Способы подключения радиаторов отопления: tvin270584 — LiveJournal
Эффективность работы отопительной системы — это главный аспект, который влияет на комфортность проживания внутри частного дома. Хорошо, если эта система подключена к центральным отопительным сетям. Если же таковых нет, то приходится организовывать автономное отопление, которое придется подгонять под те самые комфортные условия проживания. И один из самых важных моментов в таком случае — это выбор схемы подключения батарей отопления в частном доме. В этой статье мастерсантехник расскажет о способах подключения радиаторов отопления. Это один из важнейших моментов при устройстве отопительной системы, который может быть реализован несколькими способами.
Какие виды отопительных систем бывают
Для того чтобы понимать как подключить радиатор отопления, нужно четко осознавать в какую систему она будет интегрироваться. Даже если все работы будут выполнять мастера из специализированной фирмы, все равно хозяину дома нужно знать какая схема отопления у него в жилище будет реализовываться.
Однотрубное отопление
Основывается на подаче воды в радиаторы, установленные в многоэтажном строении (как правило, в многоэтажках). Такое подключение радиатора отопления является самым простым.
Однако при доступности монтажа такая схема имеет один серьезный недостаток – невозможно регулировать подачу тепла. Никаких специальных устройств такая система не предусматривает. Поэтому теплоотдача соответствует заложенной проектом расчетной норме.
Двухтрубное отопление
Рассматривая варианты подключения радиаторов отопления, естественно стоит уделить внимание и двухтрубной отопительной системе. Ее функционирование базируется на подаче горячего теплоносителя по одной трубе, а отводу охлажденной воды в обратном направлении по второй трубе. Здесь реализуется параллельное подключение отопительных устройств. Достоинством такого подключения является равномерность нагрева всех батарей. Кроме того интенсивность теплоотдачи можно регулировать вентилем, который монтируется перед радиатором.
Обратие внимание! Правильное подключение радиаторов отопления подразумевает соблюдение требований главного нормативного документа – СНиП 3.05.01-85
Выбор места установки радиатора
Независимо от того реализовано последовательное подключение радиаторов отопления или параллельное функциональным предназначением этих приборов является не только обогрев помещения. Посредством батарей создается определенная защита (экран) от проникновения холода извне. Как раз этим и объясняется расположение батарей под подоконниками. При таком распределении радиаторов в местах наибольших потерь тепла, то есть в районе оконных проемов создается эффективная тепловая завеса.
Прежде чем рассматривать способы подключения радиаторов отопления необходимо составить схему расположения радиаторов. При этом важно определить правильные монтажные расстояния радиаторов, что обеспечит их максимальную теплоотдачу. Итак, абсолютно правильно расположены отопительные батареи если:
- Опущены от низа подоконника на 100 мм;
- От пола находятся на расстоянии 120 мм;
- Отстоят от стены на расстоянии 20 мм.
Нарушать эти нормативы строго не рекомендуется.
Способы циркуляции теплоносителя
Как известно, вода, а обычно именно она заливается в отопительную систему, может циркулировать принудительно или естественно. Первый вариант подразумевает задействование специального водяного насоса, который проталкивает воду по системе. Естественно это элемент включается в общую отопительную схему. А устанавливается он в большинстве случаев или возле нагревательного котла, или уже является его конструкционным элементом.
Система с естественной циркуляцией очень актуальна в тех местах, где случаются частые перебои с электроэнергией. В схеме не предусмотрен насос, а сам нагревательный котел является энергонезависимым. Вода по системе движется за счет того, что нагретым столбом воды вытесняется холодный теплоноситель. Каким образом будет реализовано подключение радиаторов при таких обстоятельствах, зависит от многих факторов, в том числе нужно учитывать особенности прохождения теплотрассы и ее протяженность.
Итак, разберем эти варианты более подробно:
Одностороннее подключение
Такое подключение батареи предполагает монтаж подводящей трубы (подачи) и отводящей (обратки) к одной и той же секции радиатора:
- Подача вверху;
- Обратка внизу.
Таким образом, обеспечивается равномерный нагрев всех секция каждой отдельно взятой батареи. Односторонняя система отопления является рациональным решением в одноэтажных домах, если предполагается монтаж радиаторов с большим количеством секций (порядка 15). Однако, если гармошка имеет больше включение секций, то будут иметь место значительный теплопотери, а значит стоит рассмотреть другой вариант подключения.
Нижнее и седельное подключение
Актуально в тех системах, где трубопровод отопления спрятан под пол. В этом случае и подводящая теплоноситель труба, и отводящая монтируются к нижним патрубкам противолежащих секций. У такого подключения батарей «слабым» местом является низкая эффективность, поскольку в процентном измерении теплопотери могут достигать 15%. По логике вещей в верхней части радиаторы нагреваются неравномерно.
Видео
В сюжете — Способы подключения радиаторов из пола
Перекрестное (диагональное) подключение
Этот вариант рассчитан на подключение к отопительной системе батарей с большим количеством секций. Благодаря специальной конструкции теплоноситель равномерно распределяется внутри радиатора, что обеспечивает максимальную теплоотдачу.
Ответ на вопрос о том, как правильно подключить батарею отопления в такой ситуации, предельно прост: подвод – сверху, обратка – снизу, но с разных сторон. При диагональном подключении радиаторов теплопотери не превышают 2%.
Мы постарались раскрыть тему возможных схем подключения отопительных радиаторов максимально подробно. Надеемся, вы сможете оценить все плюсы и минусы каждого из описанных вариантов, и выберете наиболее актуальный в вашем конкретном случае.
Видео
В сюжете — Инструктаж с советами от специалиста
В продолжение темы посмотрите также наш обзор Виды радиаторов и способы их монтажа
Источникhttp://santekhnik-moskva. blogspot.com/2019/05/Sposoby-podklyucheniya-radiatorov-otopleniya.html
Как подключить батарею отопления правильно: схема подключения
Содержание статьи
- Необходимые приготовления
- Необходимые сведения о системе отопления – способы разводки и подключения
- Подключение радиаторов отопления своими руками
- Заключение
Проектируя отопление или планируя замену старых обогревательных приборов в квартире или частном доме, владельцы часто думают о том, возможно ли подключение батарей отопления своими руками. По сути, если разобраться, подключение батареи – процесс довольно трудоёмкий и отнимающий много времени, однако его вполне возможно выполнить своими руками, если придерживаться инструкции и все операции выполнить правильно.
Читайте также: Как правильно подключить батарею отопления?
Необходимо учитывать, что от того, насколько правильно выполнена обвязка батарей отопления, будет зависеть температурный комфорт в доме или квартире.
Необходимые приготовления
Перед тем, как начать выполнение работ своими руками, вам будет нужно сделать все необходимые приготовления и расчёты:
- Если вы планируете отопление с нуля, а не просто меняете старые агрегаты на новые, вам будет нужно спроектировать и нарисовать на плане здания разводку магистрали. Для этого сначала будет нужно изучить варианты разводки и выбрать наиболее подходящий для вашего жилья.
- Нужно будет выполнить теплотехнический расчёт для того, чтобы определиться с параметрами обогревательных приборов.
- Будет нужно продумать все способы контроля, а также возможности сервиса и ремонта без отключения отопления.
- Выбрать метод подводки радиаторов к магистрали.
- Запастись всеми необходимыми инструментами и расходными материалами.
Необходимые сведения о системе отопления – способы разводки и подключения
Перед началом работ следует ознакомиться с тем, какие бывают способы разводки магистрали и тонкости, которые необходимо учитывать, выполняя подключение своими руками.
Магистраль отопления в квартире и частном доме может быть однотрубной или двухтрубной:
- Однотрубная магистраль предполагает наличие одного контура, по которому движется теплоноситель от котла через все обогревательные приборы. Недостатком такого способа является неравномерность нагрева батарей – первая батарея в цепочке нагревается гораздо сильнее, чем последняя.
- Двухтрубная магистраль предполагает наличие двух контуров в системе. По одному осуществляется подача горячего теплоносителя, по другому – отвод к котлу остывшей жидкости. Здесь используется параллельное соединение батарей и трубопровода. Этот способ гарантирует равномерное прогревание всех радиаторов.
Если сравнивать эти две разновидности, несомненно, что двухтрубная разводка гораздо эффективнее. Однако её монтаж гораздо сложнее и дороже – в некоторых случаях однотрубная система, как более экономичная, выгоднее и эффективнее.
По способу циркуляции теплоносителя различают следующие разновидности:
- Магистрали с естественной циркуляцией – теплоноситель в системе движется за счёт разницы давлений, которая возникает при нагревании и остывании жидкости. В такой системе трубопровод должен монтироваться с уклоном в сторону движения жидкости.
- Магистрали с принудительной циркуляцией – в системе для обеспечения движения теплоносителя используется циркуляционный насос. В этом случае обеспечивается более стабильная работа, можно выбирать трубы с меньшим диаметром, поскольку гидравлическое сопротивление не столь важно, как в первом случае. Такой способ гораздо дороже, его сложнее смонтировать своими руками и он делает вас зависимыми от наличия электрической энергии – при её несанкционированном отключении обогрев дома останавливается. Однако, это более эффективный метод, чем естественный.
Существуют различные варианты, как можно соединить батареи с трубопроводом:
- Радиаторы с боковым подключением – подводка выполняется через верхний и нижний патрубки с одной стороны агрегата.
- Радиаторы с нижним подключением – соединение осуществляется по нижним патрубкам с правой и левой стороны агрегата. Существует мнение, что радиаторы с нижним подключением снизу прогреваются сильнее, однако это ошибочное утверждение. За счёт тепловой конвекции прогревание радиаторов с нижним способом подводки происходит как по верхним, так и по нижним уровням.
- Радиаторы с диагональным подключением – подводка к системе выполняется через верхний патрубок с одной стороны и нижний – с другой. При такой схеме обеспечивается наиболее равномерное прогревание прибора.
Планируя выполнение работ своими руками, нужно помнить о том, что в системе трубы радиатора нижней подводкой прячутся в пол – вам придётся штробить канавки, в которые будет укладываться трубопровод.
При этом нужно правильно теплоизолировать контур, чтобы избежать теплопотерь на нагревание холодного пространства под полом.Подключение радиаторов отопления своими руками
- Если мы выполняем замену старых агрегатов, для начала необходимо отключить отопление, спустить воду и дождаться остывания батарей. Если систему не отключить и не слить воду, есть опасность серьёзно обвариться горячим теплоносителем.
- После того, как нам удалось отключить систему, мы выполняем демонтаж старых агрегатов. Для этого раскручиваем каждое соединение с магистралью – если резьба не поддаётся, её необходимо нагреть. Тогда нам удастся её провернуть за счёт температурного расширения гайки или муфты. Если речь идёт о чугунных батареях, необходимо будет прибегнуть к услугам помощника, поскольку такие изделия имеют очень большую массу.
- При замене старых устройств на новые, лучше сохранить размеры по центрам у новых батарей, чтобы не приходилось заново делать подводку к магистрали отопления.
- При помощи помощника приставляем к стене новый радиатор и отмечаем места, где будут располагаться кронштейны. После чего каждый кронштейн крепим к стене при помощи дюбелей. Предварительно рассчитываем способность стены справиться с нагрузкой – если возникают сомнения, обеспечиваем дополнительную поддержку при помощи напольного фиксатора.
- Выполняем подключение радиатора при помощи резьбовых соединений, используя прокладки из эластичной резины или паронита. Герметичное соединение убережёт вас от преждевременных протечек – для того, чтобы обеспечить правильное усилие затягивания, используем динамический ключ.
- Включаем оборудование и следим за отсутствием протечек и тем, насколько эффективно происходит нагревание батарей. Если всё в норме, работу можно считать законченной.
Заключение
Выполняя установку новых батарей отопления в своём доме, вы вполне можете сделать это своими руками. Для того чтобы все операции выполнить правильно, вам необходимо грамотно спланировать процесс, учесть все тонкости и нюансы. Если все расчёты выполнены верно и система спроектирована оптимально, вам остаётся лишь старательно осуществить весь алгоритм – от вашей аккуратности и трудолюбия будет зависеть тепло в вашем доме.
Читайте также
- Крепления радиатора отопления
- Короб на батарею
- Теплоотдача биметаллических радиаторов отопления
- Как разобрать чугунный радиатор отопления
термодинамика — Радиаторы последовательно или параллельно?
спросил
Изменено 3 года, 11 месяцев назад
Просмотрено 12 тысяч раз
$\begingroup$
Допустим, у меня есть какая-то машина, вырабатывающая тепло, будь то двигатель внутреннего сгорания или холодильник, охлаждаемый жидкостью.
У меня нет ни одного радиатора, который был бы достаточно большим для количества выделяемого тепла, но у меня есть пара поменьше, так что, думаю, я мог бы соединить их вместе. Должен ли я ставить радиаторы последовательно (один подключается к следующему и т. д.) или параллельно (разделяя патрубок забора охлаждающей жидкости на все радиаторы) и почему? Какая установка будет наиболее эффективной?- термодинамика
- теплопередача
- охлаждение
- теплообменник
$\endgroup$
$\begingroup$
Эффективность любого радиатора (теплообменника) зависит от разницы температур двух рассматриваемых жидкостей. При прочих равных теплообменник с большим перепадом температур будет передавать больше тепла.
Каждый радиатор будет иметь температурный градиент. (Здесь я говорю о том, насколько изменяется температура каждой жидкости при ее прохождении через теплообменник.
Если вы соедините их последовательно, весь поток будет проходить через все из них, но у каждого из них будет только примерно 1/N общей разницы температур на нем — причем у самого горячего также будет самый высокий перепад, потому что он передает больше тепла другой жидкости.
Обратите внимание, что вы можете принять это решение «последовательно или параллельно» независимо для каждой из двух жидкостей. Всего существует четыре различных способа их настройки.
В целом, я не думаю, что это действительно имеет какое-то практическое значение с точки зрения термодинамики. Лично я был бы склонен соединять их параллельно+параллельно (т. е. параллельными путями для обеих жидкостей) — отчасти потому, что мне нравится такая симметрия, а отчасти из-за второстепенных соображений, таких как техническое обслуживание. При параллельном подключении с отдельными запорными вентилями можно отремонтировать или заменить один радиатор, не отключая систему полностью. Вы можете либо работать с уменьшенной мощностью, либо проектировать радиаторную систему с резервированием по схеме N+1.
$\endgroup$
2
$\begingroup$
Допущения:
- «Радиатор» означает теплообменник воздух-жидкость с принудительной подачей воздуха.
- Радиаторы в любой конфигурации будут питаться от собственного источника свежего воздуха (а не от выхлопа другого радиатора).
- Игнорирование конструкции радиатора, естественной конвекции и эффектов турбулентности внутренней жидкости.
- Поток через параллельные радиаторы совершенно одинаковый.
Эффективность будет одинаковой в любом случае. Я изобрел несколько значений температуры жидкости, чтобы упростить визуализацию. Поток следует за стрелками. Например, температура воздуха будет 20С.
Серия
40C -> Радиатор1 -> 34C -> Радиатор2 -> 30C
- Радиатор1 выделяет больше тепла, чем Радиатор2.
Параллельный (новые названия радиаторов для сравнения)
40C -> РадиаторA -> 30C
40C -> RadiatorB -> 30C
- И A, и B выделяют одинаковое количество тепла. Оба будут выделять меньше тепла чем Radiator1, но больше, чем Radiator 2. Сеть обеих систем будет одинаковой. Радиатор
- RadiatorA дает такое же падение температуры, как и радиатор 1 и 2 вместе взятые, потому что он имеет вдвое меньший расход и вдвое меньшую площадь охлаждающей поверхности.
- Разница в эффективности температурного градиента, которая проявляется в менее эффективном Радиаторе 2 и более эффективном Радиаторе 1, присутствует в обоих радиаторах A и B. Если бы мы могли выбрать центр А или В, мы бы получили ту же температуру, что и между 1 и 2.
Другие особенности конструкции
Преимущества серии
- Основное преимущество последовательных радиаторов заключается в том, что вы можете гарантировать, что поток через каждый радиатор будет одинаковым. Это необходимо для оптимальной эффективности. В параллельной системе можно сделать все длины шлангов одинаковыми и иметь одинаковые фитинги (с небольшими потерями) для каждого пути, но это не гарантия.
- Второе преимущество серии заключается в том, что увеличение скорости потока увеличивает турбулентность внутри радиатора. Это может привести к заметному увеличению общей теплопередачи, если жидкость не является таким хорошим проводником тепла, как масло.
- Для последовательного подключения радиаторов требуется меньше фитингов. Это означает меньше трудозатрат на установку и меньше потенциальных мест утечки.
Параллельные преимущества
- Повышенная скорость потока в последовательной конфигурации также увеличивает перепад давления, потребность в энергии перекачки и тепло, добавляемое к жидкости от этой подводимой энергии перекачки (все это должно куда-то уходить).
- У Parallel есть возможность изолировать радиатор для обслуживания во время работы, как упомянул Дейв Твид. Но это незначительное преимущество, потому что с еще несколькими сантехническими дополнениями ряд можно изолировать и обслуживать в процессе эксплуатации.
- Легче сравнивать эффективность радиаторов при параллельной работе. Когда один радиатор загрязнился из-за внутреннего или внешнего загрязнения, легко увидеть, что он имеет меньший дифференциал, чем другой, без каких-либо математических расчетов.
$\endgroup$
$\begingroup$
Ответы выше выглядят слишком сложными. Проблема довольно проста: сколько всего тепла вы можете передать от источника к радиаторам. Поскольку подробной информации нет, в целом могу сказать, что:
- Лучшая установка — это установка, которая предлагает наиболее излучающую поверхность, контактирующую с тепловыделяющей поверхностью (в вашем случае, если труба забора охлаждающей жидкости может касаться всех радиаторов, это лучший случай).
- Если вы можете иметь только один из радиаторов в фактическом контакте с тепловыделяющей поверхностью, то то же правило применяется между 1-м и 2-м радиатором: установите второй радиатор так, чтобы он имел максимальную общую поверхность с 1-м. Это, скорее всего, происходит, когда они параллельны.
$\endgroup$
$\begingroup$
Если мы рассмотрим два радиатора одинакового размера, подключение их параллельно будет более эффективным. ∆Q/∆t = -K×A×∆T/x, где ∆Q/∆t — скорость теплового потока; -К — коэффициент теплопроводности; А – площадь поверхности; ∆T — изменение температуры, а x — толщина материала (∆T/x называется температурным градиентом и всегда отрицателен, поскольку теплота потока всегда переходит от большей тепловой энергии к меньшей). Википедия.
Таким образом, мы поддерживаем более высокую крутизну скорости теплообмена благодаря сохранению исходной дельты Т между двумя радиаторами.
$\endgroup$
5
$\begingroup$
Я думаю, что последовательная комбинация радиаторов была бы хороша, потому что вода остыла два раза за один раунд.
$\endgroup$
Зарегистрируйтесь или войдите в систему
Зарегистрируйтесь с помощью Google
Зарегистрироваться через Facebook
Зарегистрируйтесь, используя электронную почту и пароль
Опубликовать как гость
Электронная почта
Требуется, но не отображается
Опубликовать как гость
Электронная почта
Требуется, но не отображается
Нажимая «Опубликовать свой ответ», вы соглашаетесь с нашими условиями обслуживания, политикой конфиденциальности и политикой использования файлов cookie
.Узнайте все о водяных радиаторах с последовательным и параллельным подключением
Кредиты изображений: Викисклад
Радиаторы горячей воды — полезные бытовые приборы, которые помогают обогревать комнаты и помещения в холодную погоду и работают лучше, чем большинство комнатных обогревателей. Эти устройства либо установлены в последовательный режим или параллельный режим, в зависимости от личных предпочтений. Ну, если вы тот, кто планирует установить радиаторы горячей воды дома или в офисе, то вам тоже придется решить это. Кроме того, вам нужно будет выбрать между однотрубными и двухтрубными системами. Эта статья поможет вам узнать о водяных радиаторах как последовательно, так и параллельно.
ОСНОВНАЯ РАЗНИЦА
Эффективность любого данного радиатора зависит от разницы температур двух жидкостей, о которых идет речь. Если все остальные величины равны, то радиатор с большей разницей температур будет передавать больше тепла.
Теперь, если вы соедините радиаторы параллельно, каждый получит 1/N потока, но у них будет одинаковый температурный градиент от входа к выходу.
Однако, если вы соедините их последовательно, весь поток пройдет через каждый из них, но каждый из них будет иметь лишь примерно 1/N от общей разницы температур. В этом случае самый горячий будет иметь самый высокий перепад, потому что он передает больше тепла другой жидкости.
Когда вы собираетесь установить систему центрального отопления, то перед вами будет два варианта: однотрубная система или двухтрубная система.
Параллельные радиаторы горячей воды:
- Двухтрубная система состоит из двух отдельных труб, одна из которых предназначена для подачи горячей воды к радиаторам, а другая — для отвода использованной воды обратно в котел. Это означает, что радиаторы установлены параллельно. Это факт, что двухтрубные системы дороже, чем однотрубные, но в то же время они более предпочтительны в современных зданиях.
- Параллельные двухтрубные системы или радиаторы горячей воды доступны в двух вариантах.
- Один вариант выполнен из медных или пластиковых трубок, присоединяемых к коллектору, при этом каждый из радиаторов имеет отдельную подачу и обратку. Это одна из самых распространенных систем, используемых в наши дни. Другой вариант изготовлен из стальных труб. При этом каждый из радиаторов подключается отдельно к подающим и обратным трубам.
Изображение предоставлено Wikimedia Commons.0173 однотрубные системы.