Способы подключения радиаторов. Свойства и параметры.
Радиаторы отопления. Способы подключения радиаторов. Свойства и параметры.
В этой статье Вы узнаете:
Какими бывают радиаторы отопления? |
Поехали…
При виде различных радиаторов разбегаются глаза…
Конвекторы и чугунные радиаторы мы рассматривать не будем…
О них Вы можете узнать из этой статьи:
Радиаторы. Свойства и виды отопительных приборов.
Продолжаем…
На сегодняшний день самые популярные радиаторы — это секционные радиаторы: Алюминиевые и биметаллические.
Алюминиевые радиаторы
Рабочее давление до 16 Bar.
Биметаллические радиаторы
Рабочее давление до 20-40 Bar.
В чем различие между алюминиевыми радиаторами и биметаллическими?
Некоторые биметаллические радиаторы по внешнему виду очень похожи на алюминиевые радиаторы.
Так как в биметаллических радиаторах скрыт стальной трубопровод, покрытый алюминиевой оболочкой.
Биметаллические радиаторы более тяжелые в отличие от алюминиевых радиаторов.
Биметаллические радиаторы стали альтернативой алюминиевых радиаторов. Во-первых, они выдерживают большое давление, во-вторых, основным желанием сделать стальной сердечник в алюминиевом радиаторе, послужила нестойкость алюминиевых радиаторов к разрушению от щелочи в системах центрального отопления.
На втором месте по популярности стоят панельные стальные радиаторы.
Недостаток стальных панельных радиаторов в том, что они рассчитаны на маленькое давление системы отопления. Сталь подвержена коррозии. Такие радиаторы подойдут для частного жилого дома с давлением системы отопления не выше 3 атмосфер (3 Bar).
Толщина стенки таких панельных радиаторов от 1,25 — 2,5мм. Не факт, что они долго продержаться от коррозии. Рабочее давление до 10 Bar. Такие радиаторы стоят дешево.
Каковы различия между секционными радиаторами и панельными стальными?
Секционные радиаторы более универсальные. Секционные радиаторы состоят из секций.
Можно сделать секционный радиатор любой длинны. В зависимости от необходимой мощности по тепловым потерям.
Каждая секция радиатора соединяется специальным ниппелем. Между секциями устанавливается прокладка:
Соединительный ниппель такого радиатора имеет две резьбы разной направленности. Прокладки бывают из различных материалов.
Максимальное количество секций радиатора?
В среднем, максимальное количество секций достигает 14-ти, далее КПД радиатора падает. Имеется в виду, не снижение мощности радиатора, а теплопотери одной секции. То есть, экономически не целесообразно делать большое количество секций радиатора, если есть подозрение, что расход теплоносителя через радиатор будет мал.
О том, как рассчитать расход и теплопотери радиатора, в зависимости от количества секций, описано тут:
Расчет потерь тепла через радиатор
Многие пишут в своих статьях, что больше 10 секций устанавливать нет смысла, я же говорю обратное. Смысл есть, теплоотдача от радиатора с большим количеством секций намного больше. Закон теплотехники.
Законы переноса тепла по трубам
20 секционный радиатор. Пример из жизни! Греет прекрасно!
Если Вы решили поставить до 20 секций, то обратите внимание на крепежные элементы, четырех может быть недостаточно. Существуют в природе два вида креплений радиаторов:
1. Угловой кронштейн
2. Штыревой кронштейн
Угловой кронштейн подходит для ровных отштукатуренных стен.
Штыревой кронштейн — для любых стен. Единственный недостаток в том, что штыревой кронштейн будет плохо держаться в пустотелом кирпиче.
Самый лучший угловой кронштейн тот, на котором стенка с креплением самая большая по площади. Такой угловой кронштейн лучше держит горизонтальное положение, не деформируясь на изгиб вниз.
Из штыревых кронштейнов лучше те, у которых толще диаметр штыря, и в пробке лучше распирающий. На данный момент мне нравится от фирмы «Omec».
Способы подключения радиаторов.
Рассмотрим различное множество подключений. Ниже рассмотрим, какое подключение подходит для различных схем. Например, для многоквартирных домов с однотрубными системами и с двухтрубными системами.
Рейтинг подключения в плане КПД радиаторов. Первое место занимает перекрестное соединение (соединение по диагонали).
Достоинства и недостатки каждой схемы.
1 место. Подключение по диагонали. Самый эффективный способ, при котором происходит максимальное потребление тепловой энергии от теплоносителя. Недостаток в отсутствии возможности изменения количества секций радиатора.
2. место. Боковое подключение. Не сильно проигрывает в плане КПД от диагонального подключения. Если стоит вопрос между вариантами 1 и 2, я выбираю боковое подключение. Так как если, по каким либо причинам, меня не устроит мощность радиатора, то можно добавить (или уменьшить) количество секций без переделок по узлам подключения.
3 место. Нижнее подключение. Тут много ходит мифов по данному подключению. И сейчас я скажу недостаток данного подключения.
Недостаток. Для частного дома. Когда вы начинаете заливать в систему отопления незамерзающую жидкость, не перемешав капитально с долей дистиллированной воды, возникает прослойка по высоте (вода/незамерзайка). И, так как, незамерзающая жидкость тяжелее воды, то она находиться ниже обычной воды. Поэтому возникает слоеный пирог в радиаторе по массе в виде двух разных сред: воды и незамерзайки. Данный, не размешанный слоеный пирог препятствует естественной циркуляции внутри радиатора. Это явление похоже на то, как вы пытаетесь перемешать масло с водой и, естественно, из-за разной плотности, эти две среды (вода и масло) будут находиться друг на другом.
Входящая незамерзающая жидкость в радиаторе не может подниматься вверх и перемешиваться с водой, так как, идет по прямой. Смотри изображение:
Очень часто, я, лично, сталкивался с такой проблемой, что верхняя часть радиатора оставалась холодной. Даже остывшая на 100 градусов вода не станет тяжелее незамерзайки.
Устраняется данная проблема следующим образом.
Через кран Маевского нужно вылить всю верхнюю (легкую) воду. И, в самом конце, Вы увидите, когда пойдет незамерзайка специфичного для нее цвета (синий, розовый или зеленый).
Что касается плавного обогрева в радиаторе с таким подключением, то это полнейший бред. И не стоит заострять на этом внимание.
Подключение радиатора сверху вниз
Это лучшее что может быть для системы отопления. Уж поверьте моему опыту, как гидравлику и теплотехнику.
Достоинство подключения радиатора «сверху вниз» заключается в том, что создается полезный гравитационный напор, который идет только на пользу такому подключению. Остывший теплоноситель тяжелее и стремится вниз, к выходу из радиатора, а нагретый теплоноситель идет вверх и остается там до тех пор, пока не поделиться своей тепловой энергией и не остынет.
4 место. Одноточечное подключение. Вообще самое худшее, что может быть для системы отопления. Одно достоинство данной схемы в том, что у него одно подключение. Одна точка. Смотри фото:
Расход через такое соединение явно будет меньше. Так как создается достаточно большое местное сопротивление вследствие сужения прохода.
Смотрим еще одно фото:
Не стоит полагать, что некоторые стальные панельные радиаторы, имеющие вид нижнего подключения, являются типом одноточечного подключения. В данном радиаторе подключение идет снизу, а вот подающая труба поднимается вверх до термоклапана, и после клапана теплоноситель попадает в верхнюю точку радиатора. В данном виде, радиатор подключен как бы «сверху вниз». Трубопровод, поднимающийся вверх, спрятан внутри конструкции.
Про квартирную разводку
В квартирах обычно существуют два вида систем отопления:
Однотрубная система отопления и двухтрубная:
Запрещено на перемычках ставить вентиля! Запрещено на стояках ставить вентиля!
Радиаторы для центрального отопления лучше ставить или чугунные или биметаллические. Они выдерживают достаточно большое давление, которое может возникать вследствие непредвиденных гидравлических ударов.
Алюминиевые радиаторы в контакте с водой выделяют водород. С незамерзающей жидкостью это выделение меньше. Но в биметалле есть сталь, которая коррозирует с кислородом.
На сегодняшний день для системы центрального отопления лучше поставить биметалл или чугун, а для частного дома — лучше алюминиевые радиаторы. Для частного дома, любая сталь в системе отопления приводит к ухудшению теплоносителя, отложению на стенках ржавчины, отложению отходов коррозии стали и тому подобное.
Какой трубопровод использовать для центрального отопления?
Для системы центрального отопления нужно использовать только стальной трубопровод.
В нашей фирме, когда дело доходило до прокладки систем центрального отопления, мы использовали для обвязки только стальной трубопровод. И это не обсуждалось, так как закладываются риски.
Достоинство стального трубопровода для центрального отопления.
Для тех, кто не в курсе. Стальной трубопровод это обычная железная труба. Существует оцинкованная труба — это стальная (железная) труба, покрытая снаружи тонким слоем цинка. Цинк вреден для системы водоснабжения, то есть для нашего здоровья. Цинк защищает сталь от коррозии, но даже на цинке существуют отложения. Существуют химические промывки для удаления отложений.
1. Стальной трубопровод выдерживает большое давление до 40 Bar |
Попробуйте найти пластиковый трубопровод с такими параметрами!
А в системах центрального отопления могут случаться такие коллапсы, как:
1. Высокая температура 95 градусов. |
Поэтому для систем центрального отопления нужно ставить стальной трубопровод.
Пластик не любит температур уже выше 80 градусов. Полипропилен тем более. Кстати сшитый полиэтилен рекордсмен по стойкости к высоким температурам. Можно конечно выбрать медь, но с медью тоже случались проблемы. Медь может разрушаться от блуждающих токов в трубопроводе с прикосновением некоторых металлов. Примером может служить стальная арматура в стене. Контакт меди с алюминием и сталью тоже вреден. Оловянный припой на стыках не любит щелочь, которая присутствует в системах центрального отопления. На практике случались вещи, когда в медном трубопроводе образовывались отверстия вследствие прикосновения медной трубы со стальной арматурой. Поэтому как не крути, а стальной трубопровод лучше подходит для центрального отопления. К тому же он дешевле.
Для того, чтобы не было отложений в стальном трубопроводе, добавляют различные присадки.
Но все не так страшно как кажется!!!
Выше я рассказал байку обо всех достоинствах стального трубопровода.
Для систем центрального отопления можно использовать металлопластик, сшитый полиэтилен, полипропилен, медь. Однако нужно знать их особенности в полной мере.
Существуют дома, в которых есть свои котельные с личной замкнутой системой отопления. Поэтому, если вы решились на пластиковый трубопровод или медь, то необходимо проконсультироваться с жилищно-управляющей компанией. К тому же, во многих котельных стоит автоматика, которая не допустит высоких температур и высокого давления в системе отопления.
Жизнь не стоит на месте, и автоматика упрощает нам жизнь. Но всегда остается риск, что автоматика не сработает.
Поэтому, монтируя пластик в систему отопления, вы действуете на свой страх и риск. Хотя, с каждым десятилетием эти риски становятся все меньше и постепенно сводятся к нулю.
Как поменять старый радиатор на новый в системах центрального отопления?
Если это однотрубная система, то стояк с перемычкой лучше не трогать и оставить как есть!
На идущие стальные трубопроводы от стояка после перемычки, нужно поставить ремонтные вентиля для ремонта радиатора. Это могут быть обычные шаровые краны. После кранов продолжить стальными или иными трубопроводами до радиатора. На радиатор лучше поставить термостатические вентиля для регулировки температуры в комнате.
Термостатический клапан на радиаторе.
Термостатический клапан с термоголовкой осуществляет климат контроль в помещение. То есть, сама термоголовка, чувствуя температуру в помещение, меняет положение штока у термостатического клапана, шток, в свою очередь, закрывает или открывает проход клапана. Если становиться жарко, то клапан закрывает проход теплоносителю. Если холодно — клапан открывает проход для впуска теплоносителя.
В системах центрального отопления при первом пуске теплоноситель может загнать грязь в Ваш радиатор. Могут засоряться термостатические клапана. В моем опыте это часто случалось. Так бывает не всегда, но в некоторых системах отопления бывает часто. В этом случае, я устанавливаю фильтры-грязевики на подаче и на обратке. Симптомом засора клапана является то, что клапан не может закрыть проход. В узкий проход попадает крупная крошка или осколок стали. Там, где такое происходит, ставьте фильтр-грязевик. На каждые 5 радиаторов попадается один, в который попадает крошка мусора.
Что еще нужно знать?
Сам по себе термостатический клапан имеет сужение прохода. Там имеются и повороты течения теплоносителя. Все это создает местное сопротивление. Возможно при установке такого термоклапана, у вас уменьшиться расход через радиатор, что повлечет за собой маленький его прогрев. Но этот феномен бывает мало заметен, если с системой отопления все в порядке.
Но скажу, что расход уменьшиться, но не сильно. Все зависит от вашей системы отопления данного дома.Существуют термостатические клапаны с хорошей проходимостью, которые заметно проигрывают обычным:
В них находится более широкий клапан, который создает большую площадь проходимости, в отличии от таких:
Существуют и рекордсмены по проходимости об этом можно узнать, поискав клапана с большими диаметрами по подключению. Например, существуют клапан с дюймовыми резьбовыми соединениями.
Если у Вас алюминиевый радиатор, то краны на летнее время нельзя перекрывать полностью и на обратке и на подаче. У меня был случай, когда на летнее время на три месяца я закрыл краны. У меня вследствие выделения водорода, от большого давления лопнули металлопластиковые трубы. Если бы у меня были стальные трубы, то лопнул бы радиатор.
Монтаж радиатора
Что касается установки радиатора, то минимальным расстоянием от пола по стандарту от 10-12см.
От стены 2-3 см.
Все эти зазоры влияют на тепловыделение тепла от радиатора. Чем дальше от стены, тем больше тепла. Если Вы радиатор утопите в пол, то это также уменьшит тепловыделение радиатора. Минимальное расстояние от пола должно быть 10 см. Максимально — 15 см. Также, от верха радиатора до подоконника должен быть проем для вентиляции.
И не нужно задвигать кресло и кровати со спинкой на сам радиатор — это уменьшает тепловыделение.
Если у Вас дома холодно, то в вашем случае закрывать радиатор декоративными решетками противопоказано.
Даже шторы, нависшие возле радиатора, уменьшают теплоотдачу.
Для лучшего обогрева помещения радиатор должен быть полностью открыт и за радиатором на стене можно поклеить фольгированный теплоизолятор для того, чтобы не обогревать холодную стену. Особенно тепло уходит в не утепленных домах. Где стена является сплошным кирпичом или блоком без наружного утепления.
Вот так уходит тепло на улицу.
А теперь рассмотрим системы отопления для частного дома.
Существует самая распространенная схема двухтрубная тупиковая. В такой схеме лучше использовать подключение сверху вниз.
В каждом радиаторе по такой схеме создается маленький гравитационный напор. То есть это сила, создаваемая остывшим теплоносителем по отношению к нагретому. Проще говоря, холодная вода давит вниз. Эта сила очень маленькая, но все же заметная! И идет системе отопления — только на пользу!
Приведу пример! Например, сделайте двухтрубную тупиковую систему с 50 радиаторами по схеме сверху вниз и другую систему, тоже двухтрубную тупиковую, но по схеме нижнего подключения.
Пример,
И вы увидите разницу, что схему с нижним подключением требует большего участия по балансировке системы отопления и использования ресурса насоса на 100%.
Радиатор, подключенный по схеме сверху вниз, создает маленький полезный гравитационный напор, для увеличения расхода через себя.
Что касается однотрубной системы (по ленинградке)
То к однотрубной системе правила те же. Но однотрубная система с подключением сверху вниз дает очень полезный эффект. То есть последний радиатор будет теплее чем, по схеме с нижним подключением.
Двух трубная попутная система отопления
Расчет сложной попутной системы отопления
Данная система создает равную длину трубопровода до радиатора. Это условие помогает создать равномерное распределение расхода между радиаторами.
Дело в том, что существуют сопротивления по длине трубопровода, которые влияют на расход.
Если Вы хотите глубже понять, что такое сопротивление в системе отопления, то Вам следует познакомиться с такими разделами как:
Конструктор водяного отопления
Гидравлика и теплотехника для сантехников
Сборник фотографий для размышления:
Все схемы рабочие, есть некоторые недостатки. Данные схемы только для размышления…
Все о дачном доме
Водоснабжение
Обучающий курс. Автоматическое водоснабжение своими руками. Для чайников.
Неисправности скважинной автоматической системы водоснабжения.
Водозаборные скважины
Ремонт скважины? Узнайте нужен ли он!
Где бурить скважину — снаружи или внутри?
В каких случаях очистка скважины не имеет смысла
Почему в скважинах застревают насосы и как это предотвратить
Прокладка трубопровода от скважины до дома
100% Защита насоса от сухого хода
Отопление
Обучающий курс. Водяной теплый пол своими руками. Для чайников.
Теплый водяной пол под ламинат
Обучающий Видеокурс: По ГИДРАВЛИЧЕСКИМ И ТЕПЛОВЫМ РАСЧЕТАМ
Водяное отопление
Виды отопления
Отопительные системы
Отопительное оборудование, отопительные батареи
Система теплых полов
Личная статья теплых полов
Принцип работы и схема работы теплого водяного пола
Проектирование и монтаж теплого пола
Водяной теплый пол своими руками
Основные материалы для теплого водяного пола
Технология монтажа водяного теплого пола
Система теплых полов
Шаг укладки и способы укладки теплого пола
Типы водных теплых полов
Все о теплоносителях
Антифриз или вода?
Виды теплоносителей (антифризов для отопления)
Антифриз для отопления
Как правильно разбавлять антифриз для системы отопления?
Обнаружение и последствия протечек теплоносителей
Как правильно выбрать отопительный котел
Тепловой насос
Особенности теплового насоса
Тепловой насос принцип работы
Про радиаторы отопления
Способы подключения радиаторов. Свойства и параметры.
Как рассчитать колличество секций радиатора?
Рассчет тепловой мощности и количество радиаторов
Виды радиаторов и их особенности
Автономное водоснабжение
Схема автономного водоснабжения
Устройство скважины Очистка скважины своими руками
Опыт сантехника
Подключение стиральной машины
Полезные материалы
Редуктор давления воды
Гидроаккумулятор. Принцип работы, назначение и настройка.
Автоматический клапан для выпуска воздуха
Балансировочный клапан
Перепускной клапан
Трехходовой клапан
Трехходовой клапан с сервоприводом ESBE
Терморегулятор на радиатор
Сервопривод коллекторный. Выбор и правила подключения.
Виды водяных фильтров. Как подобрать водяной фильтр для воды.
Обратный осмос
Фильтр грязевик
Обратный клапан
Предохранительный клапан
Смесительный узел. Принцип работы. Назначение и расчеты.
Расчет смесительного узла CombiMix
Гидрострелка. Принцип работы, назначение и расчеты.
Бойлер косвенного нагрева накопительный. Принцип работы.
Расчет пластинчатого теплообменника
Рекомендации по подбору ПТО при проектировании объектов теплоснабжения
О загрязнение теплообменников
Водонагреватель косвенного нагрева воды
Магнитный фильтр — защита от накипи
Инфракрасные обогреватели
Радиаторы. Свойства и виды отопительных приборов.
Виды труб и их свойства
Незаменимые инструменты сантехника
Интересные рассказы
Страшная сказка о черном монтажнике
Технологии очистки воды
Как выбрать фильтр для очистки воды
Поразмышляем о канализации
Очистные сооружения сельского дома
Советы сантехнику
Как оценить качество Вашей отопительной и водопроводной системы?
Профрекомендации
Как подобрать насос для скважины
Как правильно оборудовать скважину
Водопровод на огород
Как выбрать водонагреватель
Пример установки оборудования для скважины
Рекомендации по комплектации и монтажу погружных насосов
Какой тип гидроаккумулятора водоснабжения выбрать?
Круговорот воды в квартире
фановая труба
Удаление воздуха из системы отопления
Гидравлика и теплотехника
Введение
Что такое гидравлический расчет?
Физические свойства жидкостей
Гидростатическое давление
Поговорим о сопротивлениях прохождении жидкости в трубах
Режимы движения жидкости (ламинарный и турбулентный)
Гидравлический расчет на потерю напора или как рассчитать потери давления в трубе
Местные гидравлические сопротивления
Профессиональный расчет диаметра трубы по формулам для водоснабжения
Как подобрать насос по техническим параметрам
Профессиональный расчет систем водяного отопления. Расчет теплопотерь водяного контура.
Гидравлические потери в гофрированной трубе
Теплотехника. Речь автора. Вступление
Процессы теплообмена
Тплопроводность материалов и потеря тепла через стену
Как мы теряем тепло обычным воздухом?
Законы теплового излучения. Лучистое тепло.
Законы теплового излучения. Страница 2.
Потеря тепла через окно
Факторы теплопотерь дома
Начни свое дело в сфере систем водоснабжения и отопления
Вопрос по расчету гидравлики
Конструктор водяного отопления
Диаметр трубопроводов, скорость течения и расход теплоносителя.
Вычисляем диаметр трубы для отопления
Расчет потерь тепла через радиатор
Мощность радиатора отопления
Расчет мощности радиаторов. Стандарты EN 442 и DIN 4704
Расчет теплопотерь через ограждающие конструкции
Найти теплопотери через чердак и узнать температуру на чердаке
Подбираем циркуляционный насос для отопления
Перенос тепловой энергии по трубам
Расчет гидравлического сопротивления в системе отопления
Распределение расхода и тепла по трубам. Абсолютные схемы.
Расчет сложной попутной системы отопления
Расчет отопления. Популярный миф
Расчет отопления одной ветки по длине и КМС
Расчет отопления. Подбор насоса и диаметров
Расчет отопления. Двухтрубная тупиковая
Расчет отопления. Однотрубная последовательная
Расчет отопления. Двухтрубная попутная
Расчет естественной циркуляции. Гравитационный напор
Расчет гидравлического удара
Сколько выделяется тепла трубами?
Собираем котельную от А до Я…
Система отопления расчет
Онлайн калькулятор Программа расчет Теплопотерь помещения
Гидравлический расчет трубопроводов
История и возможности программы — введение
Как в программе сделать расчет одной ветки
Расчет угла КМС отвода
Расчет КМС систем отопления и водоснабжения
Разветвление трубопровода – расчет
Как в программе рассчитать однотрубную систему отопления
Как в программе рассчитать двухтрубную систему отопления
Как в программе рассчитать расход радиатора в системе отопления
Перерасчет мощности радиаторов
Как в программе рассчитать двухтрубную попутную систему отопления. Петля Тихельмана
Расчет гидравлического разделителя (гидрострелка) в программе
Расчет комбинированной цепи систем отопления и водоснабжения
Расчет теплопотерь через ограждающие конструкции
Гидравлические потери в гофрированной трубе
Гидравлический расчет в трехмерном пространстве
Интерфейс и управление в программе
Три закона/фактора по подбору диаметров и насосов
Расчет водоснабжения с самовсасывающим насосом
Расчет диаметров от центрального водоснабжения
Расчет водоснабжения частного дома
Расчет гидрострелки и коллектора
Расчет Гидрострелки со множеством соединений
Расчет двух котлов в системе отопления
Расчет однотрубной системы отопления
Расчет двухтрубной системы отопления
Расчет петли Тихельмана
Расчет двухтрубной лучевой разводки
Расчет двухтрубной вертикальной системы отопления
Расчет однотрубной вертикальной системы отопления
Расчет теплого водяного пола и смесительных узлов
Рециркуляция горячего водоснабжения
Балансировочная настройка радиаторов
Расчет отопления с естественной циркуляцией
Лучевая разводка системы отопления
Петля Тихельмана – двухтрубная попутная
Гидравлический расчет двух котлов с гидрострелкой
Система отопления (не Стандарт) — Другая схема обвязки
Гидравлический расчет многопатрубковых гидрострелок
Радиаторная смешенная система отопления — попутная с тупиков
Терморегуляция систем отопления
Разветвление трубопровода – расчет
Гидравлический расчет по разветвлению трубопровода
Расчет насоса для водоснабжения
Расчет контуров теплого водяного пола
Гидравлический расчет отопления. Однотрубная система
Гидравлический расчет отопления. Двухтрубная тупиковая
Бюджетный вариант однотрубной системы отопления частного дома
Расчет дроссельной шайбы
Что такое КМС?
Конструктор технических проблем
Температурное расширение и удлинение трубопровода из различных материалов
Требования СНиП ГОСТы
Требования к котельному помещению
Вопрос слесарю-сантехнику
Полезные ссылки сантехнику
—
Сантехник — ОТВЕЧАЕТ!!!
Жилищно коммунальные проблемы
Монтажные работы: Проекты, схемы, чертежи, фото, описание.
Если надоело читать, можно посмотреть полезный видео сборник по системам водоснабжения и отопления
infobos.ru
Нижнее подключение радиаторов — плюсы и минусы, фото
Привычное глазу подключение батарей с заходящими сбоку трубами перестает удовлетворять все большее количество потребителей. Хочется, чтобы интерьер комнат был идеальным, отделка аккуратной и стильной. Решить такую задачу позволяют радиаторы с нижним подключением. При этом, вместе с достижением аккуратного вида комнаты, удалось добиться и лучших показателей работы отопительной системы, а также – разработать интересные конструкционные варианты.
Что такое радиатор с нижним подключением

Стандартный радиатор, который имеет знакомое много лет инженерное решение, оснащен четырьмя точками подключения. При этом предусматривается подвод труб строго сбоку. Их сложно маскировать, для укрытия приходится прокладывать трассы за фальш отделкой стены и прибегать к другим хитростям.
В отличие от привычного, нижнее угловое подключение радиатора подразумевает подвод труб всего к двум точкам в нижней части панели. При этом:
- нет ограничений в схеме разводки отопительной системы, можно использовать как однотрубную, так и двухтрубную;
- используя трехходовый кран, легко обеспечить регулировку температуры батареи;
- подводка труб без труда прячется;
- кран перекрытия при двухтрубной схеме или трехходовой при однотрубной позволяют легко отсоединить панель от общей системы для ремонта или замены, без слива теплоносителя и прекращения отопления других комнат.
Для улучшения теплоотдачи и более удобного подвода труб используется клапан нижнего подключения радиатора. Это простое устройство увеличивает эффективность отопительной системы до 20%, при этом есть варианты с горизонтальным и вертикальным ориентированием подводных патрубков. Сегодня производители предлагают десятки вариантов такого изделия.
Чем привлекательны радиаторы вертикального ориентирования

Если не применяется специальный клапан, нижнее подключение радиатора имеет один недостаток. Теплоноситель распределяется по объему очень быстро, скорость циркуляции велика. В результате на выходе падение температуры мало и в комнату отдается меньше тепла, чем это достигается при использовании, например, диагональной схемы бокового подключения. Но подключаемый снизу радиатор имеет неоспоримые достоинства:
- прогрев поверхности происходит очень быстро;
- вся панель имеет одинаковую температуру.
На основании таких преимуществ было предложено новое инженерное: вертикальные радиаторы. Это панель большой высоты и относительно малой ширины. Такой формат позволяет гораздо лучше вписать отопительный прибор в интерьер. Особенно привлекательно выглядит вертикальный обогреватель в ванных комнатах и других помещениях, где не так много открытого горизонтального пространства.
Одна из функций классического, настенного блока горизонтального типа – создавать тепловую завесу. После подсоединения и подачи теплоносителя над отопительным прибором формируется волна горячего воздуха. Установленная под окном, батарея не только греет комнату, но и предотвращает проникновения холодных масс внутрь помещения.
Вертикальная панель в меньшей степени способна создавать тепловую завесу. Поэтому ее используют там, где окон нет. Это может быть простенок, выступающая часть стены в интерьере. Особенно привлекательно выглядит конструкция вертикального типа в разрезе экономии места. К примеру:
- установленные на поверхности прямоугольных колонн, вертикальные блоки обеспечат отличную теплоотдачу и не займут много места;
- рядом с французским окном во всю высоту стены, вертикальные радиаторы с нижним подключением будут особенно хорошо смотреться, занимая минимум пространства в простенке;
- благодаря большой высоте, блоки могут работать и как инфракрасные излучатели, батарея “ростом” с человека создаст новое ощущение комфорта;
- предлагаются варианты радиаторов, которые могут имитировать предметы интерьера, например, оснащаться зеркалом.
Функциональные преимущества у вертикальных обогревателей такие же, как у горизонтальных панелей с нижним подключением. Используется специальный клапан, для отсоединения от системы отопления устанавливается кран перекрытия для двухтрубной схемы и трехходовой – для однотрубной.
При всех своих привлекательных чертах, вертикальные радиаторы с нижним подключением имеют ряд недостатков. В них низка степень конвекционной отдачи тепла – при большой высоте горячий воздух уходит под потолок, где создает почти бесполезную подушку. Кроме этого, из-за большой протяженности каналов прохода теплоносителя велика опасность закупоривания воздушными пробками.
Какими бывают радиаторы нижнего подключения

По инженерному решению радиаторы нижнего подключения имеют некоторые ограничения. Схема циркуляции теплоносителя подразумевает наличие сплошной зоны распределения. Поэтому на массовом рынке просто невозможно найти секционных радиаторов с нижней схемой подключения. Зато можно приобрести:
- панельные варианты для нижнего подключения, изготовленные из алюминиевых сплавов. Для больниц и детских учреждений предлагаются специальные варианты с гладкой поверхностью, обеспечивающей легкий уход, например, радиаторы Керми;
- изделия из профилированной стали. Такие радиаторы очень долговечны, благодаря рифленой поверхности они показывают хорошую теплоотдачу и рекомендуются для частных домов и квартир.
Так как увеличивать количество секций блока теплоотдачи не представляется возможным, система отопления должна прокладываться так, чтобы тепло в комнате обеспечивалось числом панелей радиаторов с нижним подключением, а не их габаритными размерами. Это накладывает некоторые ограничения, если планировалось устанавливать блоки обогрева только под подоконниками.
Сложность с отсутствием возможности манипуляции размерами радиатора компенсируется достоинствами нижней схемы подключения. Трассы подачи и отвода теплоносителя, проведенные под полом, в плинтусах или бетонной стяжке – позволяют размещать панели на стенах, в любых удобных местах. При этом можно создать интересные интерьерные решения и обеспечить комфортный температурный режим в комнате.
Как устанавливаются и регулируются радиаторы
Панели нижнего подключения устанавливаются так же, как и другие решения с неизменяемой геометрией. Необходимо:
- закрепить в стене соответствующие установочные элементы, согласно схеме для конкретной модели радиатора;
- разместить панель и тщательно проверить параметры горизонтальной и вертикальной установки;
- подключить установить перекрывающий кран, при необходимости – трехходовой, клапан нижнего подключения радиатора.
Подводы труб присоединяются и тщательно закрепляется. Если используется клапан нижнего подключения, позволяющий присоединение патрубков снизу-сзади, трассы можно спрятать в штробы или прорези стены. При этом трубы заделываются монтажной пеной. Для выпуска воздуха из радиатора нижнего подключения используются привычные методики и инструментарий в виде гаек Маевского.
Регулировка температуры в помещении может производиться несколькими способами:
- Вручную, при помощи трехходового крана или полным отключением одной или нескольких панелей.
- При помощи термоклапанов.
Термоклапаны бывают разных видов, с электронной установкой необходимой температуры, механической регулировкой, даже – возможностью задания программ подачи тепла. Для радиаторов нижнего подключения удобнее всего использовать осевые регулирующие вентили с термоголовками, практически у каждого производителя такого оборудования можно подобрать модель изделия, которая будет оптимально смотреться и удобно использоваться.
Нижнее подключение радиаторов плюсы и минусы – в качестве заключения
Радиаторы с нижним подключением весьма удобны. При их использовании можно легко избавиться от открытых трасс циркуляции теплоносителя, современные клапаны улучшат эффективность отопления, а помещение приобретет аккуратный стиль и привлекательный внешний вид.
К недостатку можно отнести панельный тип радиаторов нижнего подключения. Климат в комнате обеспечить сложнее, если нет достаточного количества мест для размещения блоков теплоотдачи. Кроме этого, места для размещения арматуры снизу – мало. Там необходимо установить кран для нижнего подключения радиатора, клапан, если хочется иметь и регулятор температуры – пространства требуется все больше и больше. Но при рациональном планировании легко компенсировать недостатки продуманной установкой панелей и тщательно спланированной системой отопления.
pechiexpert.ru
Как лучше подключить радиатор – верхнее, нижнее, боковое, диагональное подключение
В данной статье мы хотим с вами поделиться полезной информацией о том, как нужно подключать радиаторы отопления. Мы имеем трубчатый радиатор длиной 2 метра, имеющий нестандартный размер и нестандартное подключение:
На первый взгляд может показаться, что радиатор подключили неправильно – с верхним подключением. По идее, такой радиатор работать не должен. Весь теплоноситель, который поступает в радиатор, пройдёт через верхнюю часть радиатора и уйдёт обратно в систему, при этом основная часть радиатора останется холодной.
Тем не менее, радиатор подключён правильно и разогревается он тоже полностью.
- Варианты подключения радиатора – боковое, нижнее, диагональное
Перед тем, как рассказать, как устроен этот радиатор внутри и почему его можно подключить сверху, коротко расскажем о том, какие ещё бывают подключения и при каком подключении радиаторы работают более эффективно. Итак, давайте начнём с обычных радиаторов. Рассмотрим самые распространённые радиаторы – алюминиевые и биметаллические.
Давайте заглянем внутрь радиатора и посмотрим, как он устроен внутри. В большинстве случаев секционные радиаторы состоят из верхнего и нижнего горизонтальных коллекторов и вертикального канала, который их соединяет.
Давайте разберём первый вариант подключения – боковое подключение радиатора.
При таком подключении теплоноситель поступает в верхнюю часть радиатора, затем он по вертикальному каналу спускается вниз и через горизонтальный нижний коллектор уходит в ту же сторону, откуда подключался радиатор.
Таким образом, теплоноситель должен разогревать все секции радиатора. Но любой теплоноситель движется по пути с наименьшим сопротивлением. В данном случае основная часть теплоносителя пройдёт через первые несколько секций, и чем больше будет секций, тем хуже прогреются последние секции, что, конечно же, отразится на общей теплоотдаче радиатора.
Второй вариант – подключение тоже боковое, только в этом случае теплоноситель поступает в радиатор снизу, проходит через нижний горизонтальный участок коллектора, поднимается наверх и через верхний коллектор уходит обратно в систему.
При такой подаче теплоносителя история повторяется – первые секции греются хорошо, последние несколько хуже.
Далее рассмотрим нижнее подключение радиатора. В этом случае теплоноситель подаётся в нижнюю часть радиатора. По закону физики горячий теплоноситель легче холодного, поэтому он поднимается наверх, вытесняя более холодный теплоноситель, потом холодный теплоноситель спускается в нижний коллектор радиатора.
Происходит циркуляция внутри самого радиатора. Греть он, конечно, будет, но и потери будут немалые. Потери будут составлять от 10 до 20 % в зависимости от модели радиатора.
Следующий вариант подключения – диагональный. При таком подключения теплоноситель подаётся в верхнюю часть радиатора, затем спускается по вертикальным каналам в нижний коллектор радиатора и уходит в обратную подаче сторону.
Соответственно, все секции радиатора полностью разогреваются и греют одинаково хорошо.
Вот наглядный пример. На верхней фотографии у радиатора боковое подключение, а на нижней фотографии тот же самый радиатор подключили уже по диагонали и хорошо видно, что радиатор стал греть гораздо лучше.
Подводя итоги, можно сказать, что при диагональном подключении радиаторы греют более эффективно.
- Трубчатый радиатор с верхним, нижним и диагональным подключением
Давайте вернёмся к трубчатому радиатору с верхним подключением. Заглянем внутрь радиатора и посмотрим его в разрезе. Внутри он ничем особенно не отличается от секционных алюминиевых или биметаллических радиаторов. Он тоже имеет верхний и нижний горизонтальные коллекторы и вертикальные трубки, которые соединяют эти части радиатора.
При верхнем подключении такого радиатора ничего не заставляет теплоноситель двигаться вниз по всему радиатору. Он пройдёт через верхнюю часть и уйдёт с противоположной стороны радиатора, при этом большая часть радиатора останется холодной.
В конструкции радиатора имеются отличия. Если посмотреть каталог, можно увидеть, что радиатор изначально идёт с верхним подключением.
На самом деле здесь ничего особенного нет. В верхней части радиатора между последней и предпоследней секцией стоит глухая заглушка.
Остановленный такой заглушкой теплоноситель, попадая в верхний коллектор радиатора, вынужден спуститься вниз, затем подняться по последней секции наверх и выйти с противоположной стороны.
Соответственно, теплоноситель проходит через всё тело радиатора, и тот разогревается полностью. Получается, что радиатор работает как при диагональном подключении, с единственным отличием, что теплоноситель не сразу уходит через нижний коллектор, а поднимается наверх и выходит через верхний коллектор радиатора.
Давайте разберём этот же радиатор, только с нижним подключением. В данном случае используется та же самая заглушка, только она устанавливается внизу между первой и второй секциями.
Теплоноситель, попадая в радиатор, сначала поднимается наверх по первой секции, затем попадает в верхнюю горизонтальную часть радиатора, спускается вниз и уходит с противоположной стороны.
В данном случае радиатор также работает как при диагональном подключении. Разберём ещё один нестандартный и весьма любопытный вариант подключения. Это диагональное подключение, при котором теплоноситель подаётся снизу.
В этом случае на заводе уже установлена полупроходная заглушка между первой и второй секциями в нижней части радиатора. В верхней части радиатора между последней и предпоследней секцией ставится глухая заглушка. Это можно посмотреть у немецкой компании “ZENDER”, которая производит такие радиаторы. При таком исполнении теплоноситель в радиаторе делится на два потока – основной и малый.
Основная часть теплоносителя идёт вверх по первой секции, а небольшая часть проходит прямо в нижний коллектор радиатора. В верхнем коллекторе теплоноситель упирается в заглушку и спускается вниз.
Внизу он смешивается с малым потоком, поднимается по последним секциям наверх и после этого выходит из радиатора.
В данном случае радиатор тоже работает как при диагональном подключении и по идее должен греться полностью. Такие варианты подключения можно применить и для обычных секционных радиаторов.
- Установка заглушки
Давайте вернёмся к варианту с верхним подключением радиатора. Мы уже знаем, что требуется установить заглушку между последней и предпоследней секцией в верхней части радиатора.
Подобную заглушку можно установить с помощью вот такой детали:
Прикручивается она на место обычной радиаторной пробки. Исполнение бывает правое, левое, резьба имеет проходные отверстия 1/2 или 3/4 дюйма.
- Работа радиатора с заглушкой при различных видах подключения
После установки заглушки радиатор начинает работать по тому же принципу, как и стальной трубчатый немецкий радиатор с верхним подключением.
Теплоноситель проходит через всё тело отопительного радиатора и выходит из его верхней части с обратной стороны.
Радиатор будет работать так, будто он подключен по диагонали.
При нижнем подключении радиатора применяется тот же самый клапан. Устанавливается он в нижней части радиатора на подаче теплоносителя, который поднимается по первой секции наверх, попадает в верхний коллектор радиатора и затем равномерно распределяется по всем секциям.
В результате повышается эффективность работы радиатора, и мы получаем все преимущества диагонального подключения.
Давайте рассмотрим боковое подключение.
В данном случае имеется простое решение для того, чтобы улучшить теплоотдачу радиатора. Обычно теплоноситель подаётся сверху радиатора, поэтому будем рассматривать именно этот вариант. Для повышения эффективности работы радиатора выход теплоносителя должен быть с другого угла по диагонали.
- Использование радиаторной проходной пробки и удлинителя потока
Можно использовать вот такую радиаторную проходную пробку:
К ней приделана маленькая муфточка с внутренней резьбой с крупным шагом. У “VALTEK” это называется “удлинитель потока”.
Такая пробка имеется на правую и на левую резьбу с проходными отверстиями 1/2 либо 3/4 дюйма. В этот удлинитель потока вкручиваются любая метапольная шестнадцатая труба. Длина этой метапольной трубы должна быть такой, чтобы она чуть-чуть не доходила до последней секции радиатора.
После этого удлинитель потока вместе с метапольной трубой прикручивается в нижнюю часть радиатора. Такой удлинитель потока можно сделать и самому. Вот некоторые варианты того, как они выглядят:
После установки удлинителя потока весь теплоноситель, который поступает в радиатор, доходит до последней секции и выходит через нижнюю часть последней секции через установленную метапольную трубу.
В результате опять получается диагональное подключение, и мы решаем проблему с плохим прогревом последних секций.
Вот и всё. Надеемся, что данный материал кому-то помог разобраться с вариантами подключения радиаторов и найти для себя полезную информацию.
transkribator.guru
диагональное, последовательное, прямое, боковое, видео и фото
Наверное, сразу следует обратить внимание на то, что прямое подключение радиатора отопления подразумевает три основных варианта – боковой, нижний и диагональный, но при этом возможны некоторые нюансы. Кроме того, есть варианты для контуров, которые могут быть однотрубными или двухтрубными, ещё это зависит от количества этажей в здании, а также может рассматриваться с точки зрения дизайна. Но подробнее обо всём этом мы поговорим в материале, расположенном ниже, а также продемонстрируем вам по теме видео в этой статье.

Боковое подключение радиаторов отопления в однотрубной системе
Способы разного подключения
Разновидность контуров
Примечание. Контур системы отопления может быть либо однотрубным, либо двухтрубным.
От этого зависит эффективность теплоотдачи приборов, а также способы их подключения.

Диагональное подключение радиатора отопления в однотрубной системе
- Однотрубная система отопления подразумевает собой закольцованный контур из одной трубы, в которую врезаются радиаторы отопления – пример такого монтажа показан на верхнем изображении:
- здесь теплоноситель, двигаясь от котла, по пути, через трубы меньшего диаметра, расходится по батареям и под давлением циркуляционного насоса возвращается назад в ту же трубу;
- но пройдя через отопительный прибор, вода теряет температуру, следовательно, чем больше радиаторов в такой системе, тем холоднее вода будет в её конце;
- в автономных системах не рекомендуется устанавливать более 3-4 радиаторов на одну закольцованную трубу, чтобы была возможность сохранить примерно одинаковую температуру в каждом из них;

Байпас в однотрубной системе
- В однотрубной системе, особенно в многоэтажных домах, удобнее подключать приборы сбоку, но как подключить радиатор отопления с боковым подключением, чтобы максимально сохранить температуру в последующих батареях?
Для этого между трубами подачи и возврата врезается перемычка, называемая «байпас» и она служит двум целям:- во-первых, часть воды проходит по трубе, не попадая в батарею, следовательно, она не охлаждается;
- во-вторых, благодаря байпасу можно произвести демонтаж без слива теплоносителя, если даже контур напрямую, без обвода, проходит через радиатор;

Принцип двухтрубного контура
- Более удобным можно назвать двухтрубный контур – здесь теплоноситель попадает в радиатор из трубы подачи, а охлаждённая вода сбрасывается в трубу возврата и возвращается в котёл для нового подогрева:
- Но цена эксплуатации такого обустройства несколько выше, так как приходится подогревать большее количество воды, следовательно, нужно потратить больше энергоносителей, которые нужно оплачивать;
- Зато такой контур никогда не вызывает проблем и в него можно врезать большое количество радиаторов, так как есть возможность сохранить во всех равномерную температуру;

Совместное подключение
- Кроме того, для двухтрубной системы инструкция предусматривает совместное подключение радиаторного контура с тёплым полом, но это два разных устройства, требующих циркуляции теплоносителя при разной температуре.
- Но, несмотря на такое кажущееся разногласие, такое подключение имеет место — на входе в трубу тёплого пола устанавливается трёхходовой кран, работающий по дискретной системе, и когда контур нагревается до нужного состояния, срабатывает клапан и горячая вода с подачи сбрасывается в «обратку»;
- Принцип такого подключения хорошо показан на схематическом изображении выше этого абзаца.
Последовательно и параллельно
Последовательное подключение
Помимо всего прочего, подключение может быть последовательным и параллельным, так, последовательное подключение радиаторов отопления показано на верхнем изображении.
Такая ситуация возникает также в том случае, когда перекрывают байпас и вода из одного радиатора сразу попадает в другой, минуя подачу и обратку. Но совсем не обязательно, чтобы циркуляция была по диагонали прибора – так, это может быть нижнее боковое подключение («ленинградка») или одностороннее боковое подключение, суть в том, что теплоноситель сразу попадает из батареи в батарею.

Параллельное подключение
Когда подключение радиаторов отопления параллельное, то они не зависят друг от друга, следовательно, температура воды в них будет равномерной, как в первом, так и в последнем приборе.
Но такое возможно только в двухтрубной системе, где на подачу теплоносителя никаким образом не влияет количество батарей. Схему такого подсоединения вы видите вверху, и оно может быть боковым, нижним или диагональным.
По диагонали, сбоку и снизу

Варианты подключения радиаторов отопления (сверху вниз): по диагонали, сбоку, снизу
Оптимальным считается диагональное подключение радиаторов, так как теплоноситель циркулирует в нём с наибольшей равномерностью, поэтому, когда вы видите в сопроводительных документах номинальную мощность, то производитель исходит именно от такого типа подсоединения, когда вся площадь прибора задействована одинаково.
Считается, что здесь потерь максимальной мощности не существует, и она выдаётся на все 100%. Есть ещё один вспомогательный вариант, когда можно оптимально задействовать всю ёмкость, но об этом немного ниже.
Несколько хуже (только на 95% номинальной мощности) работает прибор отопления, если его подсоединяют сбоку (с одной или с двух сторон) – здесь площадь нагрева будет более интенсивной со стороны подачи.
А вот при нижнем подключении, что также называется «ленинградкой» номинальный КПД составляет всего 90%, так как циркуляция затрудняется столбовым давлением и, вполне естественно, что здесь площадь нагрева является наиболее неравномерной.
Примечание. Прежде чем начать расчёт мощности для отопителей в вашей квартире или частном доме, вам следует окончательно определить способ подключения радиаторов. Только в таком случае вы сможете вычислить количество секций наиболее правильно.
Удлинитель протока, как оптимизатор распределения тепла

Удлинитель протока, как решение проблем
Далеко не всегда удаётся в автономной или централизованной системе отопления подсоединять батареи по диагонали, чтобы обеспечить максимальную (100%) отдачу тепла, и для этого есть разные причины – здесь и технические возможности, и особенности интерьера или попросту человеческий фактор – упустил из виду или не знал.
Когда секций не особенно много, во всяком случае, не более 8-10 штук, а то и меньше, то перепады температуры на общей площади радиатора не заметны, а если и заметны, то не особо. Но вот если количество секций увеличить, а такая потребность возникает довольно-таки часто, то перепады температуры на разных концах одного и того же приборе могут достигать 10̎⁰C и даже более.
Безусловно, можно провести переподключение, то есть, подсоединить прибор по диагонали и в таком случае теплоноситель станет равномерно распределяться по всей площади, но это не всегда возможно из-за тех же технических условий или особенностей интерьера.
В таких ситуациях есть своеобразная панацея – это удлинитель протока, который по непонятным причинам почему-то очень сложно найти в наших магазинах, торгующих сантехникой, но его, зато можно сделать самостоятельно.

Нагрев медной трубы перед пайкой
Для этого вам понадобится медная труба с наружным диаметром 18 мм и толщиной стенки не менее 1 мм, а также медная муфта для пайки (переходник на фитинг) с наружным диаметром 19,5 мм.
Длину трубы рассчитывают с учётом количества секций, так, её конец должен доставать до стыка последней и предпоследней секции – в некоторых случаях удлинитель делают до средины радиатора, но обрезать трубу вы сможете в любой момент. Мы не будем во всех подробностях описывать процесс пайки, скажем только, что флюс не должен попасть внутрь трубы, то есть его не должно быть много, так как может образоваться застывшая капля, и вода при циркуляции будет шуметь.

На фото: установка удлинителя протока
Удлинитель протока устанавливают в верхней части радиатора, но его лучше, конечно, использовать вместе с термоголовкой, которой вы сможете задавать нужную вам температуру. А вот распределение теплоносителя по площади батареи у вас теперь будет равномерным.
Заключение
Произвести подключение радиаторов отопления вы можете и своими руками, если, конечно, для этого у вас имеются необходимые инструменты. Но если вы в этом деле новичок, то не забывайте о том, что это достаточно ответственно – подтекание системы в период отопительного сезона явление не просто неприятное, а, можно сказать, из ряда вон выходящее. Поэтому, если не надеетесь на свои силы, то лучше пригласите специалиста.
gidroguru.com
Схема подключения радиаторов отопления — нижнее, последовательное, диагональное подключение радиаторов при однотрубной системе, виды на фото и видео
Содержание:1. Однотрубная система отопления
2. Двухтрубная отопительная система
3. Разнообразие схем подключения батарей
4. Одностороннее боковое подключение радиаторов
5. Диагональная схема подключения радиаторов отопления
6. Нижний вид подключения
7. Подключение по схеме Тихельмана
8. Выбор места для установки радиаторов
Отопительная система должна выполнять свое основное назначение – обеспечивать эффективный обогрев квартиры или дома. Все элементы конструкции следует располагать таким образом, чтобы теплоотдача приборов была максимальной. Схема подключения радиаторов отопления должна учитывать ряд нюансов, включая необходимое их количество, длина трубопроводов, особенности местонахождения и подсоединения труб и т.д.
Однотрубная система отопления
Однотрубная отопительная конструкция предполагает, что будет выполнено последовательное подключение радиаторов отопления с использованием одной трубы.
Ее подводят в направлении от котла к первому из приборов, затем она идет ко второй батарее, а от нее – к третьей и так далее. Схема подключения радиаторов отопления при однотрубной системе довольно популярна.
Существует так называемый усовершенствованный вариант подсоединения радиаторов отопления по однотрубной схеме. При ней к цельной трубе для подачи горячего теплоносителя присоединяют батареи при помощи двух стояков — подачи и «обратки». Данный способ позволяет установить термовентиль перед радиаторами. Основная функция этого устройства заключается в прекращении подачи горячего теплоносителя к батареям после того, как в помещении будет достигнут необходимый уровень температуры воздуха.
В первом случае при однотрубной системе схема подключения радиаторов отопления не предусматривает возможность заблокировать отопительный прибор без прекращения подачи воды в следующие за ним батареи. Основное преимущество данного варианта заключается в его простоте и экономии материалов и денежных средств, что является значительным плюсом. Среди недостатков нельзя не отметить, что существует разница в степени нагрева между самым ближним к котлу прибором и наиболее удаленным от него радиатором.
При наличии в системе естественной циркуляции теплоносителя, общая протяженность конструкции не бывает значительной. Для решения проблемы требуется монтаж специального насоса, обладающего высокой производительностью.
Если здание имеет больше, чем один этаж, тогда однотрубная схема подключения отопительных радиаторов функционирует следующим образом: по трубе прямого стояка горячий теплоноситель подается на самый верхний этаж, а затем перемещается вниз, при этом проходя через каждый последовательно подключенный прибор (подробнее: «Как подключить радиатор отопления — способы и варианты»). К сожалению и при таком методе присутствуют свои недостатки: батарея на первом этаже будет обладать меньшей теплоотдачей, чем на верхнем. Притом, что повлиять на данный недостаток невозможно.
Двухтрубная отопительная система
При двухтрубной отопительной схеме подразумевается параллельное подключение радиаторов отопления. При этом теплоноситель к батареям подводится по одной трубе, а отводится по другой. Такой вариант обычно используется для обогрева жилых помещений в частных домовладениях и загородных усадьбах (прочитайте: «Двухтрубное отопление с нижней разводкой — схема и монтаж»). В данном случае степень теплоотдачи у всех приборов одинаковая и ее можно корректировать, установив на прямом стояке терморегулятор.
Разнообразие схем подключения батарей
На сегодня имеются следующие виды подключения радиаторов отопления к центральной системе теплоснабжения:
- одностороннее боковое;
- нижнее;
- диагональное;
- попутно перехлестывающий способ (вариант Тихельмана).
Одним из важных элементов отопительной конструкции при подключении радиатора к стоякам (прямому и обратному) является байпас, представляющий собой отрезок трубы с меньшим диаметром, чем у всех остальных. Он соединяет между собой подачу и «обратку» и его монтируют, если в однотрубной схеме присутствует терморегулятор для радиатора отопления.
Одностороннее боковое подключение радиаторов
Боковое подключение радиаторов отопления (одностороннее) предполагает присоединение радиаторов к прямому и обратному стояку при помощи труб сверху и снизу одной и той же секции, как это выглядит видно на фото (прочитайте также: «Стояковая система отопления — устройство на примерах»). Специалисты рекомендуют подключать подачу к верхней части прибора, а обратку – к нижней.
Дело в том, что подключение радиаторов с нижней подводкой горячего теплоносителя, приводит к уменьшению степени теплоотдачи примерно на 7%. Боковое одностороннее подключение батарей отопления способно обеспечить максимальный прогрев радиаторов при условии наличия большого количества секций или равномерный нагрев всех отопительных приборов, соединенных параллельно, если их установка выполняется в высотном здании.
Диагональная схема подключения радиаторов отопления
Диагональное подключение радиаторов отопления к отопительной системе предусматривает расположение труб от стояков подачи и обратки по разные стороны прибора. Прямую трубу следует подвести к верхней части батареи, а обратную трубу — к нижней. Если не соблюдать рекомендованный порядок, эффективность обогрева объекта снизится не меньше, чем на 10%.
Диагональное подключение радиаторов принято считать оптимальным решением при обустройстве отопительной конструкции, когда планируется установка большого количества батарей. При таком виде подсоединения горячий теплоноситель равномерно распределяется по внутреннему пространству отопительного прибора, что касается теплопотерь, то они в данном случае не превышают 2% (прочитайте также: «Однотрубная и двухтрубная система отопления — делаем правильный выбор»).
Нижний вид подключения
Используют нижнее подключение радиаторов отопления, если необходимо убрать все трубы конструкции в пол. Соединение со стояками подвода и обратки выполняется путем присоединения их к нижним частям крайних секций. Теплопотери при таком варианте монтажа достигают 15% , поскольку верхняя часть приборов нагревается крайне неравномерно.
Подключение по схеме Тихельмана
Отличие схемы Тихельмана (двухтрубное попутно перехлестывающее присоединение батарей) заключается в установке сужающих устройств на отдельных участках труб, подающих и отводящих теплоноситель. Например: от котла идет 50-миллиметровая подающая труба. В нее врезают подачу на первый из радиаторов диаметром 20 миллиметров. Дальше следует 20-миллиметровый участок отвода на второй прибор. После него диаметр стояка составляет уже 32 миллиметра. Затем следует еще один 20-миллиметровый отвод. Далее после третьего радиатора диаметр стояка равен 25 миллиметров. После последнего 20-миллиметрового отвода находится последняя из батарей.
Обратку собирают согласно зеркальной схеме. К стояку отвода подключают первый прибор в конструкции, используя трубу наименьшего диаметра, а последним – крайний радиатор с помощью 50-миллиметрового отрезка трубы.
Используя схему Тихельмана, даже при условии большой протяженности теплотрассы на таких объектах как промышленные склады, огромные особняки, можно обеспечить равномерный прогрев всех батарей, причем с минимальными потерями тепла.
Выбор места для установки радиаторов
Отопительную батарею следует располагать так, чтобы она не только эффективно прогревала помещение, но и препятствовала распространению по нему холодных воздушных потоков. Поэтому традиционным местом их установки стало пространство под подоконником. При этом необходимо придерживаться определенного расстояния между стеной и прибором (3-5 сантиметров), а также радиатором и напольным покрытием (10 сантиметров). Прочитайте также: «Напольные радиаторы отопления — оригинально и практично».
Батарея не должна монтироваться полностью под подоконником и в том случае, когда он очень широкий, его нужно выдвинуть немного вперед. Если в период отопительного сезона жар от прибора сильный, тогда желательного установить защитный декоративный экран, который будет способствовать равномерному передвижению теплого воздуха.
Немаловажным моментом является этап проектирования отопительной конструкции. Если в схеме планируется использование электрического циркуляционного насоса, то проблем в процессе теплоснабжения обычно не возникает. Иначе обстоят дела в системах с естественной циркуляцией, но зато они энергонезависимы.
Видео о схеме подключения радиаторов отопления:
teplospec.com
Монтируя различные системы отопления необходимо выполнить подключение отопительных приборов (радиаторы отопления). Если вы определились как вы будите делать систему, но не приняли решение как подключить радиатор к данной системе, давайте рассмотрим все имеющиеся варианты. Хотя на эту тему в интернете уже достаточно много информация, просматривал множество статей, Я заметил постоянное расхождение в расчетах и мнениях и стал основываться на учебниках по теплотехники и разных исследованиях проводимые научными институтами, а не горе сантехниками и писателями красивых фраз. И еще одно важное предисловие, все расчеты производятся для стандартного строения, высота потолка не более трех метров и толщина стен в два с половиной кирпича, а также правильно смонтированной системой отопления, при отличии дома от данных стандартов требуется добавлять коэффициент. Разновидность подключения можно разбить на несколько типов:
Это, то что относится к вариации присоединения трубопровода непосредственно к радиатору, но есть в теплотехники и гидравлике такое понятие как поток, направление потока и его скорость, проще сказать как входит теплоноситель в прибор отопления и какое количество. Установленный на стену радиатор имеет верх и низ, а это означает что при некоторых схемах подключение будет происходить поступление теплоносителя либо сверху, либо снизу, здесь возникает вопрос как подключить подающую трубу и обратную. Про скорость и количество проходящей воды (теплоносителя) через установленные отопительные приборы, как ни старайтесь, эти две величины точно не просчитаете, поэтому будем исходить из некого стандарта. Теперь картина становить такой, имеем три варианта присоединения и два вида потока теплоносителя, но множество версий применения, в связи имеющихся двух систем отопления, а это двухтрубная и однотрубная. Будем разбираться, приводить примеры и смотреть технические исследования и опыты инженеров для выявления лучшего показателя теплоотдачи по применяемым схемам. Боковое подключение радиатораРаспространенное подключение в многоэтажных и многоквартирных домах. Все кто жил или живет в квартире видел как у него произведено подключение, у некоторых с права подходят две трубы, а есть и слева подводка. Разницы с какой стороны подведены трубы нет, но откуда приходит поток теплоносителя, важно знать каждому хозяину квартиры. Поток подачи теплоносителя может приходить сверху и уходить в нижнюю трубу, или все абсолютно наоборот, снизу в верх. Эта разница очень влияет на теплоотдачу радиатора, при этом из какого материала он изготовлен значения не имеет. Приведем небольшой пример из старых опытов влияние температур подачи и обратки на чугунным радиаторе отопления, профессор Аше Б.М. Опытным путем установил, что при подключении радиатора потоком снизу вверх, на поверхности прибора устанавливается температура равная температуре воды выходящей из прибора. Так у него получилось, если входящая температура будет 130 градусов, уходить из радиатора 95 градусов то прибор будет нагрет на 95 C., а при подаче сверху вниз прибор нагрелся до 112.5 градуса. Следует вывод о лучшем потоке сверху и в результате батарея будет выдавать заявленную по паспорту теплоотдачу. Конечно это завышенные температуры относились к устаревшим паровым системам, сегодня используют водяное отопление с расчетной температурой в 70 градусов для частного дома, не более 4 этажей, эффективность теплоотдачи подводки ни куда не делась. Боковое подключение радиатора можно использовать в частном доме, с закрытой или открытой системой отопления учитывая при этом количество секций на одном приборе, но не более десяти штук, в противном случае последние секции такого радиатора будут не столь эффективны из-за конструкции алюминиевого или биметаллического радиатора. Боковое подключение радиаторов не используют при монтаже горизонтальной однотрубной системы, она больше уместна в стояковых однотрубных разводках (в квартирах), вертикальная и горизонтальная двухтрубная или лучевая в любых строениях. В многоквартирных домах, когда в комнатах имеются боковые подводы и проток жидкости направлен снизу вверх требуется учитывать неполноценность теплоотдачи в 5-8%, требуется увеличение количества секций на устанавливаемом приборе. Подключение радиатора с левого или правого бока имеет максимальное преимущество по теплоотдачи согласно научным трудам и профессора Сканави А. Н. где описаны все типы подключения и указан данный тип как наилучший. Диагональное подключение к радиаторам отопленияТакой тип подключения распространен в частном строительстве, общественных, производственных зданиях и разных по применению сооружений, в общим можно делать везде где требуется провести горизонтальную систему, диагональное подключение отлично работает в двухтрубных, однотрубных и лучевых системах отопления. Рассмотрим преимущества и недостатки такого присоединения труб к радиатору. Мы не зря начали рассматривать варианты с боковым подсоединением и там было приведено наиболее эффективное подключение подающего трубопровода, надеемся вы убедились в этом, и здесь не требуется приводить дополнительных доказательств и апеллировать цифрами. Если у вас остались сомнения, то на просторах интернета уже довольно много подобной информации с цифрами и разными выписками из учебников по теплотехники, давайте просто это запомним и будем рассматривать диагональную подводку более подробно. Хотя такой тип подключения наиболее универсален и имеет хорошие показатели, не следует кидаться во все тяжкие и обвязывать все радиаторы. Диагональное присоединение в совокупности с двухтрубной и лучевой системой, позволяет получить максимальную эффективность, от своего типа, при условии правильной раскладки диаметров трубопроводов, скорости протока теплоносителя и присоединяемого диаметра непосредственно к радиатору. Приведем пример на двухтрубной системе, из более частого и доступного материала «полипропилен», стандартные размеры которого 40, 32, 25 и 20 мм в диаметре трубы, если у вас трасса будет монтироваться из 25 или 32 трубы, то подводки для диагонального подключения должны быть 20 мм., то есть все подводки должны быть наименьшего диаметра, а вот диаметр прокладываемой трассы зависит от ее протяженности и количества установленных на ней радиаторов. Далее учитывается количество секций в приборе, если их будет больше 10 секций, например довольно популярных алюминиевых или биметаллических радиаторов, возможно образования застойных мест на последних точках. На всех фотографиях показано как подвести трубы к прибору отопления, красная линия подача, синяя значит обратная подводка в магистраль. Обратите внимание, не нарисованы краны или вентиля, это не значит что такую запорную арматуру не стоит устанавливать. Краны и регулировочные вентиля обязательны к установке при любом типе присоединения труб и виду систем отопления, а при однотрубной системе, регулировка протока один из важнейших факторов для равномерного распределения потоков теплоносителя. На фотографии имеются два вида подключения с надписью «правильно» и «не правильно», в обоих случаях все работает и возможно вы не заметите разницы, так как все делают с запасом, котел с запасом, радиаторы с запасом. Не правильный вариант — это только с технической и экономической точки зрения, на ощупь, рукой или по комнатной температуре, вы не отличите большой разницы, а вот если считать по теплотехническим формулам и расчетам, получится что вариант с права не правильно смонтирован и в общей объеме установленных радиаторов менее эффективен и потребуется корректировка на 4-6%. По диагональному типу подключения много спорной информации даже в научной литературе, на практике все работает отлично. В отдельных случаях, когда есть требуемая температура теплоносителя, сбалансированная гидравлика системы и достаточный проток теплоносителя диагональный и боковой тип будут равными по эффективности передачи тепла от прибора отопления в помещение, естественно при присоединении подающей трубы сверху отопительного прибора, батареи. Застойные места в длинных и многосекционных радиаторах при диагональном подключении имеют место быть, из-за конструкции секционного радиатора происходит проток горячей жидкости течет больше по верхней части. Так как нагретая жидкость имеет более легкий вес по сравнению с остывшей, для полноценной циркуляции не хватает силы завихрения вытолкнуть остывшую жидкость по кругу. Но хотелось бы отметить, что данный факт может и не присутствовать в радиаторе, многие батареи имеют увеличенный проходной канал и еще не просчитана гидравлика системы (проток) отопления которую задает имеющийся насос, расчет зависит от применяемых диаметров и материалов. Чтобы не гадать на кофейной гуще, не устанавливайте больше секций на один прибор, разумнее будет поделить на два маленьких. Пару слов надо сказать про работу однотрубной системы с диагональным подключением. Первое эффективность применения немного меньше чем с двухтрубной или лучевой, но дешевле и быстрее в монтаже. Однотрубная система вообще самая неэффективная в том виде, в котором ее делают все. Однотрубная система имеет довольно много преимуществ в комплекте с диагональным подключением, но правильно смонтировать и применить в частном доме сложновато, вас не устроит 40 диаметр трубопровода почти по всему периметру вашего дома. Если подключить все имеющиеся в доме радиаторы, диагональным типом к горизонтальной однотрубной системе вы потеряете всю эффективность уже на третьем и всех последующих приборах с пропорциональным снижением температуры теплоносителя в меньшую сторону (обусловлено самим принципом однотрубной системы). Нижнее подключение радиатораПодключение радиаторов в доме по схеме низ подача, низ обратка осуществляется ко всем видам систем отопления придает. При всех не значительных, но имеющихся недостатков этого типа подключения, он является наиболее выгодным по эстетичному внешнему виду и не большой экономии на материале. Потеря эффективности тепловой энергии от лучших показателей на 7-10% только в секционных радиаторах, у стальных панельных радиаторов такого эффекта нет. Применяется очень часто, простая схема, простой монтаж, очень удобно при прокладке основных магистралей под полом частного дома (в стяжке). Потеря эффекта тепла на некое количество в процентах, это расчет инженеров тепло техников и данные исследования, все это легко восполнить при расчете тепло потерь дома. Батареи с нижним подключением нужно разделить на два вида. Первый вид подключения — это постоянно используемый при монтаже алюминиевых, биметаллических и чугунных радиаторов состоящих из некоторого количества секций, второй вид — это когда у самого радиатора проходные отверстия с самого низа, в основном у стальных панельных радиаторов имеются такие выводы, менее распространенные алюминиевые радиаторы с нижним подключением, точнее будет сказать, редкость. Про первый вид, подводки труб снизу, а также установленная на них запорная арматура и другие балансировочные устройства привлекает своей надежной работой и более приятным глазу внешним видом, так как их почти невидно. Большой плюс нижнему подводу дает факт равномерного прогрева всех секций, даже если таких будет намного больше 10 шт. Полностью отсутствуют застойные места и падение эффективности на длину радиатора. Отдавая на 7-10% тепла меньше от заявленных паспортных характеристик вполне допустима установка до 24 секций в одном приборе, это довольно удобно при длинных оконных проемах и больших комнат.
На фото показан поток теплоносителя в алюминиевом секционном приборе отопления по данным учебника профессора Сканави А. Н. Нагретая жидкость имеет физическое свойство становиться легче и самостоятельно подымается наверх, прогревая весь прибор отопления, отдавая тепло жидкость опускается вниз где ее выталкивает поток созданный принудительной циркуляцией. Секционные батареи с нижним подключением могут быть почти любой длинны, но не более 24 секций из-за большого сопротивления и корректировки коэффициента теплоотдачи. При достаточной скорости циркуляции в двухтрубной и лучевой системе, постоянной величине входящей температуры теплоносителя, нижняя подводка прогревает равномерно как с десятью секциями на приборе, так и на двадцать шт. На этом заканчивается разбор применяемых подводок к радиаторам, и требуется подвести итог, сделать выводы из выше написанного. Вывод о правильном подключении радиатораЕсли вкратце, то для меня вывод здесь однозначный. Принципиального отличия как подключить батарею нет ни в одном типе, небольшие потери теплового потока от номинально правильных показателей составляют всего 10%. Что такое эти десять процентов, например возьмем дом для которого требуется по расчету тепло потерь 100 алюминиевых секций с идеальным боковым подключением, но такой тип нас не устраивает из-за сложности применения именно к этому дому, считаем на диагональную подводку, то есть прибавим максимально 6% к ста секциям и получим 106, увеличение нужного количества секций на 6 шт., на всю общую площадь дома. При таком расчете далее идет нижняя подводка, где увеличение требуемых секций будет ровна 10. Зная о допустимых потерях тепла при подключении диагональной и нижней подводки не хотелось бы тратится на покупку лишних 6 или 10 секций. В чем заключается именно мой личный вывод, Я уже упоминал в начале про стандарты и правильно сделанную систему отопления по гидравлике, поэтому однозначно делать все по привязке к идеальной подводке не стоит, влияния факторов конструкции дома, расположение радиаторов и их внешнего вида, а также применяемой схемы системы отопления влечет за собой применение в каждой комнате разных типов подводки для максимального тепло съема, нелогично и не красиво получится. Далее, точно высчитать максимальный тепло съем с каждого радиатора вам не удастся без полных знаний теплотехники и гидравлике, но можно заказать тепловой расчет дома и проект системы, что в процессе эксплуатации окупиться с лихвой на меньшем потреблении газа и сроком службы оборудования которое будет работать без перегрузки. В расчете будут указаны все проблемные места и распределены нужные диаметры труб, рассчитаны приборы отопления по каждой комнате в отдельности. Выбирая тип подводки я бы подходил со стороны практичности и надежности самой системы отопления, а недостающий процент в 10 секций распределил в наиболее холодные места дома, например коридор и ванная комната. Подключение радиаторов из учебника о системах отопленияПриведены различные типы подводки трубопровода от вертикальных однотрубных и двухтрубных систем отопления зданий и сооружений Возможные варианты подключения трубопровода к отопительным приборам при разных системах, но имеющих направление потока через прибор сверху вниз. Горизонтальная система и типы подсоединения приборов отопления, красным подчеркнуто редукционная вставка, для ее применения нужен точный расчет по гидравлике который укажет на длину участка и его диаметр. Разнообразие вариантов подключения приборов отопления довольно велико. Отлично выполненная система отопления, правильно подключение приборов различной мощности и конфигурации обеспечивает равномерное распространение тепла по всем помещениям и экономичность потребления различных энергетических ресурсов. На нашем сайте можно подобрать определенный вид алюминиевого или биметаллического прибора, секционно сть выпускаемая заводом изготовителем всегда в четном количестве, например четыре, шесть, восемь, десять, двенадцать секций. Выберите правильное подключение батареи! |
www.kasskad.ru
Выбираем радиаторы с нижним подключением
Любой, кто сталкивался с проблемой установки отопления в своем жилище, задавался вопросом: какой элемент выбрать? Радиаторов сейчас предложено великое множество, на любые нужды и возможности заказчика. Ведь всем известно, что уровень теплоотдачи никак не зависит от метода подключения радиатора: оно может быть также диагональным или боковым; иметь последовательное и параллельное соединение. Но многие предпочитают именно нижнюю подводку. По какой причине?
Содержание
Для чего нужны радиаторы отопления с нижней подводкой?
Одна из причин выбора радиаторов с нижним подключением — эстетичность. Только при этом виде подключения можно спрятать магистраль подключения.
Вряд ли кто-то сможет назвать извилистые, некрасивые трубы, стояки украшением помещения. Скорее уж наоборот: дизайнеры по интерьеру делают все, чтобы либо замаскировать их, либо как-то смягчить производимое ими мрачное впечатление. И только радиаторы отопления с нижней подводкой позволяют решить эту проблему — в них некрасивые трубы спрятаны под поверхность пола. Таким образом вашему жилищу будет обеспечен комфортный режим обогрева и эстетичное оформление.
Сегодня ассортимент радиаторов весьма широк и можно легко приобрести в том числе биметаллические радиаторы. Подключение можно также осуществить своими силами.
Подключение подобного рода батареи может быть осуществлено как напрямую, так и через особое устройство — блок нижнего подключения. Зачем он нужен? А чтобы не приходилось сливать батарею при отключении ее от сети. Таким образом можно забыть о хлопотной и неприятной процедуре отключения системы во всем доме.
У чугунных и алюминиевых батарей подобной возможности подключения нет. Нижняя подводка возможна у стальных изделий, как панельных, так и трубчатых.
к меню ↑Какой бывает нижняя подводка?
Нижнее подключение радиаторов к системе имеет свои разновидности:
- сверху вниз
- одностороннее
- разностороннее
- по центру
При заказе радиатора один из приведенных вариантов выступает в качестве дополнительной функции.

Радиатор отопления с нижней подводкой по центру
к меню ↑Плюсы и минусы
Тем не менее, стоит помнить, что радиаторы с нижней подводкой имеют не только достоинства. Как и у всех, у них есть свои минусы. И один из них — как раз та самая «эстетичность» и вмонтированные в пол или скрытые плинтусом трубы. Что будет в случае аварии, когда лопнет труба? Придется ломать пол и плинтус, чтобы добраться до источника проблемы. Долго, неприятно, трудоемко. Да и по карману ударит — пол ведь после устранения аварии придется восстанавливать, что своими силами не всегда удается.

Радиатор отопления с разносторонней нижней подводкой
Эффективность теплоотдачи, многие специалисты утверждают, что нижнее подключение — из всех самое не эффективное. Напротив, здесь преимущество как раз у бокового способа подключения. Именно оно чаще используется в многоэтажках и новостройках. В нем обе трубы (подачи и оттока) расположены по одну сторону теплоносителя. При таком способе достигается максимальный прогрев батареи, а значит и теплоотдача.
Подобный вид подключения не очень удобен для многосекционных батарей — до последних секций тепло может «не доходить». Но и это легко решаемо — достаточно использовать удлинитель протока воды. Радиаторы с нижней подводкой устанавливаются, как правило, в частных домах.

Радиатор отопления с односторонней нижней подводкой
к меню ↑Особенности установки
Если же вы все-таки решили остановить свой выбор именно на радиаторе с нижней подводкой, то следует соблюдать определенные правила при его установке.
Обеспечить легкий доступ к соединениям радиатора, нужно расстояние от пола до нижней части батареи составляло не менее 7 см.
Устанавливаете батарею в углублении под подоконником. Позаботьтесь, чтобы расстояние до подоконника составляло не менее 10 см. Это необходимо для обеспечения оптимальной конвекции воздуха (иначе ваша батарея будет обогревать цветы на окне, а не комнату) , а также чтобы не возникло трудностей для работы и доступа, если встанет необходимость демонтировать радиатор.
Расстояние от задней части радиатора до поверхности стены должно составлять не менее двух сантиметров.
Устанавливая батарею, обязательно следует обращать внимание на точку питающей трубы и обратного хода. Бывает, что они находятся по разные стороны элемента, тогда нужно следовать маркировке. Но иногда обе точки соединения находятся с одного бока, тогда следует быть предельно внимательным.

При ошибке в подключении эффективность обогрева помещения, которая у данных элементов и так не особенно высока, упадет еще раза в два
Место установки батареи следует просчитать заранее и определиться с точками ее крепежа. Устанавливать радиатор следует исключительно в заводской упаковке, чтобы исключить риск повреждения батареи при монтажных работах. Упаковку можно снять только по завершении процесса подключения. Это правило действует, надо отметить, на все радиаторы вообще, а не только с нижней подводкой.
Помимо того, где и как будут установлены батареи нижнего подключения в вашем доме, встанет вопрос и о схеме подсоединения элементов отопления.
Следует обратить внимание, что ко всем батареям с нижней подводкой в комплекте обычно прилагается термостатический вкладыш. Он позволит в дальнейшем установить термостат, дабы получить возможность регулировать степень нагрева. Это несомненное преимущество, но также и ощутимая прибавка к стоимости радиатора — примерно десять процентов.

Устанавливать радиатор отопления следует в заводской упаковке
к меню ↑Радиаторы с нижней подводкой Rifar
Тем, кто по-прежнему хочет иметь именно батарею с нижним подключением, полезно будет обратить внимание на радиаторы с нижней подводкой Rifar.

Радиаторы отопления с нижней подводкой Rifar
Почему именно на них? Это радиаторы биметаллические с нижней подводкой, отличаются более высокой надежностью среди прочих аналогов. Секрет их состоит в установленной цельной неразборной конструкции каналов внутри радиатора, созданной благодаря уникальной сварочной технологии. Именно поэтому «точек риска» (то есть мест, где вероятнее всего могут возникнуть возможные трещины и протечки) у этих батарей практически нет.
Теплоотдача у радиаторов с нижней подводкой Rifar также гораздо выше, чем у остальных «собратьев» — благодаря особой развитой геометрии поверхностей.
Итог
Подводя итоги, можно сказать, что радиатор с нижней подводкой никаких особых преимуществ над другими не имеет и приобретать его следует в том случае, если вам важно, чтобы трубы были скрыты.
к меню ↑Видео-обзор подключение радиаторов с нижней подводкой:
В данном видео вы сможете больше узнать о радиаторах с нижним подключением.
prootoplenie.com