Освещенность в чем измеряется: Как измеряют освещенность (естественное и искусственное освещение)

Содержание

Как измеряют освещенность (естественное и искусственное освещение)



Отличие Освещенности и Светового потока

Сегодня на рынке освещения большая путаница с техническими параметрами, такими как световой поток (измеряемый в люменах (Лм) и освещенность (измеряемый в люксах (Лк). Большинство, при подборе светильников обращают внимание на световой поток (Лм – указывается на упаковке каждого светодиодного светильника), а не на требования освещенности.Чаще всего, в расчет берется суммированный световой поток лампы или светодиодов, без световых и тепловых потерь.

Световой поток, можно измерить только в специальной лаборатории,самомуэто сделать с подручными прибораминевозможно! В нормативных документах существует понятие светового потока, но нет определенных требований к нему.

Освещенность любой человек может измерить самостоятельно, без сложного оборудования.Что такое освещённость?

Освещённость– это величина отношения светового потока к площади, на которую он падает. Причём падать он должен на эту плоскость именно перпендикулярно. Измеряется в люксах, lux (лк).



Зачем измерять освещённость?

Учеными доказано, что плохой (или, наоборот, слишком хороший) свет через сетчатку глаза воздействуют на рабочие процессы нашего мозга.

Как следствие, свет влияет на психологическое состояние человека: если света недостаточно — он чувствует угнетенность, пониженную работоспособность, сонливость; если свет слишком яркий, он способствует возбуждению, подключению дополнительных ресурсов организма, вызывая их повышенный износ. И то и другое – одинаково вредно.

Если же свет подобран правильно, то благодаря улучшению освещенности производительность на рабочем месте может быть повышена на 25—30%.



Нормативы

До недавнего времени в России для измерения освещённости руководствовались межгосударственным стандартом измерения освещённости — ГОСТ 24940-96. В этом ГОСТе используются такие понятия, как: освещённость, средняя, минимальная и максимальная освещённость, цилиндрическая освещённость, коэффициент естественной освещенности (КЕО), коэффициент запаса, относительная спектральная световая эффективность монохроматического излучения.

В 2012 году Россия ввела собственный, национальный стандарт измерения освещённости, ГОСТ Р 54944-2012 «Здания и сооружения. Методы измерения освещенности».

В этом ГОСТе к тем понятиям, что были раньше, добавлены новые: полуцилиндрическая освещённость, аварийное освещение, резервное освещение, эвакуационное освещение, охранное освещение, рабочее освещение.

В 2016 году был откорректирован Свод правил — СП 52.13330.2016, который после актуализации 2011 года потерпел незначительные изменения, такие как:


  • согласно пункту4.1теперь нормируется именно средняя освещенность, а не наименьшая;

  • в пункте7.3.1говориться, что в учебных заведениях запрещено применять осветительные приборы на светодиодах;

  • в пункте7.6.9определены новые нормы размещения эвакуационных знаков безопасности;

  • и др.

Параметры для оценки освещенности

Световые волны как один из видов электромагнитных волн различают по длине и частоте колебаний, которые связаны между собой следующей математической зависимостью:

Ь = с/&

где А, — длина волны; м;с —скорость распространения света, 300 000 км/ч; частота колебаний, Гц(1 Гц равен одному колебанию в 1 с). Силу светаизмеряют в канделах (кд). 1 кд соответствует У60силы света, излучаемого в перпендикулярном направлении поверхностью абсолютного черного тела площадью 1 см2при температуре затвердевания платины 1760°С.

Освещенностьизмеряется в люксах. Люкс (лк) есть освещенность поверхности, на каждый квадратный метр которой падает световой поток, равный одному люмену (лм):

1 лк = 1 лм/1 м2.

Люмен —это световой поток, излучаемый в пределах телесного угла в 1 стер источником, сила света которого равна 1 св; находится как отношение площади освещенности к квадрату расстояния до источника света. Если поверхность освещается несколькими источниками, создающими на ней освещенности ?,,Е2и т. д., то полная освещенность поверхности Е будет равна их сумме.

Коэффициент пульсации. Изменение условий освещения помещений вызывает адаптацию органов зрения, в основе которой лежат физиологические и фотохимические процессы, приводящие к изменению чувствительности зрения. Частые и резкие изменения условий освещения отражаются на физическом состоянии человеческого организма.

Скорость различения и устойчивость ясного видения

предметов зависят также от уровня освещенности. Скорость различения особенно велика при уровне освещенности 400—500 лк, устойчивость ясного видения соответствует уровню освещенности 130— 150 лк.

Важными факторами, которые необходимо принимать во внимание при определении освещенности помещений, являются цветовые решения интерьеров и различие яркости наблюдаемого предмета и фона, на котором рассматривается предмет. Таким образом, яркостной контраст зависит от уровня освещенности: чем меньше освещенность, тем должна быть больше контрастность. Яркость фона определяется количеством отраженного света, воспринимаемого человеческим глазом.


Виды освещения

Освещенность обеспечивается путем устройства окон и установки светильников.

В одних случаях требуется равномерная освещенность помещения, в других — нормативной должна быть освещенность рабочих мест, а освещенность всего помещения может быть в два-три раза меньше. Это зависит от назначения помещений и достигается использованием определенных типов светильников и их размещением, что предусматривается проектом. Освещение бывает естественным и искусственным.



Естественное освещение

Источниками естественного освещения являются:

  • солнце,
  • луна (точнее отражённый ею свет),
  • рассеянный свет небосвода (это не просто поэтическое название , термин используемый в протоколах по измерению освещенности).

Естественное освещение помещений зависит:

  • от местности, где расположено здание. В СНИП определено понятие световой климат — так называется характер изменения освещенности на открытом воздухе в течение суток, месяца, года. Световой климат напрямую зависит от географической широты местности и высоты стояния солнца.
  • от ориентации здания,
  • от расстояния здания от затемняющих объектов;
  • от расположения световых проемов и их размеров:

    Расположение: Для лучшего освещения самых удаленных точек помещений необходимо, чтобы верхняя граница светового проема была поднята как можно выше над уровнем пола, а наиболее удаленная от окна точка находилась на расстоянии, не превышающем двойной высоты верхнего края проема над полом.

    Размер: В жилых и служебных помещениях требования к размеру световых проемов разные: в жилых — 1:8 по отношению к площади освещаемого пола, в служебных и административных — не менее 1:10. Размер светового проема равен площади проема за вычетом 15% площади, приходящейся на оконные устройства.

На основании всех этих факторов помещение имеет определенный уровень освещенности, который характеризуется коэффициентом естественной освещенности (КЕО), представляющим собой отношение освещенности внутри помещения (Лк) к одномоментной освещенности снаружи (Лк), измеряется КЕО в процентах ( %)

Коэффициент естественной освещенности для жилых и общественных зданий и производственных помещений с боковым освещением зависит от точности выполняемых работ и колеблется от 1,5 до 2, а для помещений с грубыми работами КЕО =0,5. При верхнем и комбинированном освещении в соответствии со СНиП этот коэффициент колеблется от 2 до 7.



Искусственное освещение

Источниками искусственного освещения – являются любые осветительные приборы (лампы, светильники, светодиодные ленты)

При определении эксплуатационных характеристик искусственного освещения необходимо обращать внимание на


  • мощность света,
  • равномерность освещения,
  • отсутствие резких теней и блескости.

Нормы освещенности установлены СНиП в зависимости от назначения помещений и проводимых там работ.

Подробную информацию можно изучить в статьях:

«Нормы освещенности по Нормативным документам»

«Нормы пульсации по Нормативным документам»




Коэффициент эксплуатации

(обратно пропорционален коэффициенту запаса , КЗ, использовавшемуся ранее)

При планировании освещенности на этапе проекта важно не забывать, что в процессе эксплуатации любой осветительный прибор может уменьшить создаваемую им освещенность. Для компенсации этого спада при проектировании вводится коэффициент эксплуатации (КЭ).

КЭ для искусственного освещения учитывает:


  • загрязнение
  • не восстанавливаемое изменение отражающих и пропускающий свойств оптических элементов
  • спад светового потока
  • выход из строя источников света
  • загрязнение поверхностей помещений, наружных стен здания или сооружения, проезжей части дороги или улицы.

КЭ для естественного освещения учитывает:


  • загрязнение и старение светопрозрачных заполнений в световых проемах,
  • снижение отражающих свойств поверхностей помещения. Как пример, при запылении ограждающих поверхностей в лабораториях освещенность снижается на 10% за год, в деревообрабатывающих цехах на 30% за полгода.

Измерение освещённости рабочих мест проводят вместе с замерами уровня шума, пыле- и загрязнённости, вибрации — в соответствии с СанПин (санитарные правила и нормы).



Измерение освещённости производят ЛЮКСОМЕТРОМ( от Люкс)

Люксометр — это мобильный, портативный прибор для измерения освещенности, принцип работы которого идентичен фотометру.

Правила использования:


  • прибор всегда находится в горизонтальном положении;
  • его устанавливают в точках, место положение которых рассчитываются согласно методике, указанной в Госстандартах. Количество контрольных точек должно быть не менее 10;
  • все люксометры сертифицируются, и погрешность люксметра, согласно ГОСТ должна быть не больше 10%.

Люксметры бывают субъективные и объективные.

Субъективный люксметр основан на уравнивании яркости двух полей освещения (освещенность одного поля известна). Он состоит из вентильного фотоэлемента и измерительного устройства. Электрический ток, который дает фотоэлемент при освещении его поверхности, пропорционален ее освещенности. Поэтому измерительное устройство, проградуированное в люксах, показывает сразу значение освещенности.

Объективные люксметры являются более точными, в них роль анализатора выполняет селеновый фотоэлемент, а показания регистрирует гальванометр. При попадании световых лучей на приемную часть фотоэлемента в схеме прибора возникает ЭДС, пропорциональная уровню освещенности. Шкала прибора имеет 50 делений с обозначением трех пределов измерений освещенности: 0—25, 0—100, 0—500 лк. Если освещенность превышает 50 лк, то на фотоэлементе устанавливают поглотитель, который расширяет основные пределы измерения в 100 раз, что позволяет измерять освещенность 0—50 000 лк.

Измерения проводятся отдельно по искусственному и естественному освещению. При этом нужно следить, чтобы на прибор не падала какая-либо тень, и поблизости не было источника электромагнитного излучения. Это внесёт помехи в результаты. После того как сделаны все необходимые замеры освещенности, на основе полученных результатов, по специальным формулам, рассчитываются нужные параметры, и делается общая оценка. То есть, полученные параметры сравниваются с нормативом, и делается вывод о том достаточно ли освещённость данного помещения или территории.

На каждый вид измерений в каждом помещении или участке улицы заполняется отдельный протокол. Оценочный протокол выдаётся как по каждому помещению или территории, так и по всему объекту. Этого требует «ГОСТ. Измерение освещённости» должно быть выполнено по правилам.



Рекомендации замеров освещенности для светодиодных светильников


  1. Замеры освещенности светодиодных светильников необходимо проводить после их 2 часовой работы, когда они выйдут на рабочий режим (несколько раз в течение дня). Светодиоды и источники питания выделяют большое количество тепла. Оно отводится за счет теплоотводящих материалов (алюминий, компаунд и т.п) и определенной конструкции (большая радиаторная площадь и т.п.). Тем не менее повышенные температурные режимы оказывают серьезное воздействие на освещенность.

  2. Чтобы не ошибиться с параметрами освещенности, лучше при проектировании сразу закладывать коэффициент падения освещенности, который зависит от типа и характеристики объекта.

  3. Следите за работой светодиодных светильников и параметрами освещенности весь гарантийный срок, т.к. если производитель заявляет гарантийный срок 3 и более года, то светильники при соблюдении условий должны сохранять качественные в течение всего срока.

  4. Если условия эксплуатации светильников происходят при температурных режимах свыше +45 гр, то замеры освещенности надо делать гораздо чаще, чем регламентируют нормы.
  5. На заметку: на некоторых Интернет-ресурсах Вы можете встретить информацию: «В жилых комнатах норма освещения лампами накаливания установлена 25—30 лк, люминесцентными лампами — 75 лк.». Данная информация является устаревшей и указывает минимальную освещенность. Но, как писалось ранее,в последней редакции — СП 52.13330.2016 теперь нормируется средняя освещенность, а не наименьшая. И с учетом перехода на светодиодные источник света средняя освещенность для жилых помещений составляет 200 Лм.


Измерение освещенности. Единица измерения освещенности | Eco

30 Августа 2019 г.

ельных и других типов помещений. Освещенность – один из основных параметров окружающей среды, влияющий на ощущение комфорта человеком. Поэтому, освещенность помещений жестко нормируется санитарными законодательством РФ. При проверке соответствия любых помещений санитарным нормам всегда проводятся измерения освещенности.

Освещенность — это количество света падающего на измеряемую поверхность от всех источников света, расположенных в поле зрения люксметра (в том числе и от источников отраженного света).

Формула освещенности

Единица измерения освещенности — это люкс (сокращенно – «лк»). Действующие санитарные нормы освещенности имеют большой разброс, в зависимости от требований к месту измерения (тип рабочего места, территории время пребывания человека), но в самых распространенных случаях (чтение, работа с документами, на компьютере) освещенность рабочего места не должна быть меньше 300 лк. В общем случае, требования к освещенности следующие — чем выше напряженность зрительной работы, тем выше должен быть уровень освещенности.

Для измерения освещенности используют люксметр. Подробнее об устройстве люксметра смотрите статью….

Годятся ли для измерения освещенности смартфоны и обычные фотодиоды? Результаты тестирования в статье…. 

При измерении освещенности можно иметь ввиду следующие типовые уровни:

Максимальная освещенность солнечным днем — 50000-100000 люкс,

Освещенность днем при сплошной облачности — 2000-10000 люкс,

Освещенность для комфортный работы за письменным столом — от 300 люкс,

Минимально доступный уровень освещенности для чтения — около 30 люкс,

Освещенность лунной ночью — 0,1…0,5 люкс,

Минимальный уровень освещенности, воспринимаемый человеческим глазом — около 0,005 люкс.

Понравился материал? Поделитесь им в соцсетях:

Категория:

Освещение

Дата:

30 Августа 2019 г.

В чем измеряется освещенность?

В настоящее время при огромном разнообразии светотехнических приборов у населения нет единого понятия касательного того, в чем измеряется освещенность. Нередко возникает недоразумение с такими техническими характеристиками, как сила света и яркость, люмены и канделы. Приобретая осветительные приборы, часто обращают внимание на суммарный световой поток, не учитывая потери света и тепла.

В этой статье:

Понятие освещенности

Световой поток измеряется в специальных лабораторных условиях и самопроизвольно его определить невозможно. Поэтому СНиП учитывает величину освещенности, которую, в отличие от светового потока, каждый может измерить самостоятельно. Она представляет собой показатель отношения светового потока, измеряемого в люменах, к площади поверхности, на которую попадают фотоны. Угол падения при этом должен равняться 90°. Единица измерения освещенности — люкс (lux).

Единица освещенности поверхности

Давно уже установлена зависимость психологического и физического состояний человека от света. Если при слабом освещении происходит угнетение мозговых процессов, то при ярком свете они возбуждаются. Но в любом случае сетчатка глаза и ресурсы организма изнашиваются. При проектировании осветительных приборов определяют коэффициент запаса (КЗ), который должен учитывать вероятный спад освещенности установки. Для искусственного света в показателе предусматривается уменьшение яркости по причине износа оптических компонентов устройства и их естественного загрязнения. Коэффициент естественной освещенности снижается вследствие изменения отражающих свойств окружающих предметов.

Измерение освещенности проводится на рабочих местах вместе с определением уровня загрязненности, звуковых колебаний, электромагнитного излучения, а на некоторых производствах и гамма излучения. Важность знания этих параметров трудно переоценить при создании оптимальных условий труда, и все они соответствуют санитарным правилам и нормам. Например, освещенность должна быть:

  • в рабочем кабинете — 300 лк;
  • в офисе для постоянной работы с компьютером — 500 лк;
  • для технических и конструкторских бюро — 750 лк.

При наличии в помещении естественной подсветки уровень искусственного фона можно снижать.

Приборы для определения уровня освещенности и методика его определения

Наименование прибора похоже на название величины, которую он устанавливает, — люксметр. Принцип работы малогабаритного переносного устройства напоминает работу фотометра. Поток излучения, падая на фоточувствительный элемент полупроводника, отрывает электроны, которые начинают упорядоченно двигаться. Таким образом, замыкается электрическая цепь. Причем величина тока прямо пропорциональна интенсивности освещения фотоэлемента, что имеет свое отражение на шкале аналогового люксметра. Сегодня приборы со стрелками практически исчезли, их заменили цифровые. Они оснащены жидкокристаллическими дисплеями, у которых сам фоточувствительный датчик расположен в отдельном корпусе, а с дисплеем он соединяется с помощью гибкого провода.

Прибор для измерения уровня освещенности

В ходе проведения эксперимента по измерению освещенности прибор устанавливается в горизонтальном положении. Причем в соответствии с требованиями ГОСТа их размещают в разных точках помещения, согласно определенной схеме. В 2012 г. Россия приняла новый стандарт измерения характеристики количества светового потока. В старом понятийном аппарате при измерениях использовались такие термины данной величины, как:

  • минимальная, средняя, максимальная, цилиндрическая;
  • естественная;
  • градиент запаса;
  • относительная эффективность когерентного лучевого потока.

В настоящее время к ним добавлены следующие типы освещения:

  • аварийное;
  • рабочее;
  • охранное;
  • эвакуационное;
  • резервное.

Стандарт подробно описывает все тонкости проведения измерительных исследований.

Замеры осуществляются отдельно по естественной и искусственной иллюминации. В ходе проведения эксперимента нельзя допустить, чтобы хоть малейшая тень падала на прибор, а вблизи был хотя бы 1 источник электромагнитных волн. Все они вносят помехи в работу устройства.

После выполнения необходимых замеров освещенности определяется искомая величина. Она сравнивается с нормативным значением. Затем подводятся итоги о достаточности освещенности территории или помещения. Каждый вид измерительных испытаний оформляется специальным оценочным протоколом, чего требует ГОСТ.

Нормативы освещенности для различных типов помещений

Измерение количества света для светодиодных устройств и примеры в природе

Светодиодные светильники стали очень востребованными благодаря уникальной энергоэффективности. Но светодиоды и их источники питания при освещении выделяют тепло, которое рассеивается с помощью теплопроводящих материалов (алюминий) и конструктивных особенностей (ребер, большой радиаторной площади). Несмотря на кажущееся отсутствие связи между потерями тепла и освещенностью, специалисты всегда учитывают ее при создании новых устройств.

Трудности с работой светодиодных светильников начинаются при эксплуатации в условии повышения температуры более +50°С. Почему измерение освещенности светодиодов и рекомендуют проводить после 2 часов их работы, т. е. после выхода на оптимальный режим. Для исключения появления погрешности проводятся неоднократные замеры в течение рабочей смены. Желательно эти исследования проводить как минимум 1 раз в год. Чтобы при проектировании исключить любые ошибки, закладывают коэффициент снижения освещенности, зависящий от физических характеристик объекта.

Освещение офиса LED-светильниками

Обычно производители LED-устройств дают гарантию по их безупречной работе на 3 года. Все параметры функционирования таких светильников, в том числе, и освещенность, должны соответствовать заявленным значениям. Если условия работы устройств происходят при температуре наружного воздуха свыше 45°С, то измерения освещенности необходимо делать гораздо чаще. Иначе неправильное проектирование и полученные результаты приведут к быстрому падению показателей освещения.

Что касается примеров иллюминации в природе, то на орбите Земли и экваторе в полдень данная величина равняется 135 тыс. люкс. В солнечный день она составляет до 100 тыс. лк, в пасмурный — только 1 тыс. люкс, а вот от Луны всего лишь 0,2 лк. Измерение света на улице на широте Москвы в зимний период показало от 4 до 5 тыс. люкс. В безлунную ночь освещенность в тысячу раз меньше, чем в полнолуние, а при 10-бальной облачности — в 10 тыс. раз меньше. То, в чем измеряется освещенность в помещении и естественных условиях, относится к физическим величинам, входящим в Международную систему единиц.

Измерение освещённости | в помещениях | Производственный контроль | Заказать

Измерение уровня освещения – комплекс мероприятий по определению соответствия освещенности рабочего места нормативным значениям. Достаточная освещенность для комфортных условий труда играет первоочередную важность. Компания «ГУП «Дезконтроль» предлагает услуги по профессиональному измерению освещенности в Москве.

Влияние освещенности на здоровье человека

Человек проводит на своем рабочем месте треть суток. Это может быть производственный цех, кабинет менеджера или операционная в клинике. Общее самочувствие, здоровье и способность выполнять работу в любом помещении зависит от микроклимата на рабочем месте.

Обеспечение правильной, с достаточной интенсивностью освещенности рабочего места – требование федерального законодательства.

Недостаточно яркий свет, мерцающий или искажающий цветовосприятие затормаживает центральную нервную систему человека. Возникает ощущение сонливости и переутомления. Чрезмерно яркий, наоборот, действует как раздражитель, активирует ресурсы организма, что приводит к его быстрому «износу» и частым эмоциональным кризам человека.

Нормативные требования по освещенности объектов

Нормы освещенности регулирует СанПиН 2.2.1/2.1.1.1278-03. Согласно нормативному акту, объекты разделяются на общественные и жилые. Для каждого вида объектов предусмотрена норма интенсивности света при естественном, совмещенном и искусственном освещении.
От типа объекта и характера выполняемых работ в общественном помещении зависит интенсивность освещенности. Как регламентируются нормы интенсивности искусственного освещения на различных объектах:
  • для жилых помещений – от 150 до 300 лк;
  • для помещений в административных зданиях – 500 лк;
  • для школьных классов – от 400 до 500 лк;
  • для предприятий общественного питания – 400 до 500 лк;
  • для чертежных залов в конструкторских бюро – 700 лк.
  • Нормативы допускают максимальное отклонение от нормы в 10%.

Методика измерения освещенности специалистами ГУП «Дезконтроль»
Для каждого объекта наша компания подбирает подходящую методику измерения освещенности, но все измерения специалист проводит одним прибором – люксметром. Работа люксметра основана на использовании фотоэлементов. Точность измерений зависит от их разрешительной способности. Чем выше нужная точность измерений, тем сложнее и дороже необходимый люксметр. Лаборатория ГУП «Дезконтроль» обладает профессиональным оснащением для любой задачи по измерению освещения.

Измерение состоит из четырех этапов:

  • Осматриваем все источники искусственного света и даем рекомендации по замене перегоревших ламп и чистке плафонов.
  • Изучаем план помещения и отмечаем точки, в которых следует провести измерение естественной, смешанной и искусственной освещенности. Составляем график проведения замеров.
  • Выполняем замеры. Данные заносим в протокол.
  • Данные измерений сравниваем со значениями нормативных требований. Оформляем экспертное заключение.
Преимущества измерения освещенности с ГУП «Дезконтроль»
ГУП «Дезконтроль» использует только профессиональное оборудование с высочайшей точностью и минимальной погрешностью. Кроме экспертной оценки, наши специалисты дают практические рекомендации, какими методами можно добиться правильного освещения рабочих мест. Выполнение наших рекомендаций на 100% гарантирует отсутствие замечаний при проверке контролирующих организаций.

Главные преимущества компании: специалисты с высшим медицинским образованием и опытом исследований, которые ГУП «Дезконтроль» проводит с 1999 года. Мы имеем разрешения на эту деятельность.

Стоимость работ зависит от площади объекта и количества рабочих мест. Свяжитесь с ГУП «Дезконтроль» сейчас: мы дадим предварительную консультацию, оценим стоимость услуг и оформим заказ на измерения.

Как измерить уровень освещенности

Такие термины светотехники как световой поток и освещенность не связаны прямой зависимостью, их соотношение определяют множество факторов. В нормативных документах фигурирует понятие освещенность, а производители приводят в характеристиках светильников — световой поток.


Взаимосвязь между освещенностью и световым потоком используемых светильников определяется замерами, которые показывают необходимость увеличения или уменьшения светового потока используемых источников света.

Световой поток и освещенность

Световой поток является физической характеристикой используемых светильников и его значение можно условно определить как силу излучаемого света. 

Измеряется световой поток в люменах (Лм), а угол его излучения отражается в диаграмме направленности конкретной лампы или светильника.
Освещенность показывает какой световой поток попадает на конкретный участок освещаемой поверхности и измерятся в люксах (Лк). Один люкс соответствует одному люмену на один квадратный метр площади.

Как измерить освещенность конкретного объекта

Для измерения освещенности существует специальный измерительный прибор — люксметр. Он включает в свой состав датчик на основе фотоэлементов и прибор, который переводит сигналы датчика в значение в люксах.

Для удобства использования люксметра очень часто датчик делают выносным, используя соединительный кабель определенной длины. Таким приборов удобно производить измерения в труднодоступных местах.
При замерах необходимо контролировать наличие в непосредственной близости электромагнитных приборов, которые могут вносить искажения в измеряемый уровень.

Методики измерения и все применяемые при этом понятия и термины изложены в современной редакции ГОСТ Р 54944-2012.

Как измерить уровень освещенности в домашних условиях

Для грубого определения уровней освещенности без использования люксметра можно воспользоваться особенностью обычного цифрового фотоаппарата. Дело в том, что цифровая камера имеет встроенный измеритель освещенности, который определяет выдержку, диафрагму и чувствительность матрицы.

Для определения уровня света достаточно сфотографировать без вспышки белый лист бумаги в конкретном месте и в свойствах полученного снимка найти значения использованных параметров диафрагмы, выдержки и ISO. Программу для перевода этих величин в уровень освещенности данного места можно без труда найти в интернете.

Люксметры для высокоточного измерения освещенности

Освещенность и светораспределение оказывают ключевое воздействие на такие факторы, как работоспособность и безопасность труда. С люксметром Testo вы обеспечите оптимальную освещенность помещения.
Типичные области применения регулярных замеров освещенности с помощью люксметра Testo следующие:

  • Измерение освещенности на рабочих местах и в общественных зданиях
  • Измерение освещенности на выставках и в музеях
  • Измерение освещенности для машин на производственных линиях

Бестселлер: testo 540

h3>

Измерение освещенности фотометром – принципы работы

Мощность светового потока (единица измерения: люмен) между источником света и площадью, который он освещает, измеряется в люксах (лк). Освещенность равна одному люксу, когда световой поток мощностью в один люмен (лм) равномерно освещает площадь в один квадратный метр. Прибор для измерения освещенности (люкс) называется люксметром или фотометром.

Ваш идеальный люксметр – от базовых до профессиональных моделей

Люксметры с подключаемыми зондами h4>

Помимо света могут измерять другие параметры окружающей среды – достаточно подключить нужный зонд

Люксметры со встроенными сенсорами h4>

Исключительно простые в управлении благодаря удобному компактному дизайну

Люкс-зонд для измерения освещенности – для совместимого люксметра с подключаемыми зондами

Логгеры данных

h4>

Для мониторинга освещенности и других параметров с передачей данных по WiFi и сохранением их в облачном хранилище Testo Cloud

Ваши преимущества с люксметром Testo

Как лидер рынка, Testo предлагает высокоточные, проверенные и испытанные люксметры для измерения освещенности.

  • Компактный дизайн: портативные люксметры прекрасно подходят для быстрых и удобных измерений.
  • Сенсоры соответствуют спектральной чувствительности человеческого глаза.
  • Удобное считывание измеренных значений благодаря функции Hold.
  • Измерение за считанные секунды: идеально для контрольных проверок в офисах или магазинах.
  • Большой четкий дисплей, на который можно вывести максимальное и минимальное значения одним нажатием кнопки.

Измерение интенсивности освещения на рабочем месте с точными сенсорами Testo

Лучшие измерения с Testo: что вам нужно знать о люксметрах

Глаза – важнейший из органов чувств человека. Больше 80 % информации мы получаем с помощью зрения. Чем темнее вокруг нас, тем сложнее нам получать информацию. Поэтому хорошая освещенность, которая позволяет нашим глазам легко воспринимать информацию, а также избегать вреда и рисков для здоровья, исключительно важна. Высокоточный люксметр Testo позволит вам быть уверенными, что условия освещенности на рабочем месте соответствуют всем стандартам и граничным значениям. Это, прежде всего, относится к таким рабочим местам, как

  • монтажные цеха
  • операционные
  • рабочие места на базе ПК
  • галереи и музеи
  • публичные библиотеки.

Для того чтобы иметь возможность точно и эффективно измерять интенсивность освещения и освещенность, люксметры должны отвечать определенным критериям:

  1. Тип сенсора: Для люксметра важен тип сенсора, потому что он должен воспринимать окружающий свет так, как это делает человеческий глаз. Глаз обладает разной чувствительностью к цветам или волнам разной длины и воспринимает желтый и зеленый лучше, чем, например, красный или синий. Сенсор должен это учитывать.
  2. Кривая V-лямбда: Люксметры, оценивающие освещенность согласно кривой V-лямбда (кривая спектральной чувствительности), подходят для всех обычных источников света.
  3. Управление: Люксметр с хорошо структурированным меню для измерений интуитивно-понятен в управлении. Этот принцип повышает эффективность и точность измерений, потому что устраняет ошибки измерений из-за случайно введенных некорректных исходных данных. Измерительные приборы Testo находятся на переднем крае подобных нововведений.
  4. Размер дисплея: Люксметры, как и любые измерительные приборы в принципе, должны иметь большой дисплей, чтобы вы могли четко и ясно видеть результаты измерений. Это помогает избежать ошибок при записи результатов, особенно, когда вы торопитесь.

Специальные люксметры и другие измерительные приборы Testo

Люксметр, интегрированный в WiFi-логгер данных

Логгер данных – прибор, созданный специально для долгосрочной регистрации результатов измерений. Например, WiFi-логгер данных может обеспечить превосходную защиту чувствительных и ценных экспонатов в музеях и архивах. Логгер скорости и качества воздуха в помещении со встроенным люкс-сенсором, а также другими сенсорами для регистрации температуры, влажности и УФ-излучения, обеспечит комплексный мониторинг микроклимата и освещенности в музеях. Дополнительное удобство: функции сохранения данных в облачном хранилище Testo Cloud и аварийные оповещения по e-mail в реальном времени.

Люксметры как подключаемые зонды

Используйте подключаемые люкс-зонды для мониторинга экспонатов, чувствительных к свету. Просто подключите зонд к соответствующему логгеру данных и начинайте точное цифровое измерение. Результаты обрабатываются прямо в зонде, так что даже подключение очень длинным кабелем никак не повлияет на точность измерений.

Шумомер

Шумомер Testo – ваш отличный помощник в измерении шума в промышленности и окружающей среде. Познакомьтесь с измерительным прибором, который идеально подходит для ваших задач и обеспечивает точное соблюдение граничных значений и стандартов в зоне вашей ответственности.

Прибор для измерения Rpm

Тахометр Testo поможет вам измерить скорость вращения с в системах кондиционирования и в промышленном производстве. Testo предлагает приборы для бесконтактного измерения скорости вращения с помощью самоклеющихся рефлекторов и луча света или для контактного измерения с помощью измерительного колеса.

Наши рекомендации для измерения содержания CO

2 и CO

Вы ищете измерительные приборы для мониторинга воздуха в помещении и параметров микроклимата? Testo предлагает превосходные решения и для таких задач. Определяйте концентрацию углекислого газа в воздухе помещения с высокой точностью с помощью анализатора CO2 от лидера рынка. При измерении дымовых газов вам поможет анализатор CO Testo. Только наши высокочувствительные сенсоры CO регистрируют малейшие концентрации этого коварного яда, угарного газа, и предупреждают вас об опасности акустическими и визуальными сигналами тревоги.

единицы измерения, лк, как замеряют

При проектировании систем освещения внутри помещения и на отрытом воздухе для подбора источников света нужно знать, в чем измеряется освещенность. Для создания оптимальных условий работы или отдыха этот параметр очень важен. При недостаточном или избыточном освещении повышается утомляемость и снижается производительность труда. На упаковках светодиодных или энергосберегающих ламп встречается обозначение в люменах. Поэтому в статье разберем разницу между единицами измерения освещенности.

Единицы измерения

Рассмотрим подробнее, в каких единицах измеряется освещенность. В Международной системе единиц (СИ) освещенность измеряется в люксах. Также существует единица для измерения светового потока в системе СИ — люмен.

Разберемся в этих единицах и ответим на вопрос, что такое люксы и люмены. Для этого рассмотрим еще одну единицу, принятую в системе СИ. Это единица измерения силы света — кандела. С латыни на русский ее название переводится как свеча.

Свет, испускаемый одной свечой, равен одной канделе. Более точное определение этой единицы звучит как «сила света от источника, испускающего в требуемом направлении электромагнитное излучение частотой 540000000000000 Гц, с небольшим разбросом частот, мощность света в требуемом направлении которого составляет 1/683 Вт на стерадиан».

к содержанию ↑

Освещенность, яркость, световой поток — в чем разница

Световой поток

Перейдем к определению единицы люмен (лм). Это световой поток, испускаемый источником света, сила которого равна одной канделе при температуре 25 °С и при эталонных условиях.

Световой поток характеризует количество света или световой мощности, попадающей на поверхность за единицу времени. Другими словами, световой поток определяется как величина воздействия на селективный световой приемник с определенной спектральной чувствительностью или как общее количество света, испускаемого источником.

Яркость

Яркость — отношение величины световой энергии, переносимой за единицу времени в определенном направлении, которую излучает некая поверхность, к ее проекции на плоскость, перпендикулярной оси наблюдения.

Яркость в системе СИ измеряется в канделах на квадратный метр. Раньше эта единица измерения носила название нит, но в наше время в системе СИ оно не применяется.

Освещенность

Для определения освещенности введена единица люкс (лк). Она равна потоку света, сила которого равна одному люмену (лм), падающему на поверхность площадью один квадратный метр. При удалении источника света от поверхности освещенность уменьшается обратно пропорционально квадрату расстояния.

При выборе источников света разных типов использовать показатель мощности для ориентира при определении мощности светового потока нельзя. Это было актуально для ламп накаливания, но с появлением светодиодных и люминесцентных ламп соотношение светового потока и мощности стало существенно различаться.

К примеру, люминесцентные лампы имеют соотношение 60 лм на каждый ватт мощности лампы, а светодиодные с прозрачным рассеивателем — уже 100 лм на каждый ватт.

к содержанию ↑

Приборы для замеров освещенности

Для проведения измерения уровня освещенности применяют люксметры. Конструкция самых простых приборов включает фотоэлемент, предназначенный для преобразования световой энергии в электрическую. Потом измеренный сигнал пересчитывается и отображается на стрелочной шкале или на цифровом жидкокристаллическом дисплее в люксах.

Показания прибора зависят от светового спектра. Поэтому при замерах уровня освещенности в помещениях или на открытом воздухе они могут быть неточными. Погрешность приборов простой конструкции — более 10%. При замерах в разных условиях применяются поправочные коэффициенты.

У приборов для измерения освещенности высокого класса более сложная конструкция. В них применяются специальные светофильтры, приближающие чувствительность устройства к чувствительности человеческого глаза. Также используются насадки для точности измерения освещенности, создаваемой источником света, расположенным под углом, или контрольные насадки для проверки самого прибора.

Существуют приборы для измерения яркости света — яркомеры. Могут выпускаться комбинированные устройства, совмещающие возможности люксметра и яркомера.

Профессиональные фотографы используют специализированные приборы:

  • для определения освещенности сцены и выбора экспопары для съемки применяются экспонометры;
  • для измерения мощности вспышки и длительности ее импульса используются флэшметры.

При измерении освещенности нужно учитывать, что освещение может быть естественным, искусственным и комбинированным, включая естественное, которое дополнено искусственным.

При расчете количества источников света для создания искусственного освещения принимается во внимание коэффициент пульсации. Для человеческого глаза пульсация, создаваемая источником света, незаметна, но длительное нахождение в условиях повышенной пульсации может негативно сказываться на здоровье, вызывать быструю утомляемость и головные боли.

Для замеров коэффициента пульсации применяются комбинированные приборы, совмещающие в одном корпусе люксметр, пульсметр и яркомер. Пример — radex lupin.

к содержанию ↑

Где прописаны нормы и требования

Методы измерения уровня освещенности в производственных помещениях, на месте работ вне зданий, на дорогах и т. п. указаны в ГОСТ Р 54944-2012. Нормы освещенности при проектировании помещений и рабочих мест вне зданий и т. п. описаны в строительных нормах и правилах СНиП 23-05-95, СНиП 23-0-2010 и в своде правил СП 52.13330.2016.

К примеру, норма освещенности помещений в зависимости от их предназначения будет различаться и может составлять:

  • 20 лк для подвалов, лестниц, проходов на чердак;
  • 50 лк для коридоров и ванных комнат в квартирах;
  • 150 лк для жилых комнат и залов для тренировки;
  • 200 лк для детских комнат;
  • 300 лк при проектировании систем общего освещения производственных цехов для шлифовки поверхностей изделий.

Более подробно о расчетах норм и освещенности на промышленных предприятиях можно узнать здесь.

к содержанию ↑

Заключение

При проектировании систем освещения учитываются разные факторы, например, стробоскопический эффект, который может привести к травмам на производстве из-за невозможности определить, вращаются ли детали станка или остаются неподвижными.

Также нужно обращать внимание на энергоэффективность и ремонтопригодность светильников. Ошибки на этом этапе проектирования со временем могут вылиться в значительные финансовые затраты.

Предыдущая

ОсвещениеИдеи для изготовления кованных фонарей из металла своими руками

Следующая

ОсвещениеКогда должно автоматически включаться эвакуационное освещение

Спасибо, помогло!Не помогло

Полное руководство по измерению освещенности


Это новое руководство покажет вам все, что вам нужно знать об измерении света.

Важно понимать различные термины, используемые для описания света. Это руководство охватывает все, от измерения света в электромагнитном спектре до понимания воспринимаемой яркости человеческим глазом, интенсивности света и инструментов, используемых для измерения света.

Погрузимся в …

Хотите узнать больше об измерении освещенности? Получите бесплатный PDF

Я пришлю вам копию, чтобы вы могли прочитать ее, когда вам будет удобно.Просто дайте мне знать, куда его отправить (занимает 5 секунд):

Содержание

Глава 1: Единицы света — Общие термины измерения освещенности

Глава 2: Радиометрия — Сколько света там

Глава 3: Фотометрия — Как вы видите свет (человеческое восприятие)

Глава 4: Спектрометрия — Измерение длины волны

Глава 5: Способы измерения света — Как измерить интенсивность света

Глава 6. Инструменты для измерения освещенности — Какие инструменты используются для измерения освещенности

Глава 1:

Единицы света

(Общие термины измерения освещенности)

В осветительной промышленности для измерения света используются несколько различных единиц измерения, в зависимости от того, какая информация требуется.

Ниже приведены несколько наиболее распространенных единиц и терминов:

Поток (световой поток) — Произошедшее от латинского слова «Fluxus», что означает поток , поток — это количество энергии, излучаемой светом в секунду, измеряемое в люмен (лм) .

Когда дело доходит до освещения, нужно учитывать Вт (Вт), (потребляемая энергия) и люмен (лм), (яркость). Или потребление электроэнергии в сравнении с светоотдачей. Люмены оцениваются для человеческого восприятия, а ватты — нет.

  • Люмен (лм) — единица светового потока в системе СИ, это единица светового потока.
  • Ватт (Вт) — Единица измерения электрической мощности, это радиометрическое измерение.

Интенсивность света — Количество видимого света, излучаемого в единицу времени на единицу телесного угла

  • Кандела (кд) — Базовая единица измерения силы света в системе СИ. Это единица силы света источника света в определенном направлении.2 = 1 нит
    • Nit (nt) — Название, данное для единицы яркости

Для облегчения понимания представьте себе лампу, излучающую свет.

  • Свет от лампы измеряется в люменах (мера силы света)
  • Свет, падающий на поверхность, выражается в люксах
  • Человеческий глаз видит это визуально с точки зрения яркости или яркости, которая измеряется в канделах.

Глава 2

Радиометрия Сколько там света

Что такое радиометрия

В целом радиометрия — это наука об измерении электромагнитного излучения.Что касается оптики, это относится к обнаружению и измерению световых волн в оптической части электромагнитного спектра (инфракрасного, видимого и ультрафиолетового). Радиометрия также включает определение распределения абсолютной мощности излучения.

Почему важна радиометрия

Радиометрия охватывает широкий спектр потребностей в обнаружении и измерении света.

Вот несколько распространенных приложений:

[источник]

4 Традиционно используемые геометрические описания в радиометрии

Основная единица радиометрии называется Radiant Flux .

1. Radiant Flux / Power — Выраженный в ваттах, лучистый поток можно определить как полную оптическую мощность источника света. Его также можно определить как скорость потока лучистой энергии. Вы можете думать об этом как об общем количестве света, излучаемого лампочкой.

2. Интенсивность излучения — Также измеряется в ваттах, интенсивность излучения — это количество потока, излучаемого через известный телесный угол.

3. Энергия излучения — Энергия освещенности, измеряемая в ваттах на квадратный метр, представляет собой измерение лучистого потока на известной площади поверхности.

4. Сияние — Сияние, измеряемое в стерадианах в ваттах на квадратный метр, является мерой силы излучения, излучаемого из единицы площади источника.

Глава 3:

Фотометрия — как вы видите свет

(видимый свет)

Что такое фотометрия

Фотометрия — это разновидность радиометрии, которая применяется только к видимой части электромагнитного спектра. В то время как радиометрия фокусируется на измерении лучистой энергии с точки зрения абсолютной мощности, фотометрия учитывает реакцию человеческого глаза и фокусируется на измерении света с точки зрения воспринимаемой яркости.

Фотометрия — это «наука об измерении силы света, где« свет »относится к общему интегрированному диапазону излучения, к которому чувствителен глаз.

Фотометрия отличается от радиометрии, при которой обнаруживается и измеряется каждая отдельная длина волны в электромагнитном спектре, включая ультрафиолет и инфракрасный свет ». Фотометрия. В EDU.photonics.com/Photometry: Ответ на вопрос о восприятии света Получено с https : //www.photonics.ru / a25119 / Photometry_The_Answer_to_How_Light_Is_Perceived

Почему важна фотометрия

Фотометрия измеряет видимый свет с точки зрения человека.

Общие приложения для фотометрии:

Как и радиометрия, применение фотометрии также разнообразно. Он используется в ряде отраслей для проверки интенсивности света, производимого дисплеями, приборными панелями, приборами ночного видения и т. Д.

Основной единицей фотометрии является люмен.Фотометрия состоит из четырех основных понятий:

1. Световой поток — Световой поток, измеряемый в люменах, представляет собой измерение общей воспринимаемой мощности, излучаемой источником света во всех направлениях.

2. Сила света — Сила света в канделах — это количество света, излучаемого источником в определенном направлении.

3. Освещенность — Освещенность измеряется в люменах на единицу площади; это количество света, падающего на поверхность.Освещенность также можно назвать фут-свечой.

4. Яркость — Яркость, измеряемая в канделах на квадратный метр или нит, представляет собой общий свет, излучаемый или отраженный от поверхности в заданном направлении. Он показывает, насколько ярко мы воспринимаем результат взаимодействия падающего света и поверхности.

Изображение предоставлено: J.C. Walker, Light Sources — Technology and Applications [CC Attribution-ShareAlike 3.0]

Глава 4:

Спектрометрия Измерение длины волны

Спектрометрия известна наукой и использованием спектрометров для измерения и анализа.Это исследование взаимодействий между светом и веществом, а также реакций и измерения интенсивности излучения и длины волны .

На схеме ниже показано, как спектрометрия используется для анализа образца. Образец показан на этапе 2. Спектрометрия также может использоваться для анализа длин волн, присутствующих в данном источнике света. В этом случае между источником и дифракционной решеткой не было бы образца.

и : По диаграмме спектрометрии публичной лаборатории [CC BY 2.0] (https://creativecommons.org/licenses/by/2.0/), с flickr

Используется для спектрометрии:

В статье «Что такое спектрометрия и для чего она используется», написанной ATA Scientific Instruments, подробно описаны современные способы использования спектроскопии:

  • В астрономии мы можем использовать уникальные спектры для определения химического состава объектов в космосе.
  • Мы также можем использовать его для определения свойств космических объектов: в основном их температуры, а также их скорости.
  • Применяется для скрининга метаболитов, а также для анализа и улучшения структуры лекарственных средств.

Биомедицинское использование света состоит из диагностических и терапевтических применений. Узнайте больше о спектроскопии в биомедицинских услугах.

Спектрорадиометрия — это «измерение энергии света на отдельных длинах волн в пределах электромагнитного спектра. Оно может быть измерено по всему спектру или в определенной полосе длин волн».

Спектрорадиометрия.В KonicaMinolta.us: Радиометрия, спектрорадиометрия и фотометрия Получено с: https://sensing.konicaminolta.us/learning-center/light-measurement/radiometry-spectroradiometry-photometry/

Две основные концепции спектрорадиометрии:

Spectral Radiance — яркость поверхности на единицу частоты или длины волны. Единицы СИ для спектральной яркости — стерадианный нанометр ватт / квадратный метр.

Спектральная освещенность — освещенность поверхности на единицу частоты или длины волны.В системе СИ для спектральной освещенности используется ватт / кубический метр.

Глава 5:

Как измерить интенсивность света

Расчет интенсивности света зависит от источника света и направления, в котором он излучает свет. Количество света, падающего на поверхность, называется освещенностью и измеряется в люксах.

Sciencing написал пошаговую статью / эксперимент о том, как рассчитать интенсивность света с помощью силы света вокруг лампы, которая излучает свет одинаково во всех направлениях.В заключении уточняется, что «интенсивность света в вашей точке на сфере равна количеству ватт, которое излучает лампочка, деленному на площадь поверхности сферы». Полные расчеты можно найти здесь.

В фотометрии сила света является мерой мощности излучения, излучаемой объектом в определенном направлении , и зависит от длины волны излучаемого света .

Что наиболее важно с точки зрения измерения силы света , так это фактическое количество люменов , падающих на определенную поверхность.

Измерение уровня освещенности

Как отмечалось выше, поток — это общий световой поток. Ватты относятся к абсолютной мощности, а люмены — к человеческому восприятию.

В чем разница между яркостью и освещенностью

«Яркость — это количество света, отраженного от освещаемой поверхности».

Освещенность — это количество света, падающего на поверхность.

Яркость — это то, что мы измеряем по поверхности, на которую падает свет.

Top Light Co назвала его лучшим …

Думайте об этом так: IL-яркость, IL, I = падающий свет. Освещенность измеряет падающий свет. Яркость — это то, что уходит с поверхности — L = уходит. Освещенность измеряет происшествие, яркость измеряет то, что уходит.

Глава 6:

Какие инструменты используются для измерения света

1. Фотометр

Фотометр — это прибор для измерения силы света.Его можно определить как прибор, измеряющий видимый свет.

Два типа фотометров:

1. Измерители яркости — определяют выходную видимую энергию источника света

Измерения яркости используются для таких продуктов, как светофоры и автомобильные задние фонари.

2. Измерители освещенности — измеряют видимую энергию, падающую на поверхность объекта.

Измерители яркости и колориметры

2.Интегрирующая сфера

«Интегрирующая сфера собирает электромагнитное излучение от источника, полностью внешнего по отношению к оптическому устройству, обычно для измерения потока или оптического ослабления».

Интеграция основ и приложений Sphere

3. Спектрометр

«Основная функция спектрометра состоит в том, чтобы улавливать свет, разбивать его на его спектральные составляющие, оцифровывать сигнал в зависимости от длины волны, считывать его и отображать через компьютер.”

Спектрометр

4. Измеритель освещенности

Люксметр — это прибор, используемый для измерения уровня освещенности . Уровень освещенности — это количество света, измеренное на плоскости.

Заключение

Когда речь идет о мощности света и его измерении, используется множество терминов и технологий. Ключ к пониманию того, как сочетаются все эти уникальные аспекты.

Понимание измерения света помогает нам, как поставщику световых решений, соответствовать требованиям яркости и однородности для ваших конкретных приложений.

Как измерить интенсивность света?

Человеческое зрение зависит от света. Свет отражается от поверхностей в глаза, проходя через роговицу и зрачок, образуя изображение на сетчатке. Глаз чувствителен к очень широкому диапазону интенсивности света, но на низких уровнях теряет способность различать детали. Вот почему точные работы, такие как хирургия, измерения или сборка, лучше всего выполнять при ярком свете. Работа при плохом освещении вызывает утомление и ошибки. Аварии на производстве чаще случаются при низком уровне освещенности.Кроме того, хорошее освещение определяет, насколько хорошо люди могут наблюдать за шоу и делать качественные фотографии. В этом информационном документе от OMEGA Engineering говорится, что для облегчения понимания измерения силы света:

  • Что такое свет?
  • Как измеряется свет?
  • Ситуации, требующие измерения освещенности
  • Светотехника
  • Светоизмерительное оборудование

Что такое свет?

Свет — это форма электромагнитной энергии, которая распространяется в пространстве в виде волны.Подобно микроволнам и рентгеновским лучам, эти волны имеют длину и частоту. Разница в том, что люди обладают рецепторами, способными воспринимать энергию с длинами волн от 400 до 700 нм и превращать ее в изображения.

Отдельные длины волн соответствуют разным цветам. Свет с длиной волны около 420 нм воспринимается как синий, 525 нм — зеленый, а 635 нм — красный. Более длинные волны называются инфракрасными (которые воспринимаются как тепло), а более короткие волны — ультрафиолетовыми, а затем рентгеновскими лучами.

Источники света, основанные на тепле («источники накаливания») излучают электромагнитную энергию на всех длинах волн, поэтому они кажутся белыми.Фактическое распределение длин волн в этом свете зависит от температуры источника. Флуоресцентные лампы кажутся белыми только в результате флуоресценции покрытия на стекле или трубке, а светодиоды излучают свет только на одной определенной длине волны.

Как измеряется свет?

Источник света, как нить накаливания, излучает свет во всех направлениях. Фактически, он находится в центре сферы излучаемого света (поэтому световые единицы ссылаются на стерадиан).Полная энергия всего испускаемого света называется «световым потоком».

Основной единицей света является кандела, номинально свет, излучаемый одной свечой, или, точнее, «источник, излучающий монохроматическое излучение с частотой 540 x 1012 герц и имеющий силу излучения в этом направлении 1/683. ватт на стерадиан ».

Одна кандела на стерадиан называется люменом, который является мерой силы света, с которой люди наиболее знакомы. Однако наиболее важным при измерении интенсивности света является количество люменов, падающих на поверхность, которое выражается в люксах.Таким образом, один люкс — это один люмен на квадратный метр, в зависимости от расстояния до источника. (В США интенсивность света принято выражать в фут-свече. Одна фут-свеча эквивалентна одному люмену на квадратный фут).

Подводя итог, в то время как светоотдача выражается в люменах, сила света измеряется в люменах на квадратный метр или люкс.

Ситуации, требующие измерения освещенности

Фотостудия

Основными причинами измерения интенсивности света являются обеспечение соблюдения минимальных стандартов освещения и определение подходящего времени выдержки в фотографии и кинематографии.Ниже описаны четыре часто встречающиеся ситуации.

1. Эргономика и безопасность

Для многих условий рекомендуется минимальный уровень освещенности. В то время как некоторые, например строительные и судостроительные верфи, предъявляют очень специфические требования OSHA, для общепромышленных приложений OSHA ссылается на стандарт ANSI / IESNA RP-7-2001 «Практика промышленного освещения». Это определяет минимальную интенсивность, необходимую для безопасного и точного выполнения ряда задач.

В некоторых организациях сила света измеряется только реактивно, обычно после падения или другого несчастного случая.Более разумный подход — провести обследование освещения, документируя уровни освещенности на рабочем месте. Если обнаруживаются области ниже минимально допустимого уровня, можно реализовать план улучшения.

2. Фотография и кинематография

В основе фотографии — сила света. Слабое освещение вынуждает фотографа увеличивать время выдержки или открывать диафрагму объектива, а иногда и то и другое. Хотя многие современные камеры имеют встроенный измеритель освещенности, все же полезно знать уровни освещенности вокруг объекта, особенно для студийной или портретной фотографии.

Знание уровней освещенности также помогает обеспечить воспроизводимость кадра, что вызывает беспокойство в кинематографии. Измеряя уровни освещенности, оператор может получать стабильные результаты, обеспечивая непрерывность.

3. Мониторинг погоды

Хотя многие люксметры сконфигурированы для лампы накаливания, они по-прежнему полезны для сравнения на открытом воздухе. Измеритель может, например, производить записи, показывающие разницу в интенсивности между летним и зимним солнцестоянием.Картирование интенсивности света в области, предназначенной для солнечных батарей, может помочь определить оптимальное место для каждой панели. Те, кто занимается сельским хозяйством, могут извлечь выгоду из определения областей с меньшей интенсивностью света в теплице.

4. Театральная декорация и интерьер

Разница в интенсивности света — эффективный способ привлечь внимание аудитории. Художник-постановщик может захотеть, чтобы конкретный реквизит или актер был в тени для одной сцены и выделен для следующей.Точно так же дизайнер интерьера будет использовать различия в интенсивности, чтобы создать особый внешний вид. Установление уровней освещенности также помогает обеспечить воспроизводимость определенного внешнего вида и ощущений, а также подтверждает, что зрители достаточно света, чтобы видеть черты лица актеров.

Светотехника

Свет падает на датчик, где энергия фотонов преобразуется в электрический заряд. Чем больше света падает на поверхность, тем больше заряда накапливается.В общем, эти два понятия взаимосвязаны. Калибровка измерительной электроники преобразует ток или напряжение в значение в люксах.

Ситуация усложняется тем, что человеческий глаз не одинаково чувствителен ко всем длинам волн света и имеет большую чувствительность к зеленому. Таким образом, если на метр попадает одинаковая интенсивность синего и зеленого света, в то время как исходное значение в люксах может быть одинаковым, человек-наблюдатель будет воспринимать больше зеленого света. Чтобы решить эту проблему, люксметры настроены на ожидание света со спектральным распределением домашнего освещения с вольфрамовой нитью накала.Он определяется как стандартный источник света A CIE и регулирует исходное измерение интенсивности, чтобы лучше коррелировать с человеческим восприятием яркости. Стандартный источник света A CIE рекомендуется использовать во всех случаях, когда используются лампы накаливания.

Светомеры

Внутренняя рабочая среда

Прочные портативные измерители окружающей среды для измерения частоты вращения и освещенности разработаны как простые в использовании портативные приборы для измерения силы света. Основанные на стандарте CIE Standard Illuminant A, эти устройства идеально подходят для использования в областях освещения лампами накаливания и будут обеспечивать показания при флуоресцентном освещении с небольшой погрешностью в диапазоне измерения от 1 до 200 000 люкс (от 0 до 18 580 фут-свечей).

Эти инструменты идеально подходят для тех, кому необходимо проверить уровень освещенности в рабочих помещениях, для фотографии, оформления театральных декораций, дизайна интерьера и кинематографии. Его можно использовать на открытом воздухе, где достаточно сравнительных значений или соотношений, но не следует полагаться на точные значения интенсивности из-за его калибровки CIE.

Техническое обучение Техническое обучение

Как измеряется освещение | EGEE 102: Энергосбережение и защита окружающей среды

Большинство людей, покупая лампочку, ищут ватт (Вт).Напомним, что ватт — это единица мощности (т. Е. Скорость, с которой энергия потребляется поставщиком электроэнергии). Он ничего не говорит о свете.

Наиболее распространенным показателем светоотдачи (или светового потока) является люмен. Все лампы имеют люмен, как показано на рисунке ниже, и каждая лампа имеет 3 параметра, указанные на упаковке:

  • Световой поток лампы или светоотдача
  • Потребляемая мощность в ваттах
  • Срок службы лампы в часах

Параметры, указанные на лампочке.

Посмотрите этот фильм ниже, чтобы узнать больше о люменах.

Enegy 101: люмен

Свечи

Фут-кандел (fc) — стандартная единица измерения освещенности на поверхности. Это световой просвет, распределенный по площади в 1 квадратный фут (0,09 квадратного метра).

Свеча для ног

Средний уровень фут-кандел на квадратной поверхности равен количеству люменов, падающих на поверхность, деленному на площадь поверхности.

FC = Люмены света / Площадь в квадратных футах

Пример

Лампа мощностью 40 Вт дает около 505 люмен и имеет срок службы около 1000 часов. Когда эта лампочка используется для освещения комнаты размером 10 x 10 футов, эти 505 люмен распределяются на 100 квадратных футов площади пола. Что такое подсветка?

505 люмен света / 100 футов 2 = 5,05 люмен на фут 2 или 5,05 фк

1 футовая свеча = 1 люмен / фут2 = 1 люкс (метрическая система)

Теперь посмотрите фильм в масштабе 1:15, в котором показано, как экспонометр используется для измерения люмен на фут 2 .Помните, что 1 люмен / фут2 = 1 фут-кандела.

Как измеряется свет?

Щелкните здесь, чтобы просмотреть стенограмму видео измерения освещенности.

Использование экспонометра

Я положил сюда лампочку на 60 ватт. И эта лампа мощностью 60 Вт дает 865 люмен света. Когда я держу эту лампочку очень близко к этой области поверхности здесь, где измеряется свет, все эти 800 единиц падают на небольшую область. Очевидно, что если мы попытаемся измерить количество люменов, попадающих на эту небольшую площадь, мы увидим, что количество люменов на квадратный фут очень и очень велико.Как вы можете примерно видеть, у нас около 1200 люмен на квадратный фут — очень высокая концентрация. Когда я убираю эту лампочку, значение уменьшается, потому что такое же количество люменов распределяется по большей площади, как вы можете видеть здесь. Сейчас он составляет около 100 люмен. И если я пойду дальше, он уменьшится.

Глоссарий терминов по измерениям освещенности

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Поглощение

Рассеяние света (излучения) на поверхности или в среде, вызванное преобразованием лучистой (световой) энергии в другую форму энергии, обычно в тепло, при взаимодействии с веществом.Поглощение — это «недостающий элемент» при сравнении полной отраженной и прошедшей энергии с падающей энергией. Отношение полного поглощенного лучистого или светового потока к падающему потоку называется поглощательной способностью. Стандартной единицей поглощения является процент (%) или коэффициент от 0 до 1. Поглощение также может быть определено на основе передачи через среду. Если% пропускания определенной длины волны составляет 70%, тогда материал имеет поглощение 30%.


Актиничный

Характеристика излучения, указывающая на его способность вызывать химические изменения.В нашей отрасли этот термин обычно используется в отношении УФ-излучения и его воздействия на биологические системы. Актинические полоски используются при УФ-обработке для контроля интенсивности источников. Цвет или оптическая плотность полоски меняется в зависимости от экспонирования. См. Страницу приложений оптической радиационной опасности для получения списка систем измерения света ILT, используемых для определения актинической опасности источника света.


Окружающий свет

Окружающий свет — это свет, рассеянный в среде, окружающей детектор, измеряющий оптическое излучение от другого источника.Этот свет вносит свой вклад в сигнал, измеряемый от источника. Для получения достоверных результатов из каждого измерения необходимо вычесть вклад окружающего света или фона.


Диафрагма

Отверстие, через которое может проходить лучистая энергия. Угловая апертура — это угол, под которым самые расходящиеся лучи могут проходить через отверстие или линзу. Апертура объектива часто выражается через f / #. F / # — это отношение фокусного расстояния объектива к его диаметру.Объектив с фокусным расстоянием 100 мм и диаметром 25 мм будет иметь апертуру f / 4.


Аттенюатор

Устройство, уменьшающее количество энергии, поступающей на датчик. Аттенюаторы обычно используются, когда лучистая энергия насыщает детектор. Фильтры QNDS, QNDS2 и QNDS3 являются аттенюаторами, снижающими плотность потока на детекторе в 10, 100 и 1000 раз соответственно.


Пропускная способность

Полоса пропускания описывает размер спектрального сегмента.Ширина полосы 10 нм означает диапазон излучения 10 нм. Это может быть, например, диапазон от 500 до 510 нм, от 1000 до 1010 нм или сегмент равного размера в любом месте спектра.


Ленточный элиминаторный фильтр

Фильтр-ограничитель полосы пропускает длины волн выше и ниже отсечки фильтра, подавляя при этом длины волн в пределах полосы. Эти фильтры также называются режекторными фильтрами. Полосовой фильтр на 500 нм с полосой пропускания 10 нм подавляет волны с длиной волны от 495 до 505 нм.


Ширина луча

Угловая ширина светового конуса, вершина которого находится в источнике. Ширина луча обычно определяется как угол, образуемый конусом, охватывающим 90% энергии.


Черный корпус

Черное тело — это объект, который поглощает всю падающую на него лучистую энергию. При нагревании черное тело излучает четко определенный характеристический спектр, который можно использовать для характеристики спектральной чувствительности детекторов.Поскольку идеального черного тела не существует, для этой цели используются симуляторы черного тела.


Калибровка

Процесс нормализации выходного сигнала детектора к выходному сигналу детектора, определенного в качестве стандарта (обычно определяемого Национальным институтом стандартов и технологий (NIST) при идентичных условиях освещения). Калибровку также можно выполнить с помощью стандартного источника (лампы), выходная энергия которого на определенных длинах волн и на расстояниях измерения сопоставима с эталонной лампой, определенной руководящим органом по стандартизации (NIST).


Кандела (CD)

Текущая единица силы света в системе СИ. Одна кандела эквивалентна 1 люмену на стерадиан. Используется для выражения интенсивности луча (кандела луча) и средней сферической интенсивности (средняя сферическая кандела). Также называется Candlepower (cp).


Кандела, пучок (cd или eff cd) фотометрическое измерение интенсивности

Отбирая очень узкий угол входного луча, кандела луча представляет только люмены на стерадиан при максимальной интенсивности луча.Угол отбора пробы определять не нужно. Может измеряться в канделах (кд) для устойчивых источников или в эффективных канделах (эфф. Кд) для мигающих источников.


Кандела, эффективный (эфф. Cd)

Единица силы светового луча, взвешенная с учетом повышенной чувствительности человеческого глаза к источнику мигания.


Кандела, измерение средней сферической (кд) фотометрической интенсивности

Сила света источника, выраженная в канделах.Средняя сферическая кандела, измеренная в интегрирующей сфере, — это общий световой поток источника в люменах, деленный на стерадианы 4pi в сфере.


Мощность свечей (имп.)

Старое определение силы света. Мощность одной свечи (cp) была силой света стандартной свечи, сделанной из китового воска, весом 1/6 фунта, 7/8 дюйма в диаметре и сжигающей 120 зерен в час. В настоящее время единицей СИ для измерения силы света является кандела (кд). Одна кандела (кд) равна силе одной свечи, поэтому источник с силой света 10 кандел можно назвать источником мощности в 10 свечей.


ПЗС

ПЗС-матрица (устройство с зарядовой связью) — это детектор света с высокой чувствительностью, прежде всего в видимом спектре. ПЗС-матрицы обычно представляют собой линейные или двумерные матрицы, состоящие из миллионов отдельных элементов детектора. 2D-версии используются для записи изображений и встречаются в большинстве цифровых камер, используемых как в научных, так и в потребительских приложениях.


Цветность

Аспекты цвета, связанные с оттенком и насыщенностью, без привязки к яркости.


Координаты цветности (CIE)

Доля стандартных трехцветных значений, используемых при согласовании цветов. Цвета сравниваются по их координатам CIE X, Y и Z.


CIE

CIE (Международный комитет по освещению) — это международная организация по стандартизации освещения и цветового зрения.


Цветовая температура

Цветовая температура — это температура в градусах Кельвина, до которой необходимо нагреть черное тело, чтобы получить цвет, подобный эталонному.Лампа накаливания мощностью 40 Вт имеет цветовую температуру около 2680K, в то время как дневной свет в полдень имеет цветовую температуру около 5500K.


Коллектор косинусов

Косинусоидальный коллектор — это полупрозрачный коллектор света, который компенсирует нормальную блокировку излучения от плоских поверхностей. Коллектор косинуса измеряет излучение в соответствии с законом косинуса через полусферу над поверхностью. Косинусный коллектор также можно назвать ламбертовской поверхностью.


Закон косинуса (закон косинуса Ламберта)

Поток на единицу телесного угла, покидающий или входящий в поверхность, пропорционален косинусу угла относительно нормали к поверхности.В косинусоидальном коллекторе лучи, падающие на поверхность под углом 60 ° от вертикали, будут давать 0,5 (косинус 60 °) вклад идентичных лучей, приходящих вертикально.


Отсечной фильтр

Фильтр, который не пропускает свет с длинами волн короче длины волны отсечки и пропускает широкий диапазон длин волн выше длины волны отсечки. Длина волны отсечки указывается в некоторой точке при переходе от максимальной передачи к нулевой передаче.Один и тот же фильтр может иметь разные длины волны отсечки в зависимости от указанного% пропускания. Тот же самый фильтр может быть указан как отсекающий фильтр на 500 нм с точкой пропускания 50% в качестве эталона или как отсекающий фильтр на 485 нм, если спецификация — это точка пропускания 5%, где пропускание при 485 нм составляет 5%.


Адаптация к темноте

Способность человеческого глаза приспосабливаться к низкому уровню освещенности.


Темный сигнал (ток)

Темный сигнал — это сигнал, который проходит через фотоприемник, когда на него не падает оптическое излучение.Этот сигнал создается внутри детектора и цепей усиления за счет термоэлектронных (температурных) эффектов.


Плотномер

Денситометр измеряет непрозрачность или поглощающую способность материала. Измерение обычно выражается в AU (единицы поглощения) или OD (оптическая плотность).


Дифракционная решетка

Дифракционная решетка — это оптический компонент, который разделяет свет на составляющие его длины волн.Функционально эквивалентен призме, он рассеивает свет по его спектру, используя канавки для его рассеивания. Угол дифракции зависит от длины волны.


Диффузное отражение

Отношение падающего потока к потоку, отраженному от рассеивающей поверхности, в отличие от сильно направленной или зеркальной (зеркальной) поверхности.


Динамический диапазон

Динамический диапазон — это отношение максимального измеряемого сигнала до насыщения к минимальному измеряемому сигналу выше шума.Обычно динамический диапазон выражается либо в декадах (степень 10), либо в битах (степень 2). Динамический диапазон 5 декад указывает на то, что существует коэффициент 100000 между максимальным и минимальным сигналами, измеряемыми устройством. Динамический диапазон в 16 бит (264) указывает коэффициент 65 532 между минимальным и максимальным измеряемыми сигналами.

Динамический диапазон также выражается в дБ (децибелах), определяемый как 10 log 10 (максимальный сигнал / минимальный сигнал). Пять декад динамического диапазона равны 50 дБ.


Эйнштейн

Единица энергии, эквивалентная количеству энергии, поглощаемой одной молекулой материала, подвергающегося фотохимической реакции, как определено законом Штарка-Эйнштейна.


Электромагнитное излучение

Излучение, испускаемое колеблющимися заряженными частицами. Комбинированные колебания электрического и магнитного полей, распространяющиеся в пространстве со скоростью света. Электромагнитный спектр теоретически бесконечен, включает гамма, рентгеновские лучи, УФ, видимый, инфракрасный, микроволны и радиоволны.


Коэффициент излучения

Отношение яркости объекта к излучению черного тела при той же температуре и длине волны.


Плотность энергии

Лучистая энергия, приходящая на поверхность на единицу площади, обычно выражается в джоулях или миллиджоулях на квадратный сантиметр (Дж / см² или мДж / см²). Это интеграл освещенности по времени. (Другие применяемые термины включают «облучение», «световую дозу» и «общую эффективную дозировку»).


Etendue

Также называется пропускной способностью оптической системы, это произведение ее входной апертуры и телесного угла, под которым свет может приниматься через эту апертуру.


Выход

Флюс, покидающий поверхность на единицу площади.


Воздействие

Распространенный, но широко используемый термин для обозначения плотности энергии или плотности лучистого потока на поверхности. (Это точно определенный термин в EB-отверждении: 1 Грей (Гр) = 1 Дж / кг, мера поглощенной энергии на единицу массы).В других технологиях этот термин обычно применяется к энергии, поглощаемой в интересующей среде, но при УФ-отверждении он приравнивается только к плотности энергии излучения, поступающей на поверхность интересующей среды. [Предпочтительным сокращенным термином является плотность энергии, выражаемая в Дж / см² или мДж / см²]. Также может называться «доза» или «дозировка».


Нить накала

Тонкий металлический провод, специально помещенный внутри колбы лампы, который генерирует излучение в видимом, инфракрасном и ультрафиолетовом диапазонах, когда через него проходит электрический ток.Часто используется вольфрам, так как он обладает высокой прочностью на разрыв, очень прочен и может нагреваться до температуры, близкой к температуре плавления, без быстрого испарения. Лампы накаливания предлагаются в различных конструкциях, оптимизированных для конкретных применений.


Нить Описание

Описание нити накала состоит из буквы префикса, указывающей, прямой ли провод или свернутой в бухту, за которым следует число, указывающее расположение нити на опорах.Буквы префикса обычно являются одним из трех вариантов

    • S — Прямая, без катушки до нити
    • C — Спиральная, нить намотана в спиральную катушку
    • CC — Coiled Coiled, спирально свернутая нить накала снова наматывается в другую спиральную катушку.

Флюс

Энергия в секунду (мощность) светового луча, выраженная в ваттах или джоулях в секунду.(Сияющая сила). При фотометрических измерениях сила света обычно выражается в люменах (лм).


Фотометрическое измерение футканделем (fc)

Фут-свечки — это единица измерения освещенности (сколько света падает на точку на поверхности). Один раз фут-кандела эквивалентна 10,764 люкс.


Фотометрические измерения Footlambert (fl)

Единица яркости, равная 1 / p кандела / фут 2.


Бактерицидное

Все биологические организмы содержат ДНК.ДНК необходима для воспроизводства. Оптическое излучение в диапазоне УФС способно разрушать молекулярные связи внутри ДНК, эффективно убивая микроорганизмы. Бактерицидные УФ-лампы используются для очистки воды, стерилизации пищевых продуктов и их контейнеров, а также для очистки воздуха, особенно в больницах.


Блок Хефнера Фотометрические измерения

Единица силы света, равная 0,9 свечи.


Фотометрические свойства освещенности

Световой поток, падающий на единицу площади поверхности.1 люмен / м² = 1 люкс.


Инфракрасный (ИК)

Невидимая часть электромагнитного спектра от 0,75 до 1000 микрон. Излучение в ближней инфракрасной области (NIR) вызывает ощущение тепла.


Интегрирующая сфера

Полая сфера, покрытая изнутри белым рассеивающим покрытием. Он используется для измерения диффузного отражения и пропускания объектов или полного потока от источника, который полностью находится внутри.


Интенсивность

Поток на телесный угол. Радиометрические измерения производятся в Вт / ср. Фотопические измерения производятся в люменах / св.


Закон обратных квадратов

Закон обратных квадратов коррелирует относительную интенсивность на разных расстояниях от точечного источника. Относительная интенсивность уменьшится до коэффициента квадратного корня из разницы в расстоянии. Например, если на расстоянии 2 метров от источника интенсивность составляет 16 Вт / м², она будет 4 Вт / м² на расстоянии 4 метра и Вт / м² на расстоянии 8 метров.Для протяженных (неточечных) источников спад интенсивности приближается к закону обратных квадратов на расстоянии, эквивалентном 5 диаметрам источника.


Облучение радиометрические свойства

Падение лучистого потока на единицу площади поверхности; мощность падающая на единицу площади. Радиометрическая единица измерения — Вт / м² или ее коэффициент (мВт / см²). Фотометрические единицы измерения: люмен / м², люкс, фотон и фут-кандела.


Джоуль (Дж)

Джоуль — это единица измерения энергии в системе СИ.


Ламбертовская поверхность

Поверхность, излучение или рассеяние которой подчиняется закону косинусов Ламберта, в котором интенсивность излучения, покидающего поверхность, пропорциональна косинусу угла от нормали к поверхности. См. Сборщик косинусов.


Линейность

Точность, с которой существует прямая зависимость между падающим излучением и результирующим значением измерения до точки насыщения. Линейность 1% означает, что отношение измеренного значения к величине падающего излучения не будет отличаться от абсолютного более чем на 1%.


Люмен (лм) фотометрические измерения

Люмен — фотометрическая единица мощности. Это поток, излучаемый в единицу телесного угла точечным источником, сила света которого составляет одну канделу.


Фотометрические свойства яркости

Плотность потока на единицу телесного угла.


Люкс, радиометрическое измерение

S.I. единица освещенности, равная 1 люмен на квадратный метр.


Средняя сферическая мощность свечи (MSCP)

Сила света источника света.Рейтинг MSCP лампы измеряется при расчетном напряжении и представляет собой общее количество света, испускаемого источником света во ВСЕХ направлениях (измеренное в интегрирующей сфере).

Один MSCP эквивалентен всему свету, излучаемому со всех сторон одной стандартной спермацетовой свечи. Средняя сферическая сила свечи — это общепринятый метод оценки общей светоотдачи миниатюрных ламп. 1 MSCP равен 12,57 (4 пи) люмен.


Микрон
Единица длины, равная 10 -6 м.Длины инфракрасных волн обычно измеряются в микронах.


Монохроматор

Монохроматор — это устройство, в котором используется дифракционная решетка или призма для рассеивания света в спектре составляющих его длин волн. Диспергирующий элемент вращается так, что только узкая (монохроматическая) полоса света может выходить из монохроматора через узкую апертуру или щель.


Нано

Префикс, обозначающий 10 -9 .Один нановатт (нВт) = 10 -9 Вт.


Нанометр (нм)

Единица длины, равная 10 -9 м. Сокращенно нм. Обычно используется для определения длины волны света, особенно в УФ и видимом диапазонах электромагнитного спектра.


Узкополосный фильтр

Узкополосный фильтр пропускает через него только ограниченное количество длин волн. Узкополосные фильтры обычно указываются на определенной центральной длине волны, полоса пропускания указывает диапазон длин волн, которые будут проходить через нее, и% пропускания в пределах полосы пропускания.Узкополосный фильтр на 500 нм с полосой пропускания 10 нм с 5% отсечкой пропускает длины волн от 495 до 505 нм. Коэффициент пропускания выше и ниже этих длин волн будет менее 5%.


Фильтр нейтральной плотности

Фильтр, который снижает интенсивность проходящего через него света без изменения относительного спектрального распределения энергии. Нейтральные плотности даются логарифмической базой 10 их затухания. Ослабление 100 дает нейтральную плотность (ND) 2.См. Оптическая плотность.


Нит (нт) фотометрические измерения

Единица измерения яркости (яркости), равная одной канделе на квадратный метр.


Шумовая эквивалентная освещенность (NEI)

Плотность лучистого потока в Вт / см 2 , необходимая для получения сигнала, равного собственному шуму системы обнаружения. Входная освещенность, при которой отношение сигнал / шум составляет 1.


Уровень шума (NEP)

Мощность излучения на указанной длине волны и полосе пропускания, которая будет производить выходной сигнал от детектора, эквивалентный собственному шуму в этом детекторе.


Обычное

Нормаль — это ось, перпендикулярная освещенной поверхности. Нормаль — это точка отсчета, от которой измеряются углы отражения, дифракции и преломления. Луч с нулевым углом падения попадает перпендикулярно поверхности. Луч с углом падения 90 ° параллелен поверхности и не может попасть в нее.


Режекторный фильтр

См. Полосовой элиминаторный фильтр.


Непрозрачность

Мера способности материала блокировать свет.Это эквивалентно коэффициенту пропускания материала.


Оптический прерыватель

Механическое или электрооптическое устройство для пропускания и прерывания на постоянной частоте луча света.


Оптическая плотность (OD)

Мера пропускания T через оптическую среду. OD = -log 10 T. OD, равный 1, эквивалентен пропусканию 10%. Фильтр с 2 OD будет иметь пропускание 1%.


Пиковое излучение УФ-отверждение

Интенсивный пик мощности в фокусе прямо под лампой. Максимальная точка профиля освещенности. Измеряется в единицах энергетической освещенности (Вт / см²).


Фото (ph) фотометрические измерения

Единица измерения освещенности. Один фото = 10 000 люкс (лк).


Фотодиод

Фотодиод — это двухэлектродный полупроводниковый прибор с переходом, чувствительным к оптическому излучению, в котором обратный ток изменяется в зависимости от освещения.Чувствительность к длине волны зависит от материалов, используемых в устройстве. Кремниевые фотодиоды чувствительны в большей части видимого спектра. Фотодиоды InGaAs чувствительны в ближней ИК-области спектра. Фотодиоды на основе GaP используются для УФ области спектра.


Фотодинамическая терапия

Использование оптического излучения для лечения болезней. Фотодинамическая терапия используется при лечении кожных заболеваний, таких как псориаз, желтуха у новорожденных, а в последнее время — при лечении некоторых видов рака.


Фотометр

Устройство для измерения силы света или яркости. В фотометре используется светофильтр с полосой пропускания, соответствующей реакции человеческого глаза. Используемые единицы измерения — люмен и люкс.


Фотоумножитель (ФЭУ)

Фотоэлектронный умножитель — это вакуумное устройство, в котором фотокатод испускает электроны при воздействии света. Затем электроны ускоряются электростатическими полями к металлическим пластинам, из которых испускается большее количество вторичных электронов.Это повторяется в несколько этапов. Это усиливает ток на многие тысячи.


Фотопикс

Имеет характеристику чувствительности, аналогичную реакции человеческого глаза. Фотопический фильтр будет иметь полосу пропускания от 400 до 700 нм с максимальным пропусканием на 550 нм со спектральной чувствительностью, указанной CIE.


Фоторезист

Химическое вещество, которое становится нерастворимым при воздействии света. Воздействуя на фоторезист через маску, можно создать электрические цепи, промыв неэкспонированные области и протравив материал ниже.Фоторезисты обычно оптимизированы для определенных областей УФ-спектра, обозначенных как UVC, UVB и UVA, в зависимости от типа лампы, используемой для экспонирования.


Фотостабильность

Многие химические продукты, как лекарственные, так и защитные покрытия, могут разрушаться под воздействием света. Измерения фотостабильности производятся для определения основных длин волн, ответственных за разложение, и количества воздействия (дозы), необходимого для создания изменения, которое может отрицательно сказаться на эффективности продукта.В исследованиях фотостабильности следует отличать эффекты видимого света от УФ-излучения. Обычно используются два детектора с фильтрацией, каждый из которых ограничивает измерение только одной спектральной областью.


Пико (п)

Префикс, обозначающий 10 -12 . Один pW = 10 -12 Вт.


Радиометрическое измерение яркости

Мощность излучения на единицу площади источника на телесный угол. Вт / м² / стерадиан.


Радиометрическое измерение излучательной способности

Мощность излучения, излучаемая в полную сферу (4p стерадиан) единицей площади источника, выраженная в Вт / м². Для этого измерения обычно используется интегрирующая сфера.


Радиометрическое измерение излучения

Лучистый поток на единицу площади, излучаемый источником.


Радиометр

Устройство для измерения интенсивности или накопления лучистой энергии.Консультации по выбору радиометра.


Радиометрия

Наука об измерении радиации. Обнаружение и измерение энергии излучения либо на определенных длинах волн, либо в полосе пропускания, либо в зависимости от длины волны в широком спектре. Измерение взаимодействия света с веществом в отношении поглощения, пропускания и отражения.


Луч

Геометрическое представление светового пути через оптическую систему.


Отражение

Отношение отраженного потока к падающему с поверхности потоку. В некоторых случаях измерение может быть выполнено с использованием либо зеркальной, либо диффузной составляющей полного отраженного потока. Отражение выражается в процентах.


Относительная пространственная чувствительность

Относительная пространственная чувствительность детектора указывает угол приема и процент излучения, падающего под этим углом, которое попадает в детектор.Измерения обычно производятся в сравнении с идеальной ламбертовской поверхностью.


Чувствительность (спектральная чувствительность)

Отклик или чувствительность любой системы в зависимости от длины волны падающего излучения. В радиометрии это зависимость выходного сигнала устройства от длины волны.


Насыщенность

Состояние, при котором плотность лучистого потока превышает либо способность фотодетектора испускать электроны в линейной зависимости от падающего потока, и / или ток, создаваемый детектором, превышает способность электроники измерять ток линейным образом. .


Scotopic

Относится к чувствительности человеческого глаза к длине волны в условиях адаптации к темноте.


Чувствительность

Отношение выходного сигнала детектора к входному сигналу. Это также может быть выражено как минимальный уровень входной освещенности, который будет производить выходной сигнал, превышающий уровень шума детектора; т.е. где отношение S / N больше 1.


SI

Международная система образования; международная метрическая система единиц.


Спектральный отклик

Мера относительной чувствительности детектора в зависимости от длины волны падающего света. Типичная кривая спектрального отклика будет отображать чувствительность в процентах на данной длине волны к длине волны максимальной чувствительности.


Спектрометр / спектрограф

Устройство для измерения взаимодействия света и материалов в зависимости от длины волны. Спектрометр обычно представляет собой монохроматор со встроенным детектором.Спектрограф не имеет выходной щели, что позволяет одновременно измерять широкий диапазон длин волн с помощью многоэлементного детектора или фотографической пластины.


Зеркальное отражение

Отражение от зеркальной поверхности, где когерентность падающего луча сохраняется в отраженном луче. Это противоположно диффузному отражению, при котором отраженный свет распространяется во всех направлениях ламбертовским способом.


Стерадиан (sr)

Единица телесного угла, образованная площадью на поверхности сферы, равной квадрату радиуса сферы.Один стерадиан можно представить в виде конического сечения с телесным углом примерно 66 °.


Стильб (сб) фотометрический

Единица яркости, равная 1 кандела / см².


«Т» Номер лампы

Число «Т» лампы — это диаметр лампы с шагом 1/8 дюйма. Лампа «Т-1» имеет диаметр 1/8 дюйма, лампа «Т-2» — диаметр 1/4 дюйма и т. Д.


Фотометрические измерения Talbot

Единица измерения количества света в системе СИ, выраженная в люмен-секундах.


Термопара Термобатарея

Устройство из разнородных металлов, в котором возникает небольшой ток, зависящий от разницы температур материалов на стыке. Термопары могут использоваться для измерения излучения в инфракрасной области спектра.


Коэффициент пропускания

Отношение мощности излучения, передаваемой через материал, к падающей мощности излучения. Коэффициент пропускания обычно выражается в процентах.Фильтр с коэффициентом пропускания 50% (на определенной длине волны) будет поглощать половину падающего на него света и пропускать половину света через него.


УФ (ультрафиолет)

Невидимая часть электромагнитного спектра с длинами волн от 1 до 400 нм.


UVA

Часть УФ-спектра, охватывающая диапазон длин волн от 320 до 400 нм. Эта спектральная область используется во многих областях медицины, УФ-отверждения и фотолитографии.Атмосфера Земли (на уровне моря) поглощает все длины волн короче УФА. Продолжительное воздействие УФА излучения вызовет солнечный ожог.


УВБ

UVB — это часть УФ-спектра, охватывающая диапазон длин волн от 280 до 320 нм. UVB-излучение обычно используется при УФ-отверждении и фотолитографии, а также в некоторых медицинских приложениях. Воздействие УФ-В излучения (от ламп или электрической дуги) может вызвать серьезные солнечные ожоги и вызвать повреждение глаз.


UVC

UVC — это часть УФ-спектра, которая простирается от 190 до 280 нм. УФС обычно используется при очистке воды и стерилизации. UVC также используется для УФ-отверждения и фотолитографии в приложениях микроэлектроники. Воздействие УФС-излучения (от ламп, дуг или лазеров) может вызвать серьезные биологические повреждения.


ВУФ (вакуумный ультрафиолет)

ВУФ — это часть УФ-спектра ниже 190 нм.Электромагнитное излучение ниже 190 нм поглощается кислородом воздуха. Физические или химические взаимодействия, требующие ВУФ-излучения, должны выполняться в среде, продуваемой азотом до 160 нм или в вакуумной камере ниже 160 нм.


Видимый спектр (VIS)

Видимая часть спектра простирается от 400 до 700 нм (согласно CIE). Он охватывает те длины волн света, которые может воспринимать человеческий глаз.


Радиометрическое измерение ватт (Вт)

Ватт — это единица мощности или работы.Один ватт соответствует одному джоуля в секунду.


Длина волны

Когда электроны вибрируют, они создают колеблющиеся перпендикулярные электрические и магнитные поля. Расстояние между последовательными максимумами напряженности поля определяется как длина волны. Эти расстояния для видимого излучения очень малы и обычно выражаются в единицах длины нанометров (нм).

МОЩНОСТЬ:

1 ватт (Вт):
= 0.27 лм при 400 нм
= 25,9 лм при 450 нм
= 220,0 лм при 500 нм
= 679,0 лм при 550 нм
= 683,0 лм при 555 нм
= 430,0 лм при 600 нм
= 73,0 лм при 650 нм
= 2,78 лм при 700 нм

л люмен (лм)
= 1,465 x 10 -3 Вт при 555 нм
= 7,958 x 10 -2 кандела (4p ср)

1 джоуль (Дж)
= 1 ватт * секунда
= 1 x 10 7 эрг
= 0.2388 грамм *

калорий

1 лм * секунда
= 1 талбот (T)
= 1,464 x 10 -3 джоулей при 555 нм

ИЗЛУЧЕНИЕ:

1 Вт / см²
= 1 x 10 4 Вт / м²
= 6,83 x 10 6 люкс при 555 нм
= 14,33 г * кал / см² / мин

1 лм / м²

= 1 люкс
= 1 x 10 -4 лм / см²
= 1 x 10 -4 фото (ph)
= 9.290 x 10 -2 лм / фут²
= 9,290 x 10 -2 фут-свечей (fc)

ИНТЕНСИВНОСТЬ:

1 Вт / стерадиан (Вт / ср)
= 12,566 Вт (изотропный)
= 683 кандела при 555 нм

1 люмен / стерадиан (лм / ср)
= 1 кандела (кд)
= 12,566 люмен (изотропный)
= 1,464 x 10 -3 Вт / ср при 555 нм

СИЯНИЕ:

1 Вт / см² / ср
= 6.83 x 10 6 лм / м² / ср при 555 нм
= 683 кд / см² при 555 нм

1 лм / м2 / ср
= 1 кандела / м² (кд / м²)
= 1 нит
= 1 x 10 -4 лм / см² / ср
= 1 x 10 -4 кд / см²
= 1 x 10 -4 стильб (сб)
= 9,290 x 10 -2 кд / фут²
= 9,290 x 10 -2 лм / фут² / ср
= 3,142 апостиля (асб)
= 3,142 x 10 -4 ламбертов (L)
= 2.919 х



<Назад ко всем ресурсам для измерения освещенности

КАК ИЗМЕРЯЕТСЯ ЯРКОСТЬ СВЕТА?

люмен, люкс, ватт? Вот наше простое руководство по некоторым основам для понимания того, как измеряются яркость и свет в современном электрическом освещении.

Вт

Многие люди до сих пор думают о яркости света в ваттах и ​​имеют хорошее представление о разнице в яркости лампочек мощностью 40, 60 или 100 Вт.Раньше это работало лучше, так как большинство ламп накаливания и разница в эффективности у разных производителей была небольшой. В настоящее время с более энергоэффективным освещением ватты не столь полезны для оценки яркости. Ватт — это на самом деле единица мощности или скорость энергии, используемой или генерируемой с течением времени. Энергетические компании используют ватты для отслеживания количества потребляемой нами электроэнергии в киловаттах в час (кВтч), что составляет 1000 ватт мощности за один час использования. Итак, если у нас есть лампочка мощностью 100 Вт, включенная на 1 час, это будет 0.1 киловатт-час или 1 ватт-час (Wh).

ЛЮМЕН

В общих чертах, люмены (лм) — это мера того, сколько видимого света излучается источником света, технически это описывается как его световой поток. Общая мощность видимого света представлена ​​общим количеством испускаемых люменов. Короче говоря, при поиске мощности лампы в осветительной арматуре обращайте внимание на общее количество люменов.

ЛЮКС

люкс (лк) используется для измерения количества видимого света (светового потока), распространяемого по площади поверхности, это технически известно как освещенность.Освещенность является фундаментальным фактором для дизайнеров освещения и архитекторов при выборе светильников для установки. Другой способ выразить эту единицу — люмен на квадратный метр, поскольку 1 люкс равен 1 люмену на квадратный метр, или 1 люкс = 1 лм / м2. В зданиях люкс можно измерить с помощью прибора, называемого люксметром, который даст точные показания освещенности.

ЭФФЕКТИВНОСТЬ СВЕТИЛЬНИКА

Помимо самого света, при измерении количества излучаемого света необходимо учитывать и другие факторы.Большинство ламп заключено в световую арматуру, состоящую из таких элементов, как рассеиватели и отражатели. Эти элементы, а также такие вещи, как форма и количество ламп, будут влиять на яркость и распределение света от светильника. Эффективность светильника учитывает эти элементы, чтобы дать более точное измерение светового потока, излучаемого всем светильником в полностью собранном состоянии.

ЛЮМОВ НА ВАТУ

Это соотношение — это количество люменов, излучаемых светом на каждый ватт потребляемой мощности, технически называемое световой эффективностью.Например, свет, излучающий 1000 люмен, который потребляет мощность 100 Вт, будет давать 10 лм / Вт. Большинство производителей освещения указывают значение лм / Вт на своих светильниках и лампах в качестве ориентира для их общей эффективности.

КАНДЕЛА

Кандела (кд) — это стандартная единица силы света или яркости света в определенном направлении. Название кандела происходит от того факта, что обычная свеча дает примерно 1 канделу яркости в заданном направлении.Кандела в основном используется при работе со сфокусированным светом, например, от фонарей или прожекторов, и поэтому часто не указывается на светильниках.

КАК ИЗМЕРИТЬ ЯРКОСТЬ СВЕТА? УЗНАЙТЕ НАШУ ЯРКОСТЬ В ОСВЕЩЕНИИ ИНФОГРАФИЯ:

Версия PDF (высокое разрешение)

Наука с помощью смартфона: Измерение освещенности с помощью люкс

Это наше второе занятие, которое требует использования смартфона или планшета. Пожалуйста, сообщите нам свое мнение.Отправьте электронное письмо [email protected] с отзывами об использовании технологий в этом — и будущем — мероприятиях «Дом науки».

Ключевые понятия
Физика
Свет
Измерение
Математика

Введение
Знаете ли вы, что вы можете использовать смартфон в качестве научного инструмента для исследования окружающего мира? Смартфоны содержат множество встроенных электронных датчиков, которые могут измерять такие явления, как звук, свет, движение и многое другое.В этом упражнении вы будете использовать датчик освещенности на телефоне или планшете, чтобы исследовать яркость света от разных источников света и мест. Насколько ярка лампа для чтения в вашей гостиной по сравнению с прямыми солнечными лучами? Попробуйте это занятие, чтобы узнать!

Фон
Измерение предметов вокруг вас, например расстояния, вероятно, довольно привычно. Единицы измерения, такие как дюймы или сантиметры, могут описывать расстояние между одной точкой и другой. Но в окружающем нас мире есть много других качеств, которые мы также можем превратить в измеримые величины.Например, знаете ли вы, что можно измерять свет? Вы можете описывать уровни освещенности относительно других вещей, например, «темно как ночь» или «ярче солнца», но вы, вероятно, не станете использовать число. Но так же, как вам может понадобиться линейка для измерения расстояния, вы можете использовать инструмент для измерения точных единиц света.

Свет можно измерить по-разному. Одна единица измерения называется люкс, которая описывает, сколько света падает на определенную область. (Это отличается от единицы люмен, которая показывает вам общее количество света, излучаемого источником света.) Количество люкс становится меньше по мере удаления от источника света. Это имеет смысл, если задуматься: лампочка выглядит намного тусклее, если вы стоите на расстоянии 100 футов от нее, а не близко — даже если она по-прежнему излучает такое же общее количество света в люменах. Типичные уровни освещенности на открытом воздухе могут варьироваться от менее 1/1000 люкс в темную ночь до более 30 000 люкс при прямом солнечном свете!

Вот здесь и пригодится смартфон. Уже давно существуют автономные люксметры (например, для использования в фотографии), устройства с датчиком освещенности и экраном, отображающим уровень освещенности в люксах.Однако современные смартфоны и планшеты обычно содержат встроенные датчики освещенности, которые используются для автоматической регулировки яркости экрана в зависимости от уровня освещенности (например, делая экран ярче и легче его увидеть, если вы используете устройство под прямыми солнечными лучами, но затемняете. экран в более темных помещениях, чтобы он не был слишком ярким для ваших глаз). Многие телефоны могут запускать приложения, которые будут отображать световые показания в люксах. Чтобы узнать больше об уровнях освещенности в мире вокруг вас, найдите смартфон или планшет и начните измерения!


Материалы

  • Смартфон или планшет с доступом в Интернет и разрешением на загрузку и установку приложения
  • Взрослый (для проверки и загрузки приложения)
  • Различные источники света (фонарик, лампа, потолочный светильник и т. Д.).)
  • В разных местах (темный шкаф, комната с окнами, на улице и т. Д.)
  • Линейка (опционально)


Подготовка

  • Попросите взрослого помочь вам найти приложение «люксметр» или «люксметр» на смартфоне или планшете. Доступно множество бесплатных опций (обратите внимание, что в некоторых приложениях может быть включена реклама или встроенные покупки).
  • Познакомьтесь с вашим приложением для люксметра. Некоторые приложения просто отображают число на экране, тогда как другие отображают счетчик или график.Некоторые также позволяют записывать данные. Убедитесь, что приложение работает: переместите телефон из темной комнаты в светлую или поднесите его к лампочке (лампочки бывают и горячими, и яркими, поэтому будьте осторожны), и вы увидите, что числа колеблются. .
  • Найдите датчик освещенности на вашем устройстве. Обычно он находится в верхней части передней части телефона (сторона с экраном). Вы можете сделать это, проведя кончиком пальца по поверхности телефона, когда открыто приложение люксметра. Когда ваш палец накрывает датчик освещенности, показания должны упасть.Убедитесь, что вы случайно не закрыли датчик во время занятия.
  • Примечание. Некоторые приложения могут отображать уровни освещенности в других единицах, например «EV», что означает «значение экспозиции» и используется в фотографии для измерения количества света, падающего на камеру. Концепции, описанные в этом упражнении, по-прежнему применимы, и вы по-прежнему можете сравнивать различные источники света или то, как уровни света меняются с расстоянием от источника света. Однако числа, которые вы измеряете в EV, не будут такими же, как в люксах.


Порядок действий

  • Проверьте, как показания в люксах меняются с расстоянием от фиксированного источника света. Например, встаньте прямо под потолочным светильником, держите телефон экраном вверх и перемещайте телефон вверх и вниз. Как вариант, держите телефон боком и направьте его на торшер, когда вы подходите к нему все ближе и дальше. Как показания меняются с расстоянием?
  • Теперь сравните разные источники искусственного света на одинаковом расстоянии.Вы можете использовать линейку для этого или любой удобный предмет (или часть тела, например предплечье) в качестве распорки. Точное расстояние не имеет значения, если вы поддерживаете его постоянным. Как фонарик сравнить с лампочкой? А как насчет света телевизора или экрана компьютера? Какой источник света в вашем доме самый яркий? Самый тусклый?
  • Наконец, измерьте уровень внешней освещенности в разных местах. Выключите все источники искусственного света. Как уровень освещенности снаружи соотносится с уровнем освещенности внутри? А как насчет комнаты с закрытыми оконными покрытиями по сравнению с открытыми оконными покрытиями? В комнате, где вы спите ночью, а не днем? Какая комната в вашем доме получает больше всего естественного света? Какая комната получает меньше всего?
  • Дополнительно: Попробуйте наклонить телефон относительно источника света и посмотрите, как меняются показания.


Наблюдения и результаты
Вы, наверное, заметили, как резко меняется уровень освещенности с увеличением расстояния от источника света. Вы можете увидеть только несколько десятков или сотен люкс, когда находитесь на другом конце комнаты от лампочки, но если вы поднесете телефон прямо к лампочке, показания могут исчисляться тысячами или даже десятками тысяч. Это связано с математической зависимостью, называемой законом обратных квадратов. По мере того, как свет расширяется наружу от источника, количество света, попадающего в каждую область, очень быстро падает.Солнце так далеко, что может показаться удивительным, что показания в люксах под прямыми солнечными лучами настолько высоки (десятки тысяч люкс). Это дает нам представление о том, насколько ярким является само солнце!

Если вы попытались наклонить телефон, вы могли заметить, что показания уменьшились, хотя расстояние между телефоном и источником света не изменилось. Угол поверхности относительно источника света также определяет, сколько света попадает на нее, потому что свет распространяется по прямой линии.Поверхность, перпендикулярная световым лучам (под углом 90 градусов), будет собирать больше всего света. Вот почему так важно, чтобы солнечные панели были нацелены прямо на солнце, и почему полюса Земли получают меньше света (и являются более холодными), чем экватор.

Наличие единицы измерения и устройства для ее измерения может быть полезно для более точного определения и сравнения различных сред. Например, вы можете обнаружить, что определенный диапазон люкс наиболее удобен для чтения книги.Эти измерения можно использовать при проектировании зданий, например школ, чтобы обеспечить достаточное количество света для различных зон и видов деятельности.

В зависимости от вашего телефона или приложения, который вы использовали, диапазон значений, которые вы могли измерить, мог быть ограничен. Некоторые приложения, например, могут не отображать десятичные значения, что затрудняет измерение уровней освещенности ниже 1 люкс (другими словами, даже если реальное значение составляет 0,4 люкс, приложение будет отображать 0 люкс). Чаще всего это происходит в очень темных местах, например, в туалете или на улице ночью.Максимальное чтение также может быть ограничено приложением или аппаратным обеспечением телефона или планшета. Вы можете, например, увидеть на улице только 10 000 люкс при прямом солнечном свете — даже если вы ожидали, что показание составит 30 000 люкс или более. Об этом полезно помнить при использовании любого измерительного прибора. Подобно тому, как длина линейки не может отражать всю длину футбольного поля или кухонный термометр не может определить температуру поверхности солнца, многие цифровые измерительные инструменты не могут обеспечить полный диапазон возможных значений. измерения.

Дополнительные сведения
Освещенность: что такое люкс? от All About Circuits
Закон обратных квадратов, свет, от Hyperphysics в Университете штата Джорджия
Рекомендуемые уровни освещенности (освещенности) для открытых и закрытых помещений (pdf), от Национальной оптической астрономической обсерватории
Наука со смартфоном: децибелметр, от Scientific American
Занятия STEM для детей от Science Buddies

Эта деятельность предоставлена ​​вам в сотрудничестве с Science Buddies

Измерение уровня освещенности | Sustainability Workshop

Чтобы проектировать для визуального комфорта, вам нужно знать, как измерять свет.Измерение и восприятие света могут быть серьезной темой, а эффективный анализ дневного света требует точного определения используемых терминов и показателей.

Основные показатели

«Яркость» света может означать разные вещи: например, количество света, исходящего от источника света, — это световой поток (люмены), количество света, падающего на поверхность, — это освещенность (люкс), а количество света. отражение от поверхности — это яркость (кд / м2).

Эти величины различны, потому что чем дальше поверхность от источника света, тем меньше света падает на поверхность, и чем темнее поверхность, тем меньше падающего света она отражает.Это потому, что свет подчиняется закону обратных квадратов. Например, точечный источник, такой как свеча, который вызывает освещенность 1 люкс на объекте на расстоянии одного метра, вызовет освещение 1/4 люкс на том же объекте в двух метрах или 1/9 люкс на объекте, когда он 3 метра.

Очень важно точно указать параметры освещения и дневного света.

Световой поток и интенсивность = свет, исходящий от источника

Количество света, испускаемого конкретным источником во всех направлениях, называется световым потоком , (или «световой силой») и является мерой общей воспринимаемой мощности света.Он измеряется в люменах. Люмены — полезный показатель для сравнения яркости источника света (например, лампа накаливания мощностью 60 Вт дает около 850 люмен — см. Электрические источники света для получения дополнительной информации об эффективности освещения).

Человеческий глаз воспринимает свет в «видимом спектре» — между длинами волн около 390 нм (фиолетовый) и 700 нм (красный). Люди сильнее воспринимают световые волны с некоторыми длинами волн, и световой поток масштабируется, чтобы отразить это с помощью функции яркости. Лучистый поток — это связанная мера, которая количественно определяет общую мощность электромагнитного излучения от источника, а не только видимого света, но также инфракрасного и ультрафиолетового света, и измеряется в ваттах.

Количество света, которое распространяется в определенных направлениях от источника, называется «интенсивностью света » и измеряется в канделах. Свеча излучает примерно одну канделу во всех направлениях (всего эта свеча излучает 12,6 люмен). Узнайте больше о люменах, телесных углах и канделах в Википедии.

При моделировании освещения и дневного света эти свойства кодируются в источниках света, которые использует ваша модель — будь то солнце (и предполагаемые условия неба) или используемые лампочки и осветительные приборы.

Освещенность = свет, падающий на поверхность

Количество света, падающего на поверхность, называется «освещенность» и измеряется в люксах (метрическая единица = люмен / м 2 ) или фут-канделах (английская единица = люмен / фут 2 ). 1 фут-кандела равна 10,8 люкс. Это измерение, с которым вы будете работать чаще всего для оптимизации визуального комфорта, поскольку строительные нормы и стандарты используют освещенность для определения минимального уровня освещенности для конкретных задач и условий.

Это значение не зависит от свойств материала освещаемой поверхности. Однако, поскольку количество света, которое «видит» поверхность, зависит от того, сколько света отражается от других поверхностей вокруг нее, оно зависит от цвета и отражательной способности поверхностей, которые ее окружают.

Яркость неба часто задается с использованием значений освещенности, измеренных на открытой горизонтальной плоскости. Некоторые общие уровни освещенности приведены в таблице ниже, из Engineering Toolbox:

.
Состояние Подсветка
(футкд) (люкс)
Полный дневной свет 1 000 10,752
Пасмурный день 100 1,075
Очень темный день 10 107
Сумерки 1 10.8
Глубокие сумерки 0,1 1,08
Полнолуние 0,01 0,108
Четверть Луны 0,001 0,0108
Звездный свет 0,0001 0,0011

Комфортные уровни освещенности

Значения выше представляют общую освещенность неба. Как дизайнер, ваша задача — убедиться, что жильцы вашего здания имеют нужный уровень света для их деятельности, и постараться получить как можно больше света от естественного света.Эти уровни обычно измеряются на рабочей поверхности в здании.

Области могут быть слишком тусклыми или слишком яркими, и эти уровни зависят от задачи. Яркость, необходимая для изготовления украшений или сборки электронных компонентов, намного превышает яркость, необходимую для безопасного перехода к выходу из комнаты. Ниже приводится таблица обычно рекомендуемых уровней освещенности для различных видов деятельности. Чтобы спроектировать мероприятия в рамках вашей программы, ознакомьтесь с местными нормативами или стандартами сертификации экологичного строительства.

Стандартная поддерживаемая освещенность (люкс)

Фут-свечи

Характеристики деятельности

Представительская деятельность

50

5

Интерьеры, редко используемые для визуальных задач (отсутствие восприятия деталей)

Кабельные тоннели, ночные тротуары, автостоянки

100–150

10-15

Интерьеры с минимальными требованиями к остроте зрения (ограниченное восприятие деталей)

Коридоры, раздевалки, погрузочная площадка

200

20

Интерьеры с низкой остротой зрения (некоторое восприятие деталей)

Фойе и подъезды, столовые, склады, туалеты

300

30

Интерьер с некоторыми требованиями к остроте зрения (часто используемые помещения)

Библиотеки, спортивные и актовые залы, учебные помещения, лекционные залы

500

50

Интерьер с умеренными требованиями к остроте зрения (некоторые задачи с низкой контрастностью, определение цвета)

Работа за компьютером, чтение и письмо, общие офисы, магазины розничной торговли, кухни

750

75

Интерьер, требующий хорошей остроты зрения (хорошее цветовое решение, привлекательный интерьер)

Чертежи, сетевые магазины, общая электроника

1000

100

Интерьер, требующий повышенной остроты зрения

(точное определение цвета и низкая контрастность)

Детальная сборка электроники, проектирование, изготовление шкафов, супермаркеты

1500–2000+

150-200 +

Интерьер, требующий максимальной остроты зрения (низкая контрастность, оптические вспомогательные средства и местное освещение будут предпочтительны)

Ручной пошив, прецизионная сборка, детальный чертеж, сборка минутных механизмов

R Рекомендуемый уровень освещенности для различных задач.
Дополнительную информацию о рекомендуемых уровнях от Общества инженеров освещения см. Здесь.

Измерение освещенности в программном обеспечении

С помощью различного доступного программного обеспечения для анализа освещения вы можете увидеть фактическое значение полезного света, падающего на критически важные поверхности, такие как столы, стены и поверхности для ходьбы. В зависимости от уровней освещенности, требуемых для конкретного использования или деятельности, вы можете использовать эти количественные визуализации, чтобы понять, полезно ли пространство или нужно ли уделять больше внимания дизайну.

(Слева) Рендеринг освещенности — только дневной свет. (Справа) Рендеринг освещенности — только электрическое освещение.

При анализе дневного света вам часто нужно нанести на карту освещение пространства, чтобы увидеть, как свет «падает» по мере удаления от окон и других источников света. На изображениях ниже показан график уровней освещенности рабочей поверхности, нанесенный на частичный визуальный рендеринг. Эти графики помогают показать, достигают ли рабочие поверхности адекватного уровня освещения, а также помогают визуализировать соответствующие источники света.

Значения освещенности, нанесенные на поперечное сечение рабочей поверхности в офисном помещении,
днем ​​и ночью. Изображение из Loisos + Ubbelohde.


Яркость = Свет, отраженный поверхностью

Яркость — это свет, отраженный от поверхностей, и измеряется в канделах на квадратный метр (кд / м2) или нитах (в британских единицах измерения).

Яркость — это то, что мы воспринимаем, глядя на сцену или используя камеру. Качество и интенсивность света, который достигает нашего глаза и , зависит от свойств материала поверхностей (цвет, коэффициент отражения, текстура).

Значения яркости часто используются для изучения визуального качества помещения. Визуальные программные визуализации (например, 3ds Max) основаны на этом и могут дать дизайнерам очень хорошее представление о том, как будет выглядеть пространство в зависимости от их выбора источников света и материалов.

Хотя яркость действительно полезна для понимания качественных показателей успеха дизайна, она не является хорошим показателем количества света. Потому что человеческий глаз может настраиваться на огромный диапазон уровней освещенности более 3-4 порядков величины, от яркого дневного света в десятках тысяч люкс (1000 единиц fc) до простых десятков люкс (однозначное число fc), визуальную визуализацию яркого и не очень яркого пространства измерить сложно. Можете ли вы сказать по визуальным изображениям, что на дневном изображении интенсивность света на стене в 100 раз больше, чем на ночном?

(слева) Визуальный рендеринг — дневное время.(Справа) Визуальный рендеринг — ночное время.

Визуализация яркости

полезна для понимания таких качеств, как распределение света и блики, но не для понимания того, достаточно ли в помещении света для предполагаемого использования. Ослепление определяется путем сравнения крайних значений яркости, которые видит глаз человека с заданной точки обзора.

Меры, используемые при проектировании дневного света

Основываясь на этих показателях, дизайнеры освещения используют некоторые дополнительные показатели, такие как коэффициент дневного света и автономность дневного света, чтобы помочь им оптимизировать и сообщить количество и качество дневного света в пространстве.Это важно, потому что наличие дневного света может сильно меняться в течение дня в зависимости от условий неба.

Фактор дневного света

Фактические уровни освещенности в пространстве при дневном свете могут сильно различаться из-за облачности и положения солнца. Чтобы справиться с этими сильно изменяющимися условиями неба, некоторые строительные нормы и правила используют факторы дневного света в качестве критериев проектирования вместо освещенности на рабочей плоскости.

Коэффициенты дневного света выражаются как процент естественного света, падающего на рабочую поверхность, по сравнению с тем, который падал бы на полностью свободную горизонтальную поверхность при тех же условиях неба.Фактор дневного света анализируется в точке, но эти значения часто усредняются по всей комнате или визуализируются в сетке.

Коэффициент дневного света 5% на внутренней поверхности означает, что она получает 1/20 от максимально доступного естественного света.

Для справки: комната с DF менее 2% считается плохо освещенной. Помещения с DF от 2% до 5% считаются идеальными для занятий, которые обычно происходят в помещении.При коэффициенте дневного света более 5% важно учитывать тепловые требования (см. Тепловой комфорт человека), потому что большие площади остекления могут привести к потере тепла зимой и перегреву летом.

Коэффициенты дневного света обычно рассчитываются с использованием стандартного пасмурного неба, чтобы представить наихудший сценарий, для которого необходимо разработать (см. «Условия неба» выше). Предполагается, что распределение света в куполе с облаками состоит из однородных горизонтальных полос, которые становятся ярче наверху (или на более высокой солнечной высоте).Из-за этого однородного неба и того факта, что коэффициент дневного света рассчитывается в процентах, единственными параметрами, которые влияют на факторы дневного света, являются геометрия дизайна комнаты и материалы, из которых она сделана. Это не будет зависеть от ориентации или местоположения здания.

Автономность дневного света (DA) и полезная дневная освещенность (UDI)

Автономность при дневном свете (DA) — это процент рабочих часов, в течение которых потребности в освещении удовлетворяются только за счет дневного света. Он измеряется путем сравнения дневной освещенности на рабочей плоскости с минимальными требованиями с течением времени.Это очень популярный показатель, который может сказать вам, как часто нужно включать свет, чтобы соответствовать определенным требованиям к освещению.

Полезная дневная освещенность (UDI) также измеряет процент времени, в течение которого пространство получает достаточный дневной свет, но также дает количественную оценку, когда уровни освещенности слишком высокие и слишком низкие. UDI основан на трех стандартных отсеках (которые в целом соответствуют комфортным уровням освещения, указанным выше).

  • Менее 100 люкс недостаточно дневного света
  • От 100 до 2000 люкс — дневной свет
  • Более 2000 люкс — это слишком много дневного света и может вызвать визуальный и тепловой дискомфорт.

UDI измерено на разных рабочих местах в офисном здании.

Добавить комментарий

Ваш адрес email не будет опубликован.