективного бетона с предварительно пропитанным мелким легким заполнителем для предотвращения растрескивания при автогенной усадке. Джем. Конц. Res. 2008. 38: 757–765. DOI: 10.1016 / j.cemconres.2008.02.001. [CrossRef] [Google Scholar] 9. Жутовский С., Ковлер К., Бентур А. Эффективность легких заполнителей для внутреннего твердения высокопрочного бетона с целью устранения автогенной усадки. Матер. Struct. 2002; 35: 97–101. DOI: 10.1007 / BF02482108. [CrossRef] [Google Scholar] 10. Чиа К., Чжан М. Водопроницаемость и проницаемость высокопрочного легкого заполнителя для хлоридов. Джем. Concr. Res. 2002. 32: 639–645. DOI: 10.1016 / S0008-8846 (01) 00738-4. [CrossRef] [Google Scholar] 11. Богас Дж., Реал С. Обзор сопротивления карбонизации и проникновению хлоридов в конструкционный легкий заполненный бетон.Материалы. 2019; 12: 3456. DOI: 10.3390 / ma12203456. [Бесплатная статья PMC] [PubMed] [CrossRef] [Google Scholar] 12. Лю X., Чиа К., Чжан М. Водопоглощение, проницаемость и сопротивление проникновению хлорид-ионов в легкий бетон из заполнителя. Констр. Строить. Матер. 2011; 25: 335–343. DOI: 10.1016 / j.conbuildmat.2010.06.020. [CrossRef] [Google Scholar] 13. Ло Т., Танг В., Надим А. Сравнение карбонизации легкого бетона с бетоном нормального веса при аналогичных уровнях прочности. Констр. Строить.Матер. 2008; 22: 1648–1655. DOI: 10.1016 / j.conbuildmat.2007.06.006. [CrossRef] [Google Scholar] 15. Домагала Л., Хагер И. Влияние высокой температуры на прочность на сжатие конструкционного легкого бетона. Джем. Lime Concr. 2012; 3: 138–143. [Google Scholar] 16. Курсио Ф., Галеота Д., Галло А. Высокоэффективный легкий бетон для производства сборного железобетона. Спец. Publ. 1998. 179: 389–406. [Google Scholar] 17. Невилл А. Агрегатная связь и модуль упругости бетона. ACI Mater.J. 1997; 94: 71–74. [Google Scholar] 18. Чжан М., Гьёрв О. Механические свойства высокопрочного легкого бетона. ACI Mater. J. 1991; 88: 240–247. [Google Scholar] 19. Домагала Л. Исследование влияния типа и прочности бетона на взаимосвязь между начальным и стабилизированным секущими модулями упругости. Твердотельный Феном. 2016; 258: 566–569. DOI: 10.4028 / www.scientific.net / SSP.258.566. [CrossRef] [Google Scholar] 20. Домагала Л. Модификация свойств конструкционного легкого бетона стальной фиброй.J. Civ. Англ. Manag. 2011; 17: 36–44. DOI: 10.3846 / 130.2011.553923. [CrossRef] [Google Scholar] 21. Базант З., Планас Дж. Разрушение и размерный эффект в бетоне и других квазихрупких материалах. CRC Press; Бока-Ратон, Флорида, США: 1997. [Google Scholar] 22. Базант З.П., Панг С.Д., Вореховски М., Новак Д., Пукл Р. Статистический размерный эффект в квазихрупких материалах: вычисление и теория экстремальных значений; Материалы 5-й Международной конференции по механике разрушения бетонных конструкций; Вейл, Колорадо, США.12–16 апреля 2014 г .; С. 189–196. [Google Scholar] 23. Токай М., Оздемир М. Форма и размер образца влияют на прочность на сжатие более прочного бетона. Джем. Concr. Res. 1997. 27: 1281–1289. DOI: 10.1016 / S0008-8846 (97) 00104-X. [CrossRef] [Google Scholar] 24. Ли М., Хао Х., Ши Ю., Хао Ю. Форма и размер образца влияют на прочность бетона на сжатие при статических и динамических испытаниях. Констр. Строить. Матер. 2018; 161: 84–93. DOI: 10.1016 / j.conbuildmat.2017.11.069. [CrossRef] [Google Scholar] 25.Муциаччиа Г., Розати Г., Ди Луцио Г. Разрушение при сжатии и размерный эффект в цилиндрических образцах из простого бетона. Констр. Строить. Матер. 2017; 137: 185–194. DOI: 10.1016 / j.conbuildmat.2017.01.057. [CrossRef] [Google Scholar] 26. Нгуен Д., Тай Д., Нго Т., Тран Т., Нгуен Т. Модуль Вейбулла от размерного эффекта высокоэффективного фибробетона при сжатии и изгибе. Констр. Строить. Матер. 2019; 226: 743–758. DOI: 10.1016 / j.conbuildmat.2019.07.234. [CrossRef] [Google Scholar] 27. Ань М., Чжан Л., Yi Q. Размерное влияние на прочность реактивного порошкового бетона на сжатие. J. China Univ. Мин. Technol. 2008. 18: 279–282. DOI: 10.1016 / S1006-1266 (08) 60059-0. [CrossRef] [Google Scholar] 28. Чжоу Дж., Би Ф., Ван З., Чжан Дж. Экспериментальное исследование влияния размера на механические свойства армированного углеродным волокном полимера (углепластика) в замкнутых бетонных круглых образцах. Констр. Строить. Матер. 2016; 127: 643–652. DOI: 10.1016 / j.conbuildmat.2016.10.039. [CrossRef] [Google Scholar] 29. Ву К., Вайс Дж., Пле О., Амитрано Д., Вандембрук Д. Пересмотр статистических размерных эффектов на разрушение разнородных материалов при сжатии с особым вниманием к бетону. JMFS. 2018; 121: 47–70. DOI: 10.1016 / j.jmps.2018.07.022. [CrossRef] [Google Scholar] 30. Краутхаммер Т., Эльфахал М., Лим Дж., Оно Т., Беппу М., Марксет Г. Размерный эффект для высокопрочных бетонных цилиндров, подвергшихся осевому удару. Int. J. Impact Eng. 2003. 28: 1001–1016. DOI: 10.1016 / S0734-743X (02) 00166-5. [CrossRef] [Google Scholar] 31. Дехестани М., Никбин И., Асадоллахи С. Влияние формы и размера образца на прочность на сжатие самоуплотняющегося бетона (SCC) Constr. Строить. Матер. 2014; 66: 685–691. DOI: 10.1016 / j.conbuildmat.2014.06.008. [CrossRef] [Google Scholar] 32. Никбин И., Дехестани М., Бейги М., Резвани М. Влияние размера куба и направления размещения на прочность на сжатие самоуплотняющегося бетона. Констр. Строить. Матер. 2014; 59: 144–150. DOI: 10.1016 / j.conbuildmat.2014.02.008. [CrossRef] [Google Scholar] 33. Манич Н., Тарич М., Шерифи В., Ристовски А. Анализ существования размерного эффекта на различных типах бетона. Процедуры Technol. 2015; 19: 379–386. DOI: 10.1016 / j.protcy.2015.02.054. [CrossRef] [Google Scholar] 34. дель Визо Дж., Кармона Дж., Руис Г. Влияние формы и размера на прочность на сжатие высокопрочного бетона. Джем. Concr. Res. 2008. 38: 386–395. DOI: 10.1016 / j.cemconres.2007.09.020. [CrossRef] [Google Scholar] 35. Торенфедт Э. Критерии проектирования легкого заполнителя бетона; Материалы Конгресса по конструкционным легким заполнителям; Сандефьорд, Норвегия.20-24 июня 1995 г .; С. 720–732. [Google Scholar] 36. Домагала Л. Размерный эффект при испытании легкого заполнителя бетона на прочность на сжатие. Tech. J. 2004; 14-B: 27–38. (На польском языке) [Google Scholar] 37. Вахшоури Б., Неджади С. Размерный эффект и фактор возраста в механических свойствах легкого бетона BST. Констр. Строить. Матер. 2018; 177: 63–71. DOI: 10.1016 / j.conbuildmat.2018.05.115. [CrossRef] [Google Scholar] 38. EN 206: 2013. Конкретный. Спецификация, характеристики, производство и соответствие. Европейский комитет по стандартизации; Брюссель, Бельгия: 2013.[Google Scholar] 39. Сим Дж., Ян К., Ким Х., Чой Б. Влияние размера и формы на прочность на сжатие легкого бетона. Констр. Строить. Матер. 2013; 38: 854–864. DOI: 10.1016 / j.conbuildmat.2012.09.073. [CrossRef] [Google Scholar] 40. Сим Дж., Ян К., Чон Дж. Влияние размера заполнителя на размерный эффект при сжатии в зависимости от типа бетона. Констр. Строить. Матер. 2013; 44: 716–725. DOI: 10.1016 / j.conbuildmat.2013.03.066. [CrossRef] [Google Scholar] 41. EN 13791: 2019. Оценка прочности на сжатие конструкций и сборных железобетонных конструкций на месте.Европейский комитет по стандартизации; Брюссель, Бельгия: 2019. [Google Scholar] 42. EN 12390-2: 2019. Испытания затвердевшего бетона. Часть 2: Изготовление и отверждение образцов для испытаний на прочность. Европейский комитет по стандартизации; Брюссель, Бельгия: 2019 г. [Google Scholar] 43. EN 12504-1: 2019. Испытание бетона в конструкциях. Порошковые образцы. Взятие, изучение и тестирование на сжатие. Европейский комитет по стандартизации; Брюссель, Бельгия: 2019 г. [Google Scholar] 44. EN 12390-7: 2019. Испытания затвердевшего бетона.Часть 7: Плотность затвердевшего бетона. Европейский комитет по стандартизации; Брюссель, Бельгия: 2019. [Google Scholar] 45. EN 12390-3: 2019. Испытания затвердевшего бетона. Часть 3: Прочность образцов для испытаний на сжатие. Европейский комитет по стандартизации; Брюссель, Бельгия: 2019. [Google Scholar] 46. Домагала Л. Влияние пористого заполнителя на микроструктуру межфазной переходной зоны в легком бетоне. Джем. Lime Concr. 2011; 2: 101–114. [Google Scholar]

Влияние летучей золы, донной золы и легкого вспученного глиняного заполнителя на бетон

Разработка новых методов укрепления бетона разрабатывается уже несколько десятилетий.Развивающиеся страны, такие как Индия, используют обширные армированные строительные материалы, такие как летучая зола, зольный остаток и другие ингредиенты при строительстве RCC. В строительной отрасли большое внимание уделяется использованию летучей золы и зольного остатка в качестве заменителя цемента и мелкого заполнителя. Кроме того, для облегчения веса бетона был введен легкий керамзит вместо крупного заполнителя. В данной статье представлены результаты работ, выполненных в режиме реального времени для формирования легкого бетона, состоящего из летучей золы, зольного остатка и легкого керамзитового заполнителя в качестве минеральных добавок.Экспериментальные исследования бетонной смеси М 20 проводят путем замены цемента летучей золой, мелкого заполнителя шлаком и крупного заполнителя легким керамзитом из расчета 5%, 10%, 15%, 20%, 25. %, 30% и 35% в каждой смеси, их прочность на сжатие и прочность на разрыв бетона обсуждались в течение 7, 28 и 56 дней, а прочность на изгиб обсуждалась в течение 7, 28 и 56 дней в зависимости от оптимальной дозировки. замены бетона по прочности на сжатие и раздельному разрыву.

1. Введение

Бетон с высокими эксплуатационными характеристиками указывает на исключительную форму бетона, наделенную удивительной производительностью и прочностью, которые не требуют периодической оценки на регулярной основе с помощью традиционных материалов и стандартных методов смешивания, укладки и отверждения [1] . Обычный портландцемент (OPC) занял незавидную и непобедимую позицию в качестве важного материала в производстве бетона и тщательно выполняет свои задуманные обязательства в качестве необычного связующего для соединения всех собранных материалов.Для достижения этой цели остро необходимо сжигание гигантской меры топлива и гниение известняка [2]. Некоторые марки обычного портландцемента (OPC) доступны по индивидуальному заказу, чтобы соответствовать классификации конкретного национального кода. В этом отношении Бюро индийских стандартов (BIS) прекрасно справляется с задачей классификации трех отдельных классов OPC, например, 33, 43 и 53, которые всегда широко использовались в строительной отрасли [3]. Прочность, стойкость и различные характеристики бетона зависят от свойств его ингредиентов, пропорции смеси, стратегии уплотнения и различных мер контроля при укладке, уплотнении и отверждении [4].Бетон, содержащий отходы, может способствовать управляемому качеству строительства и способствовать развитию области гражданского строительства за счет использования промышленных отходов, минимизации использования природных ресурсов и производства более эффективных материалов [5]. В портландцементном бетоне используется летучая зола, когда характеристики потери при возгорании (LOI) находятся в пределах 6%. Летучая зола содержит кристаллические и аморфные компоненты вместе с несгоревшим углеродом. Он охватывает различные размеры несгоревшего углерода, который может достигать 17% [6].Летучая зола часто упоминается как прудовая зола, и в течение длительного времени вода может стекать. Обе методики позволяют сбрасывать летучую золу на свалки в открытом грунте. Химический состав летучей золы по-прежнему изменяется в зависимости от типа угля, используемого для сжигания, условий горения и производительности откачки устройства контроля загрязнения воздуха [7]. Для воздействия летучей золы и замены всего вытоптанного песчаника на бетонные и мраморные разбрасыватели использовались сборные бетонные блокирующие квадраты [8].Принимая во внимание мощность бетонных зданий, современная бетонная методология устанавливает экстраординарные меры для снижения температуры на высшем уровне и разницы температур за счет использования материалов с минимальным уровнем выделения тепла, чтобы избежать или снова снизить тепловое расщепление, что приведет к предотвращению теплового расщепления. разложение бетона [9]. Производство бетона осуществляется при чрезвычайно высоких и незаметно низких температурах бетона, чтобы понять удобоукладываемость и качество сжатия [10].Статистическая модель и кинетические свойства изгиба, разрыва при растяжении, а также модуль гибкости по устойчивости к сжатию проистекают из неоправданного коэффициента корреляции [11]. Известно, что бетон, созданный из мельчайших общих и превосходных пустот, обогащен блестящими знаниями в области исключения материалов [12]. В Индии энергетическое подразделение, сосредоточенное на угольных тепловых электростанциях, производит колоссальное количество летучей золы, оцениваемое примерно в 11 крор тонн в год.Расход летучей золы оценивается примерно в 30% для обеспечения различных инженерных свойств [13]. При зажигании угля для подачи энергии в котел выделяется около 80% несгоревшего материала или золы, которая уносится с дымовыми газами и улавливается и утилизируется в виде летучей золы. Остаточные 20% золы помогают высушить базовую золу [14]. В момент сжигания пылевидного угля в котле с сухим днищем от 80 до 90% несгоревшего материала или золы уносится с дымовыми газами, улавливается и восстанавливается в виде летучей золы.Остаточные 10–20% золы предназначены для сушки шлаков, песка, материала, который собирается в заполненных водой контейнерах у основания печи [15]. Зольный шлак в бетоне создается методом фракционного, почти агрегатного и тотального замещения мелкозернистых заполнителей в бетоне [16]. С другой стороны, из легкого бетона неудобно относить корпус к уникальной категории материалов. Однако у LWC (легкого бетона) четкие края, и падение общих расходов, вызванное более низкими статическими нагрузками, постоянно перекрывается повышенными производственными затратами [17].Фактически, легкий бетон стал приятным фаворитом по сравнению со стандартным бетоном с точки зрения множества непревзойденных характеристик. Снижение собственного веса обычно приводит к сокращению производственных затрат [18]. Самоуплотняющийся бетон на заполнителях с нормальным весом (SCNC) должен стать фаворитом при разработке. Рост затрат на строительство SCLC положительно согласуется с ростом расходов на SCNC [19]. Собственный вес бетона из легкого заполнителя оценивается примерно на 15% ~ 30% легче, чем у стандартного бетона, что в достаточной степени соответствует механическим характеристикам, которые требуются для дорожной опоры при указанной степени плотности [20].Растущее использование легкого бетона (LWC) привело к необходимости производства искусственного легкого бетона в целом, что может быть выполнено с помощью методики сборки холодным склеиванием. Производство искусственных легких заполнителей методом холодного склеивания требует гораздо меньших затрат энергии по сравнению со спеканием [21]. Легкий бетон, изготовленный из натуральных или искусственных легких заполнителей, доступен во многих частях мира. Его можно использовать как часть создания бетона с широким диапазоном удельного веса и подходящего качества для различных применений [22].Бетон из легких заполнителей повышает его эффективность, предотвращая близлежащие повреждения, вызванные баллистической нагрузкой. Более низкий модуль упругости и более высокий предел деформации при растяжении обеспечивают легкий бетон, противоположный стандартному бетону, с превосходной ударопрочностью [23]. Строители все чаще рекомендуют легкий бетонный материал для достижения приемлемого улучшения из-за его высоких прочностных и термических свойств [24]. Сила адгезии достигается за счет прочности связующего и сцепления агрегатов, которые постоянно сосредоточены вокруг угловатости, ровности и протяженности [25].Легкий керамзитовый заполнитель (LECA), как правило, включает крошечные, легкие, вздутые частицы обожженной глины. Сотни и тысячи крошечных заполненных воздухом углублений успешно наделяют LECA своей безупречной прочностью и теплоизоляционными качествами. Считается, что среднее водопоглощение всего LECA (0–25 мм) связано с 18 процентами объема в состоянии насыщения в течение 3 дней. Обычный портландцемент (OPC) частично заменяется летучей золой, мелкий заполнитель заменяется зольным остатком, а крупнозернистый заполнитель заменяется легким керамзитом (LECA) по весу 5%, 10%, 15%, 20%, 25 %, 30% и 35% по отдельности.Прочность на сжатие, прочность на разрыв и прочность на изгиб успешно оцениваются с помощью определенных входных значений при одновременном исследовании.

2. Экспериментальная программа

Целью работы является оценка прочности на сжатие (CS), прочности на разрыв (STS) и прочности на изгиб (FS) бетона. В этой бетонной смеси обычный портландцемент () заменяется летучей золой, мелкий заполнитель заменяется зольным остатком, а крупный заполнитель заменяется легким керамзитом (LECA) массой 5%, 10%, 15%. , 20%, 25%, 30% и 35% соответственно.Эти материалы следует добавлять для увеличения прочности цемента. В экспериментальном исследовании бетонный куб или цилиндр используется для анализа свойств бетона со всеми материалами. Каждый вес (5%, 10%, 15%, 20%, 25%, 30% или 35%) материала проводил испытание в течение 7 дней, 28 дней и 56 дней. Параметрами, участвующими в оценке характеристик бетона, являются прочность на сжатие (CS), прочность на разрыв (STS) и прочность на изгиб (FS), которые достигаются в ходе экспериментов в реальном времени.Затем определение прочности на изгиб обсуждалось в течение 7, 28 и 56 дней в зависимости от нагрузки для оптимальной дозировки замены по прочности на сжатие и разделенной прочности бетона на растяжение.

2.1. Используемые материалы

В этом разделе перечислены названия материалов, использованных в данном исследовании, и их характеристики. Ресурсы: обычный портландцемент, летучая зола, зольный остаток, мелкий заполнитель, крупный заполнитель и легкий керамзитовый заполнитель (LECA).

2.1.1. Обычный портландцемент

Обычный портландцемент — это основная форма цемента, где 95% клинкера и 5% гипса, который добавляется в качестве добавки для увеличения времени схватывания цемента до 30 минут или около того.Гипс контролирует время начального схватывания цемента. Если гипс не добавлен, цемент затвердеет, как только вода будет добавлена ​​в цемент. Различные сорта (33, 43,53) OPC были классифицированы Бюро индийских стандартов (BIS). Его производят в больших количествах по сравнению с другими типами цемента, и он превосходно подходит для использования в общем бетонном строительстве, где отсутствует воздействие сульфатов в почве или грунтовых водах. В этом исследовании цемент () имеет удельный вес 3.15, а также время начального и окончательного схватывания цемента 50 и 450 минут.

2.1.2. Летучая зола

Самый распространенный тип угольных печей в электроэнергетике, около 80% несгоревшего материала или золы уносится с дымовыми газами, улавливается и восстанавливается в виде летучей золы. Летучая зола была собрана на тепловой электростанции Тотукуди, Тамил Наду, Индия. Растущая нехватка сырья и острая необходимость защиты окружающей среды от загрязнения подчеркнули важность разработки новых строительных материалов на основе промышленных отходов, образующихся на угольных ТЭС, которые создают неуправляемые проблемы утилизации из-за их потенциального загрязнения окружающей среды. .Поскольку стоимость утилизации летучей золы продолжает расти, стратегии утилизации летучей золы имеют решающее значение с экологической и экономической точек зрения. В качестве исходных материалов используются две новые области переработки угольной летучей золы, как показано на Рисунке 1 (а).

2.1.3. Нижняя зола

Оставшиеся 20% несгоревшего материала собираются на дне камеры сгорания в бункере, заполненном водой, и удаляются с помощью водяных струй под высоким давлением в отстойник для обезвоживания и восстанавливаются в виде зольного остатка. как показано на рисунке 1 (b).Зольный остаток угля был получен с тепловой электростанции Thoothukudi, Тамил Наду, Индия. Летучая зола была получена непосредственно из нижней части электрофильтра в мешок из-за ее порошкообразной и пыльной природы, в то время как зола угольного остатка транспортируется со дна котла в зольную емкость в виде жидкой суспензии, где была собрана проба. Зола более легкая и хрупкая, это темно-серый материал с размером зерна, аналогичным песчанику.

2.1.4. Мелкозернистый заполнитель

В соответствии с индийскими стандартами природный песок представляет собой форму кремнезема () с максимальным размером частиц 4.75 мм и использовался как мелкий заполнитель. Минимальный размер частиц мелкого заполнителя составляет 0,075 мм. Он образуется при разложении песчаников в результате различных атмосферных воздействий. Мелкозернистый заполнитель предотвращает усадку раствора и бетона. Удельный вес и модуль крупности крупнозернистого заполнителя составляли 2,67 и 2,3.

Мелкий заполнитель — это инертный или химически неактивный материал, большая часть которого проходит через сито 4,75 мм и содержит не более 5 процентов более крупного материала. Его можно классифицировать следующим образом: (а) природный песок: мелкий заполнитель, который является результатом естественного разрушения горных пород и отложился ручьями или ледниками; (б) щебневый песок: мелкий заполнитель, полученный при дроблении твердого камня; (в) ) щебень из гравийного песка: мелкий заполнитель, полученный путем измельчения природного гравия.

Уменьшает пористость конечной массы и значительно увеличивает ее прочность. Обычно в качестве мелкого заполнителя используется натуральный речной песок. Однако там, где природный песок экономически недоступен, в качестве мелкого заполнителя можно использовать мелкий щебень.

2.1.5. Крупный заполнитель

Крупный заполнитель состоит из природных материалов, таких как гравий, или является результатом дробления материнской породы, включая природную породу, шлаки, вспученные глины и сланцы (легкие заполнители) и другие одобренные инертные материалы с аналогичными характеристиками. с твердыми, прочными и прочными частицами, соответствующими особым требованиям этого раздела.

В соответствии с индийскими стандартами измельченный угловой заполнитель проходит через сито IS 20 мм и полностью удерживает сито IS 10 мм. Удельный вес и модуль крупности крупного заполнителя составляли 2,60 и 5,95.

2.1.6. Легкий наполнитель из вспененной глины (LECA)

LECA показан на Рисунке 1 (c). он имеет сильную стойкость к щелочным и кислотным веществам, а pH около 7 делает его нейтральным в химической реакции с бетоном. Легкость, изоляция, долговечность, неразложимость, структурная стабильность и химическая нейтральность собраны в LECA как лучшем легком заполнителе для полов и кровли.Размер заполнителя составляет 10 мм, а максимальная плотность меньше или равна 480 кг / м 3 . LECA состоит из мелких, прочных, легких и теплоизолирующих частиц обожженной глины. LECA, который является экологически чистым и полностью натуральным продуктом, не поддается разрушению, негорючий и невосприимчив к воздействию сухой, влажной гнили и насекомых. Легкий бетон обычно подразделяется на два типа: газобетон (или пенобетон) и бетон на легких заполнителях.Газобетон имеет очень легкий вес и низкую теплопроводность. Однако процесс автоклавирования необходим для получения определенного уровня прочности, что требует специального производственного оборудования и потребляет очень много энергии. Напротив, бетон из легких заполнителей, который производится без процесса автоклавирования, имеет более высокую прочность, но показывает более высокую плотность и более низкую теплопроводность бетона.

2.1.7. Conplast Admixture SP430 (G)

Conplast SP430 (G) используется там, где требуется высокая степень удобоукладываемости и ее удержания, когда вероятны задержки в транспортировке или укладке, или когда высокие температуры окружающей среды вызывают быстрое снижение осадки.Это облегчает производство бетона высокого качества. Conplast SP430 (G) соответствует тому факту, что он был специально разработан для обеспечения высокого снижения воды до 25% без потери удобоукладываемости или для производства высококачественного бетона с пониженной проницаемостью. Когезия улучшается за счет диспергирования частиц цемента, что сводит к минимуму сегрегацию и улучшает качество поверхности. Оптимальная дозировка лучше всего определяется испытаниями бетонной смеси на объекте, что позволяет измерить эффекты удобоукладываемости, увеличения прочности или уменьшения цемента.Этот тип ингредиентов добавляется в бетон для придания ему определенных улучшенных качеств или для изменения различных физических свойств в его свежем и затвердевшем состоянии. Оптимальная дозировка цемента 0,6–1,5 л / 100 кг. Добавление добавки может улучшить бетон в отношении его прочности, твердости, удобоукладываемости, водостойкости и так далее.

2.1.8. Структурные характеристики балки

Структурные характеристики балки — это диаметр верхней арматуры 8 мм, диаметр нижней арматуры 12 мм и хомуты 6 мм (рис. 2).Общая длина балки, используемой для отклонения, составляет 1 метр. Эта спецификация используется в бетонной конструкции, и весь процесс выполняется в спецификации бетона.


2.1.9. Конструкционный легкий бетон

Бетон изготавливается из легкого грубого заполнителя. Легкие заполнители обычно требуют смачивания перед использованием для достижения высокой степени насыщения. Основное использование конструкционного легкого бетона — уменьшить статическую нагрузку на бетонную конструкцию.В обычном бетоне различная градация заполнителей влияет на необходимое количество воды. Добавление некоторых мелких заполнителей приводит к увеличению необходимого количества воды. Это увеличение воды снижает прочность бетона, если одновременно не увеличивается количество цемента. Количество крупного заполнителя и его максимальный размер зависят от требуемой удобоукладываемости бетонной смеси. Также в легком бетоне этот результат существует среди градации, требуемого количества воды и полученной прочности бетона, но есть и другие факторы, на которые следует обратить внимание.В большинстве легких заполнителей по мере увеличения размера заполнителя прочность и объемная плотность заполнителя уменьшаются. Использование легкого заполнителя очень большого размера с меньшей прочностью приводит к снижению прочности легкого бетона; поэтому максимальный размер легкого заполнителя должен быть ограничен максимум 25 мм.

3. Методология

Пропорция бетонной смеси для марки M 20 была получена на основе рекомендаций согласно индийским стандартным техническим условиям (IS: 456-2000 и IS: 10262-1982).В данном исследовании экспериментальное исследование бетонной смеси M 20 проводится путем замены цемента летучей золой, мелкого заполнителя на зольный остаток и крупного заполнителя легким керамзитом (LECA) с долей 5%, 10%, 15%, 20%, 25%, 30% и 35% соответственно. Эти материалы следует добавлять для увеличения прочности цемента. В экспериментальном исследовании бетонный куб или цилиндр используется для анализа свойств OPC со всеми материалами. Их прочность на сжатие и прочность на разрыв бетона обсуждались в течение 7 дней, 28 дней, 56 дней, а прочность на изгиб балки обсуждалась в течение 7, 28 и 56 дней в зависимости от оптимальной дозировки замены по прочности на сжатие и разделенному растяжению. прочность бетона.Как правило, летучая зола и зольный остаток имеют аналогичные физические и химические свойства по сравнению с обычным портландцементом (OPC) и мелким заполнителем, и нет большого количества отклонений для замены друг друга. В этом сценарии легкий керамзитовый заполнитель (LECA) был заменен на крупнозернистый заполнитель на основе его объема, поскольку плотность каждого материала не такая же, как у другого материала, и невозможно заменить его на основе его массы. Для повышения удобоукладываемости бетона добавлен суперпластификатор.

Соотношение бетонной смеси марки М 20 составило 1: 1,42: 3,3. Контролируемый бетон марки M 20 был изготовлен с заменой 0% летучей золы, зольного остатка и легкого керамзитового заполнителя (LECA) в каждой смеси, и их прочность на сжатие и прочность на разрыв бетона обсуждались для 7, 28, и 56 дней, а прочность бетона на изгиб обсуждалась в течение 7, 28 и 56 дней. В связи с этим замена цемента зольной пылью, мелкого заполнителя зольным остатком и крупного заполнителя легким керамзитом (LECA) из расчета 5%, 10%, 15%, 20%, 25%, 30% и Было проведено 35% в каждой смеси, и их прочность на сжатие и прочность на разрыв бетона обсуждались в течение 7 дней, 28, дней, 56 дней, а прочность на изгиб балки в течение 7, 28 и 56 дней зависит от оптимальной дозировки замены при сжатии. прочность и разделенная прочность бетона на растяжение.

Водопоглощение легкого заполнителя со слишком большим количеством пор намного больше, чем у обычных заполнителей (речных заполнителей). Определение степени водопоглощения в агрегатах такого типа затруднено из-за различного количества поглощенной воды. Агрегат LECA производит вращающуюся печь, и из-за его гладкой поверхности водопоглощение заполнителя LECA почти равно или несколько больше, чем у обычного заполнителя; поэтому создание легкой бетонной смеси с заполнителем LECA так же сложно, как и с обычным заполнителем.Для определения количества каждого ингредиента в легкой бетонной смеси (наряду с количеством абсорбированной воды в легких заполнителях, особенно со слишком большими порами с шероховатой и угловатой поверхностью, путем приготовления различных смесей) можно использовать общие методы проектирования: обычная бетонная смесь.

4. Результаты и обсуждение

Из таблицы 1 видно, что для контрольных образцов прочность бетона увеличивается с возрастом. При замене 5% цемента летучей золой, мелкого заполнителя золой и крупного заполнителя LECA прочность на сжатие бетона такая же, как у контрольного бетона.Прочность на разрыв при разделении немного снижается в раннем возрасте, и она достигает той же прочности, что и контрольный бетон, через 56 дней.

918 914 918 914 13,4 2,12

Процентная замена Сухой вес образца (куб) в кг / м 3 Прочность на сжатие бетона (Н / мм 2 ) Сухой вес образца (цилиндр) в кг Разделенная прочность на разрыв бетона (Н / мм 2 )
7 дней 28 дней 56 дней 7 дней 28 дней 56 дней

0 9.45 17,96 26,93 26,95 14,35 1,60 2,54 2,57
5 9,18 17,94 26,89 918 1418 1418 14,97 918 1418 918 14,97 2,59
10 8,89 17,17 25,73 25,76 13,85 1,5 2,32 2,33
15 8.54 16,06 24,09 24,11 13,60 1,44 2,17 2,18
20 8,41 13,41 20,10 20,13
25 8,31 11,32 16,96 16,97 13,15 1,35 2,05 2,06
30 8.24 10,19 15,26 15,23 12,72 1,31 1,96 1,98
35 8,13 9,73 14,57 14,5814
9,73 14,57 14,5814
9,73 1,92

Также наблюдается, что при увеличении замены материала прочность на сжатие и прочность на разрыв при разделении снижаются.Сухой вес образцов куба и цилиндра уменьшается по отношению к большему количеству замен материалов.

4.1. Анализ прочности в зависимости от возраста бетона

В таблице 1 прочность бетона на сжатие и прочность на разрыв бетона при разделении оцениваются с помощью различных процентных соотношений смешивания, применяемых для образования кубического образца сухой массы и цилиндрического образца сухой массы, соответственно, относительно различных дней.

Для бетона марки M 20 учитывается следующее предложенное процентное смешивание для различных образцов сухой массы, примененных к кубической форме, для определения прочности на сжатие по отношению к 7, 28 и 56 дням, таким образом, чтобы образец сухой массы был нанесен на цилиндрической формы по отношению к вышеупомянутым дням для определения прочности на разрыв.Для обоих анализов на упрочнение используется бетон марки М 20 . Из Таблицы 1 заявленные результаты показывают, что процент смешивания увеличивается с уменьшением веса образца, но с точки зрения прочности увеличение процента смешивания, безусловно, снизит достигаемую прочность как на сжатие, так и на разрыв при растяжении, или, с другой стороны, когда смешивание пропорция не участвует в этом (т. е. когда она равна «нулю»), тогда вес образца высок по сравнению с тем, что пропорция смешиваемого образца высока.В обоих случаях для анализа прочности продление дней, безусловно, будет соответствовать прогнозируемой прочности этих анализов, как четко указано в таблице 1.

На рисунке 3 показан анализ прочности на сжатие куба, который проводится в трех этапах последовательных дней 7, 28 и 56. основанный на различных предложениях смешивания. Достигнутые результаты показывают, что процесс, выполненный для последовательных 56-дневных результатов испытаний, показывает лучшую прочность на сжатие при несмешивании, тогда как постепенное увеличение процента смешивания, безусловно, снизит прочность на сжатие образцов во все дни испытаний.В случае веса увеличение процента смешивания снизит вес.


(a) Испытание на сжатие на кубе
(b) Прочность на сжатие
(a) Испытание на сжатие на кубе
(b) Прочность на сжатие

На рис. дней. Более того, в этом анализе прочности на разрыв при раздельном растяжении увеличение процента смешивания, безусловно, уменьшит вес, а также снизит факторы упрочнения.


(a) Прочность на разрыв при разделении на цилиндре
(b) Прочность на разрыв при разделении
(a) Прочность на разрыв при разделении на цилиндре
(b) Прочность на разрыв при разделении

Из двух вышеупомянутых форм (кубической и формы цилиндра) прогнозируемые результаты анализа прочности на сжатие и анализа прочности на разрыв при растяжении практически аналогичны. Давайте посмотрим на экспоненциальное поведение и его уравнение регрессии для прочности на сжатие и прочности на разрыв.

Экспоненциальный график, основанный на процентном соотношении смешивания для прочности на сжатие. Рисунок 5 моделирует экспоненциальную кривую на основе регрессии для анализа прочности на сжатие для различных процентных соотношений смешивания. Из рисунка 5 последовательные испытания образцов в течение 28 и 56 дней дали почти одинаковые значения, тогда как экспоненциальное уравнение прочности на сжатие в таблице 2 находится в диапазоне от 0 до 35 Н / мм 2 во всех четырех оценочных уравнениях, вызывая увеличение процента смешивания, которое будет снизить все четыре параметра сухой массы на 7, 28 и 56 дней.В четырех случаях, кроме сухого веса, производительность снижается, тогда как в случае увеличения сухого веса процент смешивания, безусловно, снижает вес.

7182014

Сведения Экспоненциальная регрессия для прочности на сжатие Экспоненциальная регрессия для разделенной прочности на растяжение

33 Сухой вес
900 дней
28 дней
56 дней


График экспоненциального напряжения для смешивания На фиг. 6 график показывает экспоненциальное изменение сухой массы и для различных последовательных дней, таких как 7, 28 и 56. В этой сухой массе, имеющей предел прочности на разрыв почти, обозначает процент смешивания; в дополнение к этому, экспоненциальная кривая, основанная на всех других последовательных днях, уменьшается, и они почти похожи друг на друга, имея диапазон (0–15) Н / мм 2 .


Таблица 2 включает данные о сухом весе и образце за последовательные дни, такие как 7, 28 и 56 дней, начиная с сухого веса в прочности на сжатие, которая начинается с более низких значений регрессии и продолжает увеличиваться в течение 7, 28 и 56 дней. , тогда как в случае разделения прочности на разрыв значение регрессии сухого веса больше, чем значение регрессии прочности на сжатие.В случае анализа по дням значения регрессии увеличиваются с увеличением количества дней в модели регрессионного анализа прочности на разрыв.

4.2. Анализ прочности на изгиб

Одним из показателей прочности бетона на растяжение является прочность на изгиб. Это расчет неармированной бетонной балки или плиты на устойчивость к разрушению при изгибе (рис. 7). Разработчики дорожных покрытий используют теорию, основанную на прочности на изгиб; поэтому может потребоваться разработка лабораторной смеси, основанная на испытании на прочность на изгиб.В Таблице 3 использованы процентные доли замены цемента летучей золой, мелкого заполнителя золой и крупного заполнителя легким керамзитом (LECA) с коэффициентами 0% и 5%.


Тип образца Сухой вес образца в кг Предел прочности при изгибе балки (Н / мм 2 )
7 дней 28 дней 56 дней

Control 56.25 16,65 24,7 25,83
5% замена 55,13 17,58 26,03 27,13


Результаты из таблицы процент замены цемента летучей золой, мелкого заполнителя золой и крупного заполнителя легким керамзитом (LECA) в размере 5% лучше, чем 0%. Сухой вес образца снижается до 5%, а прочность балки на изгиб в течение 7 дней составляет 1.67% больше 0%, а через 28 дней это 1,52% больше 0%, а через 56 дней 1,46% больше 0%.

В таблице 4 испытательная нагрузка прикладывается от 0 до 86,32 кН с различными интервалами, и мы попытались найти прогиб M 20 в левой, средней и правой части балки. Прогибы на всех уровнях постепенно увеличиваются при увеличении приложенной нагрузки. Среднее отклонение в левой части балки составляет около 1,71 мм, в то время как при среднем отклонении оно составляет около 2,961 мм, а в правой части отклонение составляет около 1.810 мм.


Нагрузка (кН) Прогиб (мм)
(0% замена летучей золы, золы и LECA)
Левый Средний Правый

0 0 0 0
3,92 0,21 0,252 0,194
7.84 0,284 0,324 0,284
11,77 0,42 0,54 0,5
15,69 0,58 0,756 0,631
0,785
23,54 1,031 1,234 1,016
27,46 1,202 1,512 1.198
31,39 1,382 1,962 1,391
35,32 1,594 2,264 1,624
39,24 1,828 2,789,16 1,972
2,936 1,986
47,03 2,052 3,142 2,034
51,01 2.21 3,364 2,198
54,94 2,352 3,724 2,346
58,86 2,41 4,125 2,402
18 2,402
62,78 2,56
66,71 2,625 4,96 2,618
70,63 2,715 5,146 2,708
74.56 2,86 5,476 2,846
78,48 3,14 5,742 3,008
82,41 3,46 5,969 3,396 96833
3,396 3,396 3,396 96833
4,07

В таблице 5 испытательная нагрузка приложена к M 20 от 0 до 86,32 кН с различными интервалами, а прогибы были измерены в левой, средней и правой части балки. .Прогибы на всех уровнях постепенно увеличиваются при увеличении приложенной нагрузки. Среднее отклонение в левой части балки составляет примерно 1,782 мм, в то время как в средней части отклонение составляет примерно 2,960 мм, а в правой части отклонение составляет примерно 1,78 мм. Из Таблицы 5 доказано, что прогиб 5% замены прочности на изгиб выше, чем 0% замены.

0,536

Нагрузка (кН) Прогиб (мм)
(5% замена летучей золы, зольного остатка и LECA)
Левый Средний Правый

0 0 0 0
3.92 0.205 0,25 0,207
7,84 0,29 0,321 0,285
11,77 0,45 0,536 11,77 0,45 0,536 0,458
0,458 918
0,536 0,535
19,62 0,81 1,02 0,793
23,54 1,037 1,231 1,037
27.46 1,198 1,507 1,20
31,39 1,375 1,96 1,379
35,32 1,584 2,265 1,582 2,265 1,582
1,816
43,16 2,05 2,937 2,02
47,03 2,07 3,14 2,05
51.01 2,15 3,361 2,17
54,94 2,38 3,72 2,38
58,86 2..46 4,118 2..47,78 918 918
2,56 4,587 2,54
66,71 2,61 4,95 2,615
70,63 2,69 5,143 2,69
74.56 2,84 5,472 2,838
78,48 3,11 5,74 3,115
82,41 3,4 5,965 3,4
4,05

На рисунке 8, M 20 0% и 5% замена летучей золы, шлака и LECA проанализированы для проверки их прочности на изгиб.На графике четко указано, что при увеличении нагрузки прогиб также увеличивается на 0% и 5% среди (23), а средние значения прогиба аналогичны как 0%, так и 5%, но 0% они немного выше 5%. , тогда как на этом графике есть сумма всех уровней прогиба в 1 единице. Например, здесь тот факт, что рассматриваемая длина балки составляет 1 метр для экспериментального исследования путем приложения «» единицы нагрузки, вызовет величину отклонения в обоих случаях (0% и 5%) в отношении увеличения нагрузка, чтобы обязательно увеличить прогиб.


5. Заключение

В документе показана максимально возможная прочность бетона LECA, отмечена передовая технология производства легкого бетона. Результаты показывают, что замена 5% цемента летучей золой, мелкого заполнителя золой и крупного заполнителя легким керамзитом (LECA) показала хорошие показатели прочности на сжатие, прочности на разрыв и прочности балки на изгиб. 56 дней по сравнению с 28 днями силы.При этом прочность 28 суток также примерно равна нормальному обычному бетону; то есть замена на 0% и уменьшение сухого веса образца. В будущем методы мягких вычислений приведут к тому, что в основных областях мы сможем достичь лучшей производительности за короткий промежуток времени, поскольку время является основным фактором, участвующим в этой исследовательской работе.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов в отношении публикации данной статьи.

(PDF) Влияние повышенной температуры на легкий бетон, полученный из керамзитового заполнителя и алюминатного цемента

Bilge Internation al Journal of Science and Technology Research 2017, 1 (2): 59-70

68

Уплотняющий легкий заполнитель

бетон.Строительство и строительство

Материалы, 34, 575-583.

ASTM C 597-09. (2009). Стандартный метод испытаний для скорости импульса

через бетон. Американское

Общество испытаний и материалов. СОЕДИНЕННЫЕ ШТАТЫ АМЕРИКИ.

Айдын, С. (2008). Разработка термостойкого раствора с высокой температурой

с использованием шлака

и пемзы. Журнал пожарной безопасности, 43, 610-

617.

Билим, К. (2011). Свойства цементных растворов

, содержащих клиноптилолит в качестве дополнительного вяжущего материала

.Строительство и

Строительные материалы, 25, 3175-3180.

Чан, С.Й.Н., Ло, X., Сан, В. (2000).

Прочность на сжатие и пористая структура высокопрочного бетона

после воздействия

высоких температур до 800 ° C. Цемент

и исследование бетона, 30 (2), 247-251.

Чан, С.Й.Н., Ло, X., Сан, В. (2000). Влияние

высоких температур и режимов охлаждения на

прочность на сжатие и поровые свойства

высокоэффективного бетона.

Строительные материалы, 14,

261-266.

Cülfik, M.S., Özturan, T. (2002). Влияние повышенных температур

на остаточные механические свойства

высокопроизводительного раствора

. Исследование цемента и бетона, 32,

809-816.

Cülfik, M.S., Özturan, T. (2010). Механические свойства

нормальных и высокопрочных бетонов

, подвергнутых воздействию высоких температур

и с использованием анализа изображений для обнаружения повреждений сцепления

.Строительство и строительство

Материалы, 24, 1486-1493.

Демирель, Б., Келештемур, О. (2010). Влияние повышенной температуры

на механические свойства

бетона, полученного из тонко измельченной пемзы

и микрокремнезема. Fire Safety

Journal, 45, 385-391, 2010.

Эвайс, Э. М., Халил, Н. М., Амин, М. С.,

Ахмед, Ю. М. З., Баракат, М. А. (2009).

Утилизация алюминиевого шлама и

алюминиевого шлака (шлака) для производства

кальциевоалюминатного цемента.Керамика

International, 35 (8), 3381-3388.

Фернандес-Карраско, Л., Пуэртас, П., Бланко-

Варела, М.Т., Васкес, Т., Риус, Дж. (2005).

Синтез и кристаллическая структура раствора

даусонита калия: промежуточное соединение

в щелочном гидролизе цементов на основе алюмината кальция

. Цемент и

Concrete Research, 35, 641-646.

Girgis, L.G., El-Hemaly, S.A.S., Халил, Н.М.

(2000). Приготовление и характеристика составов

некоторых улучшенных высокоглиноземистых цементов

. Tile & Brick International,

16 (4), 250-256.

Go, C.G., Tang, JR., Chi, J.H., Chen, C.T.,

Huang, Y.L. (2010). Огнестойкость

свойство армированного легкого

стены из заполнителя бетона. Строительство и

Строительные материалы, 30, 725-733.

Герц, К.Д. (2005). Прочность бетона при пожаре

расчет безопасности. Журнал Бетона

Исследования. 57 (8). 445-453.

Хуанг, З., Лью, Дж. Ю. Р., Ли, В. (2017). Оценка

характеристик сжатия легкого цементного композита ультра-

после воздействия повышенных температур

. Строительство и

Строительные материалы, 148, 579-589.

Янг, Х.С., Со, Х.С., Со, С. (2016). Свойства

реактивного порошкового бетона с использованием полипропиленового волокна

и пуццолановых материалов при повышенной температуре

.Журнал Building

Engineering, 8, 225-230.

Juenger, M.C.G, Winnefeld, F., Provis, J.L.,

Ideker, J.H. (2011). Достижения в области альтернативных

цементных вяжущих. Цемент и бетон

Research, 41, 1232-1243.

Хури, Г.А. (1992). Прочность на сжатие бетона

при высоких температурах: переоценка

. Журнал по бетону

Research, 44 (161), 291-309.

Хури, Г.А., Майорана, К. (2003). Воздействие тепла

на бетон. Международный центр

Механические науки. Удине, Италия.

Кирджа, Ö. (2006). Влияние температуры на кальций

композитные вяжущие на основе алюминатного цемента

[Ph.D. Тезис]. Ближневосточный технический

Университет, Анкара, Турция.

Кызылканат, А.Б., Юзер, Н. (2008). Компрессионная зависимость изменения прочности от цвета

в растворах

, подвергшихся воздействию высоких температур.

Техническая палата инженеров-строителей

Journal, 289, 4381-4392.

Köksal, F., Gencel, O., Brostow, W., Hagg

Lobland, H.E. (2012). Эффект высокой

Amazon.com: MOTHER EARTH HGC714123 Hydroton Original Expanded Clay Pebbles, 50 Liter, Terra Cotta: Arts, Crafts & Sewing

5.0 из 5 звезд Эта галька хорошо подходит для выращивания кресс-салата.
Джуди Л.9 июля 2019 г.

Я купил эту гальку для выращивания кресс-салата, поскольку это полуводные растения, а также купил стартовые втулки Rockwell для выращивания семян. Свечи стартера были тщательно заточены и вставлены в камешки, которые были почти полностью залиты водой. Насколько я могу судить, мои семена имели 100% всхожесть, и кресс-салат растут очень хорошо.Когда я начал выращивать кресс-салат, я использовал воду с половинной концентрацией гидропонного корма для растений и увеличил количество корма для растений до полной крепости, когда растения начали расти. Было интересно увидеть, что семена, которые я бросил на влажную гальку, также выросли и выросли новые корни. в глиняную гальку. Также стоит отметить, что эти камешки нужно хорошо промыть, так как они покрыты коричневой пылью. Я не думаю, что это повредит чему-нибудь, но в гидропонике они оставляют в воде коричневый осадок. ОБНОВЛЕНИЕ

08/04/19:
4-й снимок — это мой урожай кресс-салата, сделанный примерно через 3 недели после 3-го снимка.Я уже собрал немало 5 раз на 3 салата для своей семьи каждый раз, и он продолжает расти.

ОБНОВЛЕНИЕ 29.03.20:
Поскольку кресс-салат везде оценивается как самый здоровый зеленый цвет, я был полон решимости успешно его выращивать. Первоначальный рост всегда был отличным, но через 4 недели листья начали желтеть, и растения начали погибать. Я обнаружил, что мне нужно сажать новый урожай каждые 6 недель или около того. Я провел все интернет-исследования, которые вы, вероятно, проводили, только для того, чтобы найти так много противоречивых мнений.Мне нужно было выяснить, что я делаю не так и что нужно кресс-салату для продолжения здорового роста. Изучая растения, я заметил, что корни растений стали слизистыми и отмирают. Без корней растения не могут выжить. Я также заметил чрезмерный рост водорослей на глиняной гальке, особенно когда растения начали умирать. Рост водорослей ускорил вымирание кресс-салата, поскольку он потреблял питательные вещества, необходимые для кресс-салата.

Итак, вместо того, чтобы верить всему, что я читал в Интернете, я использовал свои знания о растениях и рассмотрел естественную среду, в которой растет кресс-салат.
1) Кресс-салат естественным образом растет на берегах рек и краях прудов. Таким образом, вода вокруг них постоянно движется и рециркулирует, чтобы обеспечить корни кислородом.
2) Вода, в которой они растут, должна иметь высокое содержание азота, обеспечиваемое разложением рыбных отходов и растительных материалов. Это противоречит информации в Интернете о том, что кресс-салат не нуждается в растительной пище с высоким содержанием азота.
3) Хотя кресс-салат может расти в частично затененных местах, для максимального роста требуется немного солнечного света.,
Я выращиваю кресс-салат не только на глиняной гальке, так как Rockwool способствует росту водорослей. Я использую 1020 лыков, как с дырками, так и без них. Глиняная галька переходит в квартиру с дырками, а эта квартира переходит в квартиру без дыр. Поместив глиняную гальку в квартиру с отверстиями и вставив в ту, что не имеет отверстий, я наполняю квартиру водой, содержащей корм для растений Fox Farm Big Grow из расчета 10 кубиков на галлон. Затем посыпаю гальку семенами кресс-салата. Я поддерживаю уровень воды ниже вершины гальки, чтобы препятствовать росту водорослей, но опрыскиваю гальку один раз в день, пока семена кресс-салата не прорастут.Обычно это занимает 3-4 дня. Я добавляю воду с кормом для растений и поддерживаю уровень воды t чуть ниже вершины гальки, пока растения не приживаются. Когда растения достигают 2 дюймов в высоту, я заменяю воду один раз в неделю, вытягивая верхнюю часть, опрыскивая всю квартиру над канцелярской ванной, чтобы смыть водоросли, которые могли расти, сливаю воду в нижнюю часть квартиры и замените воду свежим раствором растительной пищи, смешанной из расчета 10 куб. см на галлон. Пока что это отлично работает. Я могу собрать урожай и получить новые побеги без пожелтения листьев.

Я обнаружил, что на этой гальке будут расти водоросли, если они будут влажными и при освещении. При посадке нового урожая кресс-салата можно повторно использовать гальку, сначала промыв ее в ведре с водой, чтобы удалить весь мусор. Затем замочите их в 1-3 растворе отбеливателя и воды на ночь, чтобы убить водоросли и любые бактерии. После замачивания хорошо промойте их в пресной воде и пару раз слейте жидкость. Как только это будет сделано, они будут чистыми и снова готовы к использованию.

ОБНОВЛЕНИЕ 23.08.20:
Хотя кресс-салат хорошо растет в квартире около 6 недель, корням требуется циркуляция воды, чтобы обеспечить им воздух. Примерно через 6 недель листья начали желтеть, и я обнаружил, что корни растений гниют. Несколько недель назад я решил попробовать вырастить кресс-салат, используя эту глиняную гальку, в чаше для выращивания AeroGarden Grow Bowl. Я установил насос на 2 минуты каждые 4 часа в течение первых 4 недель, а затем изменил настройку насоса на 2 минуты каждые 6 часов.

На данный момент это лучший кресс-салат, который я когда-либо пробовал, и он просто продолжает расти без пожелтения листьев. Я уже собрал этот кресс-салат для нескольких салатов и пару раз готовил на пару достаточно овощей для еды. Я также отдал своему другу полный пакетик галлонов. Он растет 81 день и до сих пор выглядит как никогда здоровым. Я добавил пару фотографий этого урожая кресс-салата.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *