Допустимая нагрузка на винтовую сваю
Допустимая нагрузка на винтовую сваю. Расчет винтового фундамента.
Расчет винтового фундамента — ответственный этап проектирования. Если при его выполнении допустить ошибку, то можно не правильно задать шаг свай или их сечение. Ошибки приводят к снижению надежности опор под знание и возникновению вероятности сильной усадки или крена строения, вследствие которых образуются трещины и повреждения основных строительных конструкций здания. Одним из самых важных характеристик свайновинтового фундамента (как и любого другого) является его несущая способность.
Допустимая нагрузка на винтовую сваю зависит от следующих факторов:- диаметр трубы и лопастей;
- прочность грунта основания;
- длина сваи.
При выполнении простейших расчетов для частного дома потребуется знать только прочностные характеристики основания и площадь лепестковой подошвы (лопасти).
Расчет нагрузки на винтовую сваю выполняется по следующей формуле: N = F/γk .
В этой формуле:
- N — несущая способность винтовой сваи (сколько она способна выдержать),
- F — значение несущей способности (неоптимизированное),
- γк — коэффициент надежности по нагрузке, принимаемый в зависимости от количества опор для здания и способа выполнения геологических изысканий.
Коэффициент γk назначается равным следующим значениям:
1,2 при проведении точных геологических испытаний грунта основания, путем выполнения зондирования и лабораторных исследований. Выполнить это самостоятельно невозможно. Способ не подходит для частного домостроения из-за высокой стоимости, которая сильно увеличит бюджет строительства.
- 1,25 при проведении испытаний с помощью сваиэталона. Хотя этот способ проще, чем предыдущий, определить, сколько сможет выдержать грунт, способен только человек, имеющий знания в области геологии.
- При самостоятельных исследованиях почвы и использовании табличных показателей прочности коэффициент принимается в зависимости от количества опор. Если несущая способность определяется для винтовой сваи с низким ростверком, то значение составит 1,41,75 при количестве опорных элементов в пределах 520 штук.
Чтобы найти F, потребуется выполнить вычисления по следующей формуле: F = S*Rо .
Здесь:
- S — площадь лопасти, которая вычисляется по формуле для круга (S = πR² = (πD²)/4). Исходные данные приводятся производителем винтовой сваи.
После того, как определено, сколько составляет площадь лепестковой подошвы винтовой сваи, нужно выяснить прочностные характеристики грунта основания (в формуле буква Rо). Для этого потребуется выполнить как минимум простейшие геологические изыскания с помощью ручного бурения или отрывки шурфов. Грунт можно изучить визуально и на ощупь, рекомендуется выполнять определение с применением ГОСТ «Грунты. Классификация».
ГОСТ «Грунты. Классификация».Зная сколько способен выдержать грунт на один квадратный сантиметр и площадь опорной части винтовой сваи можно найти предварительное значение несущей способности F (без учета коэффициента по надежности). Значение подставляют в первую формулу и находят окончательную максимально допустимую нагрузку на один элемент фундамента. Более подробно определить, сколько сможет выдержать свая можно по формуле 7.15 пункта 7.2.10 СП «Проектирование и устройство свайных фундаментов». Здесь учитываются все моменты, которые способны повлиять на несущую способность, а именно:
- условия работы;
- характеристики грунта;
- глубина залегания лопасти (прибавляется боковое трение);
- диаметр лопасти;
- характер работы сваи (на выдергивание или на сжатие).
Выполнить расчет достаточно сложно, потребуется найти множество коэффициентов и характеристик грунта (здесь учитывается не только несущая способность, но и угол внутреннего трения, удельное сцепление, удельный вес и др.). Для упрощения работы можно воспользоваться таблицами, которые приводятся для наиболее распространенных диаметров свай (чаще всего для частного домостроения используют 89 мм, 108 мм, 133 мм).
Для свай диаметром 89 и 108 мм можно привести следующую таблицу:
Расчет свай на фундаментНесущая способность элементов диаметром 89 достаточна для того, чтобы использовать их в качестве фундаментов под одноэтажные дома из легких материалов (каркасные, бревенчатые, брусовые). При возведении двухэтажных строений лучше вместо 89 диаметра выбрать 108 или больший. Если опирать на такие свайные фундаменты кирпичные и бетонные здания, при расчете получится очень большой диаметр элементов и частое их расположение (зависит от характеристик грунта), да и не в каждой компании найдется специалист способный рассчитать массивное здание на винтовых сваях. Выгоднее использовать другие типы фундаментов.
Пример упрощенного расчета
Исходные данные для расчета фундамента под двухэтажный брусовой дом с размерами в плане 6 на 6 метров:
- грунты на участке — глина;
- диаметр используемых свай — 133 мм, диаметр лопасти — 350 мм;
- масса дома, полученная в результате сбора нагрузок от стен, перегородок, перекрытий, полезного и снегового нагружения — 59 тонн.
- периметр наружных стен — 24 м, внутренних несущих стен нет.
Сначала находится прочность грунта основания. Воспользовавшись приведенной ранее таблицей находим, что для имеющегося типа почвы она составляет 6,0 кг/см². Коэффициент надежности по нагрузке принимаем 1,75 (для обеспечения запаса по надежности).
Остается вычислить площадь лепестковой подошвы: S = (πD²)/4 = 3,14*352/4 = 961,6 см² (значение диаметра лопасти в расчет берется в сантиметрах).
Находим неоптимизированную несущую способность: F = S*Rо = 961,6*6,0 = 5770 кг.
Вычисляем допустимую нагрузку: N = F/γk = 5770/1,75 = 3279 кг ≈ 3,3 т.
Для дальнейшего расчета определяем минимальное количество свай, которые способны удержать данный дом: 59 т/3,3т = 17,87 шт, округляем до целых в большую сторону и принимаем в дальнейший расчет 18 шт.
Чтобы завершить вычисления для возведения фундаментов, нужно определить шаг между сваями. Для этого длину стен дома делят на количество опорных элементов: 24 м/18 шт = 1,33 м — максимальный шаг фундаментов. Получилось довольно большое количество свай для такого небольшого дома, т.к. мы приняли что геологические изыскания не проводились, и пришлось принять γk = 1,75, если провести исследования хотя бы пробным вкручиванием (эталонным), тогда количество свай можно снизить до 1213 штук, а это существенная экономия.
В каждом случае нужно считать что обойдется дешевле — геологические изыскания или самостоятельный расчет и перестраховка по несущей способности. Определение максимальной нагрузки на сваю — только часть вычислений для проектирования. Как показано выше, на этом расчет не заканчивается.
Окончательными результатами вычислений должны стать следующие данные для свай:
- сечение;
- длина;
- шаг;
- распределение под несущими стенами.
Как выполнить расчет несущей и допустимой способности винтовых свай
На запас прочности опорного столба влияет его длина и диаметр. Пример зависимости этих показателей можно увидеть в таблице 1.
Таблица 1. Несущая способность винтовых свай.
Диаметр, мм | Н/С, т | Длина опоры, м |
89,0 | 4 | 2,5 |
108,0 | 7 | 2,5 |
133,0 | 8,5 | 2,5 |
Большое значение для расчетов имеет тип грунта на участке застройки, глубина залегания плотного несущего слоя, уровень промерзания почвы.
Основные составляющие расчетов нагрузки на сваи:
- диаметры ствола и лопастей;
- длина свайной конструкции;
- характеристики грунта.
Самый простой способ расчета выполняется при помощи формулы H = F / уk, где:
- H — вес, который выдерживает свайная конструкция;
- F — «чистая» нагрузка;
- уk — поправочный коэффициент.
Коэффициент надежности зависит от количества столбов в свайном поле, нагрузки на почву. Для определения поправочного коэффициента используют следующие данные:
- Коэффициент 1,2. Его используют в том случае, если были проведены точные геологические исследования с зондированием почвы, сбором образцов, лабораторными исследованиями грунта. Этот способ редко используют при строительстве частных домов из-за высокой стоимости геологической экспертизы.
- Значение 1,25. Такой коэффициент используется если было проведено пробное бурение. Сваю-эталон вкручивают в нескольких точках на участке застройки. Таким способом определяют глубину залегания несущего пласта, его толщину. Для выполнения пробного бурения нужны практические навыки, а также определенные познания в области геологии.
- Значение 1,75. Этот показатель применяется при самостоятельном исследовании грунта и использовании справочных данных. Он подходит для свайных фундаментов при количестве опорных столбов до 22 штук.
Для частного строительства лучше применять 2 способ, поскольку провести полноценную геологическую экспертизу своими силами невозможно.
Чтобы рассчитать неоптимизированную несущую нагрузку нужно выполнить вычисления по следующей формуле F = S x Rо, где Ro это прочность основания, а S — площадь лопасти. Ее вычисляют по специальной формуле или используют исходные данные, которые предоставляют изготовители винтовых свай.
Таблица 2. Размеры и вес свайных конструкций.
Диаметр столба, мм | Диаметр лопасти, мм | Длина, м | Вес, кг | Толщина стали (ствол), мм | Толщина стали (лопасть), мм |
89,0 | 250,0 | 3,0 | 24,1 | 3,0-3,5 | 4,0 |
108,0 | 300,0 | 3,0 | 34,9 | 3,5-4,0 | 5,0 |
133,0 | 350,0 | 3,0 | 44,6 | 4,0-4,5 | 5,0 |
При определении длины опорных конструкций нужно учитывать тип грунта и особенности климата данной местности. Поскольку сваи вкручивают ниже точки промерзания необходимо знать на какую глубину промерзает почва. Средние показатели для Москвы и Московской области:
- глинистые почвы и суглинки — 135 см;
- песчаные — от 164 до 176 см;
- каменистые — 200 м.
Для определения прочности основания (Ro) применяют табличные данные.
Таблица 3. Тип почвы и ее несущая способность.
Тип грунта | Rо на глубине 150 см и более, кг/см2 |
Галька с включениями глины | 4,5 |
Гравелистый с включениями глины | 4,0 |
Песчаные почвы (крупная фракция) | 6,0 |
Песчаные почвы (средняя фракция) | 5,0 |
Песчаный (мелкая фракция) | 4,0 |
Пылеватый песок | 2,0 |
Глинистые почвы и супеси | 3,5 |
Вязкие глинистые почвы | 6,0 |
Просадочный грунт или насыпное основание (с уплотнением) | 1,5 |
Насыпной грунт (без уплотнения) | 1,5 |
Данные из таблиц подставляют в формулу и находят ориентировочную нагрузку на основание. Полученное число умножают на коэффициент надежности и определяют проектную нагрузку на один опорный столб.
Более точное значение можно получить, используя множество коэффициентов: от глубины залегания лопастей и силы бокового трения до характера работы опоры, величины выдергивающих или сжимающих сил. Чтобы упростить работу используют данные из таблиц.
Таблица 4. Несущая способность одной свайной опоры (Ф ствола 108 мм, Ф лопасти 300 мм).
Тип почвы | Несущая способность сваи в кг при глубине залегания лопасти, см | |||
150 | 200 | 250 | 300 | |
мягкопластичная лессовая | 2200 | 2900 | 3600 | 4300 |
полутвердые глинистые | 4700 | 5400 | 6000 | 6700 |
тугопластичные глинистые | 4200 | 4900 | 5600 | 6300 |
мягкопластичные глинистые | 3700 | 4400 | 5000 | 5800 |
полутвердый суглинок | 4400 | 5100 | 5800 | 6500 |
тугопластичная суглинистая | 3900 | 4600 | 5300 | 6000 |
мягкопластичная суглинистая | 3500 | 4200 | 4800 | 5500 |
песчаные (крупная и средняя фракция) | — | 9700 | 10400 | 11100 |
песчаные (мелкая фракция) | — | 6300 | 700 | 7700 |
пылеватый песок | — | 4900 | 5600 | 6300 |
Запас прочности свайных опор диаметром 108 мм позволяет использовать их в качестве основания для строительства каркасных, бревенчатых, брусовых домов в один этаж. Для двухэтажных построек, а также сооружений из кирпича и блока используют сваи большего диаметра.
3 метода определения мощности спиральной сваи (и почему вам следует использовать 2)
Несущая способность винтовых свай и анкеров может быть определена тремя способами — несущей способностью в грунте, корреляцией крутящего момента или испытанием под нагрузкой/прямым измерением.
Несущая способность винтовых свай определяется тремя способами. Используемые методы определяются доступной информацией. Грузоподъемность винтовой сваи должна быть равна или превышать расчетную нагрузку, которую свая должна выдерживать.
МЕТОД 1: НЕСУЩАЯ СПОСОБНОСТЬ В ГРУНТЕ
Это теоретический метод, для которого в качестве входных данных требуются данные о прочности грунта.
Необходимая информация о несущей способности получена из отчетов о грунтах и журналов бурения грунта. В отчете о почвах содержится такая информация, как классификация почв, профиль почвы, грунтовые воды, удельный вес и любые примечательные результаты, которые наблюдал бурильщик. Почвы обычно классифицируются как мелкозернистые или зернистые. Мелкозернистые почвы представляют собой глины и илы. Зернистые почвы представлены песками и гравием. Данные о прочности грунтов обычно получают во время бурения в результате стандартного испытания на проникновение в соответствии с ASTM D-1586 или в результате лабораторных испытаний образцов, взятых из скважины.
Несущая способность грунта определяется с использованием хорошо зарекомендовавших себя инженерных принципов и методов проектирования. Эти методы были включены в программное обеспечение HeliCAP® v3.0 для проектирования спиральной емкости. Разработанный инженерами Hubbell и CHANCE, HeliCAP рассчитывает теоретическую грузоподъемность и установочный крутящий момент винтовых анкеров и свай в грунте. Пользователь вводит данные о прочности грунта и конфигурации винтовых анкеров/свай, а программное обеспечение быстро предоставляет информацию о грузоподъемности.
МЕТОД 2: КОРРЕЛЯЦИЯ КРУТЯЩЕГО МОМЕНТА
Второй метод – это корреляция крутящего момента. Это эмпирический метод, что означает, что он основан на наблюдениях и опыте. Крутящий момент связан с грузоподъемностью с помощью простого множителя и часто используется, когда информация о грунтах ограничена или отсутствует. Корреляция крутящего момента также известна как отношение крутящего момента к предельной удерживающей способности.
Этот метод был разработан на основе более чем 50-летнего опыта и наблюдений инженеров и клиентов компании CHANCE. Принцип заключается в том, что по мере того, как винтовая свая устанавливается (ввинчивается) во все более плотный/твердый грунт, сопротивление установке или крутящий момент будет увеличиваться. Аналогичным образом, чем выше крутящий момент при установке, тем больше осевая нагрузка установленной винтовой сваи.
Связь между установочным крутящим моментом и предельной грузоподъемностью выражается простой формулой: Q ult = K t x T
Коэффициент крутящего момента (Kt) используется в качестве множителя в зависимости от типа и размера ствола винтовой сваи. Коэффициент крутящего момента Kt обратно пропорционален размеру ствола, то есть чем больше ствол винтовой сваи, тем меньше коэффициент крутящего момента Kt. Винтовые сваи CHANCE типа SS или квадратного вала имеют самый большой коэффициент крутящего момента; это означает, что тип SS обеспечивает большую грузоподъемность при заданном крутящем моменте при установке.
МЕТОД 3: ИСПЫТАНИЕ НАГРУЗКОЙ / ПРЯМОЕ ИЗМЕРЕНИЕ
Третий метод – прямое измерение несущей способности путем проведения полномасштабного испытания под нагрузкой на установленной винтовой свае. Нагрузочный тест — самый точный способ определения емкости, но и самый дорогой.
Стандартная реактивная рама установки для испытаний на сжимающую нагрузку состоит из центральной нагрузочной балки и двух распорных балок. Рама удерживается реактивными анкерами, расположенными по углам распорных балок, как показано на рисунке. Гидравлический домкрат, применяющий сжимающую нагрузку, расположен под нагрузочной балкой и опирается на испытуемую винтовую сваю.
Во время теста компрессионная нагрузка применяется постепенно и удерживается в течение определенных интервалов времени. Применяемая процедура испытаний в целом соответствует стандартному методу испытаний свай ASTM D1143 под действием статической осевой сжимающей нагрузки. Испытание под нагрузкой продолжается до тех пор, пока не будет достигнута предварительно определенная максимальная испытательная нагрузка, или свая не сможет выдерживать дальнейшее нагружение. Осадка или перемещение сваи измеряется и записывается при каждом приращении нагрузки. Затем результаты испытаний используются для определения несущей способности сваи.
ЗАЧЕМ ИСПОЛЬЗОВАТЬ ДВА МЕТОДА?
Название этой статьи говорит о том, что одного метода недостаточно, но часто непрактично или необходимо использовать все три для данного проекта. Для статистически надежной несущей способности Hubbell рекомендует использовать по крайней мере 2 из 3 методов при установке винтовых свай CHANCE. Например, корреляция крутящего момента (метод 2) часто используется для проверки несущей способности, полученной теоретически на основе данных о грунте с использованием метода 1. Когда данные о грунте ограничены или отсутствуют, можно использовать испытание под нагрузкой (метод 3) для проверки несущей способности, полученной эмпирически на основе данных о грунте. данные установочного крутящего момента (метод 2).
Можно ли просто использовать корреляцию крутящего момента (метод 2) для определения емкости? Это может произойти в проектах, где данные о грунте и нагрузочные испытания не предусмотрены в бюджете. В этом случае Хаббелл считает приемлемым использовать только корреляцию крутящего момента, но увеличить коэффициент безопасности (например, с 2,0 до 2,5), чтобы компенсировать неопределенность, которая может возникнуть при ограниченной информации.
5 вопросов об испытаниях винтовых свай под нагрузкой [ответы]
Специалисты по установке винтовых свай и проектировщики постоянно задают вопрос: «Нужно ли мне проводить полномасштабные испытания под нагрузкой?» Ответ: «это зависит».
Часто требования к нагрузочным испытаниям включаются в спецификации более крупных коммерческих проектов. Количество необходимых испытательных свай определяется инженером-регистратором. Количество требуемых испытаний определяется либо как конечное число (вы должны проверить 1 сваю), либо в процентах (вы должны проверить 10% производственных свай). Для коммерческих проектов испытания под нагрузкой обычно включаются в заявку и используются для проверки того, что свая работает в пределах требуемых критериев прогиба для требуемой нагрузки на сваю.
Существуют различные приемлемые критерии для выполнения нагрузочного теста (смещение Дэвиссона, Бринч-Хансена 90%, Батлер-Хой и т. д.). Типичные общие прогибы находятся в диапазоне от ½” до ¾” при расчетной нагрузке. Предварительные испытания свай обычно испытывают на 200 % проектной нагрузки, а производственные/проверочные испытания обычно испытывают на 133 % или 160 % расчетной нагрузки. Во время испытания под нагрузкой вам нужны данные, которые показывают работу сваи за пределами 100% расчетной нагрузки (это то, что свая должна выдерживать для обеспечения эксплуатационной надежности).
Всегда ли мне нужен нагрузочный тест?
Ответ: Полномасштабные испытания под нагрузкой не могут быть выполнены на небольшом проекте с несколькими сваями; или в жилых проектах, где стоимость полномасштабного испытания под нагрузкой непомерно высока. В этом случае используются хорошо задокументированные значения корреляции крутящего момента, предусмотренные Международными строительными нормами (IBC). При подъеме конструкции сваи и кронштейны будут проверены, когда конструкция поднимается с помощью гидравлических домкратов, что выступает в качестве проверочного испытания.
Какие типы испытаний под нагрузкой существуют для винтовых свай?
Ответ: Сваи могут быть испытаны на сжатие (обычно со стальной опорной рамой и реактивными сваями) или на растяжение (обычно с нагрузочной балкой и деревянными опорами). Полномасштабное испытание на сжимающую нагрузку более сложное и требует больше времени для настройки и выполнения. Стандарт ASTM для испытаний на сжатие — ASTM D1143, а стандарт ASTM для испытаний на растяжение — ASTM D3689.
Раздел 1810.3.3.1.9Международного строительного кодекса (IBC) обсуждают расчетные значения винтовых свай, включая испытания под нагрузкой.
Если винтовые сваи имеют предсказуемую формулу зависимости крутящего момента от грузоподъемности, зачем нужны испытания под нагрузкой?
Ответ: В зависимости от количества свай в проекте и области применения проводятся нагрузочные испытания для подтверждения зависимости крутящего момента от грузоподъемности. Часто для крупных проектов требуются полномасштабные нагрузочные тесты. Полномасштабное испытание под нагрузкой позволяет определить зависимость крутящего момента от мощности на конкретном объекте. Когда позволяет график проекта, эти данные можно использовать для обоснования большей грузоподъемности свай, уменьшения их общего количества и обеспечения более эффективной конструкции.
Есть ли преимущества у винтовых свай, если одна из них показала себя хуже во время испытания под нагрузкой?
Ответ: Использование винтовых свай для глубокого фундамента имеет определенное преимущество перед другими продуктами. Во время установки сваи крутящий момент отслеживается в режиме реального времени. Мониторинг крутящего момента дает установщику информацию о фактических условиях грунта. По мере увеличения крутящего момента это явный признак того, что прочность почвы (где расположены спирали) увеличивается.