Последовательное соединение батарей отопления: схема, инструкция, как подключить два и более батареи

Содержание

схема, инструкция, как подключить два и более батареи

Последовательное подключение радиаторов — наиболее популярный и экономичный вариант обогрева помещения, благодаря которому создаётся автономная, независящая от центральной, отопительная система.

Необходимый инструментарий

Для формирования такого соединения приборов отопления потребуются следующие составляющие:

  • Трубы: для главной магистрали желательно выбирать трубопровод из стали, оцинковки или металлопластика с соответствующими диаметрами 2,2 см, 2,2 см и 2,6 см. А также допускаются к использованию полипропиленовые трубы, но только не в системе с тремя и более радиаторами. Отходящие от магистрали патрубки изготавливаются из тех же материалов, но имеют меньшие диаметры.

Фото 1. Металлопластиковые трубы разного диаметра в разрезе: видна прослойка из металла между двумя слоями пластика.

  • Радиаторы: выбор необходимого оборудования осуществляется на основании личных предпочтений и советов специалиста. Для подобной схемы самым оптимальным считается 5 батарей, а для большего их количества требуется грамотно рассчитанный проект.
  • Ленты для уплотнения резьбы на батареях.
  • Термостатические клапаны для регулировки нагрева радиаторов.
  • Фитинги для соединения труб между собой.

Непосредственными составляющими являются также расширительный бак и отопительный котёл.

Подготовительные действия

Перед началом процесса рассчитывается подробный проект системы отопления для каждого конкретного помещения.

Затем выбирается один из вариантов последовательного подключения: горизонтальный или вертикальный исходя из особенностей жилой площади и личных предпочтений.

Затем, ориентируясь на выбранный тип схемы, требуется определиться с теплоносителем. При вертикальной развязке лучше использовать антифриз, разбавленный в воде, а при горизонтальной — обычную воду.

Как подключить два радиатора отопления, схема

  1. Изначально при последовательном соединении определяется месторасположение отопительного котла. Его располагают, как правило, в подвальном помещении на специальной противопожарной платформе. Над ним крепко фиксируется расширительный бак.

Внимание! Высота расширительного бака относительно котла должна составлять не менее трёх метров.

  1. При этом продумывается грамотная настройка дымохода: тяга должна быть достаточной, а сам дым выходить наружу, не оставаясь внутри помещения.
  2. После производится подключение магистрального трубопровода. Важно избегать изгибов при прокладке.
  3. По периметру всего дома проходит труба, параллельно которой врезаются все батареи.

Фото 2. Схема последовательного подключения батарей в однотрубной системе с котлом и циркуляционным насосом.

  1. Радиаторы размещаются под оконными проёмами.
  2. Замыкаться такая схема должна на отопительном котле.

Внимание! Перед котлом рекомендуется поместить фильтр, очищающий теплоноситель от любых примесей.

  1. А также необходимо предусмотреть элемент, через который будет производиться заполнение системы водой и её слив.
  2. В последовательной схеме подключения, можно дополнять кранами и терморегуляторами каждую батарею.

При вертикальной обвязке в схему включают для принудительной циркуляции теплоносителя циркуляционный насос, а при горизонтальной — создаётся уклон трубы подачи, и перед каждым радиатором монтируется кран Маевского для удаления из системы излишков воздуха.

Плюсы и минусы последовательного подключения батарей

Плюсы последовательного подключения:

  • низкая стоимость расходного материала;
  • допускается использование любых видов радиаторов;
  • при необходимости трубопровод заводится в «тёплый пол»;
  • охват приборами отопления всего периметра комнаты;
  • лёгкий монтаж;
  • небольшое количество расходуемого материала.

Минусы:

  • сложное проектирование процесса;
  • высокий коэффициент потерь тепла: из-за характерной вытянутости такой магистрали теплоноситель к концу охлаждается;
  • при отсутствии циркуляционного насоса возникают застои перемещаемой по радиаторам жидкости и снижение эффективности работы системы в целом;
  • при отсутствии терморегуляторов на батареях — отсутствие контроля над подачей тепла.

Полезное видео

Посмотрите видео, в котором показан пример последовательного подключения радиаторов в частном доме.

Помощь профессионалов

При проведении последовательного подключения радиаторов необходимо проконсультироваться со специалистами по части разработки полноценного проекта. Для исключения различного рода просчётов рекомендуется доверить им ведение этого процесса под ключ.

диагональное, последовательное, прямое, боковое, видео и фото

Наверное, сразу следует обратить внимание на то, что прямое подключение радиатора отопления подразумевает три основных варианта – боковой, нижний и диагональный, но при этом возможны некоторые нюансы. Кроме того, есть варианты для контуров, которые могут быть однотрубными или двухтрубными, ещё это зависит от количества этажей в здании, а также может рассматриваться с точки зрения дизайна. Но подробнее обо всём этом мы поговорим в материале, расположенном ниже, а также продемонстрируем вам по теме видео в этой статье.

Боковое подключение радиаторов отопления в однотрубной системе

Способы разного подключения

Разновидность контуров

Примечание. Контур системы отопления может быть либо однотрубным, либо двухтрубным.
От этого зависит эффективность теплоотдачи приборов, а также способы их подключения.

Диагональное подключение радиатора отопления в однотрубной системе

  1. Однотрубная система отопления подразумевает собой закольцованный контур из одной трубы, в которую врезаются радиаторы отопления – пример такого монтажа показан на верхнем изображении:
    • здесь теплоноситель, двигаясь от котла, по пути, через трубы меньшего диаметра, расходится по батареям и под давлением циркуляционного насоса возвращается назад в ту же трубу;
    • но пройдя через отопительный прибор, вода теряет температуру, следовательно, чем больше радиаторов в такой системе, тем холоднее вода будет в её конце;
    • в автономных системах не рекомендуется устанавливать более 3-4 радиаторов на одну закольцованную трубу, чтобы была возможность сохранить примерно одинаковую температуру в каждом из них;

Байпас в однотрубной системе

  1. В однотрубной системе, особенно в многоэтажных домах, удобнее подключать приборы сбоку, но как подключить радиатор отопления с боковым подключением, чтобы максимально сохранить температуру в последующих батареях?
    Для этого между трубами подачи и возврата врезается перемычка, называемая «байпас» и она служит двум целям:
    • во-первых, часть воды проходит по трубе, не попадая в батарею, следовательно, она не охлаждается;
    • во-вторых, благодаря байпасу можно произвести демонтаж без слива теплоносителя, если даже контур напрямую, без обвода, проходит через радиатор;

Принцип двухтрубного контура

  1. Более удобным можно назвать двухтрубный контур – здесь теплоноситель попадает в радиатор из трубы подачи, а охлаждённая вода сбрасывается в трубу возврата и возвращается в котёл для нового подогрева:
    • Но цена эксплуатации такого обустройства несколько выше, так как приходится подогревать большее количество воды, следовательно, нужно потратить больше энергоносителей, которые нужно оплачивать;
    • Зато такой контур никогда не вызывает проблем и в него можно врезать большое количество радиаторов, так как есть возможность сохранить во всех равномерную температуру;

Совместное подключение

  1. Кроме того, для двухтрубной системы инструкция предусматривает совместное подключение радиаторного контура с тёплым полом, но это два разных устройства, требующих циркуляции теплоносителя при разной температуре.
    • Но, несмотря на такое кажущееся разногласие, такое подключение имеет место – на входе в трубу тёплого пола устанавливается трёхходовой кран, работающий по дискретной системе, и когда контур нагревается до нужного состояния, срабатывает клапан и горячая вода с подачи сбрасывается в «обратку»;
    • Принцип такого подключения хорошо показан на схематическом изображении выше этого абзаца.

Последовательно и параллельно

Последовательное подключение

Помимо всего прочего, подключение может быть последовательным и параллельным, так, последовательное подключение радиаторов отопления показано на верхнем изображении.

Такая ситуация возникает также в том случае, когда перекрывают байпас и вода из одного радиатора сразу попадает в другой, минуя подачу и обратку. Но совсем не обязательно, чтобы циркуляция была по диагонали прибора – так, это может быть нижнее боковое подключение («ленинградка») или одностороннее боковое подключение, суть в том, что теплоноситель сразу попадает из батареи в батарею.

Параллельное подключение

Когда подключение радиаторов отопления параллельное, то они не зависят друг от друга, следовательно, температура воды в них будет равномерной, как в первом, так и в последнем приборе.

Но такое возможно только в двухтрубной системе, где на подачу теплоносителя никаким образом не влияет количество батарей. Схему такого подсоединения вы видите вверху, и оно может быть боковым, нижним или диагональным.

По диагонали, сбоку и снизу

Варианты подключения радиаторов отопления (сверху вниз): по диагонали, сбоку, снизу

Оптимальным считается диагональное подключение радиаторов, так как теплоноситель циркулирует в нём с наибольшей равномерностью, поэтому, когда вы видите в сопроводительных документах номинальную мощность, то производитель исходит именно от такого типа подсоединения, когда вся площадь прибора задействована одинаково.

Считается, что здесь потерь максимальной мощности не существует, и она выдаётся на все 100%. Есть ещё один вспомогательный вариант, когда можно оптимально задействовать всю ёмкость, но об этом немного ниже.

Несколько хуже (только на 95% номинальной мощности) работает прибор отопления, если его подсоединяют сбоку (с одной или с двух сторон) – здесь площадь нагрева будет более интенсивной со стороны подачи.

А вот при нижнем подключении, что также называется «ленинградкой» номинальный КПД составляет всего 90%, так как циркуляция затрудняется столбовым давлением и, вполне естественно, что здесь площадь нагрева является наиболее неравномерной.

Примечание. Прежде чем начать расчёт мощности для отопителей в вашей квартире или частном доме, вам следует окончательно определить способ подключения радиаторов. Только в таком случае вы сможете вычислить количество секций наиболее правильно.

Удлинитель протока, как оптимизатор распределения тепла

Удлинитель протока, как решение проблем

Далеко не всегда удаётся в автономной или централизованной системе отопления подсоединять батареи по диагонали, чтобы обеспечить максимальную (100%) отдачу тепла, и для этого есть разные причины – здесь и технические возможности, и особенности интерьера или попросту человеческий фактор – упустил из виду или не знал.

Когда секций не особенно много, во всяком случае, не более 8-10 штук, а то и меньше, то перепады температуры на общей площади радиатора не заметны, а если и заметны, то не особо. Но вот если количество секций увеличить, а такая потребность возникает довольно-таки часто, то перепады температуры на разных концах одного и того же приборе могут достигать 10̎⁰C и даже более.

Безусловно, можно провести переподключение, то есть, подсоединить прибор по диагонали и в таком случае теплоноситель станет равномерно распределяться по всей площади, но это не всегда возможно из-за тех же технических условий или особенностей интерьера.

В таких ситуациях есть своеобразная панацея – это удлинитель протока, который по непонятным причинам почему-то очень сложно найти в наших магазинах, торгующих сантехникой, но его, зато можно сделать самостоятельно.

Нагрев медной трубы перед пайкой

Для этого вам понадобится медная труба с наружным диаметром 18 мм и толщиной стенки не менее 1 мм, а также медная муфта для пайки (переходник на фитинг) с наружным диаметром 19,5 мм.

Длину трубы рассчитывают с учётом количества секций, так, её конец должен доставать до стыка последней и предпоследней секции – в некоторых случаях удлинитель делают до средины радиатора, но обрезать трубу вы сможете в любой момент. Мы не будем во всех подробностях описывать процесс пайки, скажем только, что флюс не должен попасть внутрь трубы, то есть его не должно быть много, так как может образоваться застывшая капля, и вода при циркуляции будет шуметь.

На фото: установка удлинителя протока

Удлинитель протока устанавливают в верхней части радиатора, но его лучше, конечно, использовать вместе с термоголовкой, которой вы сможете задавать нужную вам температуру. А вот распределение теплоносителя по площади батареи у вас теперь будет равномерным.

Заключение

Произвести подключение радиаторов отопления вы можете и своими руками, если, конечно, для этого у вас имеются необходимые инструменты. Но если вы в этом деле новичок, то не забывайте о том, что это достаточно ответственно – подтекание системы в период отопительного сезона явление не просто неприятное, а, можно сказать, из ряда вон выходящее. Поэтому, если не надеетесь на свои силы, то лучше пригласите специалиста.

Соединение батарей и радиаторов отопления последовательно

⁠Для обеспечения максимальной эффективности и гармоничности функционирования системы отопления необходимо ещё на стадии проектирования решить ряд важных вопросов:

  1. одно- или двухтрубная разводка труб
  2. параллельное или последовательное подключение радиаторов
  3. самотёчная или принудительная циркуляция теплоносителя
  4. нижняя, диагональная или боковая схема подсоединения батарей к общей магистрали

Исходя из выбранного типа комплекса обогрева определяется необходимая мощность, количество приборов, число секций или площадь панели каждого из них.

Виды систем отопления

Прежде всего они различаются по количеству линий разводки, что в конечном итоге определяет последовательное или параллельное соединение радиаторов отопления, схему подведения труб и т.д. Существует два основных типа

Однотрубные

В этом случае имеется одна магистраль, к которой производится подключение и входа, и выхода каждой батареи. Главное достоинство такой системы в простоте реализации, а также в возможности сэкономить на стройматериалах: трубах, фитингах, арматуре и т.д. Большинство отопительных сетей многоквартирных домов работают именно по такому принципу.

В ходе эксплуатации проявляются недостатки схемы

  1. неравномерное распределение тепла в цепочке приборов. Первые получают максимум энергии, до последних вода доходит значительно остывшей
  2. невозможность регулирования температуры, мощности отдельных радиаторов
  3. сложность проведения ремонтных работ, так как для замены одной батареи необходимо сливать всю систему, останавливать её функционирование
  4. необходимость открытой прокладки разводки, что не всегда выглядит аккуратно и эстетично

Частично решить проблему перекоса в распределении тепла, когда реализовано последовательное подключение в систему радиаторов отопления, можно, увеличивая количество секций для последних в цепи потребителей. Вообще такая схема эффективна в небольших комплексах на 4-5 приборов.

Двухтрубные

Их организация предполагает наличие подающей и обратной линии, к каждой из которых подключаются батареи. По первой магистрали движется от котла нагретый теплоноситель, во второй – отводится остывший. Таким образом нивелируются недостатки замкнутой цепи предыдущего типа, все потребители получают одинаковое количество энергии. Кроме того, появляется возможность отсоединения отдельных единиц от системы без остановки её работы.

Двухтрубная разводка более эффективна, так как позволяет избежать перерасхода топлива. Батареи в неиспользуемых в данный момент комнатах можно отключить или понизить их мощность до минимума, сэкономив дорогостоящие ресурсы. Так как последовательное соединение радиаторов отопления невозможно в двухтрубной системе, здесь реализуются две другие схемы

  1. Параллельная. Подающая и обратная линия проходят рядом от одного прибора к другому. Может прокладываться открытым способом либо в конструкциях пола, стен. Несколько схожа с последовательной, однако требует большего расхода материалов.
  2. Лучевая. Ещё более затратное и сложное в организации соединение батарей. Для реализации такой разводки необходим распределительный коллектор с двумя трубами для подачи и обратки. Все приборы подключаются к обеим гребёнкам, поэтому от каждого потребителя тянется две линии. Такая схема применяется также в контуре тёплого пола. Она прокладывается только скрытым способом ввиду большого количества коммуникаций.

Изначальные затраты на обустройство двухтрубной системы окупаются со временем за счёт удобного и точного регулирования мощности приборов.

Можно ли подключить в доме батареи отопления последовательно

Несмотря преимущества лучевой и параллельной схем простая разводка не менее востребована. При условии грамотного расчёта и правильной организации она может быть не менее эффективна. Её применяют в квартирах, подключённых к централизованной сети, а также в небольших системах обогрева дач, частных домов. Её можно реализовать как в горизонтальной обвязке в одноэтажном здании, так и в вертикальной, когда стояки соединяют верхние и нижние уровни. При этом возможна установка приборов любого типа: секционных, панельных, трубчатых.

Как выполнить подключение двух и более радиаторов отопления последовательно

  1. Батареи развешиваются по периметру дома под окнами по центру. Для фиксации применяются кронштейны и крепёжные планки. Положение корпуса проверяется по строительному уровню.
  2. Вдоль стен от котла прокладывается основная магистраль, к которой подключаются приборы. От каждого из них отходит по два ответвления со стороны входа и выхода, которые врезаются в трубопровод посредством тройников. После прохождения всех радиаторов система замыкается на теплогенераторе.
  3. В случае организации самотёчной системы главная линия прокладывается с небольшим уклоном. Принудительное движение рабочей среды предполагает установку перед котлом циркуляционного насоса. Рекомендуется планировать разводку с минимальным количеством изгибов, поворотов.
  4. Для заполнения/слива системы необходимо предусмотреть наличие соответствующей арматуры.
  5. Перед входом в теплогенератор желательно установить фильтр механической очистки, который будет задерживать частицы загрязнений из трубопровода.

Для большей наглядности схема последовательного соединения и врезки радиаторов отопления представлена на рисунке 1.

Рис.1

Способы подключения приборов

Специалисты в сфере проектирования и организации комплексов обогрева выделяют три основные типа, отличающиеся по алгоритму реализации и эффективности. Каждый из них имеет свои преимущества, проявляющиеся в конкретных условиях функционирования. Подключение бывает

Боковое

Предполагает присоединение радиатора к главной линии с одной стороны. При этом вход воды располагается вверху, выход – внизу для обеспечения максимально равномерного прогрева секций или поверхности панели. Такой способ установки считается эффективным, так как процент неохваченной площади теплообмена составляет не более 10%. Чаще всего последовательное боковое подключение батарей отопления выполняется в квартирах многоэтажных домов, являющихся потребителями централизованной коммунальной сети.

Зачастую такая схема дополняется байпасом – трубой меньшего диаметра, соединяющей подающую и обратную магистрали. Это приспособление дополняется запорными кранами, отсекающими прибор от системы.

Диагональное

Позволяет максимально задействовать площадь теплообмена отопительного прибора. Получаемая при этом мощность является эталонной и указывается в паспорте к товару. Для реализации этой схемы подключения необходимо вход в радиатор расположить вверху с одной стороны, выход – внизу с другой. За счёт этого поток рабочей среды равномерно пройдёт через все внутренние каналы.

Этот способ идеально подходит для батарей с большим количеством секций. Именно диагональная обвязка позволяет наиболее полно реализовать преимущества, которые даёт последовательное соединение отопительных радиаторов.

Среди её недостатков стоит выделить

  1. увеличенные расходы на стройматериалы по сравнению с боковым подключением
  2. невозможность спрятать коммуникации в стену или пол
  3. сложность проведения монтажных работ

Нижнее

Наиболее эстетичный способ интеграции прибора в систему, когда и вход, и выход теплоносителя находятся в нижней части корпуса с разных сторон. В этом случае трубы чаще всего прячутся под напольное покрытие и бетонную стяжку. В связи с этим обустройство такой схемы возможно на стадии строительства и ремонта.

Если соединение батарей отопления выполняется последовательно, при нижнем подключении возможна потеря до 15-20% КПД системы. Это происходит из-за того, что воде несколько проблематично подняться по внутренним коллекторам в верхнюю часть корпуса прибора. В результате некоторые участки прогреваются недостаточно.

Профилактические работы

Сводятся к периодической промывке внутренних каналов радиаторов. Это процесс может осуществляться несколькими способами

  1. гидропневматическим с использованием воды и сжатого воздуха, которые подаются в систему под пульсирующим давлением
  2. микробиологическим с применением специальных разрыхляющих налёт и ржавчину составов
  3. химическим, предполагающим добавление в теплоноситель активных реагентов
  4. пневматическим с созданием искусственного гидроудара

Периодичность этих работ при условии, что реализовано последовательное подключение радиаторов определяется индивидуально. Необходимость их проведения возникает в случае необоснованного повышения расхода энергии, значительной разницы температур горячих труб и тёплых отопительных приборов, увеличения времени, необходимого на прогрев помещения и т.д.

Заказывайте монтаж в нашей компании

Специалистами «Альфа-Терм» может быть выполнена установка радиаторов любого типа, мощности, конфигурации. Обратившись к нам, заказчик сможет получить весь перечень услуг от подбора подходящей модели по привлекательной цене до запуска оборудования в работу. С нами задача организации комфортной и эффективной системы отопления будет решена предельно просто.

Параллельное подключение радиаторов | ТЕПЛОВИЧЁК

На сегодняшний день при проектировании систем отопления используются две схемы подключения радиаторов в систему: последовательная и параллельная.

При последовательной схеме подключения труба подачи теплоносителя подключена к первому радиатору. Отводная труба первого радиатора является трубой подачи второго радиатора и так далее. Таким образом, теплоноситель последовательно передается по радиаторам от первого к последнему. Недостатком такой схемы является то, что нельзя использовать большое количество радиаторов, так как теплоноситель теряет свою температуру в каждом радиаторе. Как следствие, эффективность последнего радиатора меньше эффективности первого.

При параллельной схеме подключения трубы подачи всех радиаторов подключены к общему стояку. Аналогично отводные трубы всех радиаторов также подключены к своему стояку при двухтрубной трубной системе отопления или в тот же стояк подачи при однотрубной системе. В этом случае температура теплоносителя поступающего во все радиаторы одинакова. Следовательно, все радиаторы работают с одинаковой эффективностью.

Дополнительным плюсом использования параллельной схемы подключения радиаторов является возможность установки на каждый радиатор запорной арматуры, что значительно облегчает сезонное обслуживание радиатора. Нет необходимости полностью перекрывать общие стояки, чтобы провести чистку или замену радиатора, для этого достаточно перекрыть индивидуальные краны.

Кроме того, при использовании параллельной схемы подключения, на каждый радиатор можно установить ручной или автоматический терморегулятор, с помощью которого регулируется поток теплоносителя, поступающего в радиатор, и как следствие теплоотдача радиатора. Использование терморегуляторов позволяет поддерживать комфортные условия в помещении, независимо от колебаний температуры на улице.

Для установки запорной арматуры или терморегулятора радиатор должен быть оснащен байпасом. Байпас – это перемычка (отрезок трубы), который устанавливается между трубами подачи и отвода теплоносителя, и служит для сброса излишка теплоносителя при уменьшении потока через радиатор. Диаметр байпаса должен быть меньше диаметра трубы подачи на один калибр.

Вам необходимо включить JavaScript, чтобы проголосовать

Расскажите о нас друзьям:

Соединение батарей и радиаторов отопления последовательно


Зачем соединять аккумуляторы

Аккумулятор, как и конденсатор, может накапливать энергию. В отличие от простой гальванической батареи, где химические реакции, при которых происходит выработка электроэнергии, необратимы, аккумулятор можно зарядить. При этом ионы разводятся друг от друга, и внутренняя химия аккумулятора взводится, как пружина. Впоследствии эти ионы, благодаря «заряженному» химическому процессу, будут отдавать свои лишние электроны в электрическую цепь, сами стремясь обратно к нейтральности кислого электролита.

Все хорошо, только у аккумулятора количество энергии, которое он способен выработать после полной зарядки, зависит от его общей массы. А масса зависит от исполнения — есть стандарты, и по этим стандартам и делаются аккумуляторы. Хорошо, когда потребление электроэнергии точно так же стандартизовано. Например, когда имеется автомобиль, который берет определенное количество электричества для пуска двигателя. Ну, и для других своих нужд — подпитки автоматики на стоянке, питания замков с противоугонными устройствами и т.д. Стандарты аккумуляторов и рассчитаны на электропитание автомобилей различных типов.

А в других областях, где требуется стабильное постоянно напряжение, запрос по параметрам питания гораздо шире и разнообразнее. Поэтому, имея однотипные и строго одинаковые аккумуляторы, можно думать и об использовании их в разных сочетаниях, и более эффективных способах зарядки, чем банально заряжать их все по очереди.

Соединение источников питания

Как и нагрузки, например, лампочки, соединить аккумуляторы можно как параллельно, так и последовательно.

При этом, как можно сразу заподозрить, что-то должно обязательно суммироваться. При последовательном соединении резисторов суммируется их сопротивление, ток на них уменьшится, но через каждое из них он будет идти одинаковый. Аналогично и через последовательное подключение аккумуляторов ток будет течь один и тот же. А раз их стало больше, больше станет напряжение на выходах батареи. Следовательно, при неизменной нагрузке будет идти больший ток, который израсходует емкость всей батареи за то же время, как и емкость одной подключенной к этой нагрузке батареи.

Параллельное подключение нагрузок приводит к увеличению суммарного тока, напряжение же на каждом из сопротивлений будет одним и тем же. То же самое и с аккумуляторами: напряжение на параллельном подключении будет таким, как у одного источника, а ток могут все вместе дать больший. Или, если нагрузка осталась какой и была, питать ее током они смогут дольше ровно настолько, насколько возросла их суммарная емкость.

Теперь, установив, что соединять аккумуляторы параллельно и последовательно можно, рассмотрим подробнее, как это работает.

Параллельное подключение радиаторов отопления

Параллельное подключение батарей

Параллельное соединение радиаторов используют чаще всего в многоквартирных домах. Отопительная система с таким видом подключения работает по следующему принципу: горячая вода по всем этажам идет по одной трубе вверх, и по другой – вниз. При этом теплоноситель последовательно проходит все радиаторы дома.

Минус подобной конструкции состоит в необходимости при ремонте одного радиатора отключения системы отопления во всем подъезде. Проблема решается установкой на отводах шаровых кранов, одновременно предоставляющих возможность регулирования уровня теплоотдачи отдельных радиаторов.

Следует отметить и другой недостаток параллельного подключения радиаторов отопления – снижение давления теплоносителя в магистрали приводит к недостаточному прогреванию батарей, что сокращает эффективность такой системы отопления.

Принципы работы химического источника питания

Источники питания, основанные на химических процессах, бывают первичными и вторичными. Первичные источники состоят из твердых электродов и соединяющих их химически и электрически электролитов — жидких или твердых составов. Комплекс реакций всего агрегата действует так, что заложенное в нем химическое неравновесие разряжается, приводя к некоему балансу компонентов. Выделяющаяся при этом энергия в виде заряженных частиц выходит наружу и на клеммах создает электрическое напряжение. Пока оттока заряженных частиц наружу нет, электрическое поле замедляет химические реакции внутри источника. При соединении клемм источника с какой-нибудь электрической нагрузкой по цепи побежит ток, а химические реакции возобновятся с новой силой, снова поставляя электрическое напряжение на клеммы. Таким образом, напряжение на источнике остается неизменным, медленно уменьшающимся, пока в нем продолжает оставаться химическое неравновесие. Это можно наблюдать по медленному постепенному уменьшению напряжения на клеммах.

Такое явление называется разрядка химического источника электроэнергии. Первоначально обнаружили такой комплекс реакции с двумя разными металлами (медь и цинк) и кислотой. При этом металлы в процессе разрядки подвергаются разрушению. Но потом подобрали такие компоненты и такое их взаимодействие, что если после уменьшения напряжения на клеммах в результате разрядки поддерживать его там искусственно, то через источник обратно потечет электрический ток, и химические реакции способны повернуть вспять, снова создавая в комплексе прежнее неравновесное состояние.

Источники первого типа, в которых компоненты безвозвратно разрушаются, называются первичными, или гальваническими элементами, по имени открывателя таких процессов Луиджи Гальвани. Источники второго рода, способные под действием внешнего напряжения, повернув вспять весь механизм химических реакций, снова вернуться к неравновесному состоянию внутри источника, называются источниками второго рода, или электрическими аккумуляторами. От слова «аккумулировать» — сгущать, собирать. И их главная особенность, только что описанная, называется зарядка.

Однако у аккумуляторов все не так просто.

Таких химических механизмов было найдено несколько. С разными участвующими в них веществами. Поэтому и типов аккумуляторов несколько. И они по-разному себя ведут, заряжаются и разряжаются. А в некоторых случаях возникают явления, которые очень хорошо знать людям, имеющим с ними дело.

А с ними имеют дело практически все. Аккумуляторы, как автономные источники энергии, применяются повсюду, в самых разных устройствах. От маленьких наручных часов до транспортных средств разного размера: автомобилей, троллейбусов, тепловозов, теплоходов.

Ошибки коммутации и их последствия

Самое главное — избежать поражения электротоком

. Некорректное объединение химических источников тока повлечет за собой:

  • Формирование короткозамкнутого контура. В гальванических элементах начнется химическая реакция, которая приведет к вытеканию электролита, короблению корпуса, взрыву, возгоранию (характерно для параллельного соединения).
  • Размыкание контура. Во время подключения нагрузки сгенерируется обратный электроток через некорректно подсоединенный источник. Это приведет к быстрому выходу из строя блока (характерно для последовательного соединения).
  • Продолжительное короткое замыкание. Результат — расплавление проводов, возгорание, коробление корпуса, химическая реакция внутри источников, воспламенение, утечка электролита и взрыв.
  • Кратковременное замыкание. Результат — снижение емкости, порча электродов.
  • Перегрев и оплавление проводников. Результат — короткое замыкание (если некорректно подобран проводник по сечению).

Некоторые особенности аккумуляторов

Классический аккумулятор — автомобильный свинцово-сернокислый. Выпускается в виде последовательно соединенных в батарею аккумуляторов. Его использование и зарядка/разрядка хорошо известны. Опасными факторами у них являются едкая серная кислота, имеющая концентрацию 25–30%, и газы — водород и кислород, — которые выделяются при продолжении зарядки после того, как она химически закончилась. Смесь газов, являющихся результатом диссоциации воды, как раз и является хорошо известным гремучим газом, где водорода ровно в два раза больше, чем кислорода. Такая смесь взрывается при любом удобном случае — искре, сильном ударе.

Аккумуляторы для современной аппаратуры — мобильников, компьютеров — делаются в миниатюрном исполнении, для их зарядки выпускаются зарядные устройства разного исполнения. Многие из них содержат схемы управления, позволяющие отследить окончание процесса зарядки или заряжать все элементы сбалансированно, то есть, отключая от устройства те из них, которые уже зарядились.

Большинство этих аккумуляторы довольно безопасны, и неправильная разрядка/зарядка может повредить только их самих («эффект памяти»).

Это касается всех, кроме аккумуляторов на основе металла Li — лития. Экспериментов с ними лучше не проводить, а заряжать только на специально для него предназначенных зарядных устройствах и работать с ними только по инструкции.

Причиной является то, что литий очень активен. Это третий после водорода элемент периодической таблицы, металл, который активнее натрия.

Во время работы с литий-ионными и другими батарейками на его основе, металлический литий может постепенно выпадать из электролита и однажды произвести внутри элемента замыкание. От этого он может загореться, что приведет к катастрофе. Так как погасить его НЕЛЬЗЯ. Он горит без доступа кислорода, при реакции с водой. При этом выделяется большое количество теплоты, и к горению присоединяются и другие вещества.

Случаи возгорания мобильных телефонов с литий-ионными аккумуляторами известны.

Однако инженерная мысль идет вперед, создавая все новые заряжаемые элементы на основе лития: литий-полимерный, литий-нанопроводниковый. Стараясь преодолеть недостатки. И они как аккумуляторы очень хороши. Но… от греха подальше лучше не делать с ними тех нехитрых действий, которые описаны ниже.

Ограничения, меры безопасности, дополнительные рекомендации

Зарядка для аккумуляторов 18650

Рассмотрим типовые аккумуляторы к машине, созданные с применением свинцовых пластин и кислотного электролита. Даже при работе с изделиями одной торговой марки заметны существенные отличия сопротивлений и емкостей. Различия увеличиваются в процессе эксплуатации. В частности, они зависят от действительной плотности раствора.

При последовательном соединении одинаковый ток проходит по всей цепи. Однако на выходных клеммах каждого элемента будет разное напряжение. Эта особенность создает затруднения в процессе пополнения заряда.

Если такую схему подключить к зарядному устройству, возникнет опасная ситуация. Не исключено, что на одной аккумуляторной батарее напряжение увеличится чрезмерно. В таких условиях интенсифицируется выделение горючих газов. Достаточно небольшой искры для взрыва и пожара. В некоторых ситуациях бесполезным будет даже интенсивное проветривание помещения.


Диаграммы токов/ напряжений

Представленные на рисунках данные наглядно иллюстрируют описанный выше пример. Предположим, что для ускорения процедуры принято решение не разбирать компоненты, соединенные в последовательной цепи. Подключают к зарядному устройству 9 и 1 АКБ на 20 А*ч и 10 А*ч, соответственно. По графикам устанавливают стандартное автоматическое отключение на уровне 138 V. Контролируют общие выходные клеммы, предполагая ограничение по напряжению для каждого компонента 13,8 V.

При одинаковом токе в любой части цепи аккумулятор меньшей емкости получает равное с другими компонентами количество энергии за единицу времени. По диаграммам видно, что для накопления номинального заряда понадобится около трех часов. Однако остальным АКБ для завершения процесса потребуется в два раза больше времени. Автомат по указанным выше настройкам не отключит источник питания. Рост напряжения на батарее с меньшей емкостью будет сопровождаться отмеченными выше опасными проявлениями.

Если аккумуляторы соединяются последовательно, зарядку обязательно выполняют синхронно. Это значит, что необходимо контролировать единство емкостей, технического состояния и уровня разряда. Выполнить эти условия проще, если пользоваться одинаковыми изделиями (с учетом модели, производителя).

На примере этого же последовательного подсоединения рассмотрим процесс разряда. В современной схемотехнике подключают защитные автоматы, размыкающие цепь при уменьшении энергетического запаса ниже определенного уровня. Это необходимо, чтобы увеличить срок службы АКБ, созданных с применением данной технологии.

Если соединить разные аккумуляторы, первым разрядится меньший по емкости компонент. Отключающее устройство фиксирует общее значение напряжения, поэтому в этом примере не будет способен выполнить свои функции в полном объеме. При настройке на 72 V защита для АКБ на 10 А*ч не отключит потребителей. Соответствующий компонент разрядится чрезмерно. В таком режиме он достаточно быстро будет испорчен.

Изучим алгоритм, как подключить аккумулятор из параллельных элементов к зарядному устройству. В этом случае тщательный контроль равенства емкостей не нужен. Зарядные и разрядные токи различаются в каждой цепи, поэтому следует учитывать соответствующие ограничения производителя. Предельно допустимые параметры приведены в сопроводительной документации. Проверять нужно уровень напряжения с учетом емкости.

К сведению. Если технические данные на конкретную модель утеряны, необходимую информацию можно найти в интернете.

Последовательное и параллельное соединение аккумуляторов помогает успешно решать задачи автономного и запасного энергоснабжения. При работе с этими схемами следует учитывать в комплексе представленные рекомендации.

Последовательное соединение источников

Это всем известная батарея из элементов, «банок». Последовательно — это значит, плюс первого вывести наружу — будет плюсовая клемма всей батареи, а минус соединяется с плюсом второго. Минус второго — с плюсом третьего. И так далее до последнего. Минус предпоследнего присоединен к его плюсу, а его минус выводится наружу — вторая клемма батареи.

При последовательном соединении аккумуляторов складывается напряжение всех банок, и на выходе — клеммах плюс и минус батареи — получится сумма напряжений.

Например, аккумулятор автомобильный, имея в каждой заряженной банке примерно 2,14 вольта, дает в сумме из шести банок 12,84 вольт. 12 таких банок (аккумулятор для дизелей) дадут 24 вольта.

А емкость такого соединения остается равной емкости одной банки. Ввиду того, что напряжение на выходе выше, номинальная мощность нагрузки возрастает и расход энергии будет быстрее. То есть все разрядятся сразу вместе как один элемент.


Последовательное соединение аккумуляторов

Такие аккумуляторы заряжаются тоже в последовательном соединении. К плюсу подключается плюс питающего напряжения, к минусу — минус. Для нормальной зарядки нужно, чтобы все банки были одинаковыми по параметрам, из одной партии и одинаково дружно разряжены.

Иначе, если они разряжены чуть по-разному, то при зарядке один закончит зарядку раньше других и у него начнется перезарядка. А это может для него плохо кончиться. То же самое будет наблюдаться при разной емкости элементов, что, собственно говоря, одно и то же.

Последовательное соединение элементов питания было испробовано с самого начала, практически одновременно с изобретением гальванических элементов. Алессандро Вольта создал свой знаменитый вольтов столб из кружочков двух металлов — меди и цинка, которые перекладывал тряпочками, пропитанными кислотой. Сооружение оказалось удачной придумкой, практичной, да еще давало напряжение, вполне достаточное для смелых тогдашних опытов по изучению электричества — достигало 120 В, — и стало надежным источником энергии.

Решение задач с применением разных видов соединений

Подключение светодиода через резистор и его расчет

Во всех проводящих цепях есть потери, которые созданы внутренним сопротивлением. Вместо эффективной передачи энергия тратится попусту на обогрев окружающего пространства. Очевидное решение – последовательное подключение АКБ для повышения напряжения. В частности, такой вариант применяют в конструкциях блоков преобразователей, которые устанавливают в источниках бесперебойного питания компьютерного оборудования.

Параллельное соединение аккумуляторов применяют для увеличения тока и емкости. Этим решением улучшают автономность источника. Одновременно продлевают работоспособность устройств, которые подключаются к АКБ. Объединив необходимое количество элементов, получают нужное значение мощности потребления.

Параллельное соединение аккумуляторов

При параллельном соединение источников питания все плюсы нужно присоединить в один, создавая плюсовой полюс батареи, все минусы — в другой, создавая минус батареи.

Часть аккумулятора


Параллельное соединение

При таком соединении напряжение, как мы видим, должно быть одно на всех элементах. Только вот какое? Если у аккумуляторных батарей перед подключением окажется разное напряжение, то сразу после подключения мгновенно начнет происходить процесс «выравнивания». Те элементы, у которых напряжение ниже, начнут очень интенсивно подзаряжаться, черпая энергию из тех, у которых напряжение больше. И хорошо, если разница в напряжениях объясняется разной степенью разрядки одинаковых элементов. Но если они разные, с разными номиналами напряжений, то начнется перезаряд, со всеми вытекающими прелестями: разогрев заряжаемого элемента, кипение электролита, выпадение металла электродов, и так далее. Следовательно, раньше того, как соединить между собой элементы в параллельную АКБ, необходимо измерить вольтметром напряжение на каждом из них, чтобы убедиться в безопасности предстоящей операции.

Как мы видим, вполне жизнеспособны оба способа — и параллельное, и последовательное соединение аккумуляторов. В обыденной жизни нам достаточно тех элементов, которые включаются в наши гаджеты или фотоаппараты: один аккумулятор, или два, или четыре. Подключаются они так, как это определено конструкцией, и мы даже не задумываемся, это параллельное или последовательное соединение.

Но вот когда в технической практике нужно обеспечить сразу большое напряжение, да еще в течение долгого периода, там в помещениях выстраивают огромные поля из аккумуляторов.

Например, для аварийного питания радиорелейной станции связи напряжением в 220 вольт в течение периода, когда должна быть устранена всякая авария в цепи питания, нужно 3 часа… Немало аккумуляторов.

Похожие статьи:

  • Способы преобразования 220 Вольт в 380
  • Расчет потерь напряжения в кабеле
  • Работа с мегаомметром: для чего нужен и как пользоваться?

Последовательно-параллельное соединение элементов напряжения.

Источники питания включают по последовательно-параллельной схеме для увеличения, как тока, так и напряжения. При этом основываются на том, что параллельное включение увеличивает силу тока, а последовательное увеличивает общее напряжение. На рисунке 3.13 показаны примеры последовательно-параллельных схем включения элементов питания.

Рисунок 3.11.Последовательно-параллельное соединение элементов питания.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Похожие материалы:

  • Источники напряжения
  • Приложенное напряжение и падение напряжения на участке цепи.
  • Общий провод или земля.
Комментарии

#42 ExTpABepT 09.10.2019 06:34 Если исключить всякие балансиры и Т.П., имею 2 источника питания 1. 10В, 1А 2. 5В, 0.5А какое напряжение я получу на выходе при параллельном подключении (+ к +; — к -)??

Цитировать

#41 Iiiiiii 01.06.2019 05:09 Цитирую Владик:

Мне надо соединить последовательно два аккумулятора по 3.7 в но как их заряжать если на аккумуляторах межет быть разное напряжение

Для этого существуют балансиры Цитировать
#40 Andr 18.05.2019 05:53 Цитирую Слава:

Мне нужно 12 в для питания прибора. Что будет если соединить последовательно «крону» 9 В 300 мАч и три батерейки по 1,2 В 2600 мАч (все аккумуляторные).

Работать будет, но когда крона первая даст слабину, напряжение просядет Цитировать
#39 Слава 18.12.2018 15:09 Мне нужно 12 в для питания прибора. Что будет если соединить последовательно «крону» 9 В 300 мАч и три батерейки по 1,2 В 2600 мАч (все аккумуляторные) .

Цитировать

#38 Юрийц 23.11.2018 23:27 Здраствуйте ,падскажите пажалуйста можноли падключить зарядное с выходом вторичной обмотки на 21 волт акб с выходом полной зарядки на 24 вольта?Спасибо.

Цитировать

#37 Владимир1987 26.08.2018 06:19 Цитирую nick:

Подскажите, пожалуйста, каким током заряжать запараллеленые аккумуляторы 3шт по 1.5V 1000mAh?

300 mA не ошибешься Цитировать
#36 Вадим 06.06.2018 08:22 Цитирую Petr:

Что будет если соединить два источника тока, например батарейки типа КРОНА друг с другом? Плюс к минусу, минус к плюсу?

Замкнёт, и либо взорвётся, либо нагреется и заряд пропадёт, либо ничего, в зависимости от количества электрического напряжения Цитировать
#35 Владик 28.02.2018 19:09 Мне надо соединить последовательно два аккумулятора по 3.7 в но как их заряжать если на аккумуляторах межет быть разное напряжение

Цитировать

#34 Petr 18.12.2017 11:18 Что будет если соединить два источника тока, например батарейки типа КРОНА друг с другом? Плюс к минусу, минус к плюсу?

Цитировать

#33 Связист 04.11.2016 16:42 Подскажите пожалуйста, хочу собрать зарядное устройство на АКБ 24 В и 12 А, есть 2 блока питания 24 В и 6 А если их соединить паралельно они выдавать нужные величины или с блоками это не действует?

Цитировать

#32 vsb55 30.10.2016 14:07 4шт. элемента питания для игрушки соединены последовательно , напряжение меряю есть 6 вольт ток 0,75А, а подключаю стабилизированн ый блок питания с напряжением 6 вольт и током 2А, игрушка не работает, возвращаю батарейки — все работает, почему?

Цитировать

#31 Felix 29.08.2016 17:48 Из текста статьи,не совсем понял про последовательно -препятствующее соединение источников питания. Вернее будет сказать, совсем не понял. Ведь соединение элементов одноимёнными полюсами это есть параллельное соединение. А что такое последовательно — препятствующее? Схемку не изобразите?

Цитировать

#30 Maksimillian 10.05.2016 08:09 Доброго времени! Имеется машинка на управлении. 6 дюрасельчиков АА подключены последовательно . Мультиметр в режиме DCA 200m выдаёт 42,1 С какими параметрами можно подобрать уже аккумулятор? Чтобы выдавал те-же параметры, или даже получше Спасибо за внимание

Цитировать

#29 Ммммм 21.11.2015 19:07 Цитирую мм:

Подскажите, если параллельно подсоединить батарею 12 В, блок питания 16 в, какое напряжение будет в итоге на нагрузке

Присоединюсь к вопросу. Только батарея 11.1 (7600 мап) а блок 19,2 2а. В моем случае это шанс запитать ноутбук. Выгорела цепь питания. Цитировать
#28 Alex42ru 10.08.2015 16:31 А что будет если подключить 6 солнечных батарей смешано, две последовательно + две последовательно + две последовательно ? Одна выдает напряжение в 2,5 В, ток в 25 мА. Сколько будет напруга и сколько будет ампер?

Цитировать

#27 nick 22.06.2015 08:46 Подскажите, пожалуйста, каким током заряжать запараллеленые аккумуляторы 3шт по 1.5V 1000mAh?

Цитировать

#26 Administrator 17.05.2015 00:45 Цитирую Агата:

Три одинаковые батареи, соединенные параллельно, подключены к внешнему сопротивлению. Как изменится ток через это сопротивление, если переключить полярность одной из батарей ?

Смотрите второй закон Кирхгофа: Цитировать
#25 Агата 27.04.2015 18:37 Три одинаковые батареи, соединенные параллельно, подключены к внешнему сопротивлению. Как изменится ток через это сопротивление, если переключить полярность одной из батарей ?

Цитировать

#24 Тихогром 19.04.2015 22:04 Ток при последовательно м соединении батареек и аккумов. Как оно на практике: берем тестер ставим на «10А» и измеряем ток одной (!!отдельно взятой!!)батаре йки или аккума, получим от 2 до 4 Ампер. Соединяем посл. 3 аналогичных батарейки или аккума и замеряем их суммарный ток… получаем от 5 до 10Ампер. Новичкам это крайне важно понимать! Чтобы понять почему так представляем вместо тока — поток воды, батарейки — насосами, а проводники — трубами.

Цитировать

#23 Administrator 13.04.2015 17:25 Цитирую Rolin:

Извините возможно за глупый вопрос: Имеется машинка на радиоуправлении. Хочу увеличить емкость аккумуляторов. Изначально идет 4 батареи соединенных последовательно , хочу добавить еще 4 батареи параллельно. как правильно это сделать?

Четыре новых аккумулятора соедините последовательно , а потом эту батарею присоедините к первой (штатной)паралл ельно. Только аккумуляторы должны быть одной емкости. Цитировать
#22 Rolin 08.04.2015 12:23 Извините возможно за глупый вопрос: Имеется машинка на радиоуправлении . Хочу увеличить емкость аккумуляторов. Изначально идет 4 батареи соединенных последовательно , хочу добавить еще 4 батареи параллельно. как правильно это сделать?

Цитировать

#21 Administrator 07.02.2015 16:17 В этом случае рассчитать ток трудно, так как вы не знаете внутреннее сопротивление аккумулятора, которое зависит от многих факторов, в том числе и от степени разряда. Проще последовательно в цепь поставить амперметр и измерить ток.

Цитировать

#20 Рома 06.02.2015 03:17 а если нужно расчитать какой ток потечет через подсаженный аккумулятор 21 В (ном. 24,8), если его заряжать напряжением 30 В. У меня на работе возникла такая проблема.

Цитировать

#19 Administrator 16.01.2015 16:50 Цитирую Игорь:

Как обеспечить соединение элементов питания напряжением 3.7 вольта чтоб на выходе получилось в р-не 12 вольт разьясните пожалуйста

Игорь соедините три элемента последовательно , получите 11,1 вольта Цитировать
#18 Игорь 16.01.2015 03:51 Как обеспечить соединение элементов питания напряжением 3.7 вольта чтоб на выходе получилось в р-не 12 вольт разьясните пожалуйста

Цитировать

#17 Administrator 23.12.2014 02:29 Не постоянная, а одинаковая через все элементы! Естественно закон Ома никто не отменял

Цитировать

#16 Germont 22.12.2014 08:47 Не понимаю, как может изменяться напряжение, а сила тока оставаться постоянными, если по закону Ома они зависят прямопропорцион ально?

Цитировать

#15 Administrator 13.02.2014 15:49 Цитирую мм:

Подскажите, если параллельно подсоединить батарею 12 В, блок питания 16 в, какое напряжение будет в итоге на нагрузке

Мало исходных данных, что бы дать ответ. Какая батарея? Ток нагрузки блока питания? Внутреннее сопротивление источников напряжения? Если хотите теории, то расписал и пояснил в видеоуроке здесь: В вообще какова цель такого соединения? Зарядить аккумулятор? Цитировать
#14 мм 12.02.2014 12:28 Подскажите, если параллельно подсоединить батарею 12 В, блок питания 16 в, какое напряжение будет в итоге на нагрузке

Цитировать

#13 Сергей 30.11.2013 22:41 Цитирую Николай:

Цитирую Кирилл: А если при параллельном включении Е1=5В, а Е2=1,5В тогда чему равно общее напряжение?

5в. берется большее значение тогда а если при параллельном соединении Е1=5В а Е2=7В? то общее напряжение 12 , 5 или 7? Цитировать
#12 Николай 30.05.2013 21:22 Цитирую Кирилл:

А если при параллельном включении Е1=5В, а Е2=1,5В тогда чему равно общее напряжение?

5в. берется большее значение тогда Цитировать
#11 Кирилл 29.05.2013 07:57 А если при параллельном включении Е1=5В, а Е2=1,5В тогда чему равно общее напряжение?

Цитировать

+1 #10 Administrator 04.12.2012 18:36 В теории соглашусь с Вами на все 100, на практике можно по исследовать эту проблему. Однако ее решение не имеет большого практического значения, проще поставить батарейку по мощнее. В общем задачка для «фанатиков» электротехники ну и для студентов! В жизни встречал только параллельное соединение аккумуляторных батарей и то не штатное, когда в «тяжелые времена для нашей страны» приходилось для запуска дизель-генерато ров включать аккумуляторы меньшей емкости параллельно. Пусковые токи были большие!

Цитировать

+3 natasha.webuspex 03.12.2012 18:45 Вывод делаю следующий: параллельное соединение батарей — дело вредное. При наличии в наборе одной некачественной испортит всё дело, посадит и хорошую. natasha.webuspex.ru/dva-istoch nika-toka.htm

Цитировать

+1 Administrator 03.12.2012 17:27 Цитирую natasha.webuspex:

С батареями этот номер не пройдет (не зарядится), а для аккумуляторов ситуация реальная, автомобилисты частенько пользуются этим. В этом случае меньшая эдс будет балластом, ток в нагрузку отдавать не будет.

Безусловно батарейка не зарядится, я утверждаю что батарейка с большей эдс будет разряжаться. А на счет «прикуривания» это правильно. Цитировать
+2 Administrator 03.12.2012 17:05 Цитирую Dmitry:

У меня вопрос. Что будет если соеденить два элемента последовательно а третий точно так но в обратной полярности?

Смотрите второй закон Кирхгофа Если имеете такое соединение то напряжение на нагрузке будет: Rн=-E1-E2+E3=-12в Цитировать
natasha.webuspex 03.12.2012 06:13 С батареями этот номер не пройдет (не зарядится), а для аккумуляторов ситуация реальная, автомобилисты частенько пользуются этим. В этом случае меньшая эдс будет балластом, ток в нагрузку отдавать не будет.

Цитировать

-2 Dmitry 02.12.2012 10:46 У меня вопрос. Что будет если соеденить два элемента последовательно а третий точно так но в обратной полярности?

Цитировать

-1 Administrator 29.11.2012 16:30 Согласен, однако этот ток приведет к «разряду» элемента с большим напряжением до уровня наименьшего напряжения параллельно включенного элемента. А когда напряжения станут равными ток между параллельно соединенными элементами будет равен нулю. Что касается аккумуляторов то попросту один зарядил другой параллельно включенный. В любом случае выражение Iобщ=I1 +I2+I3 остается истинным, просто ток элемента с меньшей эдс будет отрицательным.

Цитировать

natasha.webuspex 29.11.2012 09:35 При этом вы забываете, что эдс реальных батареек различается, поэтому возникнет значительный ток между самими элементами. Если интересно, мои взгляды natasha.webuspe x.ru/dva-istoch nika-toka.htm

Цитировать

Administrator 28.11.2012 15:21 Уважаемая Наташа, не сомневайтесь, все проверено на практике! А вообще все проверяется с помощью закона Ома для полной цепи.То есть при подключении нагрузки в цепь ток будет зависеть не только от самой нагрузки, но и от внутреннего сопротивления источника. Общее внутренне сопротивление параллельно включенных источников всегда меньше чем одного, отсюда вывод: ток в цепи будет увеличиваться.

Цитировать

natasha.webuspex 26.11.2012 09:55 С параллельным соединением батарей рекомендация сомнительная.

Цитировать

Обновить список комментариев

Правильное подключение радиаторов отопления: диагональное, нижнее, боковое, последовательное

Любые современные батареи, будь то алюминиевые, чугунные или биметаллические, поставляются с четырьмя открытыми патрубками для подключения к магистрали отопления. В соответствии с конструктивными особенностями разводки выбирается схема соединения радиаторов с подведенными трубами, а оставшиеся отверстия закрываются заглушками или воздухоотводящими кранами.

В этой статье мы будем изучать возможные варианты установки батарей и расскажем, какая схема лучше с точки зрения эффективности теплоотдачи. [contents]

Диагональное подключение

Считается, что наилучшие результаты работы вашего радиатора можно получить, используя диагональное подключение. Для того чтобы правильно реализовать этот способ, нужно подсоединить входную трубу к одному из верхних входов, а обратку – к нижнему с противоположного края. Тогда теплоноситель будет циркулировать по оптимальному маршруту, захватывая наибольшую часть поверхности отопительного прибора.

Такая комбинация является особенно эффективной, если радиатор состоит из большого числа (более 10) секций. Все другие виды соединений в этом случае будут заметно проигрывать.

Поэтому диагональное соединение считается эталонным, и все производители указывают параметры своего оборудования относительно этого варианта устройства отопления.

Диагональное подключение многосекционной батареи

К недостаткам рассматриваемого способа можно отнести:

  • большой расход труб в системе;
  • невозможность спрятать коммуникации в стене или в коробе;
  • сложную геометрию разводки;
  • неудобный монтаж.

Применяется диагональная схема в тех случаях, когда главным требованием является максимальная теплоотдача, а соображения эстетики и дизайна отходят на второй план. В силу неэкономичности и сложности разводки, в многоэтажных домах этот способ установки радиаторов практически не используется.

Нижнее подключение

В противоположность диагональному, нижний способ подключения батарей не позволяет оптимизировать систему отопления по производительности, но зато обеспечивает возможность сделать радиатор практически незаметным.

Нижнее подключение радиатора

Такое соединение (его иногда называют ленинградкой), в силу особенностей прохождения теплоносителя между входным и выходным коллектором, снижает КПД в системе на 10-15%. Причем столь ощутимыми эти потери становятся лишь в многоквартирных домах при большой длине магистрали.

Если вы планируете устанавливать радиатор в собственном доме (особенно одноэтажном), нижняя схема подключения будет отличным вариантом.

Верхняя часть батареи прогревается хуже нижней, особенно это становится заметным при засорении или завоздушивания внутренних полостей. В этих случаях требуется чистка и удаление воздуха при помощи кранов Маевского.

Боковая схема

Чаще всего радиаторы системы отопления, особенно в многоквартирных домах, монтируются по боковой схеме. Ее суть заключается в том, что обе магистрали подходят к батарее с одной стороны.

Боковое подключение радиатора отопления

Преимущества бокового подключения:

  • высокая эффективность;
  • удобный монтаж;
  • экономия на трубах;
  • возможность организации байпаса между магистралями для установки регулирующей арматуры.

Если сравнивать между собой диагональную и боковую разводку, преимущество стоит отдать последней, т. к. разница в эффективности составляет всего несколько процентов, а выгоды бокового подключения очевидны.

Диагональная схема начинает выигрывать, если нужно подключить радиатор с большим количеством секций или организовать последовательное расположение нескольких мощных батарей. Правильное понимание этих особенностей поможет оптимально распределить радиаторы в системе.

Расположение радиатора

Радиатор лучше всего устанавливать под окном. Это общеизвестное правило объясняется очень просто: именно там батарея отопления создаст наилучшие условия, препятствующие попаданию холодного воздуха в помещение.

Схема размещения радиаторов отопления под окном

В городской квартире окна и двери – самые главные источники теплопотерь. В частных домах, как мы уже отмечали, к ним добавляются крыша и пол. Батарея под подоконником создаст завесу из теплого воздуха, который, как известно, стремится вверх при нагреве, и не пустит холод внутрь.

Если в помещении несколько окон, лучше распределить радиаторы между ними и подключить их последовательно. Также специалисты рекомендуют ставить несколько точек обогрева в угловые комнаты.

Правильно разместить радиатор помогут следующие советы:

  • Расстояние батареи до пола и подоконника должно быть не менее 10 см. В противном случае эффективность ее работы снизится, а под ней будет неудобно убираться;
  • Не стоит сильно углублять радиатор в сторону стены, лучше оставить зазор около 5 см;
  • При использовании декоративных защитных экранов эффективность радиаторов снижается на 10-15%.
  • С точки зрения теплоотдачи преимущество имеют алюминиевые радиаторы, но в городских квартирах лучше устанавливать биметаллические изделия.

И еще один немаловажный момент: самостоятельно изменять схему подключения радиаторов, их соединение между собой или устанавливать запорные вентили при отсутствии байпасов в многоквартирных домах запрещено. Все переделки в системе отопления необходимо согласовывать с Управляющей компанией.

Установка радиаторов

Самостоятельная установка радиаторов не вызовет проблем в системе отопления в дальнейшем, если правильно выполнить все требования к таким работам и обеспечить герметичность всех соединений. Кроме того, некоторые виды батарей требуют аккуратности при обращении: алюминиевые и биметаллические радиаторы имеют довольно мягкий внешний корпус, который можно легко помять при ударе.

Процесс установки производится в следующем порядке:

  1. Снимаем старый радиатор (если это необходимо). Естественно, магистраль отопления должна быть при этом перекрыта;
  2. Размечаем место установки. Радиаторы обычно вешаются на специальный кронштейн, который крепится к стене. Крепеж в комплекте чаще всего рассчитан на бетонные или кирпичные стены. Если вы хотите повесить радиатор на мягкую стену, например, из гипсокартона, необходимо использовать специальные дюбели. Алюминиевые и биметаллические батареи не создадут опасных нагрузок для такой стены, а вот чугунный вариант здесь лучше не использовать. Кронштейн нужно установить так, чтобы радиатор располагался с учетом требований, описанных в предыдущем разделе;
  3. Теперь нужно собрать батарею. Для этого во все четыре монтажных отверстия вкручиваем переходники, идущие в комплекте. Обычно два из них имеют левую резьбу, а два – правую, поэтому необходимо проявить внимательность. Далее, в зависимости от схемы подключения, неиспользуемые коллекторы заглушаем, один краном Маевского, а другой – специальным запорным колпачком. Все места соединений тщательно герметизируем;

  4. Для предотвращения протекания воды в местах соединений прокладываем сантехнический лен. Фум ленту здесь лучше не использовать. Лен нужно наматывать правильно: для правой резьбы по часовой стрелке, а для левой – в обратном направлении. В этом случае при накручивании на резьбу подсоединяемых элементов лен не будет выбиваться из-под них. Для надежности соединение можно дополнительно уплотнить специальными средствами, например, пастой Unipak;
  5. К местам подвода магистральных труб прикручиваем шаровые краны. Они позволят в дальнейшем снимать радиатор для чистки и обслуживания, не останавливая работу всей системы;
  6. Теперь осталось только повесить радиатор на кронштейн и подключить к нему подводимые трубы. Места соединений герметизируем по приведенному выше алгоритму.

Итак, мы рассмотрели все возможные виды подключений батарей отопления. Если вы только планируете структуру системы для собственного жилья, то можете выбрать наиболее подходящую схему. Если же вы живете в городской квартире, такой свободы у вас нет. В любом случае, понимание принципов и особенностей подключения радиаторов позволит вам самостоятельно обслуживать и устанавливать отопительные приборы в своем доме.

130 фото различных вариантов соединений

Система отопления является одним из важнейших элементом домоустройства. Отопление дома напрямую зависит от выбранной системы отопления, и того способа, каким она была подключена. К сожалению, далеко не каждый знает, как лучше подключить радиатор отопления своими руками.

Но прежде, стоит разобраться в разновидностях отопительных систем. Это необходимо, так как при подключении могут быть свои особенности в зависимости от выбранной системы.

Разновидности отопительных систем

В зависимости от принципа подключения существуют однотрубные и двухтрубные отопительные системы.

Однотрубная система – является наиболее распространенной, так как установлена в большинстве многоквартирных домов. Она представляет собой закольцованную трубу, к которой, последовательно подключены нагревательные элементы.

Называется так, потому что для подачи воды в радиаторы и для возврата ее в котел используется только одна труба. Такой способ подключения имеет ряд своих положительных особенностей и недостатков.

Преимущества подобной системы:

  • экономичность, в плане необходимых материалов;
  • небольшие временные затраты при монтаже;

Ее недостатками являются:

  • Отсутствует возможность верхнего подключения;
  • Из-за последовательного подключения, теплоотдача первого нагревательного элемента намного выше, чем у последнего в системе;
  • Теплоотдача не может превышать норму, рассчитанную при установке;

Двухтрубная система – отличается от предыдущей тем, что за подачу и возврат воды отвечают независимые трубы. Также, при использовании данной модели, радиаторы подключаются параллельно.

Достоинства этого метода подключения:

  • возможность регулировать подачу теплоносителя, с помощью установки крана перед радиатором;
  • равномерное нагревание всех элементов;

Недостатками являются больший расход материалов и более трудоемкий процесс монтажа.

Общие советы по подключению радиатора

На данный момент существуют разнообразные схемы и способы подключения радиаторов. Но есть несколько общепринятых особенностей, которые рекомендуется учитывать, не зависимо от метода установки.

Основным местом для установки радиаторов является область под окнами. Это делается, чтобы не пустить холодный воздух от стекла в дом, а также препятствует возникновению конденсата.

При этом длина прибора не должна превышать 70% ширины окна, в противном случае окна будут периодически запотевать. Также, для оптимальной циркуляции тепла, радиатор должен находиться от 8 до 12 см от пола, и от 3 до см от стены.

Крайне не рекомендуется зашивать радиаторы в ящик или закрывать их декоративным экраном, так как в этом случае теплоотдача элементов значительно снижается.

Перед установкой уточнить систему подачи тепла, так как в зависимости от нее могут понадобиться различные типы радиаторов.

Подключение радиатора в домашних условиях

Перед непосредственной установкой стоит убедиться в наличии всех элементов необходимых для монтажа. Если был выбран однотрубный метод подключения, рекомендуется приобрести байпас, который позволит снять устанавливаемый радиатор без необходимости перекрывать всю систему.

Также, согласно размерам и методу подключения подбираются соединительные элементы, если они не входят в комплект к радиатору. Сюда же можно отнести запорные вентили и сгоны, которые также подбираются по размерам.

Крайне желательно установить в конструкцию кран Маевского, который позволит периодически стравливать скопившийся воздух из системы.

В интернете существует большое количество фото демонстрирующих подключения радиаторов отопления, для выбора оптимальной конфигурации комплектующих.

Стоит заметить, что при установке любых видов радиаторов за исключением чугунных, не стоит снимать упаковку до завершения монтажных работ.

Инструкция для правильного подключения радиатора

Одной из основополагающих операций является разметка и установка кронштейнов. Делать это рекомендуется в соответствии с вышеперечисленными указаниями, либо согласно инструкции производителя радиатора.

Важно не допустить слишком сильного перекоса, так как это может привести к нежелательным последствиям в виде застоя. После установки, прибор должен плотно опираться на все крепления.

Далее следует выкрутить все заглушки из радиатора. Если используется однотрубный метод, в первую очередь к радиатору присоединяется байпас, который заранее оборудован вентилем. В противном случае, к прибору с помощью сгона подключается регулирующий вентиль.

Используя сгоны, нагревательный элемент подключается к системе отопления. Для обеспечения герметизации, при необходимости рекомендуется использовать паклю или аналогичный уплотнитель.

Установка радиатора в систему завершена, но для его полноценной работы потребуется еще опрессовка прибора. Для проведения этой процедуры рекомендуется обратиться к сантехнику, так как потребуется профессиональная аппаратура.

Фото процесса подключение радиаторов отопления


Также рекомендуем посетить:

BU-302: последовательная и параллельная конфигурации батарей

BU-302: Configuraciones de Baterías en Serie y Paralelo (Español)

Узнайте, как расположить батареи для увеличения напряжения или увеличения емкости.

Батареи достигают желаемого рабочего напряжения путем последовательного соединения нескольких ячеек; каждая ячейка складывает свой потенциал напряжения, чтобы получить общее напряжение на клеммах. Параллельное соединение обеспечивает более высокую мощность за счет суммирования общего ампер-часа (Ач).

Некоторые блоки могут состоять из комбинации последовательного и параллельного подключения. Аккумуляторы для ноутбуков обычно имеют четыре литий-ионных элемента 3,6 В последовательно для достижения номинального напряжения 14,4 В и два параллельно, чтобы увеличить емкость с 2400 мАч до 4800 мАч. Такая конфигурация называется 4s2p, что означает четыре последовательно соединенных ячейки и две параллельно. Изоляционная фольга между ячейками предотвращает электрическое короткое замыкание проводящей металлической оболочкой.

Аккумуляторы большинства типов подходят для последовательного и параллельного подключения.Важно использовать батареи одного и того же типа с одинаковым напряжением и емкостью (Ач) и никогда не смешивать батареи разных производителей и размеров. Более слабая ячейка вызовет дисбаланс. Это особенно важно в последовательной конфигурации, потому что мощность батареи определяется самым слабым звеном в цепи. Аналогия — это цепочка, звенья которой представляют последовательно соединенные элементы батареи (рис. 1).

Рисунок 1: Сравнение аккумулятора с цепью.
Звенья цепи представляют собой элементы, включенные последовательно для увеличения напряжения, удвоение звена означает параллельное соединение для повышения токовой нагрузки.

Слабая ячейка не может сразу выйти из строя, но при нагрузке она истощается быстрее, чем сильные. При зарядке аккумулятор с низким уровнем заряда заполняется раньше, чем с высоким уровнем, потому что его нужно заполнять меньше, и он остается в избыточном заряде дольше, чем другие. При разряде слабая ячейка опорожняется первой, и ее забивают более сильные братья. Ячейки в групповых упаковках должны быть согласованы, особенно при использовании под большими нагрузками. (См. BU-803a: Несоответствие ячеек, балансировка).


Одноэлементные приложения

Одноэлементная конфигурация представляет собой простейший аккумуляторный блок; элемент не требует согласования, и схема защиты на небольшом литий-ионном элементе может быть простой.Типичными примерами являются мобильные телефоны и планшеты с одним литий-ионным аккумулятором 3,60 В. Одноэлементный элемент также используется в настенных часах, в которых обычно используется щелочной элемент на 1,5 В, наручные часы и резервное копирование памяти, большинство из которых являются приложениями с очень низким энергопотреблением.

Номинальное напряжение аккумуляторной батареи на никелевой основе составляет 1,2 В, щелочной — 1,5 В; оксид серебра составляет 1,6 В, а свинцово-кислотный — 2,0 В. Первичные литиевые батареи находятся в диапазоне от 3,0 В до 3,9 В. Литий-ионный — 3,6 В; Li-фосфат — 3,2 В, а литий-титанат — 2,4 В.

Литий-марганцевые и другие системы на основе лития часто используют ячейки с напряжением 3.7В и выше. Это связано не столько с химией, сколько с увеличением ватт-часов (Втч), что становится возможным при более высоком напряжении. Аргумент гласит, что низкое внутреннее сопротивление элемента поддерживает высокое напряжение под нагрузкой. Для рабочих целей эти ячейки подходят как кандидаты на 3,6 В. (См. BU-303. Путаница с напряжениями)


Series Connection

В переносном оборудовании, требующем более высоких напряжений, используются аккумуляторные блоки с двумя или более элементами, соединенными последовательно. На рисунке 2 показан аккумулятор с четырьмя 3.Последовательные литий-ионные элементы 6 В, также известные как 4S, для получения номинального напряжения 14,4 В. Для сравнения, свинцово-кислотная цепочка из шести элементов с 2 В на элемент будет генерировать 12 В, а четыре щелочных с 1,5 В на элемент — 6 В.

Рисунок 2: S eries соединение четырех ячеек (4s).
Добавление ячеек в цепочку увеличивает напряжение; емкость остается прежней.
Предоставлено Cadex


Если вам нужно нечетное напряжение, скажем, 9,50 В, подключите последовательно пять свинцово-кислотных, восемь никель-металл-гидридных или никель-кадмиевых аккумуляторов или три литий-ионных аккумулятора.Конечное напряжение батареи не обязательно должно быть точным, если оно выше, чем указано в устройстве. Источник питания 12 В может работать вместо 9,50 В. Большинство устройств с батарейным питанием могут выдерживать некоторое перенапряжение; однако необходимо соблюдать напряжение в конце разряда.

Высоковольтные батареи сохраняют небольшой размер проводника. Аккумуляторные электроинструменты работают от батарей 12 В и 18 В; в моделях высокого класса используются 24 В и 36 В. Большинство электровелосипедов поставляются с литий-ионным аккумулятором 36 В, некоторые — 48 В. Автомобильная промышленность хотела увеличить стартерную батарею с 12 В (14 В) до 36 В, более известную как 42 В, путем последовательного размещения 18 свинцово-кислотных элементов.Логистика замены электрических компонентов и проблемы с дугой на механических переключателях сорвали ход.

Некоторые легкие гибридные автомобили работают на литий-ионном аккумуляторе 48 В и используют преобразование постоянного тока в 12 В для электрической системы. Запуск двигателя часто осуществляется отдельной свинцово-кислотной батареей на 12 В. Ранние гибридные автомобили работали от батареи 148 В; электромобили обычно 450–500 В. Такой аккумулятор требует более 100 последовательно соединенных литий-ионных элементов.

Высоковольтные батареи требуют тщательного согласования ячеек, особенно при работе с большими нагрузками или при работе при низких температурах.Если несколько ячеек соединены в цепочку, вероятность отказа одной ячейки реальна, и это приведет к сбою. Чтобы этого не произошло, твердотельный переключатель в некоторых больших батареях обходит неисправную ячейку, чтобы обеспечить непрерывный ток, хотя и при более низком напряжении в цепи.

Сопоставление ячеек является проблемой при замене неисправного элемента в устаревшем пакете. Новая ячейка имеет большую емкость, чем другие, что вызывает дисбаланс. Сварная конструкция усложняет ремонт, поэтому аккумуляторные блоки обычно заменяются целиком.

Высоковольтные батареи в электромобилях, полная замена которых невозможна, делят батарею на модули, каждый из которых состоит из определенного количества ячеек. Если одна ячейка выходит из строя, заменяется только затронутый модуль. Небольшой дисбаланс может возникнуть, если новый модуль будет оснащен новыми ячейками. (См. BU-910: Как отремонтировать аккумуляторный блок.)

На рисунке 3 показан аккумуляторный блок, в котором «ячейка 3» выдает только 2,8 В вместо полностью номинальных 3,6 В. При пониженном рабочем напряжении эта батарея достигает точки окончания разряда раньше, чем обычная батарея.Напряжение падает, и устройство выключается с сообщением «Батарея разряжена».


Рисунок 3: S eries соединение с неисправной ячейкой.
Неисправный элемент 3 снижает напряжение и преждевременно отключает оборудование.
Предоставлено Cadex


Батареи в дронах и пультах дистанционного управления для любителей, которым требуется высокий ток нагрузки, часто демонстрируют неожиданное падение напряжения, если одна ячейка в цепочке слаба. Максимальный ток нагружает хрупкие ячейки, что может привести к поломке.Считывание напряжения после заряда не позволяет выявить эту аномалию; проверка баланса ячеек или проверка емкости с помощью анализатора батарей.


Отвод в последовательную цепочку

Существует обычная практика, когда в последовательную цепочку свинцово-кислотного массива вводят ответвления для получения более низкого напряжения. Для тяжелонагруженного оборудования, работающего от батарейного блока 24 В, может потребоваться источник питания 12 В для вспомогательной работы, и это напряжение удобно доступно в промежуточной точке.

Постукивание не рекомендуется, поскольку оно создает дисбаланс ячеек, так как одна сторона батарейного блока загружена больше, чем другая.Если несоответствие не может быть исправлено с помощью специального зарядного устройства, побочным эффектом является сокращение срока службы батареи. Вот почему:

При зарядке несбалансированного блока свинцово-кислотных аккумуляторов с помощью обычного зарядного устройства в недозаряженной части возникает тенденция к сульфатированию, поскольку элементы никогда не получают полного заряда. Секция высокого напряжения батареи, которая не принимает дополнительную нагрузку, имеет тенденцию к перезарядке, что приводит к коррозии и потере воды из-за выделения газов. Обратите внимание, что зарядное устройство, заряжающее всю цепочку, проверяет среднее напряжение и соответственно прекращает заряд.

Нарезание резьбы также распространено на литий-ионных и никелевых батареях, и результаты аналогичны свинцово-кислотным: сокращение срока службы. (См. BU-803a: Согласование и балансировка ячеек.) В новых устройствах используется преобразователь постоянного тока в постоянный для обеспечения правильного напряжения. В электрических и гибридных транспортных средствах в качестве альтернативы используется отдельная низковольтная батарея для вспомогательной системы.


Параллельное соединение

Если требуются более высокие токи, а ячейки большего размера недоступны или не соответствуют конструктивным ограничениям, одна или несколько ячеек могут быть подключены параллельно.Большинство химикатов батарей допускают параллельную конфигурацию с небольшими побочными эффектами. На рисунке 4 показаны четыре ячейки, соединенные параллельно в схеме P4. Номинальное напряжение показанного блока остается на уровне 3,60 В, но емкость (Ач) и время работы увеличиваются в четыре раза.

Рисунок 4: Параллельное соединение четырех ячеек (4 контакта).
При параллельном подключении ячеек емкость в Ач и время работы увеличиваются, а напряжение остается неизменным.

Предоставлено Cadex


Ячейка, которая развивает высокое сопротивление или размыкается, менее критична в параллельной цепи, чем в последовательной конфигурации, но выходящая из строя ячейка снижает общую нагрузочную способность. Это как двигатель, работающий только на трех цилиндрах, а не на всех четырех. С другой стороны, электрическое короткое замыкание является более серьезным, поскольку неисправный элемент забирает энергию из других элементов, вызывая опасность пожара. Большинство так называемых электрических коротких замыканий мягкие и проявляются как повышенный саморазряд.

Полное короткое замыкание может произойти из-за обратной поляризации или роста дендритов. Большие блоки часто включают в себя предохранитель, который отключает неисправный элемент от параллельной цепи в случае короткого замыкания. На рисунке 5 показана параллельная конфигурация с одной неисправной ячейкой.

Рисунок 5: Параллельное соединение / соединение с одной неисправной ячейкой.
Слабый элемент не повлияет на напряжение, но обеспечит малое время работы из-за пониженной емкости.Закороченный элемент может вызвать чрезмерный нагрев и стать причиной возгорания. В более крупных батареях предохранитель предотвращает высокий ток, изолируя элемент.

Предоставлено Cadex


Последовательное / параллельное соединение

Последовательная / параллельная конфигурация, показанная на Рисунке 6, обеспечивает гибкость конструкции и обеспечивает требуемые номинальные значения напряжения и тока со стандартным размером ячейки. Полная мощность — это сумма напряжения, умноженного на ток; батарея 3,6 В (номинальная), умноженная на 3400 мАч, дает 12.24Втч. Четыре элемента питания 18650 емкостью 3400 мАч каждый можно подключить последовательно и параллельно, как показано, чтобы получить номинальное напряжение 7,2 В и общую мощность 48,96 Вт-ч. Комбинация с 8 ячейками даст 97,92 Втч, допустимый предел для перевозки на воздушном судне или перевозки без опасных материалов класса 9. (См. BU-704a: Доставка литиевых батарей по воздуху) Тонкий элемент позволяет гибкую конструкцию блока, но необходима схема защиты.

Рисунок 6: S eries / параллельное соединение четырех ячеек (2s2p).
Эта конфигурация обеспечивает максимальную гибкость проектирования. Распараллеливание ячеек помогает в управлении напряжением.

Предоставлено Cadex


Литий-ионный аккумулятор хорошо подходит для последовательной / параллельной конфигурации, но элементы нуждаются в мониторинге, чтобы оставаться в пределах напряжения и тока. Интегральные схемы (ИС) для различных комбинаций ячеек доступны для контроля до 13 литий-ионных ячеек. Для более крупных пакетов требуются специальные схемы, и это относится к аккумуляторным батареям для электронных велосипедов, гибридным автомобилям и Tesla Model 85, которая потребляет более 7000 ячеек 18650, чтобы составить батарею мощностью 90 кВт · ч.

Терминология для описания последовательного и параллельного соединения

В производстве аккумуляторов сначала указывается количество последовательно соединенных элементов, а затем — параллельно. Пример — 2с2п. При использовании литий-ионных аккумуляторов в первую очередь всегда изготавливаются параллельные струны; завершенные параллельные блоки затем помещаются последовательно. Литий-ионная система — это система, основанная на напряжении, которая хорошо подходит для параллельного формирования. Объединение нескольких ячеек в параллель с последующим последовательным добавлением блоков снижает сложность управления напряжением для защиты блока.

Сначала сборка гирлянд, а затем их параллельное размещение может быть более обычным для никель-кадмиевых аккумуляторов, чтобы удовлетворить механизму химического челнока, который уравновешивает заряд в верхней части заряда. «2с2п» — обычное дело; Были выпущены официальные документы, которые относятся к 2p2s при параллельном соединении последовательной строки.


Устройства безопасности в последовательном и параллельном соединении

Переключатели с положительным температурным коэффициентом (PTC) и устройства прерывания заряда (CID) защищают аккумулятор от перегрузки по току и избыточного давления.Хотя эти защитные устройства рекомендуются для обеспечения безопасности в меньших 2- или 3-элементных батареях с последовательной и параллельной конфигурацией, они часто не используются в более крупных многоэлементных батареях, например, для электроинструментов. PTC и CID работают, как ожидалось, переключая ячейку на чрезмерный ток и внутреннее давление в ячейке; однако завершение работы происходит в каскадном формате. Хотя некоторые ячейки могут рано отключиться, ток нагрузки вызывает избыточный ток на оставшихся ячейках. Такое состояние перегрузки может привести к тепловому разгоне до срабатывания остальных предохранительных устройств.

Некоторые ячейки имеют встроенные PCT и CID; эти защитные устройства также могут быть добавлены задним числом. Инженер-проектировщик должен знать, что любое предохранительное устройство может выйти из строя. Кроме того, PTC вызывает небольшое внутреннее сопротивление, которое снижает ток нагрузки. (См. Также BU-304b: Обеспечение безопасности литий-ионных аккумуляторов)


Простые инструкции по использованию бытовых первичных батарей
  • Следите за чистотой контактов аккумулятора. Конфигурация с четырьмя ячейками имеет восемь контактов, и каждый контакт добавляет сопротивление (ячейка к держателю и держатель к следующей ячейке).
  • Никогда не смешивайте батареи; замените все ячейки, когда они слабые. Общая производительность зависит от самого слабого звена в цепи.
  • Соблюдайте полярность. Перевернутая ячейка вычитает, а не добавляет к напряжению ячейки.
  • Извлеките батареи из оборудования, когда оно больше не используется, для предотвращения утечки и коррозии. Это особенно важно для первичных цинк-углеродных элементов.
  • Не храните незакрепленные элементы в металлическом ящике. Поместите отдельные ячейки в небольшие полиэтиленовые пакеты, чтобы предотвратить короткое замыкание.Не носите в карманах незакрепленные ячейки.
  • Храните батарейки в недоступном для маленьких детей месте. Ток от батареи может не только вызвать удушье, но и вызвать изъязвление стенки желудка при проглатывании. Батарея также может разорваться и вызвать отравление. (См. BU-703: Проблемы со здоровьем, связанные с батареями.)
  • Не заряжайте неперезаряжаемые батареи; скопление водорода может привести к взрыву. Выполняйте экспериментальную зарядку только под наблюдением.


Простые инструкции по использованию вторичных батарей
  • Соблюдайте полярность при зарядке вторичного элемента.Обратная полярность может вызвать короткое замыкание и создать опасную ситуацию.
  • Извлеките полностью заряженные аккумуляторы из зарядного устройства. Потребительское зарядное устройство может не подавать правильный постоянный заряд при полной зарядке, что может привести к перегреву элемента.
  • Заряжайте только при комнатной температуре.
Серия

и параллельные схемы в источниках питания

Фотоэлектрические модули и батареи являются строительными блоками системы. Хотя каждый модуль или батарея имеют номинальное напряжение или силу тока, их также можно соединить вместе, чтобы получить желаемое напряжение в системе.

1. Последовательные схемы

Последовательные подключения проводов выполняются между положительным (+) концом одного модуля и отрицательным (-) концом другого модуля. Когда нагрузки или источники питания подключаются последовательно, напряжение увеличивается. Последовательная проводка не увеличивает вырабатываемый ток. На изображении справа показаны два модуля, подключенных последовательно, что дает 24 В и 3 А. Цепи серии

можно также проиллюстрировать с помощью батареек для фонарей. Батареи фонарей часто подключаются последовательно для увеличения напряжения и питания лампы с более высоким напряжением, чем одна батарея могла бы питать в одиночку.

Вопрос: Каково результирующее напряжение при последовательном подключении четырех батарей 1,5 В постоянного тока?

Ответ: 6 вольт

2. Параллельные цепи

Параллельные проводные соединения выполняются от положительных (+) к положительным (+) клеммам и от отрицательных (-) к отрицательным (-) клеммам между модулями. Когда нагрузки или источники подключаются параллельно, токи складываются, а напряжение одинаково во всех частях цепи. Чтобы увеличить силу тока в системе, источники напряжения должны быть подключены параллельно.На изображении справа показаны фотоэлектрические модули, подключенные параллельно, чтобы получить систему на 12 В, 6 А. Обратите внимание, что параллельная проводка увеличивает производимый ток и не увеличивает напряжение.

Батареи также часто подключаются параллельно для увеличения общего ампер-часа, что увеличивает емкость накопителя и продлевает время работы. S

3. Последовательные и параллельные схемы

Системы

могут использовать сочетание последовательной и параллельной проводки для получить требуемые напряжения и силы тока. На изображении справа показаны четыре модуля на 3 А, 12 В постоянного тока, подключенных последовательно и параллельно.Гирлянды из двух модулей соединены последовательно, увеличивая напряжение до 24 В. Каждая из этих струн подключается параллельно цепи, увеличивая силу тока до 6 ампер. В результате получилась система на 6 ампер и 24 В постоянного тока.

4. Последовательные и параллельные батареи

Преимущества параллельной схемы можно проиллюстрировать, наблюдая, как долго проработает фонарик, прежде чем батареи полностью разрядятся. Чтобы фонарик прослужил вдвое дольше, необходимо вдвое увеличить емкость аккумулятора.

На картинке слева последовательно добавлена ​​цепочка из четырех батарей параллельно другой цепочке из четырех батарей для увеличения емкости хранения (ампер-часов). Новая цепочка аккумуляторов подключается параллельно, что увеличивает доступные ампер-часы, тем самым добавляя дополнительную емкость и увеличивая время использования. Вторую цепочку нельзя было добавить последовательно, потому что общее напряжение будет 12 вольт, что несовместимо с 6-вольтовой лампой.

5. Высоковольтные фотоэлектрические массивы

До сих пор в этой главе мы обсуждали только входное напряжение до номинального 24 В.Сегодня для большинства инверторов с подключением к сети без батарей требуется вход постоянного тока высокого напряжения. Это входное окно обычно находится в диапазоне от 350 до 550 В постоянного тока. Из-за требований инвертора к входу высокого напряжения фотоэлектрические модули должны быть подключены последовательно, чтобы в достаточной степени увеличить напряжение.

6. Примеры последовательного и параллельного подключения и инструкции

1. Подключите фотоэлектрические модули (массив) последовательно или параллельно, чтобы получить желаемое напряжение в системе.

2. Рассчитайте общую мощность модуля для вольт и ампер.

3. Подключите массив к контроллеру заряда.

4. Подключите батареи последовательно или параллельно, чтобы получить желаемое напряжение в системе.

5. Рассчитайте общее напряжение аккумуляторной батареи и емкость ампер-часов.

6. Подключите аккумуляторную батарею к контроллеру заряда.

Источник : «ФОТОЭЛЕКТРОЭНЕРГИЯ — Руководство по проектированию и установке» компании Solar Energy International.

Тренинг по сертификации солнечной энергии от профессиональных установщиков солнечных батарей

С 18 сертифицированными IREC-ISPQ тренерами по солнечной фотоэлектрической батарее и 24 сертифицированными NABCEP установщиками солнечных фотоэлектрических систем — больше, чем в любой другой учебной организации по солнечной энергии, — опытная команда Solar Energy International находится в авангарде образования в области возобновляемых источников энергии. Если вы ищете онлайн-обучение по солнечной энергии или личное лабораторное обучение для сдачи экзамена начального уровня NABCEP или сертификации установщика NABCEP, почему бы не получить свое образование от команды самых опытных специалистов по установке солнечных батарей в отрасли? Многие инструкторы SEI участвовали в самых известных солнечных установках в своих общинах в США и в развивающихся странах.

Чтобы начать свой путь солнечной тренировки сегодня с Solar Energy International, щелкните здесь.

% PDF-1.5 % 132 0 obj> эндобдж xref 132 94 0000000016 00000 н. 0000003029 00000 н. 0000002176 00000 п. 0000003203 00000 н. 0000003709 00000 н. 0000003749 00000 н. 0000003796 00000 н. 0000003861 00000 н. 0000004089 00000 н. 0000004195 00000 н. 0000004363 00000 п. 0000004662 00000 н. 0000004978 00000 н. 0000049543 00000 п. 0000049579 00000 п. 0000052236 00000 п. 0000052395 00000 п. 0000052551 00000 п. 0000052710 00000 п. 0000052870 00000 п. 0000053033 00000 п. 0000053201 00000 п. 0000053366 00000 п. 0000053567 00000 п. 0000053867 00000 п. 0000053958 00000 п. 0000055150 00000 п. 0000055311 00000 п. 0000055475 00000 п. 0000055752 00000 п. 0000056361 00000 п. 0000057112 00000 п. 0000057725 00000 п. 0000058235 00000 п. 0000058300 00000 п. 0000058889 00000 п. 0000059516 00000 п. 0000060264 00000 п. 0000060790 00000 н. 0000061301 00000 п. 0000061823 00000 п. 0000062201 00000 п. 0000062528 00000 п. 0000064262 00000 п. 0000064762 00000 п. 0000065215 00000 п. 0000065799 00000 п. 0000065863 00000 п. 0000066425 00000 п. 0000066944 00000 п. 0000067207 00000 п. 0000069174 00000 п. 0000070852 00000 п. 0000072639 00000 п. 0000074384 00000 п. 0000076241 00000 п. 0000076843 00000 п. 0000077416 00000 п. 0000078042 00000 п. 0000079628 00000 п. 0000081125 00000 п. 0000081297 00000 п. 0000081351 00000 п. 0000081564 00000 п. 0000081736 00000 п. 0000081805 00000 п. 0000081861 00000 п. 0000081917 00000 п. 0000082090 00000 н. 0000082171 00000 п. 0000085747 00000 п. 0000090907 00000 н. 0000096824 00000 п. 0000104891 00000 н. 0000109916 00000 н. 0000114754 00000 н. 0000118944 00000 н. 0000123984 00000 н. 0000128654 00000 н. 0000128961 00000 н. 0000129175 00000 н. 0000129323 00000 н. 0000129697 00000 н. 0000134241 00000 н. 0000134705 00000 н. 0000134865 00000 н. 0000135250 00000 н. 0000145588 00000 н. 0000146156 00000 н. 0000147062 00000 н. 0000198243 00000 н. 0000198740 00000 н. 0000238550 00000 н. 0000239048 00000 н. трейлер ] >> startxref 0 %% EOF 134 0 obj> поток x ڤ СИЛА ~ YPZBI (D P MLRvMRBeJYTvJ1hH

Автомобильный бортовой обогреватель переменного тока без внешних источников питания для литий-ионных батарей при низких температурах

% PDF-1.4 % 1 0 объект > поток application / pdf

  • IEEE
  • IEEE Transactions on Power Electronics; 2018; 33; 9; 10.1109 / TPEL.2017.2768661
  • Эквалайзеры аккумулятора
  • Нагреватели аккумулятора
  • Системы управления аккумулятором (BMS)
  • Пониженно-повышающие преобразователи
  • электромобили (EV)
  • Автомобильный бортовой обогреватель переменного тока без внешних источников питания для литий-ионных батарей при низких температурах
  • Yunlong Shang
  • Bing Xia
  • Naxin Cui
  • Chenghui Zhang
  • Chunting Chris Mi
  • IEE75E Transactions on .201893310.1109 / TPEL.2017.27686617769 конечный поток эндобдж 2 0 obj > / C [0 1 1] / Subtype / Link / Type / Annot / H / I / Border [0 0 0] / Rect [185.268 624,651 196,26 634,644] >> эндобдж 3 0 obj > поток 2017-11-02T16: 21: 52 + 05: 30Adobe Illustrator CS6 (Windows) 2017-11-02T16: 21: 52 + 05: 30
  • 256136JPEG / 9j / 4AAQSkZJRgABAgEASABIAAD / 7QAsUGhvdG9zaG9wIDMuMAAA4QklAAAEA + 0AAA AQBIAAAAAQAB / + 4ADkFkb2JlAGTAAAAAAf / bAIQABgQEBAUEBgUFBgkGBQYJCwgGBggLDAoKCwoK DBAMDAwMDAwQDA4PEA8ODBMTFBQTExwbGxscHx8fHx8fHx8fHwEHBwcNDA0YEBAYGhURFRofHx8f Hx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8f / 8AAEQgAiAEAAwER AAIRAQMRAf / EAaIAAAAHAQEBAQEAAAAAAAAAAAQFAwIGAQAHCAkKCwEAAgIDAQEBAQEAAAAAAAAA AQACAwQFBgcICQoLEAACAQMDAgQCBgcDBAIGAnMBAgMRBAAFIRIxQVEGE2EicYEUMpGhBxWxQiPB UtHhMxZi8CRygvElQzRTkqKyY3PCNUQnk6OzNhdUZHTD0uIIJoMJChgZhJRFRqS0VtNVKBry4 / PE 1OT0ZXWFlaW1xdXl9WZ2hpamtsbW5vY3R1dnd4eXp7fh2 + f3OEhYaHiImKi4yNjo + Ck5SVlpeYmZ qbnJ2en5KjpKWmp6ipqqusra6voRAAICAQIDBQUEBQYECAMDbQEAAhEDBCESMUEFURNhIgZxgZEy obHwFMHR4SNCFVJicvEzJDRDghaSUyWiY7LCB3PSNeJEgxdUkwgJChgZJjZFGidkdFU38qOzwygp 0 + PzhJSktMTU5PRldYWVpbXF1eX1RlZmdoaWprbG1ub2R1dnd4eXp7fh2 + f3OEhYaHiImKi4yNjo + DlJWWl5iZmpucnZ6fkqOkpaanqKmqq6ytrq + v / aAAwDAQACEQMRAD8A9Ia / 5V0 / XHia7lnjMKNG v1eT0iVd45CCyjl9qFehxVLrAeZI7C1eXTRcoY1LNDqk7ztVQeXGaOBKn / jJ19twqiRe3f7Wg6so AqSbq2P4Lek4qpjXNGVi00OsRPxHONrXU3VeprzjR4 ++ 9GOKrx5j8lUq + twRNWhSa + aJwfApJIrD 6RiqYWo0jUI + dletcICpLwXcjjrUVKuetMVRP6Pg / mm / 5Hzf814q79HwfzTf8j5v + a8VWRaXBGpX 1bh6szVe4mJ + Ji1PtdFrQe2Kr / 0fB / NN / wAj5v8AmvFWjpsHMN6k + wI4 + vNQ1pv9r2xVv9HwfzTf 8j5v + a8VafTYGRl9SdeQI5LPMCK9x8WKt / o + D + ab / kfN / wA14q79HwfzTf8AI + b / AJrxVT06EQy3 qB5HX1wVEsjycawx7KXLECu9PHFW9X1NNM06a + kgmuEh51htk9SVuTBfhWorStT7Yqw / yudB1TW7 yNbG5t4mhaa0W8EsUkn + 5C7 + suq8yChldXU7Hi67ZecQ8ITH84g / IEfPf5IvemVf4c0b / ln / AOHf / mrKEtN5b0ZhT0CNwdpJB0Nf5sVb / wAOaN / yz / 8ADv8A81Yq7 / Dmjf8ALP8A8O // ADVirS + W9GUU 9AncneSQ9TX + bFW / 8OaN / wAs / wDw7 / 8ANWKtf4b0bkG9A7AinqSU3p25e2Kt / wCHNG / 5Z / 8Ah4 / 5 qxVpvLejMpUwEVFKiSQHfwIbFW / 8OaN / yz / 😯 / 8AzViqTX0vl + 0upLZth2GYxkAyQW9zLGaivwuu xxVL7bX / ACX + nYdGvrWbTb7UW / 3EwXQuUkuVRR6jBCKRhG2 + I79e + Ksp / wAOaN / yz / 8ADv8A81Yq oNo + l2mqWE9vE0dxzdQ4aQqUMTkq1SV6gHfFULqdxrerLHN5V1S0FuokhuJCVlAl5xlWWiSbqgfa oB5A + BxVONHEo0q0ErKz + ilWVSopxFNiW7e + KovFXYq7FUtvPLPlu + lM17pNndSmpMk1vFI2 / Xdl J3xVDt5S8tQAyQ236OVVoTZTS2ShQa7i3eIU8cIBPJUquh5NsWBPmiTT5FIBMurNJ8XUArdyzL9F N ++ ZMNDnn9MJn3RLEyHeptrvl0AV / MJVruP9I0jcb + Nvk / 5N1P8AqWT / AEsv1Lxx72m8w2sBBt / O VrdIy1ja4hhuVNe5a0a2BO3amI7O1H8yXxFfevGO9o + bZCQF8z6R0Ap9QuDv / wBJmH + TdR / MK8YX t5t1SFRJ9Z0 + / j / YaOK9g57En7CXnD / hsgNBmuq + 0D9K8QWHz / f12sbUj3m1Ef8Adtyf8nZu4f6a P614w3 / j + 97WVrTf / duofR / 0rsf5Ozdw / wBNH9a8YZhaz ​​+ vbQz04 + qivx325CtPiCn7wMwpRINHo yULATC4v / UZWrcAx8VK0X0Y6A1LVPvt8sCsWvLzzM / mHXYIdSSxtILaA2Us6xPDFIzKXL1VCCy1C fE3Ulv2QFVW30rX7qQ3c2oW1xrNkS9rNAhSKhuJ1a1kYFiY / TCxvtUMvLqKZk6bMI3GW8Jc / 0EeY / WOqCE90rXrS / drZ1a01OEVudOmoJk3pyHZ4yR8LrVTjn0soDi + qB5SHL9h8juolaZZjJdirsVdi rsVdirsVdirsVS68XzCZG + pyWix0 + ATRys1ffi65kYzhr1CV + RH6kG0sW587WmvwwyWUWpaTekGe 8imjtxY8EC8RC6tJN6jVb7e2Uz4b9PJLJMiqDvBN9dsSHUQiR + aFSWLek9CG5UAG + 3HFWBeR / NEW n6LJpun2Go6mmn3F1bOAjO8bwtHwjZmLD94shkry23FK / CFWf6USdMtCVKn0U2NK / ZHgTiqhq2v6 XpXppdSk3E9fq9nCjzXEtOvpwxhpGA7mlB3IGZGDS5Mt8I2HMnYD3k7fr6IMgEENT823gJs9Ii0 + I7LLqU4Mv + sILUTKR7GZTl / g6eh2TMz / AEBt / ppV / uSiz3L10jzJOK3uvNEd / h062hgU1FN / rP11 vuYZHx8Mfpx3 / WkT / ueBaPe2PKWmsa3Nxf3THdvVvrrg29d4kkSLr / kY / n5j6RCPuhH7yL + 1eENp 5K8nowcaJYtIpqJHtonevSvNlLfjgPaOoP8AlJ / 6YrwDuTO2sbK2AFtbxQADiPTRU + EdvhA2zGnl lL6iSmlbIJdirsVdirsVdirsVQtkxNxfVUrScAVpv + 5j3FCcVYFd20f + NPN8kmnPqqS2enD9GKlP WKH7ayNsStQadRxxVkvlKO0j9ZbXS30uEqWWN1KluV1cnmQ4WXlLX1TyX9rxxVN9R0jTdSRFvbdJ vSPKFzs8bfzRutHQ7dVIy7DnnjPpNX9vvHIoIBQQ0PUbdAthrFwirXhFdhLtB82cLO30y5d + ZhI + uEf830 / 8d / 2KK82mfzhAoAj0 / USB8TB5rE1 / yUK3n4v9OIGnl1nD5S / 4j7l3X / pjVEPGbRLrbrJD JbSJ + MqSH / gMH5eB5ZI / ESH + 9I + 1bPc7 / E + nqaTQXsB7mSyuuI6dXWNkHX + bH8lPoYH / AD4 / ddrx Nf4v8qggPq1pC7dI5pkifcE / YkKt2Pbtj + Qz9ISPuBP3LxDvRkGs6ROKwX1vKKA1SVG2PQ7HKpaf JHnGQ + BTYRSsrqGUhlO4YGoOVEUlvArsVdirsVdiqBvKfpCw / clj6j / 6R8FF / dP8O55 / F7Cm2KsH / K69sNB8oIuq3AtHvbm7vYVnRoWaIzKrSFSqjdpFNVqp5VBIxVlVxq8lnoNj9SRbrULtY7fT4C1E eYpWrsK0SNVZ3PgDTfbMnS4Bkl6jUI7yPl + s8h5okaV9C0CDTEeaRzd6rdBTqGpSD95M47f5Ea / s Rr8Kj6Th2OqOU0PTjj9Meg / We88yiMaTXMVk7FXYq7FXYq7FXYq7FXYq7FXYq7FULZOjXF9xYNxn AahrQ + jHscVYZbazpGlfmJ5gF4 / oqLW3nuL6URKiCQokUJfkZWLHlwXiAN + tRRVP / LX99dg6mdTP J / 3rBVK0u7lTHTr + 6IMfX9nt0xVPsVdirsVQ19qem6fGJL + 7htIz0eeRI1NKd3I8cVS4 + c / LDNxt r9L59 / 3dgr3rinWq2yynFVzeaLQ1EFlqE7jcqLG5i2 / 1p0iU / QcVQj3HrEiXyjdMFHwlxpjDfw / 0 o + GWjPkHKR + aKCEn0vT5j8HkaJn + 0WuU05VqOlCkkzcv9j9OWjXZxyyT / wBMUcI7m10CZqtF5W0u 2XoFNyYmNO7LBaun / DHH89n6zkfebXhDX + H9TWvp6JYoDuVTVbxFr / qra0w / nsvU / YP1LwhtdA1t U4R2aooXin + 53VCFp0 + H0l6fPE62Z6Q / 0kP + JXhCxPLHmFNhMpFT11HVSd / nMcTrZnpD / SQ / 4leE J / oVhd2Vo8V1IHkaQuKS3E1AQBTncvI / au1B7dzRkymZs18AB9wCQFW8K / XbEepRjIxEXw7j0n + L py2ytLFfy98pwW / lxYtW06s4nlkiS + VJpY1fjVAzGQ0BSlduVOVBWmKppo9bzWIpRQwaVYx2ykbn 6xdKksgPhwijiI / 1zmZL0YAOs 5X8I2B8yZfJj1ZFmGydirsVdirsVdirsVdirsVSzVfNHlrSJkg1 XVrLT5pF5xxXVxFCzLWnILIykio64qhI / Pvk2a6tbW21e2u5byRooTav9YjEioZCskkPOOMlFYjm wrQ06HFU + BDAEGoO4I6EYq7FUNaf395 / xmH / ACZjxV57NNdP5980Q2OjR6sVgsD9VlWOGJ3YkSyG WUlZCiqu3HbanU4qy7yws6iVZNJTRQF + GwjaJuK / WJ + DH0ax1kTi5odiSO1cVXS + Ybi5llt9Bs / 0 jLC3CW6kc29kjAkMvr8ZGkYEEERI9DsxU4q5NL8zTkPe62LcgbRadbRRrv8AztdfXC1PFQvyxVs + UNHkTheNdXyn + 8S6u7mWNyf54TJ6J + XCmKoqw8u + X9Ok9TT9MtLOT + e3gjiPSnVFHbbFUwxV2Kux V2KuxV2KuxV2KuxVC3Zf61ZAAcPVarV3r6MlNqfxxVA675aTV5oZW1G9sjCjR8LSVY1dXdHPMMj7 1iFCNwK + OKofyJH / AM67FcMPju5ZpixrVkMjJCTUn / dKIPozL1u0xH + bGI + wX / srYxZBmIydirsV dirsVdirsVdirsVQd5f3VvJwi064u14hvUha3C1Jpx / eyxNXv0p75djxRkN5Rj7 + L9ESglinn7U4 m0Qpr + gtL5UkquvfWGV5Ui4ho2ihtWmaWsg9NgCDUigIrkckBHlIS91 / pAUFk3lubSZvL + nS6OCN Ka3j + oqQ4pDxAQUf4hRdt8rSmOKoWyULcX1K / FOCakn / AHTH0r0xViPmDy3oul3OueZNT1y709NW + qwzS2 / po8aQNSKKJljdzyZjy2r17VxVB6PPZavcDRdF1e71GynEs + rapM7Cf0Y724VrdHVIgvqT 8o0YD + 6RuJ + ycVegwQQW8KQQRrFDEoSOJAFVVUUCqo2AGKr8VdirsVdirsVdirsVdirsVdirsVdi qBvHhGoWCFj6xkcqtWoVET1NPs + GKobW28zpNBJph2P6oqsbwXPq + pXnGQYhGrV / diQUPcjFUN5P 9d / KmkNZ3Cm1NnB6BntnilKemOJkQymjEfa98sy5DOZkeZNoApN / T1L / AH / D / wAiW / 6q5WliMX5k 2cnmNtCHr / WxMtty + oyGh2CVBIlExVl / eCpXp3xVl3p6l / v + H / kS3 / VXFWOebfOq + WTEt6ZJDKjS hra0aYBUZQQ375aV5demKppoWrT63pNvqlpIEt7kMY1ntZIZAFYr8UbyBl3XviqprGoXWlaXdalc So8NpE00iRQEyMEFeKKZlqx6AV3OKsf8o / mDB5k1G602zMyXNqHkkkudPmt4ygcABWaUhiA46dev TFWV + nqX + / 4f + RLf9VcVYXrn5pafo2uto9yLp7iNxEzQ6bcSRFnRZARKJAtADQ + / yxVmnp6l / v8A h / 5Et / 1VxVI / NvmlvLVlBc3jNKLmb6vGLW0edlYozc2UTL8I474qqeVvMp8y6c9 / YOY4UkMJW5tX icsEV6hTLutHG / fFU3ZdQVSxnhooqaQudh7CTFWH + VvzM0XVNaXTES8e61OQy20jWMtvEqLATSRm eTiaW7EFqVqAB1xVnEgJjYBQ5oaK2wJ8Dsf1Yqxby / c3snmHV1e3gXULeK3gu40aVIlT1rmW3CMY yr1imDOR + 0T7YqyL1NS / 3xD / AMjm / wCqWKsY81fmLY + W7qO01CIrPIInX0VnnBWRpP8AfcR3 / cMP uxVP9N1O61HTra / t7eMQXcSTxB5HVuMihlqDFsaHFVHXNdk0XS5tTvoY1tYCnqskjsw5usYPERVO 7YqlPk3z / a + a47htLhJFtxaQzrPb7Ss4QASRCtAm + Ksk9TUv98Q / 8jm / 6pYqwxvza0ceYxoIhkN7 631UqIrgxmQzCFT6wh5ca79dwfoxVmfqal / viH / kc3 / VLFWO + cvPtr5TtoZdUi4fWg4gMKz3G6cQ SwjhNKcx88VTLQPML67pMOqWEC / VZy4j9V5In / du0bVRogw + JT1xVEalqd3p + nXWoXFvGYLOGSeY RyO78IlLtxURVY0GwGKsb8o / mfpvmnUZ7HTIXM0SPKRMk8ChIyiMOTxAMeT9sVZZ6mpf74h / 5HN / 1SxVhHmP819A0XzEmk6mJY57J + c / oQzzglrfkqhhEqfZmB5FqDp40VegYq7FXYq7FXYq7FXYqkHm bybZeYHjllvLywuIY2iiuLGRYpFrLHKHVmV6MphoCOzN47KsS0XStG8xQpBpPnDWbkxerJ68syu5 DxwgqG4IAY0MbjuvqV6nZV6ZirsVdirsVdirsVdirsVdirsVdirsVdirsVS / XdCsNc082F8paAyR S / DSoaJw46huvGh9icVYNrPl7y55fNvp175j1wPqqyR2sbXkkiRrC8UrOooFj4lERSPs8z0BJCrN fK0FnD5esRZXMl5aSxCe3uZSS7pOTKp33Ao / wjsNsVTTFXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FX YqxfUIrLyvJbzaJ5ba6e8dYLl7FEUxR7UeQfaK9B8I6AdlFFU6tdTlubaK4SxuFSVQ6hzCGowqKj 1NsVVEvZ3RXFjOAwBoxhBFfEGTbFVv6Qm9h2fqNxTjy4 / uuXStOPqVr7Yq79ITej6v1G4px5cf3X LpWnh2K19sVXPezojObGchQTRTCSaeAEm + KrZtQmhhklNjcMI1LFU9JmPEVoqiSpPgBiq572dEZz YzkKCaKYSTTwAk3xVz3s6IzmxnIUE0UwkmngBJviq2bUJoozIbG4YCnwp6TNuabASVxVc97OoqbG c7gbGEnc07SYq572dRU2M53A2MJO5p2kxVz3s6ipsZzuBsYSdzTtJirnvZ1FTYzncDYwk7mnaTFV suoTRIGNjcMCyrRPSY / GwWtBJ0Fak9hvirpdRkiMZks51R3SMv8AuiFMjBFJAkLUqewxVu + 0jTL9 4pLy2Sd4AwhZxUpzoTxPbdFPzAOKoiCCG3gjggRYoYlCRRoAqqqiiqoHQAYqvxV2KuxV2KuxV2Ku xV2KuxV2KuxV2KuxV2KpJ5mtNfuBZfofWE0ho5uVz6kUcwnj4n93SQVU / tVU9sVTHSQ40u05kFvR SpAoPsjsScVRWKpD5t89 + UfKNl9c8xapDp8R + wshrI5ozAJEvJ3J4GlBgBsiI3kenVuhglKJl / CO p2Huvv8AIb + TyuX / AJyks9Ue7j8jeTta81PaCP1ZYIXSJWlOwk9JLmSMUVqcoxUqabb5lDSzh2mO P + sd / wDSx4iPjSJjGLqXEfIek / GVH / Yoibzd / wA5T3mpQQ2PkbSNJtJGCSz395HdrHU / bZra7jk4 qOoWJj4eGIx4RznI + 6G32zh4MJyB + kV7zf6Amc0X / OUrkFJvJcYHUJ + k9 / nyR8T4HdM / GI / 3skRl XMA / P9YS2 / 0X / nLS6mhkg13yvYrE3J4rdbhllG3wv69pM1Nv2Sp3xEsP82f + mH / ELKV9APn + tNl / 6GiAAI8kmn7ROrV / ADDxYP5s / wDTD / iGG7f / AFlD4 + SB / wBxY41gPWY + AP6Qu6GtvN // ADkfptzc 22q + QtN8wKpX6te6RqUVhCRT4qreyTSt26qlPfHgwfzp / wCkH / FruiR + YP55E / 8AkpqD38waf / BD j4OI8p1 / WiR93EtnuQ1j + e + uLG66z + Wfmu2u1YgR2Ni19EVHf1T9W7 + C / Tj + Xj0yQP8Aph98Qm / J fN / zkXoFnVtX8qeadGhFOU9 / pnpoCTQVKyufwyJ0sh2h / p4f8UzjCRFgGvcUSP8AnJj8kahT5k4k 9ms78U + ZMFMl + TyHlR90on7iwJpnUeqWWr6NYapplws + nXptbi3nCtSSKSRGRlrxIqCDuMxiKNJT XArsVdirsVdirsVdirsVdirsVdirsVdirsVdirsVeZeZfM / kbWdUFn5j0qW8GkakbbT5IBcScbkI wZ5FRYVWgU03cfI4q9A0Rom0izaJCkZhSilGjPTf4WCkb + 2KvOvzz / N + byNptrpmh35v / N + tMIdK tFQy8eTcBIY1 + KQ8yFRFHxN + M8OI5ZcIPCALlL + bHv8Af0A6n5OVihGMPEmLF1Efzpf8SP4uvICr 4ox3yH / zjlBezQebPzUmk8webbgLJLp8sgazt + JRoo5FjoJ3XgfUHIwtyI4v9trzqBAcGIcMep / i l / WP + 9G3v5tGXLLIbmbrl0A8gBsHt9paWtnaw2lpDHbWltGsVvbxKEjjjQBUREUBVVVFAB0zFYKu KuxV2KuxV2KuxV2KuxV2KqF1p9hd0F1bRXFOnqor / wDEgfHImIPMNuPPOH0yMfcaQ + p / V44rZDHU / WIFh5xlgpEi91BCCm1TTwyTWTaPxQ7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXnemSeYF8 xeYrfy1BYR / VtRj + uLcvcPzW4jM0jKomKRvzfkeKCvgTvirNrG4S30SC4uSsUcNuskrVJCqqVJrQ dh5YCaFsoQMpCI3J2eE / kPodx578861 + cuuxSrzuZLTypCxkjCQrG0MknCnFwsTiJSrlefq1XkFI y8o8OAx9T6pe88h / mx + 0lllycctvpjth4fbzO56WX0JmK1uxV2KuxV2KuxV2KuxV2KuxV2KuxVC6 kX9GPiAQZ4ORJoQPVXpsa4qisVdirsVdirsVdirsVdirsVdirsVdirsVdirsVdirx6wuNFn1rzLN r2o3ejK + u8NOdJnjmma3DwlQAlDG3CqgL9mhrUklVW / PbzNDo / 5C6lNaXMfPUbaHToGaQN6guWWO 4RCWq7fV / VNFqRStKA5fpsYnkiD9N2fcNz9gZRlVnbl189vs5 / Bm / wCW / lJPKHkTRPLgWNZdPtUW 8MLu8b3T / vLqRGko3GSd3YVApXoBtleXIZyMjzkb + bACmSZBLsVdirsVdirsVdirsVQl + 2rD0 / 0e kD9fV + sM606cePBW965GXF0b8Ixb + IZfCv0liepXf5yQ3836PsNDvbL4vQWaa5tnHwRFauFuOfxm Uh5F2CnucIvq1z4bPDdeamb / APOxZGP6K0KSPivBBc3KnkRViXKHp0A47 + IwsHX9 / wDnXHdwLY6V oU9p + 6a4klurmNyCg9VVURuAVetDUgjFWU3soFpZfXGSG7kltx6SyEKZeallWvHnTft74qmWKuxV 2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxVhuqaDYaDL62ieVRrE2q37XeoFpkpFM5Z2uP8ASC9C Wc7Rgde2KsE / N + C917zD + UvlAWtvLYajqZ1S / iu15co9IijeSKgLoyyW88wKsp5HiKgVzK0 + 0Zy7 o18yB / ueJiej23MVk7FXYq7FXYq7FXYq7FXYqhtRtry4txHaXbWUokjczKiSEojhnj4uCP3igpXq K1G + KsT1Typ + Y8urXl5pfnVLKzuJEa3sJtMjuUgjUDlGr + tEzczWrH6KYqp2XlH8z45oGvvPouoU mElxGmk20JeJXVhGrLI3ElQysxDVr0FN1VTS / K35mW2rQXN954S / 09GX6xYnSYIjKimpAlSX4Gbx C / RirK9SYiGMBSwM8AJFKD96u5qR + GKorFXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYqx / zb BeS / o / 6t5iXy / wAbir8kif60AtfRHqstNgT8O + KpF / yriPVPPPlbz1NrFyy6Dp0kFppXwm3aW5jd GnB6KTHMVbitW4pv8NDMZCImPQkH5X + tFM8VldQykMrCqsNwQe4yCWvVj9P1ea + lx5c6jjxpWtel KYq71Y / T9XmvpceXOo48aVrXpSmKtsyopZiFVRVmOwAHc4q1LLHFG8srrHFGpZ3YgKqgVJJOwAGK tsyopZiFVRVmOwAHc4q5mVFLMQqqKsx2AA7nFWpJY4kLyuqIOrMQAK7dTirbMqirEKKgVO25NAPp OKoHVdIsdQERupbmIREhDbXdzaVLkCjfV5Iue4FOVfbrl + HUSx3Qjv3xjL / dA0gi2J3n5RaC + oy6 lHrOtWNxOw5tBqMy1JCKq8n5sacBSrdSe5yuczIkmt + 4AfYNkhddflTp0n1Jm8yeYIBZIkUfDUpF V2Wio7qRx9Q03ZQC1TWtcgrLNOtItK0y2s5Lua4SBUhW6vZfUmkJIVfUkNOTsSB7nFV2p7QRMXKA TwVG1GrMgANR4ntiqLxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KpZrvlvR9chiTUbZLhrZ jJatIC3py0oHAqKke + KoE + WLlfLMWnQXFvDq6QxI2praQ8TIpUyOIKcBzodu1cVU / wDDOqHy5LZ / W7aPWXd2i1FbSMpGrTmREERFCEiPp / j1xVu48salJ5eNlHeWsOsGUONRWyjMYjFx6hjEDEjj6P7r 7Ve / XFWv8Man / h2LIXlr + mBIGfUfqcXpsnr82j9HoAYv3fX364qqQeWb1PLEmnz3UFxrTQTRrq / 1 WJAJX5enJ6IDJ8FV270xVE6zoRurD0tPW2tbr1ImMjwJIhRXVpI2Ujo6Ar9OKsV13U10W1tNIu0e TU4YILi71dNOSe2mJZ1MRjh + MM / pMaBQKftVNMVQc / muwbysv1KOa51Wwjg + uyvpRja4ZoWYkQTe gtX48 + IcfyjrTFU00P6z5k8q2htUOnarbelHqMl / Ywo8kn1YMxaBWkVKvKr8eW1KdOqqeTeXLlvL 8FlHPANWjS3WXUjbRfG8TIZn9IgqPUCtt2riq3zJ5dvby2hTRZbXT5ldjLJJbJMGVonRQAaUKyMr g / 5OKqWs + WdUubGzi027trO6hVhd3ElpFKsrNA0atwotCkrLKKEDanTFXa75Z1W6sraLSLu10 + 7j VxPcSWcc6uzRFEcRkrThIRIBXtQ1GKrfMnlfVb61gi0a9tdMmRXE872cVxyYpSN1R9gUf4hviqZX + hpMbNrT0LSW3uIppZBbxuWjQ1eNa / YL9OQNRiqa4q7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXY q7FXYq7FXYq7FXYq7FXYq7FWLatc + eh5hih0 + 1hfRvWtjJMxUt6XNPW6kHkFMh / 2KU6kFVlIAFSB Su59 + 2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2Kv / 2Q ==
  • 2017-11-02T16: 21: 52 + 05: 30Microsoft® Word 2016
  • yunlong shang
  • приложение / постскриптум51.00000066.000000Picas1FalseFalse
  • Голубой
  • пурпурный
  • Желтый
  • Черный
  • Группа образцов по умолчанию 0
  • xmp.did: 1ECA1646B9BFE711A4EEB95DEFCD0784xmp.iid: 1ECA1646B9BFE711A4EEB95DEFCD0784xmp.did: 1ECA1646B9BFE711A4EEB95DEFCD0784
  • сохранено xmp.iid4eeB95DEFCD0784
  • : сохранено xmp.iid4: 1ECA16118 конечный поток эндобдж 4 0 obj > поток 8; Z] «9lHdr (rn # $ Q8 YSV7j6V> * = l2> WK & * ,? 5ok2-So2A5; P =; L @ EhF9 ((.)? 1) IZ4dup` E1r! /, * 0 [* 9.aFIR2 & b-C # soRZ7Dl% MLY \.? D> Mn 6% Q2oYfNRF $$ + ONnDZ4OTs0S! SaG> GGKUlQ * Q? 45: CI & 4J’_2j $ XKrcYp0n + Xl_nU * O ( l [$ 6Nn + Z_Nq0] s7hs] `XX1nZ8 & 94a \ ~> конечный поток эндобдж 7 0 объект > / ExtGState> / ProcSet [/ PDF / Text / ImageB / ImageC / ImageI] / Font >>> / CropBox [0 0 594 792] / Parent 17 0 R / Rotate 0 / MediaBox [0 0 594 792] >> эндобдж 8 0 объект > поток x = ɒFw} .Fh5r8 * 1 # «QU V | Jt2oM

    Energy | Free Full-Text | Плановый предварительный нагрев литий-ионных аккумуляторных блоков для сбалансированного распределения температуры и состояния заряда

    4.1. Электрические характеристики элементарного элемента при отрицательных температурах

    При взаимном импульсном нагреве тепло генерируется внутренним импедансом литий-ионного элемента и может изменяться в различных обстоятельствах. Таким образом, требуется модель эквивалентной схемы для оценки зависимости внутреннего сопротивления от других факторов и его влияния на процесс предварительного нагрева в среде с отрицательной температурой.

    Моделирование аккумуляторной батареи начинается с систематического анализа отдельной ячейки.Электрические характеристики литий-ионного элемента проанализированы в [12]. Соответственно, отдельная ячейка может быть представлена ​​исчерпывающей моделью эквивалентной схемы, как показано на рисунке 5. В этой модели конденсатор Cebat представляет собой полностью заряженный конденсатор, который представляет номинальную электрическую емкость одной ячейки, которая соответствует 100% SOC. . Этот конденсатор можно заряжать / разряжать, подавая ток на клемму в правой части схемы. Внутреннее сопротивление ячейки состоит из пассивных компонентов, включая последовательное сопротивление (Rs) и параллельные пары резистор-конденсатор, а именно Ri- Ci, где i обозначает i-ю пары.Напряжение на клеммах (Vbat) рассчитывается из напряжения холостого хода (EOC), внутреннего импеданса и тока батареи (Ibat). Напряжение холостого хода задается как функция SOC и выражается следующим нелинейным уравнением [13]:

    EOC = b11eb12SOC + b13SOC4 + b15SOC2 + b16SOC + b17,

    (1)

    где bi, j — эмпирически извлеченные коэффициенты регрессии [14], которые извлекаются методом извлечения в [15], а параметры для ячеек 18650 перечислены в таблице 1.Поскольку напряжение холостого хода зависит от SOC, SOC оценивается путем интегрирования тока батареи по времени [16] как:

    SOC = SOC (0) −∫0tIbat (t) dtQbat,

    (2)

    где SOC (0), Qbat и Ibat — начальное значение SOC в процентах, емкость аккумулятора в Ач и ток заряда / разряда в А. Внутреннее тепло элемента генерируется пассивными компонентами. Эти компоненты были исследованы в [17] и представлены как функции от SOC, температуры батареи и направления тока батареи следующим образом:

    Rs, l = Rs, 0, lexp (TrefRs, lTbat-TshiftRs, l),

    (3)

    Ci, l = C0, i, l + c1, i, lSOC + c2, i, lSOC2 + (c3, i, l + c4, i, lSOC + c5, i, lSOC2) Tbat,

    (4)

    Ri, l = (R0, i, l + a1, i, lSOC + a2, i, lSOC2) · exp (TrefR, i, 1Tbat-TshiftR, i, l),

    (5)

    i = 1, для R1 и C12, для R2 и C2l = c, заряжен, разряд.

    где Tbat — температура батареи, R0, i, l, a1, i, l, a2, i, l, C0, i, l, c1, i, l, c2, i, l, c3, i, l, c4 , i, l и c5, i, l — параметры, которые подбираются с помощью полинома второго порядка для зависимости SOC, а TrefR, i, 1 и TshiftR, i, l представляют температурную зависимость. используется для передачи электрической энергии назад и вперед от группы к другой в том же слое. В этом случае батареи постоянно переводятся из состояния зарядки в состояние разрядки и наоборот.Кроме того, учитывая, что значения пар Ri-Ci имеют тенденцию меняться обратно пропорционально при зарядке и разрядке в зависимости от SOC [17], противоположная зависимость этих пассивных компонентов одновременно возникает в том же интервале нагрева, и, таким образом, общее эквивалентное последовательное сопротивление (ESRbat) в двух группах остается неизменным в этом интервале. Кроме того, из испытаний импульсной релаксации при различных SOC, температурах и направлениях тока в [18], ESRbat показал минимальную зависимость от SOC, умеренную зависимость от направления тока и сильную зависимость от температуры.Поэтому для простоты мы предполагаем, что ESRbat зависит только от Tbat. Импеданс ячейки был дополнительно изучен в недавних исследованиях. В [19] резисторы R1 и R2 на рисунке 5 остаются неизменными во время разряда в широком диапазоне температур от -20 C до 5 ∘C, в то время как последовательное сопротивление (Rs) становится доминирующей частью импеданса ячейки. Основываясь на [17,20], тепловыделение рассчитывается с использованием единственного сосредоточенного внутреннего сопротивления (Rbat), которое включает рассеивание тепла через пары Rs и Ri-Ci модели эквивалентной схемы.Сопротивление также было исследовано в [18] для зарядки и разрядки при различных КПО и показало аналогичную зависимость сопротивления от температуры для широкого диапазона температур. Другое исследование [21] показало взаимосвязь внутреннего импеданса и температуры ячейки для литий-ионных элементов 18650 в диапазоне отрицательных температур от -30 C до 0 ∘C. В связи с этим мы применяем и расширяем эту зависимость до 20 ∘C, как показано на рисунке 6. Когда аккумуляторная батарея разряжается с высокой скоростью в холодной окружающей среде, снижение выходного напряжения на выводе элемента может быть чрезмерно высоким. из-за значительного увеличения внутреннего сопротивления, что приводит к недостаточной выходной мощности для нагрузки.Влияние разряда цилиндрического элемента 18650 при различных скоростях разряда на напряжение на клеммах и температуру батареи при -15 ∘C показано на рисунке 7. Во время этих процессов разряда температура элемента повышается и приводит к уменьшению его внутреннего сопротивления и, следовательно, напряжение на клеммах ячейки возрастает со временем. Основываясь на характеристиках напряжения и температуры, увеличение тока разряда уменьшает время нагрева, но также снижает напряжение разряда. При взаимном импульсном нагреве увеличение разрядного тока от одной группы приводит к увеличению зарядного тока и зарядного напряжения для другой группы.Кроме того, увеличение зарядного напряжения может привести к возможности нанесения литиевого покрытия на анод элемента [8]. Следовательно, напряжение на клеммах должно поддерживаться выше определенного порогового напряжения (Vthr). В этом случае батарея может разряжаться только с определенной величиной в зависимости от ее температуры, которая представлена ​​как максимальная скорость разряда (Irate) на рисунке 6 и определяется:

    Irate = EOC − VthrRbatQbat.

    (6)

    4.2. Тепловые характеристики элемента батареи
    Тепловая модель элемента батареи играет важную роль в стратегиях внутреннего нагрева.Следовательно, в этом подразделе обсуждается тепловыделение в одной ячейке. Мы используем механические и электрические параметры литий-ионного элемента LiNiMnCoO2 18650 емкостью 2500 мАч, как указано в [21,22] и перечислены в таблице 1. Тепловые характеристики были представлены в [19] путем нагрева аккумуляторного элемента с использованием различных переменных токов. Учитывая геометрию пакета на рис. 2, пространство между ячейками цилиндра заполнено воздухом. Крышка пакета действует как теплоизоляция и предотвращает циркуляцию воздуха из пакета и помогает устранить потери тепла из-за конвективной теплопередачи.

    В общем, из-за неравномерного распределения внутренней температуры в элементе тепловая модель литиевой батареи должна иметь геометрическую форму. Сообщается, что мы можем получить достаточно точный результат для моделирования на уровне блока с сосредоточенной моделью схемы для целевых стандартных ячеек 18650 благодаря достаточно низкому изменению внутренней температуры. В этом исследовании каждый элемент батареи рассматривается как сосредоточенная цепь с равномерным распределением температуры для простоты.

    Тепловой баланс элемента батареи с внутренним выделением тепла и внешней проводимостью был проанализирован в [23] и выражается как:

    mCbat∂Tbat∂t = Pgen − hbAbs (Tbat − Tamb) −εσAbs (Tbat4 − Tamb4) −Qext,

    (7)

    где m — масса элемента, Cbat — удельная теплоемкость элемента батареи, hb и Abs — коэффициент теплопередачи и площадь поверхности батареи между батареей и окружающим воздухом, ε — коэффициент излучения поверхности батареи, σ — коэффициент Стефана – Больцмана. константа, Tamb — температура окружающей среды, а Qext — внешняя теплопроводность от разъемов к ячейке.В уравнении (7) элементы с правой стороны представляют скорость внутреннего тепловыделения, конвективной, радиационной и кондуктивной теплопередачи, соответственно. В случае отрицательных температур, скорость радиационной теплопередачи обычно низкая по сравнению со скоростью конвективной теплопередачи и, таким образом, игнорируется в данном исследовании, где температурные переменные существенно низкие [24]. В нашей модели аккумуляторной батареи предполагается, что элементы в одной группе демонстрируют одинаковое распределение тепла, а также для разъемов внутри этой группы, и поэтому внешняя теплопроводность от разъемов к батарее также игнорируется.Для одиночного элемента батареи теплоемкость определяется:

    Cbat = ρcVcCp, c + ρaVaCp, a + ρsVsCp, s,

    (8)

    где ρc, a, s, Vc, a, s и Cp, {c, a, s} — плотность, объем и удельная теплоемкость катода, анода и сепаратора соответственно. Тепловые параметры для одиночной литий-ионной аккумуляторной батареи 18650 приведены в [22]. При рассмотрении аккумуляторного элемента в целом общее тепло, выделяемое литий-ионным аккумуляторным элементом (Pgen), можно разделить на два элемента, а именно: тепло за счет перенапряжения (Qp) и тепло за счет изменения энтропии (Qs) следующим образом [25] :

    Pgen = Qp + Qs, Qp = Ibat2Rbat, Qs = IbatTbat∂Eoc∂Tbat.

    (9)

    Согласно [26,27], тепло, генерируемое из-за перенапряжения, является экзотермическим во время циклов заряда и разряда, а тепло, генерируемое из-за изменения энтропии, является экзотермическим во время цикла разряда и эндотермическим во время цикла заряда. При отрицательных температурах тепло Qp обычно превышает тепло Qs [24]. Таким образом, общее тепловыделение от обоих процессов положительно, а температура элемента увеличивается как во время процесса зарядки, так и во время разрядки.
    4.3. Модель аккумуляторного блока с боковой тепловой зависимостью
    Теплопередача между элементом в другой аккумулятор внутри аккумуляторного блока и отвод тепла в окружающую среду упрощаются за счет использования моделей теплопередачи. На рисунке 8a показана тепловая модель отдельной ячейки, а на рисунке 8b показана тепловая модель для части ячеек. В этих моделях тепловой конденсатор Cbat заряжается, поскольку тепло генерируется внутри от Pgen. Точно так же тепловая емкость ячейки уменьшается, когда ячейка начинает терять тепло через терморезисторы Rtb2a, Rb2a и Rb2b.Теплопередача в аккумуляторной батарее моделируется путем анализа среза батареи, прорезающего четыре группы ячеек, аналогично другим срезам в аккумуляторной батарее. В модели также оценивается отвод тепла от одного элемента к другим элементам, имеющим более низкую температуру, и во внешнюю среду через крышку блока. Как обсуждалось в разделе 3, мы предполагаем, что аккумуляторный блок покрыт слоем термопластичного полимера. который имеет одинаковое распределение толщины на каждой поверхности, чтобы обеспечить одинаковый коэффициент теплового рассеяния для всего аккумуляторного блока.Термическое сопротивление крышки упаковки разделено на две части: боковая область и верхняя-нижняя область, соответствующая одной ячейке в срезе. Термическое сопротивление боковой поверхности определяется как:

    Rsb2a = hcoverλPolyAs,

    (10)

    где hcover, λPoly и As — толщина боковой крышки, теплопроводность поликарбоната и площадь боковой зоны, соответственно, в которой тепло от элемента отводится в воздух [28]. Теплопроводность поликарбоната исследовалась в [29], а толщина покрытия принята, как указано в таблице 1.Перед тем, как выйти в окружающую среду, тепло от ячеек должно рассеиваться через покровный слой. Таким образом, полное тепловое сопротивление от ячейки к внешней среде через крышку блока выражается как: где Rb2b определяется как тепловое сопротивление от одной ячейки к другой через воздух внутри упаковки и было получено из [25]. Термическое сопротивление верхней части нижней крышки блока в области, соответствующей ячейке, определяется по формуле:

    Rtb2a = hcoverλPolyAtb,

    (12)

    где Atb — общая площадь верхней и нижней крышки, обращенных к воздуху, соответствующая ячейке.Мы применяем уравнения (7), (11) и (12) для многослойной теплопередачи, чтобы получить динамическую компактную тепловую модель для одной ячейки в срезе следующим образом:

    Pgeni = mCbat∂Tbati∂t + Tbati − TambRb2a + Tbati − TambRtb2a + ∑j = 1NTbati − TbatjRb2b

    (13)

    где i обозначает основную соту, которая моделируется, а j обозначает j-ю соту, окружающую эту основную соту. В уравнении (13) Pgeni является источником тепла, а элементы с правой стороны представляют приращение теплоемкости и потери в другие ячейки и во внешнюю среду.Параметры электрических и тепловых моделей аккумуляторной батареи приведены в таблице 1. Литиевая батарея

    для холодных погодных условий

    Когда дело доходит до питания жилых автофургонов, лодок, гольф-каров и электромобилей или обеспечения накопителей для систем солнечной энергии, литий-железо-фосфатные батареи RELiON имеют ряд преимуществ перед свинцово-кислотными батареями. У них более долгая жизнь. Они легче, но имеют большую вместимость. Они не требуют обслуживания и могут устанавливаться в любом направлении.Они также заряжаются быстрее и не требуют полной зарядки перед хранением или использованием.

    Литий-железо-фосфатные батареи

    можно безопасно разряжать в широком диапазоне температур, обычно от –20 ° C до 60 ° C, что делает их практичными для использования в любых погодных условиях, с которыми сталкиваются многие потенциально низкие температуры, включая жилые автофургоны и отключенные. сетка солнечная. Фактически, литий-ионные батареи намного лучше работают при более низких температурах, чем свинцово-кислотные. Например, при 0 ° C емкость свинцово-кислотной батареи снижается до 50%, в то время как литий-железо-фосфатная батарея теряет только 10% при той же температуре.

    Проблема низкотемпературной зарядки литием

    Когда дело доходит до перезарядки литий-ионных аккумуляторов, существует одно жесткое и быстрое правило: чтобы предотвратить необратимое повреждение аккумулятора, не заряжайте их, когда температура опускается ниже нуля (0 ° C или 32 ° F), не уменьшая ток заряда. Если ваша система управления батареями (BMS) не обменивается данными с зарядным устройством, и зарядное устройство не способно реагировать на предоставленные данные, это может быть сложно сделать.


    В чем причина этого важного правила?

    При зарядке при температурах выше точки замерзания ионы лития внутри батареи впитываются, как губка, пористым графитом, составляющим анод, отрицательный полюс батареи. Однако ниже точки замерзания ионы лития не улавливаются анодом эффективно. Вместо этого многие ионы лития покрывают поверхность анода, этот процесс называется литиевым покрытием , что означает, что меньше лития, вызывающего ток электричества, и емкость батареи падает.Зарядка при температуре ниже 0 ° C при несоответствующей скорости заряда также приводит к снижению механической устойчивости аккумулятора и повышению его предрасположенности к внезапному выходу из строя.

    Повреждение аккумулятора при зарядке при более низких температурах пропорционально скорости зарядки. Более медленная зарядка может уменьшить ущерб, но это редко бывает практическим решением. В большинстве случаев, если литий-ионный аккумулятор хотя бы раз зарядить до температуры ниже точки замерзания, он будет безвозвратно поврежден и должен быть безопасно утилизирован или переработан.

    В условиях ниже нуля, без связи BMS с зарядным устройством, которое запрограммировано на снижение тока, когда это необходимо, единственным решением было нагреть батареи до температуры выше точки замерзания перед зарядкой, либо поместив их в более теплую среду, либо обернув их. в тепловом одеяле или размещении небольшого обогревателя рядом с батареями, в идеале с термометром для контроля температуры во время зарядки. Это не самый удобный процесс.

    Новая литий-ионная аккумуляторная батарея для низкотемпературной зарядки

    Чтобы решить проблему зарядки и сделать литий-ионные аккумуляторы более безопасными и более практичными для использования при низких температурах, RELiON разработал новую серию литий-железо-фосфатных аккумуляторов, которые могут заряжаться при температурах до -20 ° C (-4 ° C). F).В системе используется запатентованная технология, которая получает питание от самого зарядного устройства, не требуя дополнительных компонентов.

    Весь процесс нагрева и зарядки полностью незаметен для пользователя. Просто подключите аккумулятор к обычному литий-ионному зарядному устройству, а внутренняя система обогрева и контроля позаботится обо всем остальном.

    Поскольку для нагрева элементов требуется время, процесс зарядки при температурах ниже точки замерзания займет немного больше времени. Например, с низкотемпературной батареей RELiON RB100-LT 12 В в 100 Ач требуется около часа, чтобы нагреться от -20 ° C до + 5 ° C, прежде чем начнется зарядка.В меньшем диапазоне температур нагрев до безопасной температуры зарядки происходит пропорционально быстрее.

    Низкотемпературная серия

    RELiON выглядит и работает так же, как и другие наши батареи, с такой же мощностью и производительностью. У них одинаковое время зарядки при температурах выше нуля. Они также имеют те же размеры, конфигурацию и возможности подключения, что и его стандартные аналоги, поэтому их легко заменить в приложениях, которые уже используют батареи RELiON. И они идеально подходят для тех, кто до сих пор использует свинцово-кислотные батареи в условиях низких температур.

    Идеальное решение для литиевых батарей для низкотемпературных применений

    С аккумуляторами RELiON серии LT пользователи, которые иногда сталкиваются с отрицательными температурами, теперь могут пользоваться многими преимуществами литиевых аккумуляторов, не беспокоясь о нагревании аккумулятора перед зарядкой. Они имеют тот же размер и производительность, что и стандартные литиевые батареи RELiON глубокого разряда, но могут безопасно заряжаться при понижении температуры до -20 ° C с помощью стандартного зарядного устройства.Они являются идеальным выбором для использования в жилых автофургонах, автономных солнечных батареях, электромобилях и в любых приложениях, где необходима зарядка при более низких температурах.

    Текущие продукты серии LT:

    RB20-LT: Идеально подходит для небольших применений в холодную погоду, таких как удаленный мониторинг, светодиодное освещение, камеры контроля дорожного движения и небольшие солнечные энергетические системы.

    RB52-LT: Компактный и легкий, но мощный, он идеально подходит для небольших солнечных энергетических систем, удаленного мониторинга, каякинга и других небольших приложений, где требуется зарядка при низких температурах.

    RB100-LT: выбор для использования в жилых автофургонах, автономных солнечных батареях, электромобилях и практически в любом приложении, где необходима зарядка при более низких температурах.

    Нагревательная пластина батареи нагревателей

    Kat для батарей серий 27, 31 и 40 — 120 В


    Отзывы клиентов
    Нагреватели Kat’s Heaters для аккумуляторов серий 27, 31 и 40 — 120 В — 60 Вт — Kh32500

    Средняя оценка клиентов: 4,8 из 5 звезд (30 отзывов клиентов)

    Порядок: RelevanceNewestRating — High to LowRating — От низкого к высокому. Поместите эту гибкую грелку под аккумулятор вашего автомобиля зимой, чтобы поддерживать его заряд и гарантировать, что ваш двигатель вращается.Размеры 11-1 / 2 дюйма в длину и 8-1 / 2 дюйма в ширину. Подключается к розетке на 120 В.
    — Х32500

    Товар именно то, что я заказал. Доставка трех дней не прошла так хорошо, но etrailer вернул мне деньги за доставку за три дня. Это очень хорошее обслуживание клиентов. Буду заказывать у них в будущем. 452046



    — Х32500 Автор: William, 13 декабря 2018 г.

    прост в установке и сохраняет работоспособность аккумулятора даже при температуре ниже нуля. 5



    — Х32401

    Обзор аналогичной аккумуляторной площадки в автомобильных обогревателях

    Когда мой аккумуляторный нагреватель отключился на моем резервном генераторе Generac 20KW, я использовал этот нагреватель из трейлера E, использовал термостат и соединитель проводов от старого блока, они все еще были хороши, Generac требует около 80 долларов.00 для новых это намного экономичнее. Джон 470297



    — Х32400 Автор: Hank01 / 05/2020

    Обзор аналогичной аккумуляторной площадки в автомобильных обогревателях

    хорошо нагревается и сохраняет тепло аккумулятора, — идеальный вариант для дизельных пикапов при минусовых температурах. В сочетании с блочным обогревателем даже самое холодное утро не составит труда. 735874

    Комментарии

    У меня есть два таких на моем Ram 3500 4×4, они все еще работают нормально через год. Я не ставил прокладку под аккумулятор, я поместил кусок алюминия между изоляционной крышкой аккумулятора и накладкой обогревателя и поместил его сбоку от аккумулятора.Я волновался, что неровные дороги и стиральные доски могут вызвать небольшое движение батареи и короткое замыкание, если она находится под батареей.

    Генри Т. — 01.07.2021
    105527
    — Х32100 Автор: Марк, 12 июня 2020 г.

    Обзор аналогичной аккумуляторной площадки в автомобильных обогревателях

    Очень хороший товар. Сработало безотказно. Использовал для переоборудованной батареи, которая начинает замерзать при температуре около 15–16 F. Не давала ей замерзнуть в течение ночи в течение нескольких ночей. Также приобрел обогреватель аккумуляторной батареи для другой машины с немного большей батареей.Подогреватель пэдов сделал то же самое идеально. Если вы живете в северных частях США и хотите использовать повторно кондиционированные батареи (английская соль и дистиллированная вода) зимой, эти обогреватели необходимы для защиты от замерзания. Спасибо etrailer. 920154



    — Х32200

    Обзор аналогичной аккумуляторной площадки в автомобильных обогревателях

    Один уже был, и он отлично работает, на самом деле помогает сэкономить батарею в холодные дни и увеличивает скорость запуска / проворачивания вместо медленного проворачивания, которое вы получаете, когда ваша батарея холодная, я считаю, что это необходимо для зимы, когда мы добираемся до -20 легко.Последний, который я получил, был с другого сайта и стоил там как минимум на 20% дороже, поэтому определенно счастлив, что смог получить тот же продукт по более низкой цене здесь. 452692



    — Х32400

    Обзор аналогичной аккумуляторной площадки в автомобильных обогревателях

    Так же, как рекламируется. Аккумуляторный обогреватель этого Kat будет поддерживать тепло в резервном генераторе всего дома, когда здесь, в северном Висконсине, станет очень холодно. Он подключен к термостатическому переключателю, который включается при 10 градусах.539869

    Комментарии

    Fantastic

    Peter — 10.07.2019
    57626

    — Х32401 Автор: Брэдли, 02 февраля 2019 г.

    Обзор аналогичной аккумуляторной площадки в автомобильных обогревателях

    Мы поместили этот блок в резервный генератор Generac мощностью 20 кВт. Блок управляется термовыключателем, включенным при 0 градусах F / выключенным при 30 градусах F. Работает нормально, чтобы держать блок в готовности к любому отключению электроэнергии. Мы использовали кусок фанеры с покрытием 1/4 дюйма между нагревателем и батареей, чтобы предотвратить перегрев нижней части батареи.Это 5-я подобная установка. Остальные находятся в эксплуатации более 6 лет. 594480



    — Х32200 Автор: Брюс, 29 июня 2020 г.

    Обзор аналогичной аккумуляторной площадки в автомобильных обогревателях

    Подогреватели аккумуляторов, которые я заказал в etrailer , были именно тем, что мне было нужно для защиты аккумуляторов моей лодки от ледяных температур прошлой зимой, так как я не мог хранить их внутри. Они отлично работали с термовыключателем. Спасибо etrailer за отличный товар. 824534



    — Х32200

    Обзор аналогичной аккумуляторной площадки в автомобильных обогревателях

    Эта компания была ОЧЕНЬ дружелюбной к клиентам на протяжении всего процесса заказа.Доставка была отложена, и они связались со мной лично и предложили альтернативу, если я не хотел ждать исходный товар. Товар прибыл раньше, чем ожидалось. Товар работал, как описано, и я снова буду иметь с ними дело. 607768



    — Х32300

    Обзор аналогичной аккумуляторной площадки в автомобильных обогревателях

    Для аккумуляторов в нашем полуприцепе необходим нагреватель, чтобы они не замерзли. Поставляется быстро. Прибыл упакован хорошо. Установка прошла легко.Кажется, это хорошо сделанный продукт. etrailer — отличное место для заказа 604689



    — Х32200

    Обзор аналогичной аккумуляторной площадки в автомобильных обогревателях

    Джонатон из eTrailers, помогите мне убедиться, что этот продукт будет работать с Hyundai Santa Fe AWD 2.0T 2013 года выпуска. Установка была произведена третьей стороной бесплатно. Этой зимой у нас несколько раз бывали дни с температурой от -20 до -30 градусов тепла. Работает как надо. 332124



    — Х32300 Автор: Charles 17/12/2018

    Обзор аналогичной аккумуляторной площадки в автомобильных обогревателях

    Отличный товар.Мы используем их в сельском хозяйстве машин. Сохраняет наши батареи в тепле, и мы не испытывали проблем с вздутием батареи (из-за холодной погоды). Продукт легко установить и хорошо себя зарекомендовал. Нет претензий!!! 591396



    — Х32100

    Обзор аналогичной аккумуляторной площадки в автомобильных обогревателях

    Нагреватель батареи кажется довольно сильно нагревается. Я собираюсь запустить это без таймера на ночь. Это сгорит, работая по 12 часов за раз 584476

    Комментарии

    Эта аккумуляторная пленка Kats Heaters предназначена для использования в холодную погоду, когда температура окружающей среды ниже нуля.В инструкциях по установке указано, что эксплуатировать аккумуляторный обогреватель при наружной температуре выше 32 градусов по Фаренгейту небезопасно. Я бы порекомендовал таймер в качестве дополнительной меры предосторожности.

    Рэйчел Х — 28.11.2018
    46133
    — Х32200 Автор: Erik, 16 ноября 2018 г.

    Обзор аналогичной аккумуляторной площадки в автомобильных обогревателях

    Отличный обогреватель, работает как рекламируется. Идеально подошел к моему 98 Jeep Xj. Я купил его в прошлом году, чтобы попытаться сэкономить неделю, проворачивая батарею, когда было холодно.Ну а через год накатываю такую ​​же батарею на холодные месяцы вперед! Сэкономьте нагрузку на свою летучую мышь с помощью Kat! 583384



    — Х32400 Автор: Фрэнсис, 12 августа 2019 г.

    Обзор аналогичной аккумуляторной площадки в автомобильных обогревателях

    нагревательная накладка сгорела примерно через 30 дней после Я установил ее утиль, мне это совсем не понравилось 730233



    — Х32200

    Обзор аналогичной аккумуляторной площадки в автомобильных обогревателях

    Нагреватель блока нагревается при подключении к розетке, а не при установке .Это обожжет тебе руку. Батарейный отсек при этом хорошо нагревается. Я не устанавливал их, но предполагаю, что они будут работать нормально. 456324



    — Х32200

    Обзор аналогичной аккумуляторной площадки в автомобильных обогревателях

    Я использовал эти предметы зимой в течение последних 5 лет или около того, и НИКОГДА у меня не было батареи, которая вышла из строя или не запускалась с ними. Только что приобрели еще два, чтобы пополнить свой автопарк еще парой автомобилей. 454285



    — Х32200

    Обзор аналогичной аккумуляторной площадки в автомобильных обогревателях

    Спасибо, Джордж, за быстрое и вежливое обслуживание. , часть была как раз то, что мне нужно, подходит и работает, большое спасибо.437618



    — Х32200 Автор: Марк, 12 апреля 2018 г.

    Обзор аналогичной аккумуляторной площадки в автомобильных обогревателях

    Отличный товар !!! 588321



    — Х32200 Автор: Фрэнсис, 12 августа 2019 г.

    Обзор аналогичной аккумуляторной площадки в автомобильных обогревателях

    Ницца 730234



    — Х32200

    Обзор аналогичной аккумуляторной площадки в автомобильных обогревателях

    Быстрое и отличное обслуживание. Товар , который я заказал, отлично работает.Спасибо за все! 319578



    — Х32200

    Обзор аналогичной аккумуляторной площадки в автомобильных обогревателях

    Ваш сервис отличный, не могу поверить , как быстро он дошел до меня.

  • Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *