Подключение двигателя через конденсатор видео: Как подключить электродвигатель через конденсатор видео

Содержание

Как трехфазный двигатель подключить на 220 видео

Вы увидите в нашем онлайн видео то, как подключается электрический двигатель на 380 Вольт по схеме соединения обмоток «Звезда».

Подключить трехфазный электродвигатель на 380 Вольт своими руками не тяжело, но помните, что все работы проводятся только после отключения напряжения!

Опытный электрик расскажет про то, на что стоит обратить внимание при подключении электродвигателя и как изменить его направление вращения в обратную сторону при необходимости.

Рекомендую после просмотра видео дополнительно прочитать по этой теме наши статьи:

Многие хозяева, особенно владельцы частных домов или дач, используют оборудование с двигателями на 380 В, работающими от трехфазной сети. Если к участку подведена соответствующая схема питания, то никаких сложностей с их подключением не возникает. Однако довольно часто возникает ситуация, когда питание участка осуществляется только одной фазой, то есть подведено лишь два провода – фазный и нулевой. В таких случаях приходится решать вопрос, как подключить трехфазный двигатель к сети 220 вольт. Это можно сделать различными способами, однако следует помнить, что подобное вмешательство и попытки изменить параметры, приведет к падению мощности и снижению общей эффективности работы электродвигателя.

Подключение 3х фазного двигателя на 220 без конденсаторов

Как правило, схемы без конденсаторов применяются для запуска в однофазной сети трехфазных двигателей малой мощности – от 0,5 до 2,2 киловатта. Времени на запуск тратится примерно столько же, как и при работе в трехфазном режиме.

В этих схемах применяются симисторы, под управлением импульсов с различной полярностью. Здесь же присутствуют симметричные динисторы, подающие сигналы управления в поток всех полупериодов, имеющихся в питающем напряжении.

Существует два варианта подключения и запуска. Первый вариант используется для электродвигателей, с частотой оборотов менее чем 1500 в минуту. Соединение обмоток выполнено треугольником. В качестве фазосдвигающего устройства используется специальная цепочка. Путем изменения сопротивления, на конденсаторе образуется напряжение, сдвинутое на определенный угол относительно основного напряжения. При достижении в конденсаторе уровня напряжения необходимого для переключения, происходит срабатывание динистора и симистора, вызывающее активацию силового двунаправленного ключа.

Второй вариант используется при запуске двигателей, частота вращения которых составляет 3000 об/мин. В эту же категорию входят устройства, установленные на механизмах, требующих большого момента сопротивления во время запуска. В этом случае необходимо обеспечение большого пускового момента. С этой целью в предыдущую схему были внесены изменения, и конденсаторы, необходимые для сдвига фаз, были заменены двумя электронными ключами. Первый ключ последовательно соединяется с фазной обмоткой, приводя к индуктивному сдвигу тока в ней. Подключение второго ключа – параллельное фазной обмотке, что способствует образованию в ней опережающего емкостного сдвига тока.

Данная схема подключения учитывает обмотки двигателя, смещенные в пространстве между собой на 120 0 С. При настройке определяется оптимальный угол сдвига тока в обмотках фаз, обеспечивающий надежный пуск устройства. При выполнении этого действия вполне возможно обойтись без каких-либо специальных приборов.

Подключение электродвигателя 380в на 220в через конденсатор

Для нормального подключения следует знать принцип действия трехфазного двигателя. При включении в трехфазную сеть, по его обмоткам в разные моменты времени поочередно начинает идти ток. То есть в определенный отрезок времени ток проходит через полюса каждой фазы, создавая так же поочередно магнитное поле вращения. Он оказывает влияние на обмотку ротора, вызывая вращение путем подталкивания в разных плоскостях в определенные моменты времени.

При включении такого двигателя в однофазную сеть, в создании вращающегося момента будет участвовать только одна обмотка и воздействие на ротор в этом случае происходит только в одной плоскости. Такого усилия совершенно недостаточно для сдвига и вращения ротора. Поэтому для того чтобы сдвинуть фазу полюсного тока, необходимо воспользоваться фазосдвигающими конденсаторами. Нормальная работа трехфазного электродвигателя во многом зависит от правильного выбора конденсатора.

Расчет конденсатора для трехфазного двигателя в однофазной сети:

  • При мощности электродвигателя не более 1,5 кВт в схеме будет достаточно одного рабочего конденсатора.
  • Если же мощность двигателя свыше 1,5 кВт или он испытывает большие нагрузки во время запуска, в этом случае выполняется установка сразу двух конденсаторов – рабочего и пускового. Их подключение осуществляется параллельно, причем пусковой конденсатор нужен только для запуска, после чего происходит его автоматическое отключение.
  • Управление работой схемы производится кнопкой ПУСК и тумблером отключения питания. Для запуска двигателя нажимается пусковая кнопка и удерживается до тех пор, пока не произойдет полное включение.

В случае необходимости обеспечить вращение в разные стороны, выполняется установка дополнительного тумблера, переключающего направление вращения ротора. Первый основной выход тумблера подключается к конденсатору, второй – к нулевому, а третий – к фазному проводу. Если подобная схема способствует падению мощности или слабому набору оборотов, в этом случае может потребоваться установка дополнительного пускового конденсатора.

Подключение 3х фазного двигателя на 220 без потери мощности

Наиболее простым и эффективным способом считается подключение трехфазного двигателя в однофазную сеть путем подключения третьего контакта, соединенного с фазосдвигающим конденсатором.

Наибольшая выходная мощность, которую возможно получить в бытовых условиях, составляет до 70% от номинальной. Такие результаты получаются в случае использования схемы «треугольник». Два контакта в распределительной коробке напрямую соединяются с проводами однофазной сети. Соединение третьего контакта выполняется через рабочий конденсатор с любым из первых двух контактов или проводов сети.

При отсутствии нагрузок, трехфазный двигатель возможно запускать с помощью только рабочего конденсатора. Однако при наличии даже небольшой нагрузки, обороты будут набираться очень медленно, или двигатель вообще не запустится. В этом случае потребуется дополнительное подключение пускового конденсатора. Он включается буквально на 2-3 секунды, чтобы обороты двигателя могли достигнуть 70% от номинальных. После этого конденсатор сразу же отключается и разряжается.

Таким образом, при решении вопроса как подключить трехфазный двигатель к сети 220 вольт, необходимо учитывать все факторы. Особое внимание следует уделить конденсаторам, поскольку от их действия зависит работа всей системы.

С такой проблемой приходится сталкиваться многим рачительным хозяевам, которые привыкли все, по максимуму, делать своими руками. В том числе, и собирать различную технику для хозяйственных нужд; например, циркулярную пилу на участке, эл/наждак, небольшой подъемник в гараже и тому подобное.

Учитывая, сколько стоит электродвигатель, лучше приспособить имеющийся под рукой 3-фазный образец к работе от 1ф, тем самым адаптировав его к домашней эл/сети, чем приобретать новый. Нужно лишь понимать, как и какой электродвигатель лучше переделать с 380 вольт на 220, чтобы дополнительно не тратить деньги, и разбираться в существующих схемах их включения.

Что учесть

  1. Переделка с 380 на 220 имеет смысл, если речь идет об эл/двигателе сравнительно небольшой мощности – до 2,5, но не более (это максимум) 3 кВт. В принципе, ограничений по данной характеристике нет. Но при этом, скорее всего, понадобится провести ряд мероприятий и потратить некоторую сумму денег и время.
  • Переложить вводной кабель эл/питания, к тому же придется заниматься согласованиями с поставщиком электроэнергии в плане повышения лимита. Не следует забывать, что для частных домовладений установлен предел эн/потребления; как правило, в 15 кВт. «Впишется» ли в него новая нагрузка в виде мощного электродвигателя? Выдержит ли ее изначально заложенный кабель?
  • Для такого прибора нужно прокладывать отдельную линию от силового щита и ставить индивидуальный автомат, как минимум. Просто так подключить его через розетку вряд ли получится; лучше не экспериментировать.
  • Практика переделок показывает, что даже если все сделано грамотно, возникнет еще одна проблема, с запуском. «Старт» мощного электродвигателя будет тяжелым, с длительной раскачкой, бросками напряжения. Такая перспектива мало кого устроит, тем более, если что-то собирается не на загородном участке, а на территории, прилегающей к жилому строению. Пока будет функционировать самодельная установка на основе этого двигателя, начнутся сбои в работе бытовых приборов. Проверено, и не раз.
  1. Порядок работы по переделке зависит от внутренней схемы электродвигателя. В некоторых моделях в клеммную коробку выводится всего 3 провода, в других – 6.

Вариантов немного – оставить изначальное включение или произвести разборку двигателя и перекоммутировать вторые концы. Если же выведены все шесть, то можно их соединять по любой из схем, без ограничений. Главное – грамотно выбрать ту, которая будет оптимальной для конкретной ситуации (мощность электродвигателя, специфика его применения). Чем отличается «треугольник» от «звезды», подробно рассказывается на этой странице.

Как переделать электродвигатель

Схема

Учитывая, что мощность электродвигателя небольшая (значит, не придется при пуске его «срывать»), а запитывать его планируется от сети 220, то оптимальной схемой является «треугольник». То есть, здесь не нужно ориентироваться на высокие пусковые токи (их не будет), а потеря мощности практически сводится к нулю (можно не учитывать). Все сказанное наглядно демонстрирует рисунок.

Если в электродвигателе схема изначально собрана по «треугольнику», то переделывать в нем вообще ничего не нужно.

Расчет рабочих емкостей

Так как вместо 3-х фаз теперь будет лишь одна, она и подается на каждую из обмоток, но с небольшим сдвигом синусоиды. По сути, включением конденсаторов производится имитация питания электродвигателя от источника 380/3ф. Формулы для расчетов рабочих конденсаторов показаны на рисунках ниже.

Примечание:

  • Емкости к обмоткам электродвигателя подбираются не только по номиналу, но и по рабочему напряжению. Раз речь идет о переделке с 380 на 220, то U р должно быть не меньше 400 В.
  • Немаловажен и такой фактор, как разновидность конденсаторов. Во-первых, они должны быть однотипными. Во-вторых, только не электролитическими. Оптимально, бумажные; например, устаревшей серии КГБ, МБГ (и их модификации) или ее современные аналоги. Они удобны в креплении (имеются проушины) и легко выдерживают скачки температуры, тока, напряжения.

Наглядно весь процесс в действии можно посмотреть на видео:

На практике инженерными расчетами мало кто из людей сведущих занимается. Есть определенные пропорции, позволяющие довольно точно подобрать рабочий конденсатор к конкретному электродвигателю.

В чем сложность? Найти емкость с таким номиналом вряд ли получится. Есть простое решение – взять несколько конденсаторов и соединить параллельно. В результате небольших вычислений несложно подобрать нужное их количество с суммарной емкостью требуемой величины. Тем, кто забыл школу, можно подсказать – при таком способе соединения конденсаторов их емкости складываются.

Пусковой

Эта емкость нужна не всегда. Она ставится в схему лишь в том случае, если при пуске на вал двигателя создается значительная нагрузка. Примеры – мощное вытяжное устройство, циркулярная пила. А вот для той же газонокосилки вполне хватит и рабочих конденсаторов.

Расчет простой – номинал Сп должен превышать Ср в 2,5 (плюс/минус). Здесь предельной точности не требуется; величина пусковой емкости определяется примерно. Дальнейший анализ работы электродвигателя на разных режимах подскажет, увеличить ее или уменьшить.

Кстати, это относится и к рабочим конденсаторам. Дело в том, что все расчеты априори предполагают, что электродвигатель новый, ни разу не бывший в эксплуатации. А так как переделываются в основном изделия б/у, то в процессе работы выяснится, что не устраивает пользователя. Вариантов много – плохой запуск, быстрый нагрев корпуса и так далее.

Как организовать реверс

Иногда необходимо изменять направление вращения вала без дополнительных переделок. Это вполне возможно и для электродвигателя на 380, переведенного на питание 220. Как видно из рисунка, ничего сложного в этом нет, понадобится лишь переключатель на 2 позиции.

Ranobeshka

Поиск for: Поиск

Skip to content
  • چگونه می توان پیدا کرد که آیا دختر یک پسر دارد: 10 راه
  • Homemade Chebureks — 10 دستور العمل های غرب با عکس گام به گام
  • چرا ارکیده ها جوانه های غیر قابل قبول را خشک می کنند و گل های پاییز را خشک می کنند
  • اما آندروید را کاهش می دهد؟ 3-مرحله چگونه سرعت بالا بردن گوشی های هوشمند! ✅➊
  • دکمه صفحه چاپ در ویندوز 10 کار نمی کند — چه باید بکنید؟
  • جفت کردن دلفین ها حیوانات وحشی
  • چه چیزی را در بیمارستان مادر زایمان و بچه سال 2019 انجام دهید: لیست صحیح و هیچ چیز اضافی
  • 4 راه چگونه برای آپلود عکس ها در Instagram از یک کامپیوتر
  • چگونگی طبخ قطعات گوزن
  • چگونگی ساخت گونه ها در خانه: راه های قومی
  • چگونه برای رشد مو برای ماه — راهنمایی های مفید
  • ماسک خانگی برای حجم مو — چگونگی دادن حجم؟
  • گوش درد می کند — چه کاری باید در خانه، دلایل و داروهای محلی انجام دهید
  • چه روز تعطیلات بعد از فردا؟
  • بازنشستگان کامپیوتر به صورت رایگان — کامپیوتر برای مبتدیان
  • کاغذ
  • راهنمای نصب لینوکس گام به گام از درایو فلش
  • چگونه برای حذف آدامس از لباس در خانه، اگر او قبلا وارد شده است
  • کیمونو ژاپنی با دستان خود: الگوی، شرح شغل
  • چگونه می توان کارت های ویدئویی را در BIOS فعال یا تغییر داد؟
  • چگونه یک کیپ را برای یک نوزاد بچرخانید: مزایای یک سر به سر، با دست خود را دوخته شده است
  • چه کسی چنین نکرم را دوست دارد؟ موجودات عرفانی سفید، سحر و جادو سیاه
  • Dollhouse با دستان خود: 150 عکس از ایده ها و تولید کنندگان برای کودکان
  • خون پس از رابطه جنسی: این معنی چیست؟
  • قطبیت باتری مستقیم و معکوس: تفاوت برای انتخاب چیست؟
  • چگونه می توان کیک خوشمزه و رضایت بخش را سرخ کرد
  • طعم فلزی در دهان — علل، تشخیص و درمان
  • 5 راه برای مبارزه با دیابت بدون مواد مخدر
  • چگونگی باز کردن یک چت پنهان در Vaiber
  • چگونه قلمرو را در Minecraft خصوصی کنید
  • اجاق گاراژ با دستان خود: 21 عکس از تولید گام به گام
  • Podisteroviki (Leccinum): از کجا رشد، نمایش ها، عکس ها، کالری
  • گردنبند و گردنبند Beading: طرح، کلاس استاد دقیق
  • هدایا آن را برای تولد انجام دهید: 50 عکس از ایده های اصلی، کلاس اصلی
  • کتک زدن خوک: دستور العمل خوشمزه ترین
  • کیک کبدی — 10 دستور العمل خوشمزه از مرحله عکس به گام
  • فاضلاب در آپارتمان: طرح و نصب با دستان خود — Hydkanal
  • Begonia Royal (REX): مراقبت از خانه، آبیاری و پیوند
  • جامعه بخار
  • ما از فرکانس نازل استفاده می کنیم
  • نماز در مقابل کمونیسم و ​​اعتراف
  • چگونه برای اضافه کردن مد به دزدان دریایی — انجمن ها — بحث، کمک، مشکل، شروع، راه حل، خطا
  • ویتامین D3: چگونه می توان و زمانی که غیر ممکن است
  • چه تعطیلات 7 ژانویه 2022 است
  • چگونه شوهرت را برای بی احترامی تدریس کنی؟ راهنمایی روانشناسان
  • تمام راه های ممکن برای پیدا کردن تعادل در زندگی: نحوه بررسی نمره، آموزش
  • داشبورد — چه چیزی و به همین دلیل است که برای شما یا یک راه مدرن مفید خواهد بود تا شرکت Soft / Habr را مخفی کند
  • هفت دلیل که چرا شمع ها را می پوشاند. چه باید بکنید؟
  • ثروت برای کریسمس و مرکز شهر در خانه
  • نحوه ایجاد یک عکس روی آندروید
  • 2020 چه حیوانی مشخصه، سازگاری، حرفه ای است
  • آوردن کسری به یک نام مشترک
  • 5 راه غیر عملیاتی برای افزایش سینه ها — کلینیک لوازم آرایشی و بهداشتی
  • ماکارونی: کالری، مزایا و آسیب
  • ویندوز 10 بازی ها راه اندازی نشده اند: چرا بازی ها را در PC — WindowStips.ru کار نمی کنند. اخبار و مشاوره
  • «از کجا» یا «از کجا» چگونه کلمه به درستی یا به طور جداگانه نوشته می شود، املای بخشی از سخنرانی، یعنی
  • بخاری تساول، بخاری را با دستان خود نصب کنید
  • دیس بیوزیس روده در نوزادان: علائم، علائم و درمان
  • نحوه چسب ناخن های سربار؟ چگونه ناخن های سربار را در خانه بچرخانید، اگر هیچ چسب خاصی وجود نداشته باشد تا مدت ها طول بکشد؟
  • Orlag — این خز چیست؟
  • نحوه ایجاد عایق صوتی در آپارتمان نه به شنیدن همسایگان
  • Microdermal — چه چیزی است و چگونه انجام می شود؟
  • چگونه بالون را در خانه بچرخانید
  • تپانچه ساخته شده از کاغذ با دست خود را. دستورالعمل های گام به گام + 300 عکس
  • پاک کردن با سرکه در دمای کودکان: همه برای و علیه
  • 7 خدمات رایگان برای ایجاد ایمیل
  • 6 راه برای ترجمه PDF به صورت چگونگی ترجمه PDF به ورد: Adobe Acrobat، Finereader، مایکروسافت ورد، در سیستم عامل Mac، Google Disk
  • نحوه جشن گرفتن شخصی در Instagram: Storsis، پست ها، ویدیو
  • 76 منطقه این است که شهر روسیه
  • Master Class Watch Online: نحوه تمیز کردن و رنگ کردن خز طبیعی در خانه
  • Zaitsev نه! دانلود موسیقی به صورت رایگان در MP3 فرمت — دانلود آهنگ ها به صورت رایگان آنلاین — گوش دادن به موسیقی بدون ثبت نام
  • pchelituer سایت زنبور عسل آماتور. — نحوه ساخت یک جعبه کاری با دستان خود
  • بخاری القایی با دستان خود: محاسبه، مونتاژ و برنامه
  • روسی که برنده قرعه کشی، اسرار به اشتراک گذاشته شده است: این چیزی است که شما باید انجام دهید این است که شما خیلی خوش شانس هستید
  • نحوه آوردن یک مرد به ارگاسم: 8 راهنمایی عادی — باور نکردنی و جالب ترین — MediaPlatform Mirtessen
  • نوت بوک در تکنیک Scrapbooking (26 عکس): ما یک دفترچه خاطرات را با دست های خود، یک کلاس اصلی در ایجاد یک گشتاور برای مبتدیان گام به گام
  • کوه های قفقازی — کجا بر روی نقشه، ارتفاع، توضیح، مختصات، سرزمین اصلی و حقایق جالب هستند
  • جستجو در صفحه مرورگر: ترکیبی کلید برای پیدا کردن متن — windowstips.ru. اخبار و مشاوره
  • نحوه بستن سوراخ در مشمع کف اتاق: 5 بهترین راه
  • اسباب بازی از لامپ های لامپ برای سال جدید با دستان خود: ما دکوراسیون کریسمس را از لامپ های قدیمی تر می کنیم. کلاس دقیق کارشناسی ارشد ساخت اسباب بازی های درخت کریسمس از لامپ های نور
  • مناطق انوژنیک در مردان و زنان. نقشه مناطق errogenous
  • مرورگر شما زبانه ها را باز می کند، هرچند شما این کار را انجام نمی دهید. 7 راه برای خلاص شدن از تبلیغات در مرورگر یک بار و برای همه
  • چگونه یک زن را در رختخواب برآورده کنیم — آنچه را که باید بدانید، بخوانید
  • چگونه می توان فایل های JPG را در یک فایل به روش های مختلف ترکیب کرد؟
  • شربت الهی از سرفه: آموزش، چگونگی مصرف، کودکان، با برونشیت
  • چگونه یک کلاه ایمنی هواپیما را با دستان خود بسازیم «من خسته هستم — تصاویر خنده دار و عکس ها، طنز تازه و اخبار
  • آداپتور DVI-VGA با دستان خود. آداپتور DVI-D در VGA
  • چگونه می توان شکلک ها را روی صفحه کلید ایجاد کرد — لبخند با یک براکت، کاما را لرزاند
  • چگونه برفی را از یک روروک مخصوص بچه ها با دستان خود بسازید — دوست Samodelkin
  • 10 خدمات نحوه تماس رایگان از کامپیوتر به تلفن
  • شما به سوال پاسخ دهید «چگونه خواب»؟
  • Ikota در نوزادان
  • لوله گوگرد. علل، علائم و نشانه ها، حذف
  • چگونه برای درمان آبریزش بینی: 7 راهنمایی پزشکان
  • Shawarma در خانه — 10 دستور العمل با عکس های گام به گام
  • نوار موم برای حذف: نحوه استفاده، بررسی، امتیاز
  • kinorabus. سعی کنید نام فیلم را حدس بزنید
  • چگونه به تنظیمات روتر TP-Link بروید؟
  • لنگر چه چیزی آن را به معنای آن است.
  • نحوه اضافه کردن یک فرد به یک گروه در WhatsApp
  • چگونه یک توپ ژل را در خانه بسازید؟
Поиск for: Поиск
Свежие записи
  • Картриджді принтерден қалай тартуға болады: Samsung, Canon, HP, ағасы
  • Төсектегі әйелді қалай қанағаттандыруға болады — нүктені білу керек нәрсені оқыңыз
  • Петунияны тұқымдардан қалай өсіру керек: қадамдық нұсқаулық
  • BIOS-да бейне картаны қалай қосуға немесе ауыстыруға болады?
  • Word 2007, 2010, 2013, 2016 және 2019 тармақтардағы өрістерді қалай орнатуға болады
    Proudly powered by WordPress Simplent Theme by Rafay

    Подключение однофазного двигателя: схемы, проверка, видео

    Преимущества механизма двигателя однофазного типа.

    Среди достоинств 1-фазных двигателей отмечают следующие:

    • простота конструкции;
    • долговечность – при своевременном техническом обслуживании двигатель способен служить годами;
    • надёжность;
    • экономичность – потребление небольшого количества энергии;
    • доступная стоимость;
    • ремонтопригодность – в случае выхода из строя можно легко заменить повреждённые или сгоревшие детали;
    • минимальный уход;
    • возможность работы от сети со стандартным напряжением 220 В без преобразователей энергии.

    Большинство современных бытовых приборов оснащены именно однофазными моторами. Причина объясняется их простотой и невысокой себестоимостью. Такими моторами оснащают крупную и мелкую бытовую технику. Кроме того, они нашли применение в создании оборудования для промышленных и производственных предприятий.

    Но есть ли недостатки у однофазного двигателя? Их немного. Практически все они обуславливаются простотой конструкции. Итак:

    • малый коэффициент мощности. По этой причине они используются для создания большинства бытовых приборов;
    • высокий показатель пускового тока;
    • возможность ограничения скорости движка при колебаниях в сети.

    Основным недостатком считается отсутствие пускового момента. Тем не менее, для бытовых приборов и несложных устройств этот минус не является существенным и не влияет на работу.

    Принцип работы однофазной асинхронной машины

    При однофазном питании асинхронника в нем вместо вращающегося магнитного поля возникает пульсирующее, которое можно разложить на два магнитных поля, которые будут вращаться в разные стороны с одинаковой частотой и амплитудой. При остановленном роторе электродвигателя данные поля создадут моменты одинаковой величины, но различного знака. В итоге результирующий пусковой момент будет равен нулю, что не позволит двигателю запустится. По своим свойствам однофазный электродвигатель похож на трехфазный, который работает при сильном искажении симметрии напряжений:

    на рисунке а) показана схема асинхронной однофазной машины, а на б) векторная диаграмма

    Коллекторный двигатель переменного тока

    Рассмотрим коллекторный двигатель переменного тока. Универсальные коллекторные электродвигатели могут питаться от источников как переменного, так и постоянного тока. Они часто используются в электроинструментах, швейных и стиральных машинах, мясорубках – там, где нужен реверс, регулировка частоты вращения ротора или его вращение с частотой более 3000 об/мин.

    Обмотки статора и ротора коллекторного электродвигателя соединяются последовательно. К обмоткам ротора ток подводится через щетки, соприкасающиеся с пластинами коллектора, к которым подсоединяются концы обмоток ротора.

    Реверс однофазного двигателя с коллектором осуществляется за счет изменения полярности включения в сеть обмоток статора или ротора, а скорость вращения можно регулировать, изменяя величину тока в обмотках.

    Основные недостатки такого двигателя:

    • высокая стоимость;
    • сложность устройства, практическая невозможность самостоятельно осуществить его ремонт;
    • значительный уровень шума, трудное управление, создание радиопомех.

    Частотное регулирование однофазных асинхронных электродвигателей

    Итак, все чаще появляются предложения частотных преобразователей, которые могут управлять однофазными асинхронными машинами. В силу того что частотники предназначены для работы с трехфазными машинами, то для регулирования оборотов однофазной машинами необходим особый вид частотного преобразователя. Это обусловлено тем, что трехфазные и однофазные машины имеют немного разный принцип работы. Давайте рассмотрим схему включения, которую предоставляет один из официальных производителей частотных преобразователей для однофазных машин:

    Это схема прямого подключения. Где: Ф-фаза питающего напряжения, N-нейтральный проводник, L1, L2 – обмотки двигателя, Ср – рабочий конденсатор.

    А вот схема подключения преобразователя:

    Как мы можем видеть, конденсатор при включении данной схемы отключается. Обмотка L1 переключается к выходу преобразователя фазы А, а L2 к В. Общий провод подключается к выходу С. Тем самым мы фактически получили двухфазную машину. Фазовый сдвиг теперь будет реализовывать частотный преобразователь, а не конденсатор. На выходе преобразователя будет обычное трехфазное напряжение.

    Данный способ частотного регулирования трудно назвать однофазным, так как при питания двигателя от сети напрямую необходимо опять восстанавливать схему с конденсатором. Более того, этот способ регулирования частоты НЕ ПОДХОДИТ для машин с пусковой обмоткой, так как сопротивление рабочей и пусковой обмотки не равны, появится асимметрия.

    Можем сделать вывод, что данный вид частотного регулирования подходит не всем электродвигателям, а только конденсаторным. Более того, при такой схеме подключения необходимо провести переподключение обмоток внутри электродвигателя (в коробке выводов электродвигателя), что после переподключения не позволит работать ему от сети напрямую. Поэтому если вы собираетесь питать электродвигатель от однофазной сети через частотник, то, может быть стоит купить преобразователь, который питается от однофазной сети, а двигатель обычный, трехфазный. Это лучше с точки зрения работы самой машины, также отсутствуют переделки внутри электрической машины. Если вы собираетесь таким образом модернизировать систему, то внимательно изучите характеристики электродвигателя, преобразователя, чтоб избежать пустой траты средств или выхода из строя элементов системы.

    Схемы подключения

    Варианты подключения двигателя через конденсатор:

    • схема подключения однофазного двигателя с использованием пускового конденсатора;
    • подключение электродвигателя с использованием конденсатора в рабочем режиме;
    • подключение однофазного электродвигателя с пусковым и рабочим конденсаторами.

    Все эти схемы успешно применяются при эксплуатации асинхронных однофазных двигателей. В каждом случае есть свои достоинства и недостатки, рассмотрим каждый вариант более подробно.

    Схема с пусковым конденсатором

    Идея заключается в том, что конденсатор включается в цепь только при пуске, используется пусковая кнопка, которая размыкает контакты после раскрутки ротора, по инерции он начинает вращаться. Магнитное поле основной обмотки поддерживает вращение длительное время. В качестве кратковременного переключателя ставят кнопки с группой контактов или реле.

    Поскольку схема кратковременного подключения однофазного двигателя через конденсатор предусматривает кнопку на пружине, которая при отпускании размыкает контакты, это дает возможность экономить, провода пусковой обмотки делают тоньше. Чтобы исключить межвитковое короткое замыкание, используют термореле, которое при достижении критической температуры отключает дополнительную обмотку. В некоторых конструкциях ставят центробежный выключатель, который при достижении определенной скорости вращения размыкает контакты.

    Схемы и конструкции регулировки скорости вращения и предотвращения перегрузок электродвигателя на автомате могут быть различны. Иногда центробежный выключатель устанавливается на валу ротора или на других элементах, вращающихся от него с прямым соединением, или через редуктор.

    Под действием центробежных сил груз оттягивает пружины с контактной пластиной, при достижении установленной скорости вращения замыкает контакты, переключатель реле обесточивает двигатель или подает сигнал на другой механизм управления.

    Бывают варианты, когда тепловое реле и центробежный выключатель устанавливаются в одной конструкции. В этом случае тепловое реле отключает двигатель при воздействии критической температуры или усилиями раздвигающегося груза центробежного выключателя.

    В связи с особенностями характеристик асинхронного двигателя конденсатор в цепи дополнительной катушки искажает линии магнитного поля, от круглой формы до эллиптической, в результате этого потери мощности увеличиваются, снижается КПД. Пусковые характеристики остаются хорошие.

    Схема с рабочим конденсатором

    Отличие этой схемы в том, что конденсатор после пуска не отключается, и вторичная обмотка на протяжении всей работы импульсами своего магнитного поля раскручивает ротор. Мощность электродвигателя в этом случае значительно увеличивается, форму электромагнитного поля можно попытаться приблизить от эллиптической формы к круглой подбором емкости конденсатора. Но в этом случае момент пуска более продолжительный по времени, и пусковые токи больше. Сложность схемы заключается в том, что емкость конденсатора для выравнивания магнитного поля подбирается с учетом токовых нагрузок. Если они будут меняться, то и все параметры будут не постоянными, для стабильности формы линий магнитного поля можно установить несколько конденсаторов с различными емкостями. Если при изменении нагрузки включать соответствующую емкость, это улучшит рабочие характеристики, но существенно усложняет схему и процесс эксплуатации.

    Подключение преобразователя частоты и однофазного двигателя

    В такой схеме есть ряд существенных недостатков:

    1. Запуск двигателя происходит при минимальной частоте 30 Гц;
    2. Частоту ниже 30 Гц можно регулировать, но не рекомендуется, очень вредно для движка;
    3. Есть нюанс с настройкой пускового напряжения, требуется немного загрублять параметр;

    Для решения вопроса с подключением двух устройств поможет нам обычный дроссель. Катушка индуктивности поможет нам подавить ёмкость в схеме, таким образом давая возможность частотнику спокойно подавать синусоиду на движок. Да, вот схема:

    Всё элементарно, правда. Видео, к сожалению не сохранилось. Выкладываю фото с ПЧ Eaton и однофазным насосом.

    Производителей ПЧ в мире очень много. Поэтому из настроек я могу направить вас примерно и в общих чертах, если будут возникать проблемы с подключениями. Основная мысль заключается в том, что при пуске двигателя минимальное напряжение и частоту поднять вверх

    Но делать это нужно осторожно и аккуратно, есть шанс спалить мотор

    И еще рекомендую ограничить минимальную частоту на 30 Гц, чтобы не допустить запуска вхолостую и перегрева.  Двигатель начинает сильно греться, при пуске на низких частотах.

    На этом у меня всё, друзья…

    Мне очень нравится кататься на велосипеде. Ещё больше — модернизировать, добавлять что-то новое и интересное. Я совсем недавно в просторах интернета нашёл комплект электромотора для заднего колеса. Комплекты существуют, как и для переднего колеса, так и для заднего:

    P.S. Небольшой анонс следующей статьи:

    Широкая доступность фотоустройств породила новую проблему — потребность в эффективных инструментах цифрового монтажа. На этом рынке традиционно доминирует профессиональный графический пакет Adobe Photoshop. Но, не стоит ограничивать свой кругозор только им. Существует огромное количество достойных фоторедакторов, покрывающих 90% повседневных нужд фотографов-любителей.

    Спасибо за то, что читаете мои статьи! Всего вам доброго!!

    Принцип работы однофазного электродвигателя 220 В.

    В статоре однофазного электродвигателя 220 В вырабатывается магнитное поле. Именно оно является импульсом, который приводит в работу ротор. Чтобы представить, как функционирует электродвигатель, стоит смоделировать следующую ситуацию.

    Например, в пусковой обмотке напряжения нет. Образование магнитного поля можно запустить, подключив основную обмотку к сети. Его работа основывается на пульсировании, при этом пространство остаётся в состоянии покоя. Магнитное поле разделяется на две части, каждая из которых вращается в стороны, противоположные друг другу, при одинаковой частоте. При задании ротору начального вращения двигатель со временем будет его наращивать. При этом частота элемента и самого магнитного поля различается. Разницу показателей определяют как скольжение.

    Из магнитных потоков возникает движущая сила. Это закон электромагнитной индукции. Движущая сила формирует два типа тока. Один из них обратный, второй – прямой. Частота вращения ротора прямо пропорциональна показателю скольжения. По закону Ампера, магнитное поле при взаимодействии с обратным током создаёт вращение.

    Подключение однофазного двигателя: схемы, проверка, видео

    Как подключить частотный преобразователь

    Для подключения частотного преобразователя к оборудованию, прежде всего необходимо убедиться в том, что характеристики такого прибора подходят для работы с конкретным электродвигателем

    Также важно, чтобы напряжение питающей сети позволяло использовать данный частотный преобразователь

    При установке и подключении ЧП необходимо, чтобы условия эксплуатации соответствовали классу защищённости от влаги и пыли, а также были выдержаны все расстояния от движущихся частей машин и механизмов, от людских проходов и электрооборудования и аппаратуры.

    Схема подключения ПЧ

    Частотные преобразователи бывают как для трехфазных сетей, так и для однофазных. При этом к однофазной сети также можно подключать и трехфазный частотный преобразователь по схеме «треугольник», который дополнительно оснащен специальным конденсаторным блоком (при этом значительно падает мощность и понижается КПД устройства). Подключение же трехфазного преобразователя в соответствующей сети производится по схеме «звезда».

    Управление частотным преобразователем может осуществляться с использованием контакторов, встроенных в различные релейные схемы, микропроцессорных контроллеров и компьютерного оборудования, а также вручную. Поэтому при подключении автоматизированных систем требуется участие специалистов по наладке такого оборудования.

    Принцип подключения частотных преобразователей в целом одинаковый, но может несколько отличаться для разных моделей. Поэтому правильным решением будет перед подключением изучить инструкцию, сопоставить характеристики устройств и убедиться в том, что устройство подключается по схеме, предложенной производителем.

    Для трехфазного электродвигателя

    Для трехфазного электродвигателя принцип подключения следующий: к клеммным колодкам на выходе трехфазного частотного преобразователя подключаются фазные проводники к каждому выводу, а на вход подключаются фазы питающего напряжения. В данном случае всегда реализуется схема подключения «звезда» в двигателе. При подключении трехфазного двигателя через частотный преобразователь к однофазной сети применяют схему «треугольник».

    Для однофазного электродвигателя

    Для однофазного электродвигателя необходимо подключить фазный и нулевой проводник к преобразователю частоты, а обмотки двигателя подключаются к соответствующим клеммам на выходе частотного преобразователя. Например, обмотка L1 будет подключаться к клемме А преобразователя, обмотка L2 к клемме B, а общий провод к клемме C. Если применяется конденсаторный двигатель, то от частотного преобразователя фаза подключается к двигателю, а конденсатор обеспечивает сдвиг фаз.

    Во всех случаях, при подключении частотных преобразователей и электродвигателей, всегда следует применять устройства защиты: автоматические выключатели и УЗО, рассчитанные на высокие пусковые токи, а также обязательно подключать заземляющий проводник к корпусам устройств

    Также важно обратить внимание на сечение проводников электрокабеля, которым будет производится подключение – сечение должно соответствовать параметрам подключаемого частотного преобразователя и нагрузки

    Watch this video on YouTube

    Что такое частотный преобразователь, основные виды и какой принцип работы

    Как подключить 3 фазный электродвигатель к сети 220 вольт через конденсатор

    Схема работы устройства плавного пуска, его назначение и конструкция

    Устройство, виды и принцип действия асинхронных электродвигателей

    Как подключить однофазный электродвигатель — схема с конденсатором

    Проверка электродвигателей разного вида с помощью мультиметра

    Подключение однофазного синхронного электродвигателя

    Несмотря на сложность конструкции синхронных двигателей, они имеют много преимуществ перед асинхронными. Главное – это низкая чувствительность к скачкам напряжения, ведущих к резкому уменьшению или увеличению силы тока. Не менее значим и тот факт, что синхронные моторы могут работать даже с перегрузкой, не говоря уже об оптимальном режиме реактивной энергии и вращении вала с постоянной скоростью. Однако подключение – трудоемкий процесс, и это уже недостаток.

    Метод разгона

    Нельзя пустить в ход однофазный синхронный двигатель, просто подав питание на его обмотки. Потому что в момент включения направление питающего тока в статорных намотках соответствует рисунку (а). В это время на ротор, который еще находится в состоянии покоя, действует пара сил, которая будет пытаться крутить вал по часовой стрелке. Но через половину периода в статорных намотках ток поменяет свое направление. Поэтому пара сил будет уже действовать в обратном направлении, поворачивая вал против часов стрелки, как на рисунке (б). Поскольку ротор обладает большой инертностью, он так и не сдвинется с места.

    Чтобы заставить ротор вращаться, необходимо, чтобы он успевал сделать хотя бы половину оборота, чтобы изменение направления тока не повиляло на его вращение. Это возможно, если разогнать вал при помощи посторонних сил. Это можно сделать двумя путями:

    1. Вручную;
    2. С использованием второго двигателя.

    Собственной силой рук можно разогнать только маломощные синхронные электродвигатели. А для средне- и высокомощных агрегатов придется использовать другой мотор.

    При разгоне с посторонней силой ротор начинает вращаться со скоростью, близкой к синхронной. Потом только включается обмотка возбуждения, и затем – статорная намотка.

    Асинхронный пуск синхронного мотора

    Если в наконечниках на полюсах ротора уложены стержни из металла, и они соединены между собой по бокам кольцами, то мотор должен запускаться асинхронным методом. Эти стержни играют роль вспомогательной обмотки, которая есть у асинхронного двигателя. При этом намотку возбуждения закорачивают с помощью разрядного резистора, а статорную обмотку подключают к сети. Только так можно обеспечить такой же разгон, как и у асинхронного электродвигателя. Но после того, как скорость вращения максимально приблизится к синхронной (достаточно 95% от нее), намотку возбуждения соединяют с источником постоянного тока. Скорость становится полностью синхронной, что влечет за собой снижение ЭДС индукции вспомогательной обмотки вплоть до нуля. И она отключается автоматически.

    Схема и способ подключения вашего двигателя будет зависеть от того, какой он у вас: синхронный или асинхронный. В учет идет также мощность мотора, а также способ пуска: с нагрузкой или без. Разобраться в рисунках вам поможет элементарное понимание механики и электромагнитных явлений.

    Подбор емкости конденсатора

    Рабочее напряжение конденсатора должно быть не меньше 300 В. Лучше всего для схемы подходят конденсаторы марок БГТ, МБЧГ, МБПГ и МБГО. Все данные (тип, Uраб, емкость) указаны на корпусе.

    Для расчета необходимой емкости следует воспользоваться формулой:

    • для подключения «треугольником» С = (I/U)x4800;
    • для подключения «звездой» С = (I/U)x2800.

    Где С — емкость конденсатора в микрофарадах (мкФ), I — номинальный ток в обмотках (по паспорту), U — напряжение питания (220 В), а цифры — коэффициенты для разных типов подключения обмотки.

    Что касается пусковых конденсаторов, то их емкость необходимо подбирать путем эксперимента. Обычно она составляет 2-3 от рабочего номинала.

    Приведем пример расчета

    Соединение — треугольник. Потребляемый номинальный паспортный ток — 3 А. Подставляя значения в формулу, получаем С=(3/220)х4800 = 65 мкФ. В этом случае емкость пускового конденсатора нужно выбирать в пределах 130-180 мкФ. Однако конденсаторов на 65 мкФ в продаже не бывает, поэтому собираем набор из 6 шт. по 10 мкФ и добавляем еще один — 5 мкФ.

    Нужно учитывать, что при расчете использовались данные на номинальную мощность. Если двигатель будет работать с недогрузом, он будет перегреваться. В этом случае необходимо уменьшить емкость конденсаторов, чтобы снизить ток в обмотке. Но со снижением емкости уменьшится и мощность, которую может развить двигатель.

    Поэтому при подключении рекомендуется действовать методом подбора. Начинать с минимально необходимой емкости, а затем постепенно увеличивать ее до получения оптимальных показателей.

    Дополнительные замечания и предостережения:

    • Следует помнить, что двигатель, переделанный с 380 на 220 В, при работе без нагрузки может просто сгореть.
    • Двигатели мощнее 3 кВт не рекомендуется подключать к стандартной проводке жилого дома. Из-за высокой потребляемой мощности он будет выбивать пробки и автоматы, а если поставить более мощные автоматы, то может просто расплавиться изоляция на проводах. Это может привести к пожару или поражению током.
    • Даже после отключения конденсаторы долго сохраняют напряжение на выводах. Поэтому при монтаже они должны быть ограждены, чтобы не допустить случайного касания. Перед работой с конденсаторами обязательно проводите их «контрольную» разрядку.

    Переключение на нужное напряжение

    Для начала необходимо убедиться в том, что наш двигатель имеет нужные параметры. Они написаны на бирке, прикрепленной у него сбоку. Там должно быть указано, что один из параметров – 220в. Далее, смотрим подключение обмоток. Стоит запомнить такую закономерность схемы: звезда – для более низкого напряжения, треугольник – для более высокого. Что это означает?

    Увеличение напряжения

    Предположим, на бирке написано: Δ/Ỵ220/380. Это значит, что нам нужно включение треугольником, так как чаще всего соединение по умолчанию – на 380 вольт. Как это сделать? Если электродвигатель в борне имеет клеммную коробку, то несложно. Там есть перемычки, и все, что нужно – переключить их в нужное положение.

    В данной ситуации это сложностей не вызывает. Главное помнить, что есть начало и конец катушек. К примеру, возьмем за начало концы, которые были выведены в борно электродвигателя. Значит то, что спаяно – это концы

    Теперь важно не перепутать

    Подключаем так: начало одной катушки соединяем с концом другой, и так далее.

    Как видим, схема простая. Теперь двигатель, который был соединен для 380, можно включать в сеть 220 вольт.

    Уменьшение напряжения

    Предположим, на бирке написано: Δ/Ỵ 127/220. Это означает, что нужно подсоединение звездой. Опять же, если есть клеммная коробка, то все хорошо

    А если нет, и включен наш электродвигатель треугольником? А если еще и концы не подписаны, то как их правильно соединить? Ведь здесь тоже важно знать, где начало намотки катушки, а где конец. Есть некоторые способы решения этой задачи

    Для начала разведем все шесть концов в стороны и омметром найдем сами статорные катушки.

    Берем обычную батарейку и подсоединяем к концам а1-а2. К двум другим концам (в1-в2) подсоединяем омметр.

    В момент разрыва контакта с батарейкой стрелка прибора качнется в одну из сторон. Запомним, куда она качнулась, и включаем прибор к концам с1-с2, при этом не меняем полярность батарейки. Проделываем все заново.

    Если стрелка отклонилась в другую сторону, тогда меняем провода местами: с1 маркируем как с2, а с2 как с1. Смысл в том, чтобы отклонение было одинаковым.

    Теперь батарейку с соблюдением полярности соединяем с концами с1-с2, а омметр – на а1-а2.

    Добиваемся того, чтобы отклонение стрелки на любой катушке было одинаковым. Перепроверяем еще раз. Теперь один пучок проводов (например, с цифрой 1) у нас будет началом, а другой – концом.

    Берем три конца, например, а2, в2, с2, и соединяем вместе и изолируем. Это будет соединение звездой. Как вариант, можем вывести их в борно на клеммник, промаркировать. На крышку наклеиваем схему соединения (или рисуем маркером).

    Переключение треугольник – звезда сделали. Можно подключаться к сети и работать.

    Общие схемы подключения двигателей с 380В на 220В через конденсатор

    Чаще всего при необходимости решения такой задачи используют рабочий и пусковой конденсаторы (батареи конденсаторов). Базовые схемы подключения треугольником и звездой на 380В можно видеть на следующей иллюстрации:

    Нефиксированная кнопка «Разгон» используется для активации параллельно подключенного пускового конденсатора. Ее необходимо удерживать до тех пор, пока двигатель не наберет максимальных оборотов. После этого пусковую цепь необходимо обязательно разъединить, чтобы предотвратить перегревание обмоток. Если мощность двигателя мала, пусковым конденсатором можно пренебречь, работая только через рабочий.

    Расчет емкости конденсаторов ведется по следующим формулам:

    Емкость пускового конденсатора при этом должна быть вдвое выше рабочей. Если не прибегать к расчету по формулам, то можно воспользоваться значением 7 мкФ/кВт.

    Практическое применение показывает, что более эффективным является подключение треугольником, так как при этом распределение напряжения в обмотках будет более равномерным, да и мощность снижается меньше. Есть правда одно ограничение, которое касается компоновки клеммного блока двигателя. Если под его крышкой находится лишь три вывода на 380, то имеет место заранее предустановленная схема соединения, которую не изменишь. Если же там располагается шесть выводов, то можно выбирать, какой вариант организовать. Характерное обозначение наносится на металлическую табличку с характеристиками.

    Если 380-вольтовый двигатель предполагается использовать на 220В в режиме с частыми пусками и остановками, то базовую схему можно доработать с организацией цепи динамического торможения:

    Здесь можно видеть включение двигателя треугольником через емкостную цепь конденсаторов С1 (пускового) и С2 (рабочего). Дополнительно организована цепь на транзисторе и элементе сопротивления, которая подключается трехпозиционным ключом. Когда он находится в положении «3», напряжение сети 220В поступает на обмотки статора и кнопкой К1 можно совершить его запуск. Для остановки двигателя ключ переводится в положение «1», после чего на обмотки подается постоянный ток и осуществляется торможение. Следует отметить, что этот переключатель имеет только два фиксированных положения «2» и «3». Для использования обычного двухпозиционного ключа в эту цепь необходимо будет добавить еще один конденсатор. Выглядит это следующим образом:

    Ранее уже упоминался тот факт, что однофазный ток приводит к организации разнонаправленных эквивалентных магнитных полей статора и ротора, которые можно сдвинуть (заставить вращаться) в ту или иную сторону. Следовательно, можно реализовать на практике схему реверсного подключения электродвигателя на 380В:

    Схема является в некотором роде комбинацией двух предыдущих, только здесь использованы сдвоенный переключатель и пуск через реле Р1.

    https://youtube.com/watch?v=tqwz6Uv7mlE

    Рассмотренные в статье схемы являются базовыми, но в зависимости от конкретного случая их можно модифицировать как угодно, чтобы добиться включения в однофазную сеть 220В трехфазного асинхронного электродвигателя на 380В.

    Схема подключения однофазного двигателя через конденсатор

    Во втором случае, для моторов с рабочим конденсатором, дополнительная обмотка подключена через конденсатор постоянно.

    По информации на бирке мотора можно определить какая система в нем использована. Сложность схемы заключается в том, что емкость конденсатора для выравнивания магнитного поля подбирается с учетом токовых нагрузок.

    Здесь каждая обмотка используется на свое рабочее напряжение, отсюда и мощность. Расчёт емкости производится исходя из рабочего напряжения и тока, или паспортной мощности мотора. Кратковременным подключением пускового конденсатора на валу двигателя создается мощный стартовый вращающий момент, время запуска сокращается в разы.

    Из-за сложности формул расчёта принято выбирать емкости, исходя из приведённых выше пропорций. Расчет емкости конденсатора мотора Существует сложная формула, с помощью которой высчитывают необходимую точную емкость конденсатора. В этих двигателях, рабочая и пусковая — одинаковые обмотки по конструкции трехфазных обмоток. После списания прибора в утиль в большинстве случаев электродвигатели сохраняют работоспособность и могут еще довольно долго послужить в виде самодельных электронасосов, точил, станков, вентиляторов и газонокосилок.

    Статья по теме: Виды электромонтажных работ по смете

    Заключение

    В результате получается два разнонаправленных потока с отличной от основного поля скоростью вращения. Это схема обмотки звездой Красные стрелки — это распределение напряжения в обмотках мотора, говорит о том, что на одной обмотке распределяется напряжение единичной фазы в В, а двух других — линейного напряжения В.

    После запуска двигателя, конденсаторы содержат определенное количество заряда, потому прикасаться к проводникам запрещается. В этой обмотке которая еще имеет название рабочей магнитный поток изменяется с такой частотой, с которой протекает по обмотке ток. Вычислить, какие провода к какой обмотке относятся, можно путем измерения сопротивления. Обмотка, у которой сопротивление меньше — есть рабочая. В статоре однофазного электродвигателя находится однофазная обмотка, что отличает его от трехфазного.

    Двигатели с высотой вращения более 90 мм представлены в чугунном исполнении. Такая схема исключает блок электроники, а следовательно — мотор сразу же с момента старта, будет работать на полную мощность — на максимальных оборотах, при запуске буквально срываясь с силой от пускового электротока, который вызывает искры в коллекторе; существуют электромоторы с двумя скоростями. Это необходимый запас для компенсации потерь мощности при старте — создании вращающегося момента магнитного поля. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле в холодильниках.

    Генератор может исполнять роль двигателя, а он в свою очередь — генератора. На корпусе однофазного асинхронного электродвигателя должна быть схема подключения, где указываются выводы основной и дополнительной обмотки, а также емкость конденсатора. В этом случае движок гудит, ротор остается на месте.
    Подключение однофазного электродвигателя

    Однофазные и трехфазные д0вигатели асинхронного типа

    Договорились – трехфазные коллекторные двигатели достать сложно, текущий раздел речь ведет касательно асинхронных машин. Разновидности перечислим:

    1. Трехфазные асинхронные двигатели снабжены числом выводов три-шесть рабочих обмоток за вычетом различных предохранителей, внутренних реле, разнообразных датчиков. Катушки статора внутри объединяются звездой, делая невозможным напрямую включение в однофазную сеть.
    2. Однофазные двигатели, снабженные пусковой обмоткой, помимо прочего снабжаются парой контактов, ведущих к концевому центробежному выключателю. Миниатюрное устройство обрывает цепь, когда вал раскручен. Пусковая обмотка катализирует начальный этап. Дальнейшим действием будет мешать, снижая КПД двигателя. Принято конструкцию называть бифилярной. Пусковая обмотка наматывается двойным проводом, снижая реактивное сопротивление. Помогает уменьшить емкость конденсатора – критично. Ярким примером однофазных двигателей асинхронного типа с пусковой обмоткой выступают компрессоры бытовых холодильников.
    3. Конденсаторная обмотка, отличаясь от пусковой, работает непрерывно. Двигатели найдем внутри напольных вентиляторов. Конденсатор дает сдвиг фаз 90 градусов, позволяя выбрать направление вращения, поддержать нужную форму электромагнитного поля внутри ротора. Типично на корпусе двигателя конденсатор крепится.

    4. Мелкие асинхронные двигатели, применяемые вытяжками, вентиляторами, способны запускаться без конденсатора вовсе. Начальное движение образуется махом лопастей, либо искривлением проводки (бороздок) ротора в нужном направлении.

    Научимся, как отличить однофазные двигатели асинхронного типа от трехфазных. В последнем случае внутри всегда имеется три равноценных обмотки. Поэтому можно найти три пары контактов, которые при исследовании тестером дают одинаковое сопротивление. Например, 9 Ом. Если обмотки объединены звездой внутри, выводов с одинаковым сопротивлением будет три. Из них любая пара дает идентичные показания, отображаемые экраном мультиметра. Сопротивление каждый раз равно двум обмоткам.

    Поскольку ток должен выходить, иногда трехфазный двигатель имеет вывод нейтрали. Центр звезды, с каждым из трех других проводов дает идентичное сопротивление, вдвое меньшее, нежели демонстрирует попарная прозвонка. Указанные выше симптомы говорят красноречиво: двигатель трёхфазный, теме сегодняшнего разговора чуждый.

    Рассматриваемые рубрикой моторы обмоток содержат две. Одна пусковая, либо конденсаторная (вспомогательная). Выводов обычно три-четыре. Отсутствуй украшающий корпус конденсатор, можно попробовать рассуждать, озадачиваясь предназначением контактов следующим образом:

    1. Выводов четыре штуки – нужно измерить сопротивление. Обычно звонятся попарно. Сопротивление ниже – нашли основную обмотку, подключаемую к сети 230 вольт без конденсатора. Полярность не играет роли, направление вращения задается способом включения вспомогательной обмотки, коммутацией катушек. Проще говоря, осуществите подключение однофазного электродвигателя характерного типа с одной лишь основной обмоткой – в начальный период времени вал стоит стоймя. Куда раскрутишь, туда пойдет вращение. Остерегайтесь производить старт рукой – поломает.

    2. Видим три вывода. Внутри концы катушек соединены, образуя звезду. Подаётся нейтраль (схемный нуль). Касаемо двух других выводов, сопротивление попарное будет наибольшим (равняется обеим обмоткам, включенным последовательно). Самое маленькое значение, как прежде, будет рабочей обмотки, фазу пусковой проходит, минуя конденсатор. Обеспечит сдвиг в нужную сторону. Обычно такой двигатель вращается однонаправленно, нельзя физически изменить полярность включения емкости. Однако существуют сведения (проверим эпюры в другой раз): питая рабочую катушку напряжением через конденсатор, пусковую включив напрямую, выполним реверс. Возможность подключить электродвигатель 3-проводной, реализуя обратное вращение, литературой опускается.

    Вариант 2: переподключение пусковой намотки (однофазный двигатель 220В)

    Второй способ организовать реверс асинхронного мотора 220 Вольт – поменять местами начало и конец пусковой обмотки. Делается это по аналогии с первым вариантом:

    1. Из четырех проводов, выходящих из коробки мотора, выясните, какие из них соответствуют отводкам пусковой намотки.
    2. Изначально конец В пусковой обмотки соединялся с началом С рабочей, а начало А подключалось к пускозарядному конденсатору. Сделать реверс однофазного двигателя можно, подключив емкость к выводу В, а начало С с началом А.

    Переподключение пусковой намотки

    После описанных выше действий получаем схему, как на рисунке выше: точки А и В поменялись местами, значит ротор стал обращаться в противоположную сторону.

    Схемы подключения

     Варианты подключения двигателя через конденсатор:

    • схема подключения однофазного двигателя с использованием пускового конденсатора;
    • подключение электродвигателя с использованием конденсатора в рабочем режиме;
    • подключение однофазного электродвигателя с пусковым и рабочим конденсаторами.

    Все эти схемы успешно применяются при эксплуатации асинхронных однофазных двигателей. В каждом случае есть свои достоинства и недостатки, рассмотрим каждый вариант более подробно.

    Схема с пусковым конденсатором

    Идея заключается в том, что конденсатор включается в цепь только при пуске, используется пусковая кнопка, которая размыкает контакты после раскрутки ротора, по инерции он начинает вращаться. Магнитное поле основной обмотки поддерживает вращение длительное время. В качестве кратковременного переключателя ставят кнопки с группой контактов или реле.


    Схема подключения пускового конденсатора

    Поскольку схема кратковременного подключения однофазного двигателя через конденсатор предусматривает кнопку на пружине, которая при отпускании размыкает контакты, это дает возможность экономить, провода пусковой обмотки делают тоньше. Чтобы исключить межвитковое короткое замыкание, используют термореле, которое при достижении критической температуры отключает дополнительную обмотку. В некоторых конструкциях ставят центробежный выключатель, который при достижении определенной скорости вращения размыкает контакты.


    Соединения, центробежный выключатель на валу ротора

    Схемы и конструкции регулировки скорости вращения и предотвращения перегрузок электродвигателя на автомате могут быть различны. Иногда центробежный выключатель устанавливается на валу ротора или на других элементах, вращающихся от него с прямым соединением, или через редуктор.


    Некоторые элементы

    Под действием центробежных сил груз оттягивает пружины с контактной пластиной, при достижении установленной скорости вращения замыкает контакты, переключатель реле обесточивает двигатель или подает сигнал на другой механизм управления.

    Бывают варианты, когда тепловое реле и центробежный выключатель устанавливаются в одной конструкции. В этом случае тепловое реле отключает двигатель при воздействии критической температуры или усилиями раздвигающегося груза центробежного выключателя.


    Варианты схемы подключения конденсаторов

    В связи с особенностями характеристик асинхронного двигателя конденсатор в цепи дополнительной катушки искажает линии магнитного поля, от круглой формы до эллиптической, в результате этого потери мощности увеличиваются, снижается КПД. Пусковые характеристики остаются хорошие.

    Схема с рабочим конденсатором

    Отличие этой схемы в том, что конденсатор после пуска не отключается, и вторичная обмотка на протяжении всей работы импульсами своего магнитного поля раскручивает ротор. Мощность электродвигателя в этом случае значительно увеличивается, форму электромагнитного поля можно попытаться приблизить от эллиптической формы к круглой подбором емкости конденсатора. Но в этом случае момент пуска более продолжительный по времени, и пусковые токи больше. Сложность схемы заключается в том, что емкость конденсатора для выравнивания магнитного поля подбирается с учетом токовых нагрузок. Если они будут меняться, то и все параметры будут не постоянными, для стабильности формы линий магнитного поля можно установить несколько конденсаторов с различными емкостями. Если при изменении нагрузки включать соответствующую емкость, это улучшит рабочие характеристики, но существенно усложняет схему и процесс эксплуатации.

    Комбинированная схема с двумя конденсаторами

    Оптимальным вариантом для усреднения рабочих характеристик является схема с двумя конденсаторами — пусковым и рабочим.


    Рабочий конденсатор подключен постоянно в цепи обмоток, пусковой через выключатель запуска замыкается кратковременно

    Трехфазный

    Асинхронный двигатель переменного тока имеет очень простую конструкцию по сравнению с другими видами электрических машин. Он довольно надежен, чем и объясняется его популярность. К сети переменного напряжения трехфазные модели включаются звездой или треугольником. Такие электродвигатели также различаются значением рабочего напряжения: 220–380 в, 380–660 в, 127–220 в.

    Как правило, такие электродвигатели применяются на производстве, так как трехфазное напряжение чаще всего используется именно там. И в некоторых случаях бывает, что вместо 380 в есть трехфазное 220. Как их включить в сеть, чтобы не спалить обмотки?

    В заключение

    В настоящее время, как ни странно, но все усложняется, в том числе и электродвигатели. Встречаются двигатели, особенно в стиральных машинах, которые самому подключить вряд ли удастся. Существуют и другие устройства со сложными двигателями, с количеством выводов, больше, чем 3 или 4. Остается только думать о том, какое их предназначение. Если нет соответствующих навыков, то очередное подключение такого двигателя может просто вывести его из строя, причем после этого вряд ли кто возьмется за его восстановление.

    Что касается электроинструментов, в которых применяются в основном коллекторные двигатели, то устройство их настолько простое, что их может подключить любой человек, не будучи профессионалом в этом деле. При этом следует заметить, что их работой управляет электронная схема, которая позволяет регулировать частоту вращения. Что касается электронной схемы, то здесь не каждый может разобраться, хотя ее после поломки можно легко заменить на исправную.

    В настоящее время тенденции развития бытовых электроприборов связаны с тем, чтобы их ремонтом занимались профессионалы. Скорее всего, что это правильно, поскольку каждый должен заниматься своим делом.

    Как подключить двигатель с 4 проводами?

    Подключение двигателя с 4 проводами

    Как определить рабочую и пусковую обмотки у однофазного двигателя

    Однофазные двигатели — это электрические машины небольшой мощности. В магнитопроводе однофазных двигателей находится двухфазная обмотка, состоящая из основной и пусковой обмотки.

    Две обмотки нужны для того, что бы вызвать вращение ротора однофазного двигателя. Самые распространенные двигатели такого типа можно разделить на две группы: однофазные двигатели с пусковой обмоткой и двигатели с рабочим конденсатором.

    У двигателей первого типа пусковая обмотка включается через конденсатор только на момент пуска и после того как двигатель развил нормальную скорость вращения, она отключается от сети. Двигатель продолжает работать с одной рабочей обмоткой. Величина конденсатора обычно указывается на табличке-шильдике двигателя и зависит от его конструктивного исполнения.

    У однофазных асинхронных двигателей переменного тока с рабочим конденсатором вспомогательная обмотка включена постоянно через конденсатор. Величина рабочей емкости конденсатора определяется конструктивным исполнением двигателя.

    То есть если вспомогательная обмотка однофазного двигателя пусковая, ее подключение будет происходить только на время пуска, а если вспомогательная обмотка конденсаторная, то ее подключение будет происходить через конденсатор, который остается включенным в процессе работы двигателя.

    Знать устройство пусковой и рабочей обмоток однофазного двигателя надо обязательно. Пусковая и рабочие обмотки однофазных двигателей отличаются и по сечению провода и по количеству витков. Рабочая обмотка однофазного двигателя всегда имеет сечение провода большее, а следовательно ее сопротивление будет меньше.

    Посмотрите на фото наглядно видно, что сечение проводов разное. Обмотка с меньшим сечением и есть пусковая. Замерять сопротивление обмоток можно и стрелочным и цифровым тестерами, а также омметром. Обмотка, у которой сопротивление меньше – есть рабочая.

    Рис. 1. Рабочая и пусковая обмотки однофазного двигателя

    А теперь несколько примеров, с которыми вы можете столкнуться:

    Если у двигателя 4 вывода, то найдя концы обмоток и после замера, вы теперь легко разберетесь в этих четырех проводах, сопротивление меньше – рабочая, сопротивление больше – пусковая. Подключается все просто, на толстые провода подается 220в. И один кончик пусковой обмотки, на один из рабочих. На какой из них разницы нет, направление вращения от этого не зависит. Так же и от того как вы вставите вилку в розетку. Вращение, будет изменятся, от подключения пусковой обмотки, а именно – меняя концы пусковой обмотки.

    Следующий пример. Это когда двигатель имеет 3 вывода. Здесь замеры будут выглядеть следующим образом, например – 10 ом, 25 ом, 15 ом. После нескольких измерений найдите кончик, от которого показания, с двумя другими, будут 15 ом и 10 ом. Это и будет, один из сетевых проводов. Кончик, который показывает 10 ом, это тоже сетевой и третий 15 ом будет пусковым, который подключается ко второму сетевому через конденсатор. В этом примере направление вращения, вы уже не измените, какое есть такое и будет. Здесь, чтобы поменять вращение, надо будет добираться до схемы обмотки.

    Еще один пример, когда замеры могут показывать 10 ом, 10 ом, 20 ом. Это тоже одна из разновидностей обмоток. Такие, шли на некоторых моделях стиральных машин, да и не только. В этих двигателях, рабочая и пусковая – одинаковые обмотки (по конструкции трехфазных обмоток). Здесь разницы нет, какой у вас будет рабочая, а какая пусковая обмотка. Подключение пусковой обмотки однофазного двигателя, также осуществляется через конденсатор.

    Л. Рыженков

    Редактировал А. Повный

    Источник: http://electrik.info/main/master/597-kak-opredelit-rabochuyu-i-puskovuyu-obmotki-u-odnofaznogo-dvigatelya.html

    Подключение двигателя старой стиралки немного сложнее и потребует от вас найти нужные обмотки самим с помощью мультиметра. Для того, чтобы найти провода, прозвоните обмотки двигателя и найдите пару.
    Находим пару проводов
    Для этого переключите мультиметр на измерение сопротивления, одним концом коснитесь первого провода, а вторым по очереди найдите его пару. Запишите или запомните сопротивление обмотки — нам это понадобится.
    Дальше аналогично отыщите вторую пару проводов и зафиксируйте сопротивление. У нас получилось две обмотки с разным сопротивлением. Теперь нужно определить какая из них рабочая, а какая пусковая. Тут все просто, у рабочей обмотки сопротивление должно быть меньше чем у пусковой.
    Многие считают, что для запуска такого двигателя нужен конденсатор. Это ошибка, конденсатор применяется в двигателях другого типа без пусковой обмотки. Здесь же он может сжечь мотор во время работы.
    Для запуска двигателя подобного плана вам понадобится кнопка или пусковое реле. Кнопка нужна с не фиксируемым контактом и подойдет, допустим, кнопка от дверного звонка.
    Теперь подключаем двигатель и кнопку по схеме: Но обмотку возбуждения (ОВ) напрямую подается 220 В. На пусковую же обмотку (ПО) нужно подать это же напряжение, только для запуска двигателя на короткий срок, и отключить ее — для этого и нужна кнопка (SB).
    ОВ соединяем напрямую с сетью 220В, а ПО соединим с сетью 220 В через кнопку SB.
    Схема подключения мотора
    ПО – пусковая обмотка. Предназначается только для запуска двигателя и задействована в самом начале, пока двигатель не начнет вращаться.
    ОВ – обмотка возбуждения. Это рабочая обмотка, которая постоянно находится в работе, она и вращает двигатель все время.
    SB – кнопка с помощью которой подается напряжение на пусковую обмотку и после запуска мотора отключает ее.
    После того, как вы произвели все подключение, достаточно запустить двигатель от стиральной машины. Для этого нажмите на кнопку SB и, как только двигатель начнет вращаться, отпустите ее.
    Для того чтобы сделать реверс (вращения двигателя в противоположную сторону), вам нужно поменять местами контакты обмотки ПО. Тем самым мотор начнет вращение в другую сторону.
    Все, теперь мотор от старой стиралки может сослужить вам в качестве нового устройства.

    Источник: https://ok.ru/dlyanachi/topic/68038816361385

    «Дедовский» способ подключения трехфазного электродвигателя в однофазную сеть с помощью лампочки

    Самый простой способ подключения трёхфазного электродвигателя к однофазной сети 220В с помощью лампочки: подробное описание + видео.

    Приветствую! Как известно, для подключения трехфазного электродвигателя в однофазную сеть, необходимо обеспечить смещение фазы. Это можно сделать, подсоединив к обмоткам электродвигателя, пусковой конденсатор или обычную лампочку накаливания.

    Сначала рассмотрим способ подключения с использованием конденсатора.

    Трехфазный электродвигатель имеет 3 обмотки, поэтому из него выходит 6 проводов по 2 на каждую. Из них 3 имеют один цвет изоляции, остальные 3 — другой. Нужно смотать вместе любой пучок с одним цветом изоляции и заизолировать скрутку. Далее к любым двум из оставшихся 3-х проводов — подключается двухжильный провод с вилкой.

    Нужно подключить к оставшемуся проводу контакт конденсатора. Его второй контакт присоединяется к любой из двух скруток. После этого двигатель будет запускаться. В зависимости от того, подключен второй конец конденсатора к фазе или нулю, ротор будет вращаться за или против часовой стрелки. Обязательно при использовании конденсатора перед ним устанавливается пусковая кнопка, так как он должен срабатывать только в момент запуска.

     

    Подключение трехфазного двигателя с лампочкой вместо конденсатора

    Трёхфазный электродвигатель в однофазной сети, можно запустить по аналогичной схеме, но используя вместо конденсатора обычную лампочку накаливания.

    Она создаст сдвиг фазы, за счет чего якорь двигателя также сможет раскрутиться. При таком способе, смещаются магнитные потоки при разности падения ЭДС на разных обмотках, а результирующая амплитуд магнитного потока двух подключенных катушек в сеть и одной с лампочкой смещенной через поток якоря и создают толчок к вращению.

    Этот способ дешевле первого, так как лампочка стоит копейки в сравнении с конденсатором.

    Вот видео, где показан способ запуска трёхфазного двигателя с помощью лампочки:

    подключение конденсаторы на дробилку видео

    подключение двигателя 380 на 220 вольт — YouTube

    Показана вся процедура подключения двигателя 380 Вольт, от однофазной сети 220 вольт. Также дан ответ, как .

    Get Price

    Схема подключения промышленной швейной машинки с 380

    Dec 06, 2019  Схема подключения промышленной швейной машинки с 380 вольт на 220 вольт через конденсатор. Ссылка на видео со .

    Get Price

    УСТРАНЕНИЕ НЕПОЛАДОК С ВИДЕО FPV — ШУМ, ПОДКЛЮЧЕНИЕ

    Если он питается напрямую от lipo, тогда паяйте конденсатор на клеммы xt60. Я наблюдаю, как многие люди добавляют конденсаторы к контактам xt60 независимо от того, как подается питание на

    Get Price

    Конденсатор: устройство, принцип работы, применение

    Что такое конденсатор, как он устроен и для чего нужен. Принцип работы и область применения конденсаторов разных видов. Характеристики накопителей энергии.

    Get Price

    Подключение конденсатора Полезные статьи — Кабель.РФ

    Заводим снизу коробки управления трехжильный кабель типа КГ на напряжение 380В сечением не менее 1,5 мм². На другой конец кабеля устанавливаем штепсельную вилку.

    Get Price

    Как подключить конденсатор к электродвигателю

    Подключение электродвигателя через конденсатор.Почему применяются конденсаторы. Схемы .

    Get Price

    Подключение однофазного двигателя: схемы, проверка, видео

    Конденсатор берут из расчета 7-8 мкф на 100 Вт мощности двигателя, соответственно на 1 кВт будет 70-80 мкф николай 25.03.2019 в 12:18 – Ответить

    Get Price

    Косинусные конденсаторы, пленочные конденсаторы .

    Конденсаторы соответствуют стандартам IEC 60110-1;1998 EN 60110-1; 1998. Пленочные конденсаторы для электротермии, или среднечастотные конденсаторы,

    Get Price

    Танталовые SMD-конденсаторы: определение мощности по .

    Конденсаторы из тантала и правила маркировки элементов. Виды буквенно-цифровой маркировок конденсаторов. Маркировка для танталовых smd конденсаторов. Коды напряжения для smd-тантала.

    Get Price

    Как просто подключить трехфазный двигатель треугольником

    В этом ролике я расскажу и покажу как подключить асинхронный трехфазный двигатель 380 вольт в бытовую сеть 220 вольт, без схем и обозначений, через пусковой конденсатор и пусковую кнопку.

    Get Price

    Конденсатор электролитический: маркировка, виды и типы .

    На корпусе о,зательно ставят знаки полярности «+» и «-». На корпусе конденсаторе маленького размера со стороны отрицательного вывода делают

    Get Price

    фото и видео молотковая дробилку

    фото и видео молотковая дробилкуфото и видео молотковая дробилкуфото и видео молотковая дробилку. молотковая мельница дробилка Молотковая дро

    Get Price

    Конденсаторы пусковые МБГО

    Конденсаторы МБГО-1, МБГО-2 – металлизированные бумажные герметизированные однослойные .

    Get Price

    Подключение электродвигателя на 220 через конденсаторы .

    Зачастую трёхфазный двигатель приходится на практике включать в сеть 220 В. Несмотря на то, что КПД при таком подключении снизится до 50-70%, такое подключение

    Get Price

    Как правильно соединять конденсаторы? Параллельное и .

    Если соединить эти конденсаторы параллельно (плюс к плюсу а минус к минусу) то общая емкость получившегося конденсатора будет ровняться около 94 мкф на 50в. Это допустимое отклонение, так что .

    Get Price

    Инструкция по изготовлению USB-адаптера для штатных .

    3 Видео «Подключение usb- . Выпаиваем конденсаторы, а на их место подаем аудио сигнал с плеера. Теперь устанавливаем плату МР3-плеера. При

    Get Price

    Подключение люминесцентной лампы без дросселя и

    На видео ниже наглядно показано, как запустить люминесцентную лампу, используя диоды и конденсаторы: Есть еще одна схема подключения люминесцентной лампы без стартера и

    Get Price

    Косинусные конденсаторы, пленочные конденсаторы .

    Конденсаторы соответствуют стандартам IEC 60110-1;1998 EN 60110-1; 1998. Пленочные конденсаторы для электротермии, или среднечастотные конденсаторы,

    Get Price

    Как проверить конденсатор мультиметром: видео

    Как проверить конденсатор мультиметром. Неисправности и причины их возникновения. Диагностика неисправностей у полярных конденсаторов. Видео.

    Get Price

    Конденсаторы пусковые МБГО

    Конденсаторы МБГО-1, МБГО-2 – металлизированные бумажные герметизированные однослойные .

    Get Price

    Подключение трехфазного двигателя к однофазной сети

    Пусковые конденсаторы включаются только на время пуска двигателя (2-3 сек, пока обороты не достигнут примерно 70% от номинальных), затем пусковой конденсатор нужно отключить и

    Get Price

    Пусковые конденсаторы, Видео, Смотреть онлайн

    Подписывайтесь на нашу группу Вконтакте — , и Facebook — * Пусковые конденсаторы предназначены для запуска двигателей переменного тока. Чаще всего пусковые конденсаторы применяются в двигателях компрессоров .

    Get Price

    Подключение двигателя с пусковой обмоткой через .

    Подключение двигателя с пусковой обмоткой через конденсатор Схема — Метод подключения двигателя через конденсатор — этот способ применяют для достижения мягкого пуска агрегата.

    Get Price

    Подключение электродвигателя на 220 через конденсаторы .

    Зачастую трёхфазный двигатель приходится на практике включать в сеть 220 В. Несмотря на то, что КПД при таком подключении снизится до 50-70%, такое подключение

    Get Price

    Распиновка led матрицы 30 pin

    Распиновка LVDS матрицы, распиновка eDP матрицы для ноутбуков, одноканальная и Распиновка eDP матрицы 30pin 1ch и 2ch (3 и 4 контакт. Номер Пина Сигнал Описание 1 VSS Power Ground 2 VDD + V Power Supply 3 VDD + V Power Supply 4 VEDID + V EDID Power 5 AGING Aging .

    Get Price

    Как выбрать конденсаторы для подключения однофазного и .

    Вообще конденсаторы бывают разного типа, разной емкости, и прежде чем приступать к построению цепи, необходимо выбрать конденсаторы подходящего типа, номинального напряжения и правильно .

    Get Price

    Маркировка и основные характеристики конденсатора 104

    Устройство керамических и многослойных конденсаторов. Керамический конденсатор: маркировка и технические характеристики. Варианты кодировок номинальных напряжений конденсатора.

    Get Price

    АС Энергия

    Видео Конденсаторы пусковые и рабочие: обзор, популярные серии, преимущества и недостатки Шунт для амперметра: устройство, подключение, материалы

    Get Price

    Схема подключения трехфазного электродвигателя

    Однофазные и трехфазные. Чтобы правильно понимать предмет обсуждения, который объясняет подключение двигателя 380 на 220 вольт, необходимо разобраться, в чем лежит принципиальное отличие таких агрегатов.

    Get Price

    Инструкция по изготовлению USB-адаптера для штатных .

    3 Видео «Подключение usb- . Выпаиваем конденсаторы, а на их место подаем аудио сигнал с плеера. Теперь устанавливаем плату МР3-плеера. При

    Get Price

    Как правильно соединять конденсаторы? Параллельное и .

    Если соединить эти конденсаторы параллельно (плюс к плюсу а минус к минусу) то общая емкость получившегося конденсатора будет ровняться около 94 мкф на 50в. Это допустимое отклонение, так что .

    Get Price

    Как проверить конденсатор мультиметром: видео

    Как проверить конденсатор мультиметром. Неисправности и причины их возникновения. Диагностика неисправностей у полярных конденсаторов. Видео.

    Get Price

    Пусковые конденсаторы, Видео, Смотреть онлайн

    Подписывайтесь на нашу группу Вконтакте — , и Facebook — * Пусковые конденсаторы предназначены для запуска двигателей переменного тока. Чаще всего пусковые конденсаторы применяются в двигателях компрессоров .

    Get Price

    АС Энергия

    Видео Конденсаторы пусковые и рабочие: обзор, популярные серии, преимущества и недостатки Шунт для амперметра: устройство, подключение, материалы

    Get Price

    Подключение трехфазного двигателя к однофазной сети

    Пусковые конденсаторы включаются только на время пуска двигателя (2-3 сек, пока обороты не достигнут примерно 70% от номинальных), затем пусковой конденсатор нужно отключить и

    Get Price

    Как подключить двигатель 380 на 220 через конденсаторы .

    Жанр :Обучающее видео О фильме: Сегодня расскажу, как подключить трехфазный двигатель на 380 вольт. В бытовую сеть 220 вольт. Принцип подключения через конденсаторы.

    Get Price

    Подбор конденсатора нужной мощности: нужна ли большая .

    Подразделения конденсаторов по возможности изменения емкости. Основные параметры и сокращенные обозначения. Конденсатор: принципы подбора и определение мощности гасящего или балластного конденсатора.

    Get Price

    Пример 2. Подключение кнопки [База знаний]

    В данном примере будем включать и выключать встроенный светодиод, используя i/o-порт и кнопку. i/o-порт представляет собой порт ввода (input) и вывода (output).

    Get Price

    Схема подключения трехфазного электродвигателя

    Однофазные и трехфазные. Чтобы правильно понимать предмет обсуждения, который объясняет подключение двигателя 380 на 220 вольт, необходимо разобраться, в чем лежит принципиальное отличие таких агрегатов.

    Get Price

    Подключение электричества к частному дому 15 квт: как .

    Подключение электричества к частному дому 15 квт. Узнайте подро.ости, переходите на rtp-news!

    Get Price

    подключение RT809F — Форум

    Oct 06, 2017  Форум » Программаторы SVOD, TNM5000, RT809 , MiniPro TL866, EZP2010, Willem PCB5F и др. » Программатор RT809F.Универсальный программатор ISP, AVR,Main TV » подключение RT809F (как нужно правильно подключить RT809F чтоб не спалить?)

    Get Price

    Обзор полочной акустики Martin Logan Motion 35 XTi

    Сегодня мы обратим свое внимание на полочную акустику американской компании Martin Logan и начнем с модели Motion 35 XTi. Пожалуй, в плане универсальности это лучший из продуктов линейки, с которым мы знакомы на сегодняшний .

    Get Price

    Как проверить конденсатор мультиметром

    Простые советы — как проверить емкость конденсатора мультиметром. Поиск неисправностей, техника безопасности, инструкция и видео с описанием измерений

    Get Price

    Бесплатное электричество своими руками: видео, методы и .

    Подключение техники . способы и видео. . Видео, которого предостаточно на просторах всемирной сети, примеры умельцев и научные данные говорят, что это вполне реально.

    Get Price Конденсаторы

    — learn.sparkfun.com

    Добавлено в избранное Любимый 76

    Введение

    Конденсатор — это двухполюсный электрический компонент. Наряду с резисторами и катушками индуктивности, они являются одними из самых фундаментальных пассивных компонентов , которые мы используем. Вам придется очень внимательно поискать схему, в которой не содержит конденсатора.

    Особенностью конденсаторов является их способность накапливать энергию ; они похожи на полностью заряженную электрическую батарею. Колпачки , как мы их обычно называем, имеют самые разные критические применения в схемах. Общие приложения включают локальное накопление энергии, подавление скачков напряжения и комплексную фильтрацию сигналов.

    Рассматривается в этом учебном пособии

    В этом руководстве мы рассмотрим всевозможные темы, связанные с конденсаторами, в том числе:

    • Как делается конденсатор
    • Как работает конденсатор
    • Единицы емкости
    • Типы конденсаторов
    • Как распознать конденсаторы
    • Как емкость сочетается последовательно и параллельно
    • Применение конденсаторов общего назначения

    Рекомендуемая литература

    Некоторые концепции в этом руководстве основаны на предыдущих знаниях в области электроники.Прежде чем переходить к этому руководству, подумайте о том, чтобы сначала прочитать (хотя бы бегло просмотр) эти:


    Обозначения и единицы измерения

    Условные обозначения цепей

    Есть два распространенных способа изобразить конденсатор на схеме. У них всегда есть две клеммы, которые подключаются к остальной цепи. Символ конденсаторов состоит из двух параллельных линий, которые могут быть плоскими или изогнутыми; обе линии должны быть параллельны друг другу, близко друг к другу, но не соприкасаться (это фактически показывает, как сделан конденсатор.Сложно описать, проще показать:

    (1) и (2) — стандартные обозначения цепи конденсатора. (3) представляет собой пример символов конденсаторов в действии в цепи регулятора напряжения.

    Символ с изогнутой линией (№2 на фото выше) указывает на то, что конденсатор поляризован, то есть, вероятно, это электролитический конденсатор. Подробнее об этом в разделе о типах конденсаторов этого руководства.

    Каждый конденсатор должен сопровождаться названием — C1, C2 и т. Д.. — и стоимость. Значение должно указывать на емкость конденсатора; сколько там фарадов. Кстати о фарадах …

    Емкость

    Не все конденсаторы одинаковы. Каждый конденсатор имеет определенную емкость. Емкость конденсатора говорит вам, сколько заряда он может хранить , большая емкость означает большую емкость для хранения заряда. Стандартная единица измерения емкости называется фарад , сокращенно F .

    Получается, что фарад — это лот емкости, даже 0,001 Ф (1 миллифарад — 1 мФ) — большой конденсатор. Обычно вы увидите конденсаторы с номиналом от пико- (10 -12 ) до микрофарад (10 -6 ).

    9
    Имя префикса Сокращение Вес Эквивалентные фарады
    Пикофарад пФ 10 -12 0,000000000001 F
    Нанофарад nF 10 0.000000001 F
    Микрофарад мкФ 10 -6 0,000001 F
    Милифарад мФ 10 -3 0,001 F
    Килофарад килофарад килофарад 10 3 1000 Ф

    Когда вы переходите к диапазону емкости от фарада до килофарада, вы начинаете говорить о специальных конденсаторах, называемых конденсаторами super или ultra .


    Теория конденсаторов

    Примечание : Материал на этой странице не совсем критичен для понимания новичками в электронике … и к концу все становится немного сложнее. Мы рекомендуем прочитать раздел Как делается конденсатор , остальные, вероятно, можно было бы пропустить, если они вызывают у вас головную боль.

    Как делается конденсатор

    Схематический символ конденсатора на самом деле очень похож на то, как он сделан.Конденсатор состоит из двух металлических пластин и изоляционного материала, называемого диэлектриком . Металлические пластины расположены очень близко друг к другу, параллельно, но между ними находится диэлектрик, чтобы они не соприкасались.

    Ваш стандартный конденсаторный сэндвич: две металлические пластины, разделенные изолирующим диэлектриком.

    Диэлектрик может быть изготовлен из любых изоляционных материалов: бумаги, стекла, резины, керамики, пластика или всего, что препятствует прохождению тока.

    Пластины изготовлены из проводящего материала: алюминия, тантала, серебра или других металлов. Каждый из них подключен к клеммному проводу, который в конечном итоге подключается к остальной части схемы.

    Емкость конденсатора — сколько в нем фарад — зависит от его конструкции. Для большей емкости требуется конденсатор большего размера. Пластины с большей площадью перекрытия поверхности обеспечивают большую емкость, а большее расстояние между пластинами означает меньшую емкость. Материал диэлектрика даже влияет на то, сколько фарад имеет колпачок.Полная емкость конденсатора может быть рассчитана по формуле:

    Где ε r — относительная диэлектрическая проницаемость диэлектрика (постоянное значение, определяемое материалом диэлектрика), A — площадь перекрытия пластин друг с другом, а d — расстояние между пластинами.

    Как работает конденсатор

    Электрический ток — это поток электрического заряда, который электрические компоненты используют, чтобы загораться, вращаться или делать то, что они делают.Когда ток течет в конденсатор, заряды «застревают» на пластинах, потому что они не могут пройти через изолирующий диэлектрик. Электроны — отрицательно заряженные частицы — засасываются одной из пластин, и она становится в целом отрицательно заряженной. Большая масса отрицательных зарядов на одной пластине отталкивает, как заряды, на другой пластине, делая ее заряженной положительно.

    Положительный и отрицательный заряды на каждой из этих пластин притягиваются друг к другу, потому что это то, что делают противоположные заряды.Но с диэлектриком, сидящим между ними, как бы они ни хотели соединиться, заряды навсегда останутся на пластине (до тех пор, пока им не будет куда-то идти). Неподвижные заряды на этих пластинах создают электрическое поле, которое влияет на электрическую потенциальную энергию и напряжение. Когда заряды группируются на таком конденсаторе, крышка накапливает электрическую энергию так же, как батарея может накапливать химическую энергию.

    Зарядка и разрядка

    Когда на пластинах конденсатора сливаются положительный и отрицательный заряды, конденсатор становится заряженным .Конденсатор может сохранять свое электрическое поле — удерживать свой заряд — потому что положительный и отрицательный заряды на каждой из пластин притягиваются друг к другу, но никогда не достигают друг друга.

    В какой-то момент обкладки конденсатора будут настолько заряжены, что просто не смогут больше принимать их. На одной пластине достаточно отрицательных зарядов, чтобы они могли отразить любые другие, которые попытаются присоединиться. Здесь вступает в игру емкость конденсатора ( фарад), которая говорит вам о максимальном количестве заряда, которое может хранить конденсатор.

    Если в цепи создается путь, который позволяет зарядам найти другой путь друг к другу, они покинут конденсатор, и разрядит .

    Например, в схеме ниже можно использовать батарею для создания электрического потенциала на конденсаторе. Это вызовет нарастание одинаковых, но противоположных зарядов на каждой из пластин, пока они не станут настолько полными, что оттолкнут ток от протекания. Светодиод, расположенный последовательно с крышкой, может обеспечивать путь для тока, а энергия, запасенная в конденсаторе, может использоваться для кратковременного освещения светодиода.

    Расчет заряда, напряжения и тока

    Емкость конденсатора — сколько в нем фарад — говорит вам, сколько заряда он может хранить. Уровень заряда конденсатора , хранящегося в настоящее время , зависит от разности потенциалов (напряжения) между его пластинами. Эта взаимосвязь между зарядом, емкостью и напряжением может быть смоделирована следующим уравнением:

    Заряд (Q), накопленный в конденсаторе, является произведением его емкости (C) и приложенного к нему напряжения (V).

    Емкость конденсатора всегда должна быть постоянной известной величиной. Таким образом, мы можем регулировать напряжение, чтобы увеличивать или уменьшать заряд крышки. Больше напряжения означает больше заряда, меньше напряжения … меньше заряда.

    Это уравнение также дает нам хороший способ определить значение одного фарада. Один фарад (F) — это способность хранить одну единицу энергии (кулоны) на каждый вольт.

    Расчет тока

    Мы можем пойти дальше по уравнению заряда / напряжения / емкости, чтобы выяснить, как емкость и напряжение влияют на ток, потому что ток — это скорость потока заряда.Суть отношения конденсатора к напряжению и току такова: величина тока , проходящего через конденсатор , зависит как от емкости, так и от того, как быстро напряжение растет или падает . Если напряжение на конденсаторе быстро растет, через конденсатор будет индуцироваться большой положительный ток. Более медленный рост напряжения на конденсаторе означает меньший ток через него. Если напряжение на конденсаторе стабильное и неизменное, через него не будет проходить ток.

    (Это некрасиво, и это касается вычислений. Это не все, что нужно, пока вы не перейдете к анализу во временной области, разработке фильтров и другим грубым вещам, поэтому переходите к следующей странице, если вам не нравится это уравнение .) Уравнение для расчета тока через конденсатор:

    Часть dV / dt этого уравнения является производной (причудливый способ сказать мгновенная скорость ) напряжения во времени, это эквивалентно тому, как «насколько быстро напряжение растет или падает в этот самый момент».Большой вывод из этого уравнения заключается в том, что если напряжение стабильно , производная равна нулю, что означает, что ток также равен нулю . Вот почему ток не может течь через конденсатор, поддерживающий постоянное постоянное напряжение.


    Типы конденсаторов

    Существуют всевозможные типы конденсаторов, каждый из которых имеет определенные особенности и недостатки, которые делают его лучше для одних приложений, чем для других.

    При выборе типа конденсатора необходимо учитывать несколько факторов:

    • Размер — Размер как по физическому объему, так и по емкости.Конденсатор нередко является самым большим компонентом в цепи. Также они могут быть очень маленькими. Для большей емкости обычно требуется конденсатор большего размера.
    • Максимальное напряжение — Каждый конденсатор рассчитан на максимальное падение напряжения на нем. Некоторые конденсаторы могут быть рассчитаны на 1,5 В, другие — на 100 В. Превышение максимального напряжения обычно приводит к разрушению конденсатора.
    • Ток утечки — Конденсаторы не идеальны.Каждая крышка склонна пропускать небольшое количество тока через диэлектрик от одного вывода к другому. Эта крошечная потеря тока (обычно наноампер или меньше) называется утечкой. Утечка заставляет энергию, накопленную в конденсаторе, медленно, но верно истощаться.
    • Эквивалентное последовательное сопротивление (ESR) — Выводы конденсатора не на 100% проводящие, у них всегда будет небольшое сопротивление (обычно менее 0,01 Ом). Это сопротивление становится проблемой, когда через колпачок проходит большой ток, вызывая потери тепла и мощности.
    • Допуск — Конденсаторы также не могут иметь точную, точную емкость. Каждая крышка будет рассчитана на свою номинальную емкость, но, в зависимости от типа, точное значение может варьироваться от ± 1% до ± 20% от желаемого значения.

    Конденсаторы керамические

    Наиболее часто используемый и производимый конденсатор — керамический конденсатор. Название происходит от материала, из которого сделан их диэлектрик.

    Керамические конденсаторы обычно бывают физически и емкостными малыми .Трудно найти керамический конденсатор больше 10 мкФ. Керамический колпачок для поверхностного монтажа обычно находится в крошечном корпусе 0402 (0,4 мм x 0,2 мм), 0603 (0,6 мм x 0,3 мм) или 0805. Керамические колпачки со сквозными отверстиями обычно выглядят как маленькие (обычно желтые или красные) лампочки с двумя выступающими клеммами.

    Две заглушки в радиальной упаковке со сквозным отверстием; конденсатор 22 пФ слева и 0,1 мкФ справа. Посередине — крошечная крышка 0,1 мкФ 0603 для поверхностного монтажа.

    По сравнению с не менее популярными электролитическими крышками, керамические конденсаторы являются более близкими к идеальным конденсаторам (гораздо более низкие значения ESR и токи утечки), но их малая емкость может быть ограничивающей.Как правило, они также являются наименее дорогим вариантом. Эти колпачки хорошо подходят для высокочастотной связи и развязки.

    Электролитический алюминий и тантал

    Электролитики

    хороши тем, что они могут упаковать много емкости в относительно небольшой объем. Если вам нужен конденсатор емкостью от 1 мкФ до 1 мФ, вы, скорее всего, найдете его в электролитической форме. Они особенно хорошо подходят для высоковольтных приложений из-за их относительно высокого максимального номинального напряжения.

    Алюминиевые электролитические конденсаторы, самые популярные из семейства электролитических, обычно выглядят как маленькие жестяные банки с обоими выводами, выходящими снизу.

    Ассортимент электролитических конденсаторов сквозного и поверхностного монтажа. Обратите внимание, что у каждого из них есть метод маркировки катода (отрицательный вывод).

    К сожалению, электролитические крышки обычно поляризованы . У них есть положительный вывод — анод — и отрицательный вывод, называемый катодом.Когда напряжение подается на электролитический колпачок, анод должен иметь более высокое напряжение, чем катод. Катод электролитического конденсатора обычно обозначается знаком «-» и цветной полосой на корпусе. Ножка анода также может быть немного длиннее, как еще один признак. Если на электролитический колпачок подать напряжение в обратном направлении, они выйдут из строя ( лопнет и разорвется) и навсегда. После лопания электролитик будет вести себя как короткое замыкание.

    Эти колпачки также известны утечкой — позволяя небольшим токам (порядка нА) проходить через диэлектрик от одного вывода к другому. Это делает электролитические колпачки менее чем идеальными для хранения энергии, что, к сожалению, с учетом их высокой емкости и номинального напряжения.

    Суперконденсаторы

    Если вы ищете конденсатор, предназначенный для хранения энергии, не ищите ничего, кроме суперконденсаторов. Эти колпачки имеют уникальную конструкцию, обеспечивающую высоких емкостей в диапазоне фарад.

    Суперконденсатор 1Ф (!). Высокая емкость, но рассчитана только на 2,5 В. Обратите внимание, что они также поляризованы.

    Несмотря на то, что они могут хранить огромное количество заряда, суперконденсаторы не справляются с очень высокими напряжениями. Этот суперконденсатор 10F рассчитан только на максимальное напряжение 2,5 В. Любое большее, чем это, разрушит его. Суперэлементы обычно устанавливаются последовательно для достижения более высокого номинального напряжения (при уменьшении общей емкости).

    Основное применение суперконденсаторов в — накопление и выделение энергии , как батареи, которые являются их основным конкурентом.Хотя суперконденсаторы не могут удерживать столько энергии, сколько батарея того же размера, они могут высвобождать ее намного быстрее и обычно имеют гораздо больший срок службы.

    Другое

    Электролитические и керамические крышки покрывают около 80% типов конденсаторов (а суперкапсы только около 2%, но они супер!). Другой распространенный тип конденсатора — пленочный конденсатор , который отличается очень низкими паразитными потерями (ESR), что делает их идеальными для работы с очень высокими токами.

    Есть много других менее распространенных конденсаторов. Переменные конденсаторы могут производить различные емкости, что делает их хорошей альтернативой переменным резисторам в схемах настройки. Скрученные провода или печатные платы могут создавать емкость (иногда нежелательную), потому что каждый состоит из двух проводников, разделенных изолятором. Лейденские кувшины — стеклянная банка, наполненная проводниками и окруженная ими, — это O.G. семейства конденсаторов. Наконец, конечно, конденсаторы потока (странная комбинация катушки индуктивности и конденсатора) имеют решающее значение, если вы когда-нибудь планируете вернуться в дни славы.


    Конденсаторы последовательно / параллельно

    Подобно резисторам, несколько конденсаторов могут быть объединены последовательно или параллельно для создания комбинированной эквивалентной емкости. Конденсаторы, однако, складываются таким образом, что полностью противоположны резисторам.

    Конденсаторы параллельно

    Когда конденсаторы размещаются параллельно друг другу, общая емкость равна сумме всех емкостей .Это аналогично тому, как резисторы добавляются последовательно.

    Так, например, если у вас есть три конденсатора номиналом 10 мкФ, 1 мкФ и 0,1 мкФ, подключенные параллельно, общая емкость будет 11,1 мкФ (10 + 1 + 0,1).

    Конденсаторы серии

    Подобно тому, как резисторы сложно добавить параллельно, конденсаторы становятся неприятными при установке в серии . Общая емкость последовательно соединенных конденсаторов Н и обратна сумме всех обратных емкостей.

    Если у вас есть только двух конденсаторов , соединенных последовательно, вы можете использовать метод «произведение над суммой» для расчета общей емкости:

    Если продолжить это уравнение, если у вас есть двух одинаковых конденсаторов, соединенных последовательно , общая емкость составляет половину их значения.Например, два последовательно соединенных суперконденсатора по 10Ф дадут общую емкость 5Ф (это также даст возможность удвоить номинальное напряжение всего конденсатора с 2,5 В до 5 В).


    Примеры применения

    Существует множество приложений для этого изящного маленького (на самом деле, обычно они довольно большие) пассивного компонента. Чтобы дать вам представление об их широком диапазоне использования, вот несколько примеров:

    Развязные (байпасные) конденсаторы

    Многие конденсаторы, которые вы видите в схемах, особенно те, которые имеют интегральную схему, развязывают.Задача развязывающего конденсатора — подавить высокочастотный шум в сигналах источника питания. Они снимают с источника напряжения крошечные колебания напряжения, которые в противном случае могли бы нанести вред чувствительным микросхемам.

    В каком-то смысле развязывающие конденсаторы действуют как очень маленький локальный источник питания для микросхем (почти как источник бесперебойного питания для компьютеров). Если в источнике питания очень быстро падает напряжение (что на самом деле довольно часто, особенно когда цепь, которую он питает, постоянно переключает требования к нагрузке), разделительный конденсатор может кратковременно подавать питание с правильным напряжением.Вот почему эти конденсаторы также называются байпасными конденсаторами; они могут временно действовать как источник питания в обход источника питания.

    Разделительные конденсаторы подключаются между источником питания (5 В, 3,3 В и т. Д.) И землей. Нередко для обхода источника питания используют два или более конденсаторов с разным номиналом или даже разных типов, потому что некоторые номиналы конденсаторов будут лучше, чем другие, при фильтрации определенных частот шума.

    На этой схеме три развязывающих конденсатора используются для уменьшения шума в источнике напряжения акселерометра.Два керамических 0,1 мкФ и один танталовый электролитический 10 мкФ разделенные функции развязки.

    Хотя кажется, что это может привести к короткому замыканию между питанием и землей, только высокочастотные сигналы могут проходить через конденсатор на землю. Сигнал постоянного тока поступит на ИС, как и нужно. Другая причина, по которой они называются шунтирующими конденсаторами, заключается в том, что высокие частоты (в диапазоне кГц-МГц) обходят ИС, а не проходят через конденсатор, чтобы добраться до земли.

    При физическом размещении развязывающих конденсаторов они всегда должны располагаться как можно ближе к ИС.Чем дальше они находятся, тем менее эффективны.

    Вот схема физической схемы из схемы выше. Крошечная черная ИС окружена двумя конденсаторами по 0,1 мкФ (коричневые крышки) и одним электролитическим танталовым конденсатором 10 мкФ (высокая прямоугольная крышка черного / серого цвета).

    Чтобы следовать хорошей инженерной практике, всегда добавляйте хотя бы один развязывающий конденсатор к каждой ИС. Обычно хорошим выбором является 0,1 мкФ или даже дополнительные конденсаторы на 1 мкФ или 10 мкФ. Это дешевое дополнение, и они помогают убедиться, что микросхема не подвергается сильным провалам или скачкам напряжения.

    Фильтр источника питания

    Диодные выпрямители

    могут использоваться для преобразования переменного напряжения, выходящего из вашей стены, в постоянное напряжение, необходимое для большинства электронных устройств. Но сами по себе диоды не могут превратить сигнал переменного тока в чистый сигнал постоянного тока, им нужна помощь конденсаторов! При добавлении параллельного конденсатора к мостовому выпрямителю выпрямленный сигнал выглядит следующим образом:

    Может быть преобразован в сигнал постоянного тока близкого к уровню, например:

    Конденсаторы — упрямые компоненты, они всегда будут пытаться противостоять резким перепадам напряжения.Конденсатор фильтра будет заряжаться по мере увеличения выпрямленного напряжения. Когда выпрямленное напряжение, поступающее в конденсатор, начинает быстро снижаться, конденсатор получит доступ к своему банку накопленной энергии, и он будет очень медленно разряжаться, передавая энергию нагрузке. Конденсатор не должен полностью разрядиться, пока входной выпрямленный сигнал не начнет снова увеличиваться, заряжая конденсатор. Этот танец разыгрывается много раз в секунду, снова и снова, пока используется источник питания.

    Цепь питания переменного тока в постоянный.Крышка фильтра (C1) имеет решающее значение для сглаживания сигнала постоянного тока, посылаемого в цепь нагрузки.

    Если вы разорвите любой блок питания переменного тока в постоянный, вы обязательно найдете хотя бы один довольно большой конденсатор. Ниже показаны внутренности настенного адаптера 9 В постоянного тока. Заметили там конденсаторы?

    Конденсаторов может быть больше, чем вы думаете! Имеется четыре электролитических колпачка, напоминающих жестяную банку, в диапазоне от 47 мкФ до 1000 мкФ. Большой желтый прямоугольник на переднем плане — это высоковольтный 0.Крышка из полипропиленовой пленки 1 мкФ. И синяя дискообразная крышка, и маленькая зеленая посередине — керамические.

    Хранение и поставка энергии

    Кажется очевидным, что если конденсатор накапливает энергию, одно из множества его применений будет подавать эту энергию в цепь, как аккумулятор. Проблема в том, что конденсаторы имеют гораздо более низкую плотность энергии , чем батареи; они просто не могут вместить столько же энергии, как химическая батарея того же размера (но этот разрыв сокращается!).

    Плюс конденсаторов в том, что они обычно служат дольше, чем батареи, что делает их лучшим выбором с экологической точки зрения. Они также способны выдавать энергию намного быстрее, чем аккумулятор, что делает их подходящими для приложений, которым требуется короткий, но большой всплеск мощности. Вспышка камеры может получать питание от конденсатора (который, в свою очередь, вероятно, заряжался от аккумулятора).

    Батарея или конденсатор?
    90 ✓
    Батарея Конденсатор
    Емкость
    Плотность энергии
    Скорость заряда / разряда
    Срок службы

    Фильтрация сигналов

    Конденсаторы

    обладают уникальной реакцией на сигналы различной частоты.Они могут блокировать низкочастотные компоненты или составляющие сигнала постоянного тока, позволяя при этом проходить более высоким частотам. Они как вышибалы в очень эксклюзивном клубе только для высоких частот.

    Фильтрация сигналов может быть полезна во всех видах приложений обработки сигналов. Радиоприемники могут использовать конденсатор (среди других компонентов) для отключения нежелательных частот.

    Другой пример фильтрации сигнала конденсатора — это пассивные схемы кроссовера внутри громкоговорителей, которые разделяют один аудиосигнал на несколько.Последовательный конденсатор блокирует низкие частоты, поэтому оставшиеся высокочастотные части сигнала могут идти на твитер динамика. При прохождении низких частот в цепи сабвуфера высокие частоты в основном могут быть шунтированы на землю через параллельный конденсатор.

    Очень простой пример схемы кроссовера аудио. Конденсатор блокирует низкие частоты, а катушка индуктивности блокирует высокие частоты. Каждый из них может использоваться для доставки нужного сигнала настроенным аудиодрайверам.

    Снижение рейтинга

    При работе с конденсаторами важно проектировать схемы с конденсаторами, которые имеют гораздо более высокий допуск, чем потенциально самый высокий скачок напряжения в вашей системе.

    Вот отличное видео от инженера SparkFun Шона о том, что происходит с различными типами конденсаторов, когда вы не можете снизить номинальные характеристики конденсаторов и превысить их максимальное напряжение. Вы можете прочитать больше о его экспериментах здесь.


    Закупка конденсаторов

    Храните на этих маленьких компонентах накопителя энергии или используйте их в качестве начального блока питания.

    Наши рекомендации:

    Комплект конденсаторов SparkFun

    16 доступно КОМПЛЕКТ-13698

    Это комплект, который предоставляет вам базовый ассортимент конденсаторов, чтобы начать или продолжить возиться с электроникой. Нет мес…

    10

    Суперконденсатор — 10Ф / 2.5В

    В наличии COM-00746

    Да, вы правильно прочитали — конденсатор 10 Фарад. Этот маленький колпачок можно зарядить, а затем медленно рассеять на протяжении всего…

    3

    Конденсатор керамический 0.1 мкФ

    В наличии COM-08375

    Это очень распространенный конденсатор емкостью 0,1 мкФ. Используется во всевозможных приложениях для разъединения микросхем от источников питания. Расстояние между листами 0,1 дюйма…

    1

    Ресурсы и дальнейшее развитие

    Уф.Почувствуйте себя экспертом по конденсаторам ?! Хотите узнать больше об основах электроники? Если вы еще этого не сделали, подумайте о прочтении некоторых других распространенных электронных компонентов:

    Или, может быть, некоторые из этих руководств привлекут ваше внимание?


    Чего нельзя делать с крышками

    Неправильное использование конденсаторов

    Недавно мы опубликовали заметку о схеме конденсатора и, как всегда, получили много отличных отзывов от наших читателей. Чтобы ответить на ваши вопросы, мы попросили нашу службу технической поддержки рассказать нам о конденсаторах.Они поделились некоторыми ценными знаниями и рассказами из своего личного опыта. Тем временем наша команда по маркетингу продуктов решила, что показать вам, что именно происходит, когда вы меняете полярность конденсатора или подвергаете конденсатор воздействию перенапряжения, будет отличной возможностью для обучения.

    Что такое конденсаторы и как они работают?

    Конденсатор — это пассивный электрический компонент с двумя выводами. По сути, это два проводника, обычно с проводящими пластинами, разделенные изолятором, известным как диэлектрик.Он также имеет соединительные провода, которые подключаются к токопроводящим пластинам. Диэлектрик определяет тип конденсатора. Диэлектрический материал может быть разным, но он должен быть плохим проводником электричества.

    Конденсатор предназначен для хранения энергии. Отрицательный вывод принимает электроны от источника питания, а положительный вывод теряет электроны. При необходимости конденсатор высвобождает накопленную энергию. Он работает аналогично аккумулятору, но может полностью разрядить его за доли секунды.

    Обычными типами конденсаторов являются керамические конденсаторы, бумажные или пленочные конденсаторы и электролитические конденсаторы. Существует также семейство суперконденсаторов с высокой емкостью.

    Применение конденсатора:

    Конденсаторы имеют множество применений. Они играют решающую роль в цифровой электронике, поскольку защищают микрочипы от шума в сигнале питания за счет развязки. Поскольку они могут быстро сбросить весь свой заряд, они часто используются во вспышках и лазерах вместе с настраиваемыми схемными устройствами и емкостными датчиками.Цепи с конденсаторами демонстрируют частотно-зависимое поведение, поэтому их можно использовать со схемами, которые выборочно усиливают определенные частоты.

    Выбор конденсатора:

    Выбор конденсатора во многом зависит от электронного устройства, с которым вы работаете, и от того, какой ток используется (переменный, постоянный и т. Д.). Вы должны определить, нужен ли вам поляризованный или неполяризованный конденсатор. Для этого проверьте схему вашего проекта. Если конденсатор обозначен знаком плюс (+), то требуется поляризованный конденсатор.(-6), или одна миллионная фарада.

    Напряжение конденсатора пропорционально заряду, накопленному в конденсаторе. Они способны блокировать сигналы постоянного тока при прохождении переменного тока. Конденсаторы также могут устранить рябь. Если линия, по которой проходит постоянное напряжение, имеет пульсации, конденсатор может выровнять напряжение, поглощая пики и заполняя впадины.

    Напряжение на конденсаторе — это не номинал, а то, какое напряжение вы можете подвергнуть конденсатору. Например, если ваш источник напряжения составляет 9 вольт, вы должны выбрать конденсатор, который как минимум в два раза больше напряжения, 18 вольт или даже 27 вольт, чтобы быть в безопасности.

    Электролитические конденсаторы переменного тока или биполярные конденсаторы имеют два анода, подключенных с обратной полярностью. Электролитические конденсаторы постоянного тока поляризованы в процессе производства и поэтому могут работать только с постоянным напряжением. Напряжение с обратной полярностью, напряжение или пульсирующий ток выше, чем указано, могут разрушить диэлектрик и конденсатор. Разрушение электролитических конденсаторов может иметь катастрофические последствия, такие как пожар или взрыв. Если поляризованный конденсатор установлен неправильно, конденсатор со свистом взрывается.С другой стороны, неполяризованные конденсаторы в основном используются для фильтрации гармонических шумов почти в каждой цепи, более удобны в обращении.

    «Некоторые большие электролитические конденсаторы могут сохранять заряд в течение длительного времени. Некоторые могут даже до некоторой степени заряжаться самостоятельно», — пояснил инженер технической поддержки Jameco. «Инженер-электронщик, с которым я работал, создавал прототип источника питания, настраивал схему, тестировал детали и т. Д. По своей привычке он вынул заглушку из схемы, чтобы заменить ее, и, не задумываясь, воткнул в нее один из выводов. его рот.Конденсатор более или менее мгновенно разрядил всю свою нагрузку и фактически заставил его упасть со стула. Он был в порядке, но это было страшно. Через несколько месяцев ему пришлось вырвать зуб прямо в том месте, где выпал колпачок. Он ударил этот зуб электрическим током ».

    Не забывайте работать безопасно при обращении с конденсаторами и всегда следуйте спецификациям для вашего устройства или проекта. Конденсатор может быть важным компонентом, но он также может привести к разрушительным и опасным последствиям, если не используется надлежащим образом.

    Конденсаторы: все, что вам нужно знать | ОРЕЛ

    Нет, мы не говорим здесь о Grand Theft Auto! Закрывание крышки в мире электроники нехорошо, если вам не нравится видеть, как ваш электролитический конденсатор горит в огне. Конденсаторы играют важную роль в семействе пассивных электронных компонентов, и их можно найти повсюду.

    Помните вспышку в вашей цифровой камере? Конденсаторы делают это возможным. Или возможность переключать канал на телевизоре? Опять конденсаторы.Эти ребята — маленькие батарейки, которые «могут», и вам нужно знать все, что о них известно, прежде чем вы начнете работать над своим первым проектом в области электроники.

    Это как бутерброд с мороженым

    Для простоты — конденсатор накапливает электрический заряд , очень похоже на батарею. Также называемые caps , вы найдете этих парней в приложениях, где требуется накопление энергии, подавление напряжения и даже фильтрация сигналов. А как они выглядят? Ну бутерброд с мороженым!

    Что бы вы сделали с баром «Клондайк»? Сравните это, конечно, с конденсатором! (Источник изображения)

    Подумайте о том восхитительном бутерброде с мороженым, который вам понравился в тот знойный летний день.У вас есть восхитительная корочка с двух сторон и кремовый кусок ванильного мороженого посередине. Эта композиция из двух внешних слоев и одного внутреннего слоя — это то, как выглядит конденсатор. Вот из чего они сделаны:

    • Начиная снаружи. Сверху и снизу конденсатора вы найдете набор металлических пластин, также называемых проводниками. Электрический заряд находит эти металлические пластины очень привлекательными.
    • Сидит посередине. Среди этих двух металлических пластин вы найдете изолятор или материал, к которому не притягивается электричество. Этот изолятор обычно называют диэлектриком и может быть изготовлен из бумаги, стекла, резины, пластика и т. Д.
    • Соединяем вместе. Две металлические пластины наверху и внизу крышки соединены двумя электрическими клеммами, которые соединяют ее с остальной частью цепи. Один конец конденсатора подключается к источнику питания, а другой течет к земле.

    Внутренняя структура конденсатора, у нас есть две металлические пластины, внутренний диэлектрик и соединительные клеммы.

    Конденсаторы всех форм и размеров

    Конденсаторы

    бывают разных форм и размеров, каждый из которых определяет, насколько хорошо они могут удерживать заряд. Три наиболее распространенных типа конденсаторов, с которыми вы столкнетесь, включают керамический конденсатор, электролитический конденсатор и суперконденсатор:

    Конденсаторы керамические

    Это конденсаторы, с которыми вы, вероятно, будете работать в своем первом электронном проекте с использованием макета.В отличие от своих электролитических аналогов, керамические конденсаторы удерживают меньший заряд, но и меньше пропускают ток. Они также оказываются самыми дешевыми конденсаторами из всей группы, так что запасайтесь! Вы можете быстро определить керамический конденсатор со сквозным отверстием, посмотрев на маленькие желтые или красные лампочки с двумя торчащими из них выводами.

    Три типа керамических конденсаторов, вы будете использовать их на макетных платах. (Источник изображения)

    Конденсаторы электролитические

    Эти парни выглядят как маленькие консервные банки, которые вы найдете на печатной плате, и в их крошечном следе могут удерживаться огромные электрические разряды.Это также единственный тип конденсатора, который поляризован, а это означает, что они будут работать только при подключении с определенной ориентацией. На этих электролитических конденсаторах есть положительный вывод, называемый анодом, и отрицательный вывод, называемый катодом. Анод всегда нужно подключать к более высокому напряжению. Если вы подключите его наоборот, когда на катоде будет более высокое напряжение, приготовьтесь к взрыву крышки!

    Электролитический конденсатор, обратите внимание на положительный вывод и более длинный (анод) и более короткий отрицательный вывод (катод).(Источник изображения)

    Несмотря на то, что электролитические колпачки способны удерживать большое количество электрического заряда, они также хорошо известны тем, что пропускают ток быстрее, чем керамические колпачки. Из-за этого они не лучший выбор, когда вам нужно хранить энергию.

    Суперконденсаторы

    Supercaps — супергерои семейства конденсаторных, они могут хранить большое количество энергии! К сожалению, суперкапс не очень хорошо справляется с повышенным напряжением, и вы окажетесь без колпачка, если превысите максимальное напряжение, указанное в таблице данных.ПОП!

    В отличие от электролитических конденсаторов, вы обнаружите, что суперконденсаторы используются для хранения и разряда энергии, как и батареи. Но в отличие от батареи, суперкапсы высвобождают свой заряд сразу, и вы никогда не получите такой же срок службы, как обычный аккумулятор.

    Посмотрите на этот мощный supercap ! Он имеет огромную емкость 3000F. (Источник изображения)

    Обозначения конденсаторов

    Идентифицировать конденсатор на вашей первой схеме очень просто, поскольку они бывают только двух типов: стандартные и поляризованные.Обратите внимание на символ стандартного конденсатора ниже. Вы заметите, что это всего лишь две простые линии с пробелом между ними. Это две металлические пластины, которые вы найдете сверху и снизу физического конденсатора.

    Поляризованный конденсатор выглядит немного иначе и имеет дугообразную линию в нижней части, а также положительный вывод наверху. Этот положительный вывод очень важен и указывает, как этот поляризованный конденсатор должен быть подключен. Положительная сторона всегда подключается к источнику питания, а сторона дуги подключается к земле.

    Два наиболее распространенных типа конденсаторов, которые вы увидите на схеме для США, стандартные и поляризованные.

    Кто изобрел эти вещи?

    Хотя многие считают английского химика Майкла Фарадея пионером современного конденсатора, он не был первым, кто его изобрел. То, что сделал Фарадей, было важно — он продемонстрировал первые практические примеры конденсатора и то, как использовать его для хранения электрического заряда в своих экспериментах. И благодаря Фарадею у нас также есть способ измерить заряд, который может удерживать конденсатор, известный как емкость, который измеряется в Фарадах!

    Гениальный английский химик Майкл Фарадей, пионер конденсаторов, которые мы используем сегодня.(Источник изображения)

    До Майкла Фарадея некоторые записи указывают на то, что покойный немецкий ученый Эвальд Георг фон Клейст изобрел первый конденсатор в 1745 году. Несколько месяцев спустя голландский профессор по имени Питер ван Мушенбрук придумал похожий дизайн, теперь известный как Лейденская банка. Странное время, правда? Однако все это было просто совпадением, и оба ученых в равной степени получили признание за их первоначальные изобретения конденсатора.

    Самый ранний образец конденсатора, лейденская банка.(Источник изображения)

    Знаменитый Benjamin Franklin позже был усовершенствован в конструкции лейденской банки, созданной Musschenbroek. Франклин также смог обнаружить, что использование плоского куска стекла было отличной альтернативой целой банке. Так родился первый плоский конденсатор, получивший название площади Франклина.

    Крышки в действии — как они работают

    Давайте подробно рассмотрим, как работают эти мощные конденсаторы, на практическом примере. Вы ведь раньше пользовались цифровым фотоаппаратом? Тогда вы знаете, что есть несколько коротких моментов между нажатием кнопки, чтобы сделать снимок, и моментом срабатывания вспышки.

    Что здесь происходит? К вспышке прикреплен конденсатор, который заряжается после того, как вы нажмете кнопку, чтобы сделать снимок. Как только этот конденсатор полностью заряжается аккумулятором камеры, вся эта энергия взрывается наружу в ослепляющей вспышке света!

    Обратите внимание, конденсатор, который делает возможной вспышку в этой камере. (Источник изображения)

    Так как же все это произошло? Заглянем изнутри в загадочный мир конденсатора:

    1. Начинается с заряда. Электрический ток от источника питания сначала течет в конденсатор и застревает на первой пластине. Почему застревает? Потому что есть изолятор, который не пропускает отрицательно заряженную электронику.
    2. Накопление зарядов. По мере того, как все больше и больше электронов прилипают к этой первой пластине, она становится отрицательно заряженной и в конечном итоге отталкивает все лишние электроны, с которыми она не может справиться, к другой пластине. Затем эта вторая пластина становится положительно заряженной.
    3. Заряд сохраняется. По мере того как две пластины конденсатора продолжают заряжаться, отрицательные и положительные электроны отчаянно пытаются соединиться, но этот противный изолятор в середине не позволяет им, создавая электрическое поле. Вот почему колпачок продолжает удерживать и накапливать заряд, потому что существует бесконечный источник напряжения между отрицательной и положительной сторонами двух пластин, которые не разрешены.
    4. Заряд высвобождается. Рано или поздно две пластины в нашем конденсаторе не смогут удерживать заряд, поскольку они на пределе емкости.Но что происходит сейчас? Если в вашей цепи есть путь, по которому электрический заряд может течь в другом месте, то все электроны в вашей крышке будут разряжены , и , наконец, прекратят свое напряжение, поскольку они будут искать другой путь друг к другу.

    Измерение заряда

    Как можно измерить, сколько заряда хранится в конденсаторе? Каждый колпачок рассчитан на определенную емкость. Он измеряется в фарадах по английскому химику Майклу Фарадею. Поскольку в одном фараде содержится тонна электрического заряда, вы обычно видите конденсаторы, измеряемые в пикофарадах или микрофарадах.Вот полезная диаграмма, которая показывает, как разбиваются эти измерения:

    Имя Аббревиатура Фарады
    Пикофарад пФ 0,000000000001 Ф
    нанофарад нФ 0,000000001 Ф
    Микрофарад мкФ 0,000001 Ф
    Милифарад мФ 0.001 F
    Килофарад кФ 1000 F

    Теперь, чтобы выяснить, сколько заряда в настоящее время хранит конденсатор, вам понадобится это уравнение:

    В этом уравнении общий заряд представлен как (Q) , и соотношение этого заряда можно найти, умножив емкость конденсатора ( C ) на приложенное к нему напряжение ( В ). Следует отметить, что емкость конденсатора напрямую зависит от его напряжения.Таким образом, чем больше вы увеличиваете или уменьшаете источник напряжения в цепи, тем больший или меньший заряд будет у вашего конденсатора.

    Емкость в параллельных и последовательных цепях

    Когда вы размещаете конденсаторы в цепи параллельно, вы можете определить общую емкость, сложив все отдельные емкости вместе.

    Получить общую емкость в параллельной цепи так же просто, как 1 + 1, просто сложите их все вместе! (Источник изображения)

    При последовательном размещении конденсаторов общая емкость вашей цепи является обратной величиной всех ваших суммированных емкостей.Вот краткий пример. Если у вас есть два конденсатора по 10 Ф, соединенные последовательно, то общая емкость будет равна 5 Ф.

    Получить общую емкость в последовательной цепи немного сложнее. Емкость уменьшается вдвое. (Источник изображения)

    Начало работы

    Теперь, когда у нас есть четкое представление о том, что такое конденсаторы, как они работают и как измеряются, давайте рассмотрим три распространенных применения конденсаторов. Сюда входят такие приложения, как развязывающие конденсаторы, накопители энергии и емкостные сенсорные датчики.

    Конденсатор развязки

    В наши дни вам будет сложно найти схему, в которой нет интегральной схемы или ИС. В этих типах схем конденсаторы должны выполнять критически важную работу, удаляя весь высокочастотный шум, обнаруживаемый в сигналах источника питания, которые питают ИС.

    Почему это необходимая работа для нашего конденсатора? Любые колебания напряжения могут быть фатальными для ИС и даже могут привести к неожиданному отключению питания микросхемы. Помещая конденсаторы между ИС и источником питания, они успокаивают колебания напряжения, а также действуют как второй источник питания, если первичная мощность падает до уровня, достаточного для выключения ИС.

    Конденсатор развязки для контроля колебаний напряжения.

    Накопитель энергии

    Конденсаторы

    имеют много общих характеристик с батареями, включая их способность накапливать энергию. Однако, в отличие от батареи, конденсаторы не выдерживают такой большой мощности. Но хотя они и не успевают по количеству, они стараются разрядиться как можно быстрее! Конденсаторы могут поставлять энергию намного быстрее, чем аккумулятор, что делает их идеальными для питания вспышки в камере, настройки радиостанции или переключения каналов на телевизоре.

    Емкостные сенсорные датчики

    Одно из последних достижений в области применения конденсаторов связано с бурным ростом технологий сенсорных экранов. Стеклянные экраны, из которых состоят эти сенсорные датчики, имеют очень тонкое прозрачное металлическое покрытие. Когда ваш палец касается экрана, это вызывает падение напряжения, определяющее точное местоположение вашего пальца!

    Емкостные сенсорные датчики в действии с защитной накладкой и печатной платой. (Источник изображения)

    Практика — выбор конденсатора

    Давайте перейдем к сфере практичности и поговорим о том, на что обращать внимание при выборе следующего конденсатора.Необходимо учитывать пять переменных, в том числе:

    • Размер — сюда входит как физический размер вашего конденсатора, так и его общая емкость. Не удивляйтесь, если выбранный вами конденсатор будет самой большой частью вашей печатной платы, так как чем больше вам потребуется емкости, тем больше они станут.
    • Допуск — Конденсаторы, как и их аналоги с резисторами, имеют переменный допуск. Вы найдете допуск для конденсаторов от ± 1% до ± 20% от заявленного значения.
    • Максимальное напряжение — Каждый конденсатор имеет максимальное напряжение, с которым он может работать. В противном случае он взорвется! Вы найдете максимальное напряжение от 1,5 до 100 В.
    • Эквивалентное последовательное сопротивление (ESR) — Как и любой другой физический материал, выводы конденсатора имеют очень маленькое сопротивление. Это может стать проблемой, если вам нужно помнить о потерях тепла и энергии.
    • Ток утечки — В отличие от наших батарей, в конденсаторах происходит утечка накопленного заряда.И пока он истощается медленно, вы должны обратить внимание на то, насколько сильно протекает ваш конденсатор, если его основная функция — накопление энергии.

    Все заряжены

    Вот и все, что вам нужно знать о конденсаторах, чтобы полностью зарядиться для вашего следующего электронного проекта! Конденсаторы — это очаровательная небольшая группа, способная накапливать электрический заряд для множества применений, и они даже могут выступать в качестве вторичного источника питания для этих чувствительных интегральных схем.При работе с конденсаторами внимательно следите за максимально возможным напряжением. В противном случае вы получите несколько взрывающихся крышек, как вы увидите на видео:

    Знаете ли вы, что Autodesk EAGLE бесплатно включает тонну библиотек конденсаторов? Начните со своего следующего проекта в области электроники и забудьте о создании собственных деталей! Попробуйте Autodesk EAGLE бесплатно сегодня.

    Введение в схемы коррекции коэффициента мощности на основе конденсаторов — Блог о пассивных компонентах

    Источник: блог Capacitor Faks

    Часть мощности переменного тока, потребляемой индуктивными нагрузками, используется для поддержания инверсии магнитного поля из-за фазового сдвига между током и напряжением.Эту энергию можно рассматривать как потерянную энергию, поскольку она не используется для выполнения полезной работы. Цепи коррекции коэффициента мощности используются для минимизации реактивной мощности и повышения эффективности, с которой индуктивные нагрузки потребляют мощность переменного тока. Конденсаторы являются важными компонентами в схемах компенсации коэффициента мощности, и в этой статье будут рассмотрены некоторые конструктивные особенности при использовании этих компонентов для коррекции коэффициента мощности.

    Реактивная мощность при индуктивных нагрузках

    Индуктивные нагрузки, такие как дроссели, двигатели, оборудование для индукционного нагрева, генераторы, трансформаторы и оборудование для дуговой сварки, создают электрическую задержку, которую обычно называют индуктивностью.Эта индуктивность вызывает разность фаз между током и напряжением. На рис. 1 показаны кривые тока и напряжения для нагрузки с нулевой задержкой (чисто резистивная нагрузка).

    Рисунок 1 Напряжение и ток для идеальной нагрузки

    Из-за фазового сдвига из-за индуктивности бывают моменты, когда ток и напряжение имеют разные знаки. В это время генерируется отрицательная энергия, которая возвращается в сеть электроснабжения. Когда два возвращают одинаковый знак, для генерации магнитных полей требуется аналогичное количество энергии.Энергия, которая теряется из-за перемагничивания в индуктивных нагрузках, обычно называется реактивной мощностью.

    Индуктивные нагрузки переменного тока подразделяются на линейные и нелинейные устройства. Для линейных нагрузок форма сигнала тока и форма сигнала напряжения имеют совпадающие синусоидальные профили. На рисунке 2 показаны кривые тока и напряжения для типичной линейной нагрузки. С другой стороны, поскольку нелинейные нагрузки потребляют ток на разных частотах, формы сигналов тока и напряжения различаются.Для большинства нелинейных нагрузок форма сигнала тока обычно несинусоидальная. На рис. 3 показаны кривые тока и напряжения для нелинейной нагрузки.

    Рисунок 2 Напряжение и ток для линейной нагрузки

    Рисунок 3 Напряжение и ток для нелинейной нагрузки

    Некоторые примеры линейных электрических нагрузок включают нагревательное оборудование, двигатели и лампы накаливания. К нелинейным устройствам относятся частотно-регулируемые приводы, приводы постоянного тока, программируемые контроллеры, осветительные устройства дугового типа, индукционные печи, источники бесперебойного питания и персональные компьютеры.Известно, что нелинейные электрические нагрузки являются основной причиной гармонических искажений в системах распределения электроэнергии.

    Коэффициент мощности

    Эффективность, с которой электрические устройства или установки потребляют мощность переменного тока, варьируется. Некоторые нагрузки используют энергию эффективно, в то время как другие тратят значительную часть потребляемой мощности. Коэффициент мощности используется для описания эффективности, с которой нагрузки потребляют мощность переменного тока. Эта безразмерная величина находится в диапазоне от 0 до 1.

    Как показано на рис. 4 и рис. 5 , общая мощность переменного тока, также известная как полная мощность, потребляемая электрическим устройством или оборудованием, зависит от двух компонентов: полезной мощности (активной мощности) и реактивной мощности. Под полезной мощностью понимается мощность, необходимая устройству для выполнения задачи. С другой стороны, реактивная мощность не дает полезной работы. Полезная мощность обычно измеряется в кВт, а реактивная мощность — в кВАр.

    Рисунок 4 и 5, активная и реактивная мощности диаграммы полной полной мощности

    Как показано в уравнении , уравнение 1 , коэффициент мощности равен отношению активной мощности (полезной мощности) к общей мощности (полной мощности), потребляемой электрическим устройством или оборудованием.Математически можно показать, что коэффициент мощности равен косинусу угла θ (, уравнение 2, ). Чем ближе это соотношение к 1,0, тем выше эффективность устройства или оборудования.

    Для идеальной электрической нагрузки коэффициент мощности равен 1,0 (единичный коэффициент мощности). Это означает, что вся мощность, потребляемая нагрузкой, используется для полезной работы. Однако реальной электрической нагрузке добиться этого сложно. Импеданс для нагрузки, представленной , рис. 5, задается уравнением 3, где XL — индуктивное реактивное сопротивление, которое определяется уравнением , уравнением 4 .

    Почему электрической нагрузке трудно достичь единичного коэффициента мощности? Большинству электрических нагрузок присущи реактивные свойства, которые затрудняют достижение идеального коэффициента мощности. Чтобы преодолеть это ограничение, в сеть добавляются схемы коррекции коэффициента мощности для компенсации реактивных характеристик нагрузки.

    Коррекция коэффициента мощности (компенсация)

    Электрические нагрузки с низким коэффициентом мощности потребляют больше энергии, чем необходимо для выполнения задачи.Это может привести к значительным потерям мощности в сети и высоким потерям в трансформаторе. Такое увеличение потребления энергии увеличивает стоимость работающего оборудования или установок. Низкие коэффициенты мощности также вызывают повышенные падения напряжения в распределительной сети. Поставщики электроэнергии обычно наказывают отрасли, коэффициент мощности которых ниже установленного значения.

    Поставщики электроэнергии побуждают промышленных потребителей повышать коэффициент мощности по разным причинам. Начнем с того, что повышение коэффициента мощности может помочь значительно сократить расходы на электроэнергию.Во-вторых, высокий коэффициент мощности помогает минимизировать потери КПД в трансформаторах потребителя. В-третьих, добавление системы коррекции коэффициента мощности помогает увеличить эффективную мощность электрической сети потребителя. Наконец, высокий коэффициент мощности способствует увеличению срока службы электрооборудования.

    Сеть компенсации коэффициента мощности снижает мощность, потребляемую нагрузкой, тем самым улучшая общий коэффициент мощности. Компенсационная сеть позволяет электрическим нагрузкам достигать хорошего коэффициента мощности, обычно от 0.95 и 0,98. Коэффициент мощности 0,85 и ниже обычно рассматривается коммунальными предприятиями как плохой коэффициент мощности.

    Цепи конденсаторной коррекции коэффициента мощности

    Существуют различные методы повышения коэффициента мощности нагрузки или установки. Один из часто используемых методов включает добавление в сеть конденсаторов для коррекции коэффициента мощности. На рисунке 6 показана простая схема, состоящая из источника переменного тока и индуктивной нагрузки.

    Рисунок 6 и 7 индуктивная нагрузка с конденсатором коррекции коэффициента мощности и без него

    Как конденсатор помогает улучшить коэффициент мощности? В цепи переменного тока реверсирование магнитного поля из-за разности фаз между током и напряжением происходит 50 или 60 раз в секунду.Конденсатор помогает улучшить коэффициент мощности, освобождая линию питания от реактивной мощности. Конденсатор достигает этого за счет накопления энергии обратного магнитного поля.

    На рисунке 7 показана индуктивная нагрузка с конденсатором коррекции коэффициента мощности. Рисунок 8 выше иллюстрирует улучшение коэффициента мощности при добавлении конденсатора в схему. Импеданс для цепи с конденсатором компенсации коэффициента мощности определяется уравнением , уравнение 5, , где XC — емкостное реактивное сопротивление, которое определяется уравнением , уравнением 6, .

    В большинстве отраслей для компенсации реактивной мощности устанавливается система конденсаторов, управляемая контроллером коррекции коэффициента мощности. При проектировании системы коррекции коэффициента мощности важно избегать увеличения емкости сети. Добавление избыточной емкости в схему может привести к чрезмерной коррекции, как показано на Рис. 9.

    Полупроводниковые приборы также широко используются для коррекции коэффициента мощности. Использование полупроводниковых устройств в цепи для улучшения коэффициента мощности обычно называется активной компенсацией.Синхронные машины с перевозбуждением также обычно используются для улучшения коэффициента мощности сети.

    Заключение

    Индуктивные нагрузки, такие как трансформаторы, генераторы, двигатели, дроссели и оборудование для дуговой сварки, создают электрическую задержку, в результате чего ток и напряжение имеют разные знаки. Энергия, необходимая для поддержания разворота магнитного поля в индуктивных нагрузках, называется реактивной мощностью. Снижение реактивной мощности за счет повышения коэффициента мощности нагрузки переменного тока помогает минимизировать общие затраты на работу индуктивных нагрузок.Конденсаторы обычно используются в промышленности для повышения коэффициента мощности и минимизации потерь энергии.

    предоставленное изображение: Hydra

    оригинальная статья, которая впервые появилась на Capacitor Faks здесь, была отредактирована по объему и содержанию EPCI

    Электродвигатель

    | Британника

    Самый простой тип асинхронного двигателя показан на рисунке в разрезе. Трехфазный набор обмоток статора вставлен в пазы в железе статора.Эти обмотки могут быть подключены по схеме «звезда», обычно без внешнего подключения к нейтральной точке, или по схеме «треугольник». Ротор состоит из цилиндрического стального сердечника с проводниками, размещенными в пазах по всей поверхности. В наиболее обычной форме эти проводники ротора соединены вместе на каждом конце ротора токопроводящим концевым кольцом.

    Основы работы асинхронного двигателя могут быть разработаны, сначала предположив, что обмотки статора подключены к трехфазному источнику питания и что набор из трех синусоидальных токов, показанных на рисунке, протекает в обмотках статора.На этом рисунке показано влияние этих токов на создание магнитного поля через воздушный зазор машины в течение шести мгновений цикла. Для простоты показана только центральная токопроводящая петля для каждой фазной обмотки. В момент t 1 на рисунке ток в фазе a является максимально положительным, а в фазах b и c — вдвое отрицательным. Результатом является магнитное поле с приблизительно синусоидальным распределением вокруг воздушного зазора с максимальным значением наружу вверху и максимальным значением внутрь внизу.В момент времени t 2 на рисунке (т. Е. Одна шестая цикла позже), ток в фазе c является максимально отрицательным, в то время как в фазе b и фазе a составляет половину значения. положительный. Результатом, как показано на рисунке для t 2 , снова является синусоидально распределенное магнитное поле, но повернутое на 60 ° против часовой стрелки. Исследование распределения тока для т 3 , т 4 , т 5 и т 6 показывает, что магнитное поле продолжает вращаться с течением времени.Поле совершает один оборот за один цикл токов статора. Таким образом, совокупный эффект трех равных синусоидальных токов, равномерно смещенных во времени и протекающих в трех обмотках статора, равномерно смещенных в угловом положении, должен создать вращающееся магнитное поле с постоянной величиной и механической угловой скоростью, которая зависит от частоты электроснабжение.

    Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

    Вращательное движение магнитного поля относительно проводников ротора вызывает индуцирование напряжения в каждом из них, пропорциональное величине и скорости поля относительно проводников.Поскольку проводники ротора закорочены друг с другом на каждом конце, в этих проводниках будут протекать токи. В простейшем режиме работы эти токи будут примерно равны индуцированному напряжению, деленному на сопротивление проводника. На этом рисунке показана диаграмма токов ротора за мгновение t 1 рисунка. Видно, что токи приблизительно синусоидально распределены по периферии ротора и расположены так, чтобы создавать вращающий момент против часовой стрелки на роторе (т.е.е. крутящий момент в том же направлении, что и вращение поля). Этот крутящий момент ускоряет ротор и вращает механическую нагрузку. По мере увеличения скорости вращения ротора его скорость относительно скорости вращающегося поля уменьшается. Таким образом, индуцированное напряжение уменьшается, что приводит к пропорциональному снижению тока в проводнике ротора и крутящего момента. Скорость ротора достигает постоянного значения, когда крутящий момент, создаваемый токами ротора, равен крутящему моменту, необходимому на этой скорости для нагрузки, без избыточного крутящего момента, доступного для ускорения объединенной инерции нагрузки и двигателя.

    Вращающееся поле и токи, которые оно создает в короткозамкнутых проводниках ротора.

    Британская энциклопедия, Inc.

    Механическая выходная мощность должна обеспечиваться входной электрической мощностью. Первоначальных токов статора, показанных на рисунке, достаточно для создания вращающегося магнитного поля. Чтобы поддерживать это вращающееся поле в присутствии токов ротора, показанных на рисунке, необходимо, чтобы обмотки статора несли дополнительную составляющую синусоидального тока такой величины и фазы, чтобы нейтрализовать влияние магнитного поля, которое в противном случае могло бы возникнуть. токами ротора на рисунке.Общий ток статора в каждой фазной обмотке складывается из синусоидальной составляющей для создания магнитного поля и другой синусоиды, опережающей первую на четверть цикла, или 90 °, для обеспечения необходимой электроэнергии. Вторая, или силовая, составляющая тока находится в фазе с напряжением, приложенным к статору, в то время как первая, или намагничивающая, составляющая отстает от приложенного напряжения на четверть цикла или 90 °. При номинальной нагрузке эта намагничивающая составляющая обычно находится в диапазоне 0.От 4 до 0,6 величины силовой составляющей.

    Большинство трехфазных асинхронных двигателей работают с обмотками статора, подключенными непосредственно к трехфазному источнику питания постоянного напряжения и постоянной частоты. Типичные напряжения питания находятся в диапазоне от 230 вольт между фазами для двигателей относительно небольшой мощности (например, от 0,5 до 50 киловатт) до примерно 15 киловольт между фазами для двигателей большой мощности и до примерно 10 мегаватт.

    За исключением небольшого падения напряжения на сопротивлении обмотки статора, напряжение питания согласуется со скоростью изменения магнитного потока в статоре машины во времени.Таким образом, при питании с постоянной частотой и постоянным напряжением величина вращающегося магнитного поля остается постоянной, а крутящий момент примерно пропорционален силовой составляющей тока питания.

    В асинхронном двигателе, показанном на предыдущих рисунках, магнитное поле вращается на один оборот за каждый цикл частоты питания. Для источника с частотой 60 Гц скорость поля составляет 60 оборотов в секунду или 3600 оборотов в минуту. Скорость ротора меньше скорости поля на величину, достаточную для того, чтобы индуцировать необходимое напряжение в проводниках ротора для создания тока ротора, необходимого для момента нагрузки.При полной нагрузке скорость обычно на 0,5–5 процентов ниже скорости поля (часто называемая синхронной скоростью), причем более высокий процент применяется к двигателям меньшего размера. Эта разница в скорости часто называется скольжением.

    Другие синхронные скорости могут быть получены с источником постоянной частоты, построив машину с большим количеством пар магнитных полюсов, в отличие от двухполюсной конструкции, показанной на рисунке. Возможные значения скорости магнитного поля в оборотах в минуту: 120 f / p , где f — частота в герцах (циклов в секунду), а p — количество полюсов (которое должно быть четное число).Данный железный каркас может быть намотан для любого из нескольких возможных количеств пар полюсов с помощью катушек, охватывающих угол приблизительно (360/ p ) °. Крутящий момент, доступный от рамы машины, останется неизменным, поскольку он пропорционален произведению магнитного поля и допустимого тока катушки. Таким образом, номинальная мощность рамы, являющаяся произведением крутящего момента и скорости, будет примерно обратно пропорциональна количеству пар полюсов. Наиболее распространенные синхронные скорости для двигателей с частотой 60 Гц — 1800 и 1200 оборотов в минуту.

    Как работают электронные компоненты

    Электронные гаджеты стали неотъемлемой частью нашей жизни. Они сделали нашу жизнь комфортнее и удобнее. От авиации до медицины и здравоохранения электронные гаджеты находят широкое применение в современном мире. Фактически, революция в электронике и революция в компьютерах идут рука об руку.

    Большинство гаджетов имеют крошечные электронные схемы, которые могут управлять машинами и обрабатывать информацию.Проще говоря, электронные схемы — это линия жизни различных электроприборов. В этом руководстве подробно рассказывается об общих электронных компонентах, используемых в электронных схемах, и о том, как они работают.

    В этой статье я дам обзор электронных схем. Затем я предоставлю дополнительную информацию о 7 различных типах компонентов. Для каждого типа я буду обсуждать состав, принцип работы, а также функцию и значение компонента.

    1. Конденсатор
    2. Резистор
    3. Диод
    4. Транзистор
    5. Индуктор
    6. Реле
    7. Кристалл кварца


    Обзор электронной схемы

    Электронная схема — это структура, которая направляет и управляет электрическим током для выполнения различных функций, включая усиление сигнала, вычисление и передачу данных.Он состоит из нескольких различных компонентов, таких как резисторы, транзисторы, конденсаторы, катушки индуктивности и диоды. Для соединения компонентов друг с другом используются токопроводящие провода или дорожки. Однако цепь считается завершенной, только если она начинается и заканчивается в одной и той же точке, образуя цикл.


    Элементы электронной схемы

    Сложность и количество компонентов в электронной схеме могут изменяться в зависимости от ее применения. Однако простейшая схема состоит из трех элементов, включая токопроводящую дорожку, источник напряжения и нагрузку.

    Элемент 1: токопроводящий путь

    Электрический ток течет по токопроводящей дорожке. Хотя медные провода используются в простых цепях, они быстро заменяются токопроводящими дорожками. Проводящие дорожки — это не что иное, как медные листы, наклеенные на непроводящую основу. Они часто используются в небольших и сложных схемах, таких как печатные платы (PCB).

    Элемент 2: Источник напряжения

    Основная функция цепи — обеспечить безопасное прохождение электрического тока через нее.Итак, первый ключевой элемент — это источник напряжения. Это двухконтактное устройство, такое как аккумулятор, генераторы или энергосистемы, которые обеспечивают разность потенциалов (напряжение) между двумя точками в цепи, так что ток может течь через них.

    Элемент 3: Нагрузка

    Нагрузка — это элемент в цепи, который потребляет мощность для выполнения определенной функции. Лампочка — простейшая нагрузка. Однако сложные схемы имеют разные нагрузки, такие как резисторы, конденсаторы, транзисторы и транзисторы.


    Факты об электронных схемах

    Факт 1: Обрыв цепи

    Как упоминалось ранее, цепь всегда должна образовывать петлю, позволяющую току течь через нее. Однако, когда дело доходит до разомкнутой цепи, ток не может протекать, поскольку один или несколько компонентов отключены намеренно (с помощью переключателя) или случайно (сломанные части). Другими словами, любая цепь, не образующая петли, является разомкнутой.

    Факт 2: Замкнутый контур

    Замкнутый контур — это контур, который образует контур без каких-либо прерываний.Таким образом, это полная противоположность разомкнутой цепи. Однако полная цепь, которая не выполняет никаких функций, остается замкнутой цепью. Например, цепь, подключенная к разряженной батарее, может не работать, но это все равно замкнутая цепь.

    Факт 3: Короткое замыкание

    В случае короткого замыкания между двумя точками электрической цепи образуется соединение с низким сопротивлением. В результате ток имеет тенденцию течь через это вновь образованное соединение, а не по намеченному пути.Например, если есть прямое соединение между отрицательной и положительной клеммами батареи, ток будет проходить через нее, а не через цепь.

    Однако короткое замыкание обычно приводит к серьезным несчастным случаям, поскольку ток может протекать с опасно высоким уровнем. Следовательно, короткое замыкание может повредить электронное оборудование, вызвать взрыв батарей и даже вызвать пожар в коммерческих и жилых зданиях.

    Факт 4: Печатные платы (PCB)

    Для большинства электронных приборов требуются сложные электронные схемы.Вот почему разработчикам приходится размещать крошечные электронные компоненты на печатной плате. Он состоит из пластиковой платы с соединительными медными дорожками с одной стороны и множества отверстий для крепления компонентов. Когда макет печатной платы наносится химическим способом на пластиковую плату, она называется печатной платой или печатной платой.

    Рисунок 1: Печатная плата . [Источник изображения]
    Факт 5: Интегральные схемы (ИС)

    Хотя печатные платы могут предложить множество преимуществ, для большинства современных приборов, таких как компьютеры и мобильные телефоны, требуются сложные схемы, состоящие из тысяч и даже миллионов компонентов.Вот тут-то и пригодятся интегральные схемы. Это крошечные электронные схемы, которые могут поместиться внутри небольшого кремниевого чипа. Джек Килби изобрел первую интегральную схему в 1958 году в компании Texas Instruments. Единственная цель ИС — повысить эффективность электронных устройств при уменьшении их размера и стоимости производства. С годами интегральные схемы становились все более сложными, поскольку технологии продолжают развиваться. Вот почему персональные компьютеры, ноутбуки, мобильные телефоны и другая бытовая электроника с каждым днем ​​становятся все дешевле и лучше.

    Рисунок 2: Интегральные схемы. [Источник изображения]

    Электронные компоненты

    Благодаря современным технологиям процесс сборки электронных схем был полностью автоматизирован, особенно это касается изготовления микросхем и печатных плат. Количество и расположение компонентов в схеме может варьироваться в зависимости от ее сложности. Однако он построен с использованием небольшого количества стандартных компонентов.

    Следующие компоненты используются для создания электронных схем.


    Компонент 1: Конденсатор

    Конденсаторы

    широко используются для построения различных типов электронных схем.Конденсатор — это пассивный двухконтактный электрический компонент, который может электростатически накапливать энергию в электрическом поле. Проще говоря, он работает как небольшая аккумуляторная батарея, которая накапливает электричество. Однако, в отличие от аккумулятора, он может заряжаться и разряжаться за доли секунды.

    Рисунок 3: Конденсаторы [Источник изображения]
    A. Состав Конденсаторы

    бывают всех форм и размеров, но обычно они имеют одинаковые первичные компоненты. Между ними уложены два электрических проводника или пластины, разделенные диэлектриком или изолятором.Пластины состоят из проводящего материала, такого как тонкие пленки из металла или алюминиевой фольги. С другой стороны, диэлектрик — это непроводящий материал, такой как стекло, керамика, пластиковая пленка, воздух, бумага или слюда. Вы можете вставить два электрических соединения, выступающих из пластин, чтобы зафиксировать конденсатор в цепи.

    B. Как это работает?

    Когда вы прикладываете напряжение к двум пластинам или подключаете их к источнику, на изоляторе возникает электрическое поле, в результате чего на одной пластине накапливается положительный заряд, а на другой накапливается отрицательный заряд.Конденсатор продолжает сохранять заряд, даже если вы отключите его от источника. В тот момент, когда вы подключаете его к нагрузке, накопленная энергия перетекает от конденсатора к нагрузке.

    Емкость — это количество энергии, хранящейся в конденсаторе. Чем выше емкость, тем больше энергии он может хранить. Увеличить емкость можно, сдвинув пластины ближе друг к другу или увеличив их размер. В качестве альтернативы вы также можете улучшить изоляционные качества, чтобы увеличить емкость.

    C. Функция и значение

    Хотя конденсаторы выглядят как батареи, они могут выполнять различные типы функций в цепи, например блокировать постоянный ток, позволяя проходить переменному току, или сглаживать выходной сигнал от источника питания. Они также используются в системах передачи электроэнергии для стабилизации напряжения и потока мощности. Одной из наиболее важных функций конденсатора в системах переменного тока является коррекция коэффициента мощности, без которой вы не сможете обеспечить достаточный пусковой момент для однофазных двигателей.

    Фильтры для конденсаторов

    Если вы используете микроконтроллер в цепи для запуска определенной программы, вы не хотите, чтобы его напряжение упало, поскольку это приведет к сбросу контроллера. Вот почему дизайнеры используют конденсатор. Он может обеспечить микроконтроллер необходимой мощностью на долю секунды, чтобы избежать перезапуска. Другими словами, он отфильтровывает шумы в линии питания и стабилизирует источник питания.

    Применения удерживающего конденсатора

    В отличие от батареи, конденсатор быстро разряжается.Вот почему он используется для кратковременного питания цепи. Батареи вашей камеры заряжают конденсатор, прикрепленный к вспышке. Когда вы делаете снимок со вспышкой, конденсатор высвобождает свой заряд за доли секунды, генерируя вспышку света.

    Применение конденсатора таймера

    В резонансной или зависящей от времени схеме конденсаторы используются вместе с резистором или катушкой индуктивности в качестве элемента синхронизации. Время, необходимое для зарядки и разрядки конденсатора, определяет работу схемы.


    Компонент 2: резистор

    Резистор — это пассивное двухконтактное электрическое устройство, которое препятствует прохождению тока. Это, наверное, самый простой элемент в электронной схеме. Это также один из наиболее распространенных компонентов, поскольку сопротивление является неотъемлемым элементом почти всех электронных схем. Обычно они имеют цветовую маркировку.

    Рисунок 4: Резисторы [Источник изображения]
    A. Состав

    Резистор — это вовсе не модное устройство, потому что сопротивление — это естественное свойство, которым обладают почти все проводники.Итак, конденсатор состоит из медной проволоки, обернутой вокруг изоляционного материала, такого как керамический стержень. Количество витков и толщина медной проволоки прямо пропорциональны сопротивлению. Чем больше количество витков и чем тоньше провод, тем выше сопротивление.

    Также можно встретить резисторы, изготовленные по спирали из углеродной пленки. Отсюда и название резисторы с углеродной пленкой. Они разработаны для схем с низким энергопотреблением, потому что резисторы с углеродной пленкой не так точны, как их аналоги с проволочной обмоткой.Однако они дешевле проводных резисторов. К обоим концам прикреплены клеммы проводов. Поскольку резисторы не учитывают полярность в цепи, ток может течь в любом направлении. Таким образом, не нужно беспокоиться о том, чтобы прикрепить их вперед или назад.

    B. Как это работает?

    Резистор может показаться не очень большим. Можно подумать, что он ничего не делает, кроме как потребляет энергию. Однако он выполняет жизненно важную функцию: контролирует напряжение и ток в вашей цепи.Другими словами, резисторы дают вам контроль над конструкцией вашей схемы.

    Когда электрический ток начинает течь по проводу, все электроны начинают двигаться в одном направлении. Это похоже на воду, текущую по трубе. По тонкой трубе будет течь меньше воды, потому что у нее меньше места для ее движения.

    Точно так же, когда ток проходит через тонкий провод в резисторе, электронам становится все труднее двигаться через него. Короче говоря, количество электронов, проходящих через резистор, уменьшается по мере увеличения длины и толщины провода.

    C. Функция и значение У резисторов

    есть множество применений, но три наиболее распространенных — это управление током, деление напряжения и цепи резистор-конденсатор.

    Ограничение тока

    Если вы не добавите резисторы в цепь, ток будет опасно высоким. Это может привести к перегреву других компонентов и их повреждению. Например, если вы подключите светодиод напрямую к батарее, он все равно будет работать.Однако через некоторое время светодиод нагреется, как огненный шар. В конечном итоге он сгорит, поскольку светодиоды менее устойчивы к нагреву.

    Но, если ввести в схему резистор, он снизит протекание тока до оптимального уровня. Таким образом, вы можете дольше держать светодиод включенным, не перегревая его.

    Делительное напряжение Также используются резисторы

    для понижения напряжения до нужного уровня. Иногда для определенной части схемы, такой как микроконтроллер, может потребоваться более низкое напряжение, чем для самой схемы.Здесь на помощь приходит резистор.

    Допустим, ваша схема работает от аккумулятора 12 В. Однако для микроконтроллера требуется только питание 6 В. Итак, чтобы разделить напряжение пополам, все, что вам нужно сделать, это подключить последовательно два резистора с равным сопротивлением. Проволока между двумя резисторами снизит наполовину напряжение вашей цепи, к которой может быть подключен микроконтроллер. Используя соответствующие резисторы, вы можете снизить напряжение в цепи до любого уровня.

    Резисторно-конденсаторные сети Резисторы

    также используются в сочетании с конденсаторами для создания интегральных схем, содержащих массивы резистор-конденсатор в одной микросхеме.Они также известны как RC-фильтры или RC-сети. Они часто используются для подавления электромагнитных помех (EMI) или радиочастотных помех (RFI) в различных инструментах, включая порты ввода / вывода компьютеров и ноутбуков, локальные сети (LAN) и глобальные сети (WAN), среди прочего. Они также используются в станках, распределительных устройствах, контроллерах двигателей, автоматизированном оборудовании, промышленных приборах, лифтах и ​​эскалаторах.


    Компонент 3: Диод

    Диод — это устройство с двумя выводами, которое позволяет электрическому току течь только в одном направлении.Таким образом, это электронный эквивалент обратного клапана или улицы с односторонним движением. Он обычно используется для преобразования переменного тока (AC) в постоянный ток (DC). Он изготовлен либо из полупроводникового материала (полупроводниковый диод), либо из вакуумной трубки (вакуумный ламповый диод). Однако сегодня большинство диодов изготовлено из полупроводникового материала, особенно из кремния.

    Рисунок 5: Диод [Источник изображения]
    A. Состав

    Как упоминалось ранее, существует два типа диодов: вакуумные диоды и полупроводниковые диоды.Вакуумный диод состоит из двух электродов (катода и анода), помещенных внутри герметичной вакуумной стеклянной трубки. Полупроводниковый диод состоит из полупроводников p-типа и n-типа. Поэтому он известен как диод с p-n переходом. Обычно он изготавливается из кремния, но также можно использовать германий или селен.

    B. Как это работает?
    Вакуумный диод

    Когда катод нагревается нитью накала, в вакууме образуется невидимое облако электронов, называемое пространственным зарядом.Хотя электроны испускаются катодом, отрицательный объемный заряд отталкивает их. Поскольку электроны не могут достичь анода, через цепь не протекает ток. Однако, когда анод становится положительным, объемный заряд исчезает. В результате ток начинает течь от катода к аноду. Таким образом, электрический ток внутри диода течет только от катода к аноду и никогда от анода к катоду.

    Соединительный диод P-N

    Диод с p-n переходом состоит из кремниевых полупроводников p-типа и n-типа.Полупроводник p-типа обычно легируется бором, оставляя в нем дырки (положительный заряд). С другой стороны, полупроводник n-типа легирован сурьмой, добавляя в него несколько дополнительных электронов (отрицательный заряд). Таким образом, электрический ток может протекать через оба полупроводника.

    Когда вы складываете блоки p-типа и n-типа вместе, дополнительные электроны n-типа объединяются с дырками p-типа, создавая зону обеднения без каких-либо свободных электронов или дырок. Короче, ток через диод больше не может проходить.

    Когда вы подключаете отрицательную клемму батареи к кремнию n-типа, а положительную клемму к p-типу (прямое смещение), ток начинает течь, поскольку электроны и дырки теперь могут перемещаться по переходу. Однако, если вы перевернете клеммы (обратное смещение), ток через диод не будет протекать, потому что дырки и электроны отталкиваются друг от друга, расширяя зону обеднения. Таким образом, как и вакуумный диод, переходной диод может пропускать ток только в одном направлении.

    С.Функция и значение

    Хотя диоды являются одними из простейших компонентов электронной схемы, они находят уникальное применение в различных отраслях промышленности.

    Преобразование переменного тока в постоянный

    Наиболее распространенное и важное применение диодов — преобразование переменного тока в постоянный. Обычно полуволновой (один диод) или двухполупериодный (четыре диода) выпрямитель используется для преобразования мощности переменного тока в мощность постоянного тока, особенно в бытовых источниках питания. Когда вы пропускаете источник питания переменного тока через диод, через него проходит только половина формы волны переменного тока.Поскольку этот импульс напряжения используется для зарядки конденсатора, он создает устойчивые и непрерывные постоянные токи без каких-либо пульсаций. Различные комбинации диодов и конденсаторов также используются для создания различных типов умножителей напряжения для умножения небольшого переменного напряжения на высокие выходы постоянного тока.

    Обходные диоды

    Байпасные диоды часто используются для защиты солнечных панелей. Когда ток от остальных элементов проходит через поврежденный или пыльный солнечный элемент, это вызывает перегрев.В результате общая выходная мощность снижается, создавая горячие точки. Диоды подключаются параллельно солнечным элементам, чтобы защитить их от перегрева. Эта простая конструкция ограничивает напряжение на неисправном солнечном элементе, позволяя току проходить через неповрежденные элементы во внешнюю цепь.

    Защита от скачков напряжения

    Когда источник питания внезапно прерывается, в большинстве индуктивных нагрузок возникает высокое напряжение.Этот неожиданный скачок напряжения может повредить нагрузку. Однако вы можете защитить дорогое оборудование, подключив диод к индуктивным нагрузкам. В зависимости от типа безопасности эти диоды известны под разными названиями, включая демпферный диод, обратный диод, подавляющий диод и диод свободного хода, среди других.

    Демодуляция сигнала

    Они также используются в процессе модуляции сигнала, поскольку диоды могут эффективно удалять отрицательный элемент сигнала переменного тока.Диод выпрямляет несущую волну, превращая ее в постоянный ток. Звуковой сигнал извлекается из несущей волны, этот процесс называется звуковой частотной модуляцией. Вы можете слышать звук после некоторой фильтрации и усиления. Следовательно, в радиоприемниках обычно используются диоды для извлечения сигнала из несущей волны.

    Защита от обратного тока

    Изменение полярности источника постоянного тока или неправильное подключение батареи может привести к протеканию значительного тока через цепь.Такое обратное подключение может повредить подключенную нагрузку. Вот почему защитный диод включен последовательно с положительной стороной клеммы аккумулятора. В случае правильной полярности диод становится смещенным в прямом направлении, и ток течет по цепи. Однако в случае неправильного подключения он становится смещенным в обратном направлении, блокируя ток. Таким образом, это может защитить ваше оборудование от возможных повреждений.


    Компонент 4: Транзистор

    Один из важнейших компонентов электронной схемы, транзисторы произвели революцию в области электроники.Эти крошечные полупроводниковые устройства с тремя выводами существуют уже более пяти десятилетий. Их часто используют как усилители и переключающие устройства. Вы можете думать о них как о реле без каких-либо движущихся частей, потому что они могут включать или выключать что-то без какого-либо движения.

    Рисунок 6: Транзисторы [Источник изображения]
    A. Состав

    Вначале германий использовался для создания транзисторов, которые были чрезвычайно чувствительны к температуре. Однако сегодня они изготавливаются из кремния, полупроводникового материала, обнаруженного в песке, потому что кремниевые транзисторы гораздо более устойчивы к температуре и дешевле в производстве.Есть два разных типа биполярных переходных транзисторов (BJT), NPN и PNP. Каждый транзистор имеет три контакта, которые называются базой (b), коллектором (c) и эмиттером (e). NPN и PNP относятся к слоям полупроводникового материала, из которых изготовлен транзистор.

    B. Как это работает?

    Когда вы помещаете кремниевую пластину p-типа между двумя стержнями n-типа, вы получаете NPN-транзистор. Эмиттер присоединен к одному n-типу, а коллектор — к другому.Основание прикреплено к р-образному. Избыточные дырки в кремнии p-типа действуют как барьеры, блокирующие прохождение тока. Однако, если вы приложите положительное напряжение к базе и коллектору и отрицательно зарядите эмиттер, электроны начнут течь от эмиттера к коллектору.

    Расположение и количество блоков p-типа и n-типа остаются инвертированными в транзисторе PNP. В этом типе транзистора один n-тип находится между двумя блоками p-типа. Поскольку распределение напряжения отличается, транзистор PNP работает иначе.Транзистор NPN требует положительного напряжения на базу, в то время как PNP требует отрицательного напряжения. Короче говоря, ток должен течь от базы, чтобы включить PNP-транзистор.

    C. Функция и значение

    Транзисторы работают как переключатели и усилители в большинстве электронных схем. Дизайнеры часто используют транзистор в качестве переключателя, потому что, в отличие от простого переключателя, он может превратить небольшой ток в гораздо больший. Хотя вы можете использовать простой переключатель в обычной цепи, для усовершенствованной схемы может потребоваться различное количество токов на разных этапах.

    Транзисторы в слуховых аппаратах

    Одно из самых известных применений транзисторов — слуховой аппарат. Обычно небольшой микрофон в слуховом аппарате улавливает звуковые волны, преобразовывая их в колеблющиеся электрические импульсы или токи. Когда эти токи проходят через транзистор, они усиливаются. Затем усиленные импульсы проходят через динамик, снова преобразуя их в звуковые волны. Таким образом, вы можете услышать значительно более громкую версию окружающего шума.

    Транзисторы в компьютерах и калькуляторах

    Все мы знаем, что компьютеры хранят и обрабатывают информацию, используя двоичный язык «ноль» и «единица». Однако большинство людей не знают, что транзисторы играют решающую роль в создании чего-то, что называется логическими вентилями, которые являются основой компьютерных программ. Транзисторы часто соединяются с логическими вентилями, чтобы создать уникальный элемент устройства, называемый триггером. В этой системе транзистор остается включенным, даже если вы уберете ток базы.Теперь он переключается или выключается всякий раз, когда через него проходит новый ток. Таким образом, транзистор может хранить ноль, когда он выключен, или единицу, когда он включен, что является принципом работы компьютеров.

    Транзисторы Дарлингтона

    Транзистор Дарлингтона состоит из двух соединенных вместе транзисторов с полярным соединением PNP или NPN. Он назван в честь своего изобретателя Сидни Дарлингтона. Единственная цель транзистора Дарлингтона — обеспечить высокий коэффициент усиления по току при низком базовом токе.Вы можете найти эти транзисторы в приборах, которым требуется высокий коэффициент усиления по току на низкой частоте, таких как регуляторы мощности, драйверы дисплея, контроллеры двигателей, световые и сенсорные датчики, системы сигнализации и усилители звука.

    IGBT и MOSFET транзисторы

    Биполярные транзисторы с изолированным затвором (IGBT) часто используются в качестве усилителей и переключателей в различных инструментах, включая электромобили, поезда, холодильники, кондиционеры и даже стереосистемы.С другой стороны, полевые транзисторы металл-оксид-полупроводник (MOSFET) обычно используются в интегральных схемах для управления уровнями мощности устройства или для хранения данных.


    Компонент 5: Индуктор

    Катушка индуктивности, также известная как реактор, представляет собой пассивный компонент цепи, имеющей два вывода. Это устройство хранит энергию в своем магнитном поле, возвращая ее в цепь при необходимости. Было обнаружено, что когда две катушки индуктивности помещаются рядом, не касаясь друг друга, магнитное поле, создаваемое первой катушкой индуктивности, воздействует на вторую катушку индуктивности.Это был решающий прорыв, который привел к изобретению первых трансформаторов.

    Рисунок 7: Катушки индуктивности [Источник изображения]
    A. Состав

    Вероятно, это простейший компонент, состоящий только из мотка медной проволоки. Индуктивность прямо пропорциональна количеству витков в катушке. Однако иногда катушка наматывается на ферромагнитный материал, такой как железо, слоистое железо и порошковое железо, для увеличения индуктивности. Форма этого сердечника также может увеличить индуктивность.Тороидальные (в форме бублика) сердечники обеспечивают лучшую индуктивность по сравнению с соленоидными (стержневыми) сердечниками на такое же количество витков. К сожалению, индукторы в интегральной схеме сложно соединить, поэтому их обычно заменяют резисторами.

    B. Как это работает?

    Когда ток проходит по проводу, он создает магнитное поле. Однако уникальная форма индуктора приводит к созданию гораздо более сильного магнитного поля. Это мощное магнитное поле, в свою очередь, сопротивляется переменному току, но пропускает через него постоянный ток.Это магнитное поле также хранит энергию.

    Возьмем простую схему, состоящую из батареи, переключателя и лампочки. Лампа будет ярко светиться, как только вы включите выключатель. Добавьте в эту цепь индуктивность. Как только вы включаете выключатель, лампочка переключается с яркой на тусклую. С другой стороны, когда переключатель выключен, он становится очень ярким, всего на долю секунды до полного выключения.

    Когда вы включаете переключатель, индуктор начинает использовать электричество для создания магнитного поля, временно блокируя прохождение тока.Но только постоянный ток проходит через индуктор, как только магнитное поле заполнено. Вот почему лампочка переключается с яркой на тусклую. Все это время индуктор хранит некоторую электрическую энергию в виде магнитного поля. Итак, когда вы выключаете выключатель, магнитное поле поддерживает постоянный ток в катушке. Таким образом, лампочка некоторое время горит ярко перед тем, как погаснуть.

    C. Функция и значение

    Хотя индукторы полезны, их трудно включить в электронные схемы из-за их размера.Поскольку они более громоздкие по сравнению с другими компонентами, они увеличивают вес и занимают много места. Следовательно, их обычно заменяют резисторами в интегральных схемах (ИС). Тем не менее, индукторы находят широкое применение в промышленности.

    Фильтры в настроенных схемах

    Одним из наиболее распространенных применений индукторов является выбор желаемой частоты в настроенных схемах. Они широко используются с конденсаторами и резисторами, подключенными параллельно или последовательно, для создания фильтров.Импеданс катушки индуктивности увеличивается с увеличением частоты сигнала. Таким образом, автономная катушка индуктивности может действовать только как фильтр нижних частот. Однако, когда вы объединяете его с конденсатором, вы можете создать режекторный фильтр, потому что сопротивление конденсатора уменьшается с увеличением частоты сигнала. Таким образом, вы можете использовать различные комбинации конденсаторов, катушек индуктивности и резисторов для создания различных типов фильтров. Они встречаются в большинстве электронных устройств, включая телевизоры, настольные компьютеры и радио.

    Дроссели как дроссели

    Если через дроссель протекает переменный ток, он создает противоположный ток. Таким образом, он может преобразовывать источник переменного тока в постоянный. Другими словами, он подавляет питание переменного тока, но позволяет постоянному току проходить через него, отсюда и название «дроссель». Обычно они используются в цепях питания, которым необходимо преобразовать источник переменного тока в источник постоянного тока.

    Ферритовые бусины

    Ферритовый шарик или ферритовый дроссель используется для подавления высокочастотного шума в электронных схемах.Некоторые из распространенных применений ферритовых шариков включают компьютерные кабели, телевизионные кабели и кабели для зарядки мобильных устройств. Эти кабели иногда могут действовать как антенны, взаимодействуя с аудио- и видеовыходами вашего телевизора и компьютера. Таким образом, индукторы используются в ферритовых шариках, чтобы уменьшить такие радиочастотные помехи.

    Индукторы в датчиках приближения

    Большинство датчиков приближения работают по принципу индуктивности. Индуктивный датчик приближения состоит из четырех частей, включая индуктор или катушку, генератор, схему обнаружения и выходную схему.Осциллятор генерирует флуктуирующее магнитное поле. Когда объект приближается к этому магнитному полю, начинают накапливаться вихревые токи, уменьшая магнитное поле датчика.

    Схема обнаружения определяет силу датчика, в то время как выходная схема вызывает соответствующий ответ. Индуктивные датчики приближения, также называемые бесконтактными датчиками, ценятся за их надежность. Они используются на светофорах для определения плотности движения, а также в качестве датчиков парковки легковых и грузовых автомобилей.

    Асинхронные двигатели

    Асинхронный двигатель, вероятно, является наиболее распространенным примером применения индукторов. Обычно в асинхронном двигателе индукторы устанавливаются в фиксированном положении. Другими словами, им не разрешается выравниваться с близлежащим магнитным полем. Источник питания переменного тока используется для создания вращающегося магнитного поля, которое затем вращает вал. Потребляемая мощность регулирует скорость вращения. Следовательно, асинхронные двигатели часто используются в приложениях с фиксированной скоростью.Асинхронные двигатели очень надежны и прочны, поскольку нет прямого контакта между двигателем и ротором.

    Трансформаторы

    Как упоминалось ранее, открытие индукторов привело к изобретению трансформаторов, одного из основных компонентов систем передачи энергии. Вы можете создать трансформатор, объединив индукторы общего магнитного поля. Обычно они используются для повышения или понижения напряжения в линиях электропередач до желаемого уровня.

    Накопитель энергии

    Катушка индуктивности, как и конденсатор, также может накапливать энергию. Однако, в отличие от конденсатора, он может накапливать энергию в течение ограниченного времени. Поскольку энергия хранится в магнитном поле, она схлопывается, как только отключается источник питания. Тем не менее, индукторы функционируют как надежные накопители энергии в импульсных источниках питания, например, в настольных компьютерах.


    Компонент 6: реле

    Реле — это электромагнитный переключатель, который может размыкать и замыкать цепи электромеханическим или электронным способом.Для работы реле необходим относительно небольшой ток. Обычно они используются для регулирования малых токов в цепи управления. Однако вы также можете использовать реле для управления большими электрическими токами. Реле — это электрический эквивалент рычага. Вы можете включить его небольшим током, чтобы включить (или усилить) другую цепь, использующую большой ток. Реле могут быть либо электромеханическими, либо твердотельными.

    Рисунок 8: Реле [Источник изображения]
    A. Состав

    Электромеханическое реле (ЭМИ) состоит из корпуса, катушки, якоря, пружины и контактов.Рама поддерживает различные части реле. Якорь — это подвижная часть релейного переключателя. Катушка (в основном из медной проволоки), намотанная на металлический стержень, создает магнитное поле, которое перемещает якорь. Контакты — это токопроводящие части, которые размыкают и замыкают цепь.

    Твердотельное реле (SSR) состоит из входной цепи, цепи управления и выходной цепи. Входная цепь эквивалентна катушке электромеханического реле. Схема управления действует как связующее устройство между входными и выходными цепями, в то время как выходная цепь выполняет ту же функцию, что и контакты в ЭМИ.Твердотельные реле становятся все более популярными, поскольку они дешевле, быстрее и надежнее по сравнению с электромеханическими реле.

    B. Как это работает?

    Используете ли вы электромеханическое реле или твердотельное реле, это нормально замкнутое (NC) или нормально разомкнутое (NO) реле. В случае реле NC контакты остаются замкнутыми при отсутствии питания. Однако в нормально разомкнутом реле контакты остаются разомкнутыми при отсутствии питания.Короче говоря, всякий раз, когда через реле протекает ток, контакты либо размыкаются, либо замыкаются.

    В ЭМИ источник питания возбуждает катушку реле, создавая магнитное поле. Магнитная катушка притягивает металлическую пластину, установленную на якоре. Когда ток прекращается, якорь возвращается в исходное положение под действием пружины. EMR также может иметь один или несколько контактов в одном пакете. Если в цепи используется только один контакт, она называется цепью с одиночным разрывом (SB). С другой стороны, цепь двойного размыкания (DB) идет с буксировочными контактами.Обычно реле с одинарным размыканием используются для управления маломощными устройствами, такими как индикаторные лампы, в то время как контакты с двойным размыканием используются для управления мощными устройствами, такими как соленоиды.

    Когда дело доходит до работы SSR, вам необходимо подать напряжение выше, чем указанное напряжение срабатывания реле, чтобы активировать входную цепь. Вы должны подать напряжение ниже установленного минимального напряжения падения реле, чтобы деактивировать входную цепь. Схема управления передает сигнал из входной цепи в выходную.Выходная цепь включает нагрузку или выполняет желаемое действие.

    C. Функция и значение

    Поскольку они могут управлять сильноточной цепью с помощью слаботочного сигнала, в большинстве процессов управления используются реле в качестве первичных устройств защиты и переключения. Они также могут обнаруживать неисправности и нарушения, возникающие в системах распределения электроэнергии. Типичные приложения включают телекоммуникации, автомобили, системы управления дорожным движением, бытовую технику и компьютеры, среди прочего.

    Реле защиты

    Защитные реле используются для отключения или отключения цепи при обнаружении каких-либо нарушений. Иногда они также могут подавать сигналы тревоги при обнаружении неисправности. Типы реле защиты зависят от их функции. Например, реле максимального тока предназначено для определения тока, превышающего заданное значение. При обнаружении такого тока реле срабатывает, отключая автоматический выключатель, чтобы защитить оборудование от возможного повреждения.

    Дистанционное реле или реле импеданса, с другой стороны, может обнаруживать отклонения в соотношении тока и напряжения, а не контролировать их величину независимо. Он срабатывает, когда отношение V / I падает ниже заданного значения. Обычно защитные реле используются для защиты оборудования, такого как двигатели, генераторы, трансформаторы и т. Д.

    Реле автоматического повторного включения

    Реле автоматического повторного включения предназначено для многократного повторного включения автоматического выключателя, который уже отключен с помощью защитного реле.Например, при резком падении напряжения в электрической цепи вашего дома может наблюдаться несколько кратковременных перебоев в подаче электроэнергии. Эти сбои происходят из-за того, что реле повторного включения пытается автоматически включить защитное реле. В случае успеха питание будет восстановлено. В противном случае произойдет полное отключение электроэнергии.

    Тепловые реле

    Тепловое воздействие электрической энергии — принцип работы теплового реле. Короче говоря, он может обнаруживать повышение температуры окружающей среды и соответственно включать или выключать цепь.Он состоит из биметаллической полосы, которая нагревается при прохождении через нее сверхтока. Нагретая полоса изгибается и замыкает замыкающий контакт, отключая автоматический выключатель. Наиболее распространенное применение теплового реле — защита электродвигателя от перегрузки.


    Компонент 7. Кристалл кварца

    Кристаллы кварца находят несколько применений в электронной промышленности. Однако в основном они используются в качестве резонаторов в электронных схемах. Кварц — это встречающаяся в природе форма кремния.Однако теперь его производят синтетически, чтобы удовлетворить растущий спрос. Проявляет пьезоэлектрический эффект. Если вы приложите физическое давление к одной стороне, возникающие в результате вибрации создадут переменное напряжение на кристалле. Резонаторы на кварцевом кристалле доступны во многих размерах в зависимости от требуемых применений.

    Рисунок 9: Кристалл кварца [Источник изображения]
    A. Состав

    Как упоминалось ранее, кристаллы кварца либо производятся синтетическим путем, либо встречаются в природе.Их часто используют для создания кварцевых генераторов для создания электрического сигнала с точной частотой. Обычно форма кристаллов кварца гексагональная с пирамидками на концах. Однако для практических целей их разрезают на плиты прямоугольной формы. К наиболее распространенным типам форматов резки относятся X, Y и AT. Эта плита помещается между двумя металлическими пластинами, называемыми удерживающими пластинами. Внешняя форма кварцевого кристалла или кварцевого генератора может быть цилиндрической, прямоугольной или квадратной.

    Б.Как это работает?

    Если подать на кристалл переменное напряжение, он вызовет механические колебания. Огранка и размер кристалла кварца определяют резонансную частоту этих колебаний или колебаний. Таким образом, он генерирует постоянный сигнал. Кварцевые генераторы дешевы и просты в изготовлении синтетическим способом. Они доступны в диапазоне от нескольких кГц до нескольких МГц. Поскольку кварцевые генераторы имеют более высокую добротность или добротность, они очень стабильны во времени и температуре.

    C. Функция и значение

    Исключительно высокая добротность позволяет использовать кристаллы кварца и резонансный элемент в генераторах, а также в фильтрах в электронных схемах. Вы можете найти этот высоконадежный компонент в радиочастотных приложениях, в качестве тактовых схем генератора в платах микропроцессоров, а также в качестве элемента синхронизации в цифровых часах.

    Кварцевые часы

    Проблема традиционных часов с винтовой пружиной заключается в том, что вам нужно периодически заводить катушку.С другой стороны, маятниковые часы зависят от силы тяжести. Таким образом, они по-разному показывают время на разных уровнях моря и высотах из-за изменений силы тяжести. Однако на характеристики кварцевых часов не влияет ни один из этих факторов. Кварцевые часы питаются от батареек. Обычно крошечный кристалл кварца регулирует шестеренки, которые управляют секундной, минутной и часовой стрелками. Поскольку кварцевые часы потребляют очень мало энергии, батарея часто может работать дольше.

    Фильтры

    Вы также можете использовать кристаллы кварца в электронных схемах в качестве фильтров.Они часто используются для фильтрации нежелательных сигналов в радиоприемниках и микроконтроллерах. Большинство основных фильтров состоят из одного кристалла кварца. Однако усовершенствованные фильтры могут содержать более одного кристалла, чтобы соответствовать требованиям к рабочим характеристикам. Эти кварцевые фильтры намного превосходят фильтры, изготовленные с использованием ЖК-компонентов.


    Заключение

    От общения с близкими, живущими на разных континентах, до приготовления горячей чашки кофе — электронные гаджеты затрагивают практически все аспекты нашей жизни.Однако что заставляет эти электронные устройства выполнять, казалось бы, трудоемкие задачи всего за несколько минут? Крошечные электронные схемы — основа всего электронного оборудования. Чтение о различных компонентах электронной схемы поможет вам понять их функции и значение. Поделитесь своими предложениями и мнениями по этому поводу в разделе комментариев ниже.

    // Эта статья изначально была опубликована на ICRFQ.

    Накопитель электрической энергии в конденсаторах: физическая лаборатория — видео и стенограмма урока

    Шаги физической лаборатории

    Для этой физической лаборатории вам понадобятся:

    • Аккумулятор
    • А лампочка
    • А конденсатор
    • Резистор
    • Два переключателя
    • Семь проводов
    • Два амперметра (устройства, измеряющие протекающий через них ток)

    Шаг 1: Используйте компоненты для создания параллельной цепи с двумя ответвлениями.На первом ответвлении разместите конденсатор, резистор, амперметр и переключатель. (Резистор нужен только для того, чтобы убедиться, что сила тока не слишком велика.) Вторая ветвь должна соединяться вокруг конденсатора и содержать лампочку, второй амперметр и второй переключатель. Чтобы начать, держите переключатели в разомкнутом (выключенном) положении. Вот схема того, как должна выглядеть схема:

    Принципиальная электрическая схема

    Шаг 2: Замкните переключатель на первом ответвлении.Запишите свои наблюдения и следите за показаниями амперметра. Вы должны заметить, что показания амперметра увеличиваются по мере протекания тока по цепи. Как только показание амперметра снова станет нулевым, переходите к следующему шагу.

    Шаг 3: Разомкните выключатель на первой ветви, отсоединив батарею от конденсатора. ЗАТЕМ замкните выключатель на втором ответвлении.

    Шаг 4: Запишите свои наблюдения и посмотрите, что происходит с показаниями амперметра. Повторяйте по мере необходимости, пока не будете довольны своими наблюдениями.

    Если вы еще этого не сделали, сейчас самое время приостановить воспроизведение видео и завершить лабораторную работу. Удачи!

    Анализ данных

    Теперь, когда вы собрали некоторые данные наблюдений, пришло время проанализировать то, что вы видели. Когда вы замыкали переключатель в первом ответвлении, вы подключали цепь зарядки. Ток от батареи течет к конденсатору, заряжая его. Как только конденсатор был полностью заряжен, ток прекращался, и показания амперметра постепенно возвращались к нулю.

    Затем вы отключили аккумулятор, а затем подключили конденсатор к лампочке, замкнув второй переключатель. Показания амперметра увеличились, и лампа загорелась ярко, но затем постепенно погасла, пока снова не стало темно. Это был конденсатор, который быстро высвободил свой заряд и зажег лампочку. Но по мере того, как разрядился конденсатор, лампочка потускнела и погасла. Этот заряд является хранилищем энергии, и эта энергия высвобождалась в лампочке в виде световой энергии.

Добавить комментарий

Ваш адрес email не будет опубликован.