Искать все виды документовДокументы неопределённого видаISOАвиационные правилаАльбомАпелляционное определениеАТКАТК-РЭАТПЭАТРВИВМРВМУВНВНиРВНКРВНМДВНПВНПБВНТМ/МЧМ СССРВНТПВНТП/МПСВНЭВОМВПНРМВППБВРДВРДСВременное положениеВременное руководствоВременные методические рекомендацииВременные нормативыВременные рекомендацииВременные указанияВременный порядокВрТЕРВрТЕРрВрТЭСНВрТЭСНрВСНВСН АСВСН ВКВСН-АПКВСПВСТПВТУВТУ МММПВТУ НКММПВУП СНЭВУППВУТПВыпускГКИНПГКИНП (ОНТА)ГНГОСТГОСТ CEN/TRГОСТ CISPRГОСТ ENГОСТ EN ISOГОСТ EN/TSГОСТ IECГОСТ IEC/PASГОСТ IEC/TRГОСТ IEC/TSГОСТ ISOГОСТ ISO GuideГОСТ ISO/DISГОСТ ISO/HL7ГОСТ ISO/IECГОСТ ISO/IEC GuideГОСТ ISO/TRГОСТ ISO/TSГОСТ OIML RГОСТ ЕНГОСТ ИСОГОСТ ИСО/МЭКГОСТ ИСО/ТОГОСТ ИСО/ТСГОСТ МЭКГОСТ РГОСТ Р ЕНГОСТ Р ЕН ИСОГОСТ Р ИСОГОСТ Р ИСО/HL7ГОСТ Р ИСО/АСТМГОСТ Р ИСО/МЭКГОСТ Р ИСО/МЭК МФСГОСТ Р ИСО/МЭК ТОГОСТ Р ИСО/ТОГОСТ Р ИСО/ТСГОСТ Р ИСО/ТУГОСТ Р МЭКГОСТ Р МЭК/ТОГОСТ Р МЭК/ТСГОСТ ЭД1ГСНГСНрГСССДГЭСНГЭСНмГЭСНмрГЭСНмтГЭСНпГЭСНПиТЕРГЭСНПиТЕРрГЭСНрГЭСНсДИДиОРДирективное письмоДоговорДополнение к ВСНДополнение к РНиПДСЕКЕНВиРЕНВиР-ПЕНиРЕСДЗемЕТКСЖНМЗаключениеЗаконЗаконопроектЗональный типовой проектИИБТВИДИКИМИНИнструктивное письмоИнструкцияИнструкция НСАМИнформационно-методическое письмоИнформационно-технический сборникИнформационное письмоИнформацияИОТИРИСОИСО/TRИТНИТОсИТПИТСИЭСНИЭСНиЕР Республика КарелияККарта трудового процессаКарта-нарядКаталогКаталог-справочникККТКОКодексКОТКПОКСИКТКТПММ-МВИМВИМВНМВРМГСНМДМДКМДСМеждународные стандартыМетодикаМетодика НСАММетодические рекомендацииМетодические рекомендации к СПМетодические указанияМетодический документМетодическое пособиеМетодическое руководствоМИМИ БГЕИМИ УЯВИМИГКМММНМОДНМонтажные чертежиМос МУМосМРМосСанПинМППБМРМРДСМРОМРРМРТУМСанПиНМСНМСПМТМУМУ ОТ РММУКМЭКННАС ГАНБ ЖТНВННГЭАНДНДПНиТУНКНормыНормы времениНПНПБНПРМНРНРБНСПНТПНТП АПКНТП ЭППНТПДНТПСНТСНЦКРНЦСОДМОДНОЕРЖОЕРЖкрОЕРЖмОЕРЖмрОЕРЖпОЕРЖрОКОМТРМОНОНДОНКОНТПОПВОПКП АЭСОПНРМСОРДОСГиСППиНОСНОСН-АПКОСПОССПЖОССЦЖОСТОСТ 1ОСТ 2ОСТ 34ОСТ 4ОСТ 5ОСТ ВКСОСТ КЗ СНКОСТ НКЗагОСТ НКЛесОСТ НКМОСТ НКММПОСТ НКППОСТ НКПП и НКВТОСТ НКСМОСТ НКТПОСТ5ОСТНОСЭМЖОТРОТТПП ССФЖТПБПБПРВПБЭ НППБЯПВ НППВКМПВСРПГВУПереченьПиН АЭПисьмоПМГПНАЭПНД ФПНД Ф СБПНД Ф ТПНСТПОПоложениеПорядокПособиеПособие в развитие СНиППособие к ВНТППособие к ВСНПособие к МГСНПособие к МРПособие к РДПособие к РТМПособие к СНПособие к СНиППособие к СППособие к СТОПособие по применению СППостановлениеПОТ РПОЭСНрППБППБ-АСППБ-СППБВППБОППРПРПР РСКПР СМНПравилаПрактическое пособие к СППРБ АСПрейскурантПриказПротоколПСРр Калининградской областиПТБПТЭ |
Особые свойства пучинистых грунтов
Особое свойство оснований, способных вспучиваться, заключается в значительном увеличении объема в результате зимнего промерзания.
Как определить пучинистые грунты? К основаниям, обладающим свойством вспучивания при промерзании, относятся только глинистые (в том числе суглинки) и песчаные грунты (пылеватые, мелкие и средней крупности). Гравелистые и крупные пески к пучинистым не относятся.
Песчаные, глинистые грунты и их разновидности обладают мелкопористой структурой, то есть состоят из мелких минеральных частиц, между которыми имеется множество мелких полостей. Эти полости или поры могут содержать влагу. При понижении температуры ниже нуля влага в грунте замерзает, превращаясь в лед, который, как известно, всегда увеличивается в объеме по сравнению с исходным объемом воды. В результате замерзания воды в порах и происходит увеличение всего объема основания, называемое морозным пучением.
Основания делятся по степени пучинистости, которая зависит от уровня или глубины, на которой залегают подземные воды. Для глинистых оснований еще имеет значение показатель текучести. Приводим следующую таблицу с градацией по степени пучинистости разных видов грунтов.
[table id=245 /]
- Основной показатель – это относительная деформация пучения Efh, которая определяется отношением величины подъема поверхности вспучивающегося основания к толщине промерзшего слоя.
- Показатель Z – это разница между величиной УГВ и глубиной сезонного промерзания, значение которой равно 1,2 м для отапливаемых зданий, и 1,5 м – для неотапливаемых зданий.
Если степень пучинистости по показателям Z и Jl (текучести) отличаются, то принимается большее значение.
Так как пучинистые основания проявляют свои негативные свойства при условии насыщения водой, то существует еще один способ классификации, учитывающий условия увлажнения основания зданий по характеру рельефа местности.
[table id=246 /]
То есть, если по показателям Z и Jl основание относится к слабопучинистым, но участок строительства расположен в низине или котловине, то следует считать, что грунты сильнопучинистые.
Таким образом, пучинистый грунт – это песчаный или глинистый грунт, подверженный увлажнению и сезонному промерзанию.
Распространение пучинистых грунтов на территории России
Так как песчаные и глинистые основания распространены повсеместно, то можно считать, что расположение грунтов с пучинистыми свойствами охватывает почти половину территории России. Сюда входят:
- западные области РФ: Калининградская, Псковская и Ленинградская области и Республика Карелия;
- средняя полоса РФ: Владимирская, Калужская, Ивановская, Костромская, Рязанская, Московская, Смоленская, Тверская, Тамбовская, Тульская, Ярославская, Белгородская, Брянская, Вологодская, Воронежская, Кировская, Курская, Липецкая, Орловская, Пензенская, Самарская, Саратовская, Ульяновская области, Чувашская Республика;
- южные части Архангельской и Мурманской областей, Хабаровского края, Республики Якутия, Красноярского края, Иркутской и Тюменской области, Республики Коми;
- Амурская, Читинская, Новосибирская, Омская, Кемеровская области, Республики Бурятия, Коми, Тыва, Алтай, Свердловская область, Республики Татарстан и Башкортостан, Волгоградская область, Ростовская область, Республика Калмыкия;
- северные части Краснодарского и Ставропольского краев.
Исключается зона вечной мерзлоты, которая охватывает большую часть территорий Якутии, Красноярского края, Тюменской и Архангельской области, Республики Коми. Зона вечной мерзлоты отличается тем, что грунт там промерзает на сотни метров вглубь, поэтому проблема пучинистых грунтов для этой зоны неактуальна.
Точно так же неактуальна проблема морозного вспучивания для регионов, где в основании зданий залегают в основном грунты скальные и крупнообломочные – это все северокавказские республики и южная часть Ставропольского края.
Кроме того, проблема пучинистости не имеет значения для территорий, где основания практически не промерзают – это южная часть Краснодарского края и Республика Дагестан.
Глубина промерзания наряду с уровнем расположения грунтовых вод является определяющими факторами, влияющими на величину возможного вспучивания основания. Например, в регионах, близких к Байкалу, где глубина промерзания может достигать 2,5 м, подъем поверхности при вспучивании может достигать 30-40 см, в Подмосковье при глубине промерзания 1,5 м подъем поверхности составляет 15-18 см.
Влияние пучинистых грунтов на фундаменты
Морозное пучение вызывает значительное увеличение его объема – величина подъема поверхности может составить не один десяток сантиметров. При этом возникают усилия, величина которых достигает десятков тонн. Даже если опустить подошву фундамента ниже глубины сезонного промерзания, это не предотвратит негативное влияние пучинистых сил, так как они действуют и по боковым поверхностям.
Пучинистость почвы также проявляется в том, что после оттаивания основания при потеплении происходит его осадка, то есть на конструкцию фундаментов периодически воздействуют разнонаправленные силы.
Вес конструкций может компенсировать вспучивание только в случае сооружения здания высотой не менее трех этажей с массивными бетонными или каменными стенами. Для малоэтажной застройки в один-два этажа, тем более из легких конструкций – деревянных каркасных и срубов, из легкобетонных блоков и из кирпича – должен быть подобран и рассчитан специальный фундамент для пучинистого грунта.
Основная опасность отрицательного воздействия пучинистых сил заключается в их неравномерности. Разные части фундаментов здания всегда находятся в неодинаковых условиях. Промерзание происходит только по периметру отапливаемого здания, под фундаментом, на который опираются средние стены, основание не промерзает.
Неравномерность промерзания под зданием
Кроме того, и по периметру ограждающих наружных стен основание промерзает неодинаково – с теневой, северной, стороны больше, с тех сторон, где прогревает солнце, – промерзание меньше. На величину промерзания влияет также толщина снегового покрова, архитектура здания, характер застройки участка.
Все эти факторы вызывают неравномерное воздействие пучинистых сил на разные участки фундаментов и неравномерные деформации в конструкциях, вызывающие самые неблагоприятные последствия – возникновение трещин и других повреждений в ограждающих и несущих конструкциях, которые могут привести к их разрушению.
Фундамент на пучинистых грунтах должен обладать особенностями, способными минимизировать или исключить негативное воздействие этого типа основания.
Мнение эксперта
Если в основании здания залегают грунты с пучинистыми свойствами, следует особенно тщательно подойти к выбору типа фундамента. Очень эффективной после многолетней практики применения зарекомендовала себя конструкция МзЛФ – об устройстве, армировании и расчете которого мы подробно рассказываем в статье«Мелкозаглубленный ленточный фундамент: расчёт глубины, подготовка основания, армирование своими руками и калькулятор расчётов».
Помимо выбора наиболее подходящего типа фундамента при строительстве на пучинистых основаниях, необходимо предусматривать дополнительные мероприятия, направленные на предотвращение замачивания и промерзания: устройство дренажа, утепление отмостки, заполнение пазух уплотненным сыпучим материалом.
Пучинистые грунты — Блог Сергея Настаева
Морозное пучение грунтов последствия
Пучинистые явления — процессы, возникающие во влажных глинистых, мелкопесчаных и пылеватых грунтах при их сезонном промерзании (пучинистые грунты).
Пучинистые явления — это не только большие деформации грунта, но и огромные усилия — в десятки тонн, способные привести к большим разрушениям.
Сложность в оценке воздействия пучинистых явлений грунта на постройки — в некоторой их непредсказуемости, обусловленной одновременным воздействием нескольких процессов. Чтобы лучше разобраться в этом, необходимо понять некоторые процессы, связанные с этим явлением.
Морозное пучение связано с тем, что в процессе замерзания влажный грунт увеличивается в объеме.
Происходит это из-за того, что вода увеличивается в объеме при замерзании на 12% (отчего лед и плавает по воде). Поэтому, чем больше воды в грунте, тем он более пучинистый. Так, подмосковный лес, стоящий на сильно пучинистых грунтах, зимой поднимается на 5…10 см относительно летнего своего уровня. Внешне это незаметно. Но если в грунт забита свая более чем на 3 м, то подъем грунта зимой можно отследить по отметкам, сделанным на этой свае. Подъем грунта в лесу мог бы быть в 1,5 раза больше, если бы в нем не было снегового покрова, прикрывающего грунт от промерзания.
Степень пучинистости грунта
Грунты по степени пучинистости делятся на:
- сильнопучинистые — пучение 12%;
- среднепучинистые — пучение 8%;
- слабопучинистые — пучение 4%.
При глубине промерзания 1,5 м подъем сильнопучинистого грунта может составлять 18 см.
Пучинистость грунта определяется его составом, пористостью, а также уровнем грунтовых вод (УГВ). Так и глинистые грунты, мелкие и пылеватые пески относятся к пучинистым грунтам, а крупнозернистые песчаные и гравийные грунты — к непучинистым.
С чем это связано:
Во–первых.
В глинах или мелких песках влага, как по промокашке, достаточно высоко поднимается от УГВ за счет капиллярного эффекта и хорошо удерживается в таком грунте. Здесь проявляются силы смачивания между водой и поверхностью пылевых частиц. В крупнозернистых же песках влага не поднимается, и грунт становится влажным только по уровню грунтовых вод. То есть чем тоньше структура грунта, тем выше поднимается влага, тем логичнее отнести его к более пучинистым грунтам.
Поднятие воды может достигать:
- 4…5 м в суглинках;
- 1…1,5 м в супесях;
- 0,5…1 м в пылеватых песках.
В связи с этим степень пучинистости грунта зависит как от своего зернового состава, так и от уровня грунтовых или паводковых вод.
Слабопучинистый грунт — когда УГВ расположен ниже расчетной глубины промерзания:
- на 0,5 м — в пылеватых песках;
- на 1 м — в супесях;
- на 1,5 м — в суглинках;
- на 2 м — в глинах.
Среднепучинистый грунт — когда УГВ расположен ниже расчетной глубины промерзания:
- на 0,5 м — в супесях;
- на 1 м — в суглинках;
- на 1,5 м — в глинах.
Сильнопучинистый грунт — когда УГВ расположен ниже расчетной глубины промерзания:
- на 0,3 м — в супесях;
- на 0,7 м — в суглинках;
- на 1,0 м — в глинах.
Чрезмернопучинистый грунт — если УГВ будет выше, чем для сильнопучинистых грунтов.
Обращаем внимание на то, что смеси крупного песка или гравия с пылеватым песком или глиной будут относиться к пучинистым грунтам в полной мере. При наличии в крупнообломочном грунте более 30% пылевато–глинистой составляющей, грунт также будет относиться к пучинистому.
Автоматика и комфорт в доме — серия статей и видеороликов: ПЛС, применение PLC, сухой контакт, радиоканальные выключатели, программирование на CoDeSys и многое другое.
Во–вторых.
Процесс промерзания грунта происходит сверху вниз, при этом граница между влажным и мерзлым грунтом опускается с некоторой скоростью, определяемой, в основном, погодными условиями. Влага, превращаясь в лед, увеличивается в объеме, вытесняя сама себя в нижние слои грунта, сквозь его структуру. Пучинистость грунта определяется также тем, успеет ли выдавливаемая сверху влага просочиться через структуру грунта или нет, хватит ли степени фильтрации грунта, чтобы этот процесс прошел с пучением или без него. Если крупнозернистый песок не создает влаге никакого сопротивления и она беспрепятственно уходит, то такой грунт не расширяется при замерзании (рис. 1).
Рис. 1
Что касается глины, то сквозь неё влага уйти не успевает, и такой грунт становится пучинистым. Кстати, грунт из крупнозернистого песка, помещенный в замкнутый объем, которым может оказаться скважина в глине, поведет себя как пучинистый (рис. 2).
Рис. 2
Именно поэтому траншею под мелкозаглубленными фундаментами заполняют крупнозернистым песком, позволяющим выровнять степень влажности по всему его периметру, сгладить неравномерность пучинистых явлений. Траншею с песком, если возможно, следует соединить с дренажной системой, отводящей верховодку из-под фундамента.
В-третьих.
Наличие давления от веса строения также сказывается на проявлении пучинистых явлений. Если слой грунта под подошвой фундамента сильно уплотнить, то и степень пучинистости его уменьшится. Причем, чем больше будет само давление на единицу площади основания, тем больше будет объем уплотненного грунта под подошвой фундамента и меньше величина пучения.
Пример:
В Подмосковье (глубина промерзания 1,4 м) на среднепучинистом грунте на мелкозаглубленном ленточном фундаменте с глубиной заложения 0,7 м возведен относительно легкий брусовой дом. При полном промерзании грунта внешние стены дома могут подняться почти на 6 см (рис. 3, а). Если же фундамент под тем же домом с той же глубиной заложения выполнен столбчатым, то давление на грунт будет больше, его уплотнение будет сильнее, отчего подъем стен от промерзания грунта не превысит 2..3 см (рис. 3, б).
Рис. 3
Сильное уплотнение пучинистого грунта под ленточным мелкозаглубленным фундаментом может возникнуть, если на нем будет возведен каменный дом высотой не меньше чем в три этажа. В этом случае можно говорить о том, что пучинистые явления будут просто задавлены весом дома. Но и в этом случае они всё же останутся и могут вызвать появление трещин в стенах. Поэтому каменные стены дома на подобном фундаменте следует возводить с обязательным горизонтальным армированием.
Чем же опасны пучинистые грунты? Какие процессы, пугающие застройщиков своей непредсказуемостью, проходят в них?
Какова природа этих явлений, как с ними бороться, как их избежать, можно понять, изучив саму природу проходящих процессов.
Главная причина коварства пучинистых грунтов — неравномерное пучение под строением.
Глубина промерзания грунта
Глубина промерзания грунта- это не расчетная глубина промерзания и не глубина заложения фундамента, это — реальная Глубина промерзания в конкретном месте, в конкретное время и при конкретных погодных условиях.
Как уже отмечалось, глубина промерзания определяется балансом мощности тепла, идущего из недр земли, с мощностью холода, проникающего в грунт сверху в холодное время года.
Если интенсивность тепла земли не зависит от времени года и суток, то на поступление холода влияют температура воздуха и влажность грунта, толщина снегового покрова, его плотность, влажность, загрязненность и степень прогрева солнцем, застройка участка, архитектура сооружения и характер его сезонного использования (рис. 4).
Рис. 1
Неравномерность толщины снегового покрова наиболее ощутимо сказывается на разности в пучении грунта. Очевидно, что глубина промерзания будет тем выше, чем тоньше будет слой снежного одеяла, чем ниже будет температура воздуха и чем дольше продлится её воздействие.
Если ввести такое понятие, как морозопродолжительность (время в часах, умноженное на среднесуточную минусовую температуру воздуха), то глубину промерзания глинистого грунта средней влажности можно показать на графике (рис. 5).
Морозопродолжительность для каждого региона является среднестатистическим параметром, оценивать который индивидуальному застройщику очень сложно, т.к. это потребует ежечасного контроля над температурой воздуха в течение всего холодного сезона. Тем не менее, в крайне приближенном расчете это сделать можно.
Рис. 5
Пример:
Если среднесуточная зимняя температура — около -15° С, а её продолжительность — 100 суток (морозопродолжительность = 100 * 24 * 15 = 36000), то при снеговом покрове, толщиной в 15 см глубина промерзания будет 1 м, а при толщине 50 см-0,35 м.
Если толстый слой снегового покрова, как одеяло, укрывает землю, то граница промерзания поднимается вверх; при этом и днем, и ночью её уровень сильно не меняется. При отсутствии снегового покрова ночью граница промерзания сильно опускается вниз, а днем, при солнечном прогреве, поднимается вверх. Разница ночного и дленного уровня границы промерзания грунта особенно ощутима там, где снеговой покров мал или вовсе отсутствует и где грунт сильно увлажнен. Наличие дома также влияет на глубину промерзания, ведь дом является своего рода теплоизоляцией, даже если в нем и не живут (продухи подпола закрыты на зиму).
Участок, на котором стоит дом, может иметь весьма сложную картину промерзания и подъема грунта.
Например, среднепучинистый грунт по внешнему периметру дома при промерзании на глубину 1,4 м может подняться почти на 10 см, тогда как более сухой и теплый грунт под средней частью дома останется практически на летней отметке.
Неравномерность промерзания существует еще и по периметру дома. Ближе к весне грунт с южной стороны строения часто бывает более влажным, слой снега над ним — более тонким, чем с северной стороны. Поэтому в отличие от северной стороны дома, грунт с южной стороны лучше прогревается днем и сильнее промерзает ночью.
Таким образом, неравномерность промерзания на участке проявляется не только в пространстве, но и во времени. Глубина промерзания подвержена сезонным и суточным изменениям в весьма больших пределах и может сильно меняться даже на небольших участках, особенно в местах застройки.
Расчищая большие площадки от снега в одном месте участка, и создавая сугробы в другом месте, можно создать заметную неравномерность промерзания грунта. Известно, что посадки кустарников вокруг дома задерживают снег, уменьшая в 2 — 3 раза глубину промерзания, что хорошо видно на графике (рис.5).
Расчистка узких дорожек от снега на степень промерзания грунта особого влияния не оказывает. Если же Вы решили у дома залить каток или очистить площадку для своего авто, то можете ожидать большую неравномерность в промерзании грунта под фундаментом дома в этой зоне.
Силы бокового сцепления
Силы бокового сцепления мерзлого грунта с боковыми стенками фундамента — другая сторона проявления пучинистых явлений. Эти силы весьма высоки и могут достигать 5…7 т на квадратный метр боковой поверхности фундамента. Подобные силы возникают, если поверхность столба неровная и не имеет гидроизолирующего покрытия. При таком крепком сцеплении мерзлого грунта с бетоном на столб диаметром 25 см, заложенный на глубину 1,5 м, будет действовать вертикальная выталкивающая сила до 8 т.
Как же возникают и действуют эти силы, как проявляются они в реальной жизни фундамента?
Возьмем для примера опору столбчатого фундамента под легким домом. На пучинистом грунте глубина заложения опор выполняется на расчетную глубину промерзания (рис. 6, а). При небольшом весе самого строения силы морозного пучения могут его поднять, и самым непредсказуемым образом.
Рис. 6
Ранней зимой граница промерзания начинает опускаться вниз. Мерзлый прочный грунт схватывает верхнюю часть столба мощными силами сцепления. Но кроме увеличения сил сцепления мерзлый грунт еще и увеличивается в объеме, отчего верхние слои грунта поднимаются, пытаясь выдернуть опоры из земли. Но вес дома и силы заделки столба в грунте не позволяют этого сделать, пока слой мерзлого грунта тонкий и площадь сцепления столба с ним невелика. По мере продвижения границы промерзания вниз, площадь сцепления мерзлого грунта со столбом увеличивается. Наступает такой момент, когда силы сцепления мерзлого грунта с боковыми стенками фундамента превышают вес дома. Мерзлый грунт вытаскивает столб, оставляя внизу полость, которая сразу же начинает заполняться водой и частицами глины. За сезон на сильно пучинистых грунтах такой столб может подняться на 5 — 10 см. Подъем опор фундамента под одним домом, как правило, происходит неравномерно. После оттаивания мерзлого грунта фундаментный столб самостоятельно на прежнее место, как правило, не возвращается. С каждым сезоном неравномерность выхода опор из грунта увеличивается, дом наклоняется, приходя в аварийное состояние. «Лечение» такого фундамента — сложная и дорогая работа.
Эту силу можно уменьшить в 4…6 раз, сгладив поверхность скважины толевой рубашкой, вложенной в скважину до заполнения её бетонной смесью.
Заглубленный ленточный фундамент может подняться таким же образом, если он не имеет гладкую боковую поверхность и не загружен сверху тяжелым домом или бетонными перекрытиями.
Основное правило для заглубленных ленточных и столбчатых фундаментов (без расширения внизу): возведение фундамента и загрузку его весом дома следует выполнить в один сезон.
Фундаментный столб, выполненный по технологии ТИСЭ (рис. 6, б), не поднимается силами сцепления пучинистого мерзлого грунта благодаря нижнему расширению столба. Однако если не предполагается в этот же сезон загрузить, его домом, то такой столб должен иметь надежное армирование (4 прутка диаметром 10…12 мм), исключающее отрыв расширенной части столба от цилиндрической. Несомненные преимущества опоры ТИСЭ — высокая несущая способность и то, что его можно оставить на зиму без загрузки сверху. Никакие силы морозного пучения его не поднимут.
Боковые силы сцепления могут сыграть невеселую шутку с застройщиками, делающими столбчатый фундамент с большим запасом по несущей способности. Лишние фундаментные столбы действительно могут оказаться лишними.
Деревянный дом с большой застекленной верандой установили на фундаментные столбы. Глина и высокий уровень грунтовых вод требовали заложения фундамента ниже глубины промерзания. Пол широкой веранды потребовал промежуточной опоры. Почти всё было выполнено правильно. Однако за зиму пол подняло почти на 10 см (рис.7).
Рис. 1
Причина такого разрушения понятна. Если стены дома и веранды смогли своим весом компенсировать силы сцепления фундаментных столбов с мерзлым грунтом, то легким балкам перекрытия это было не под силу.
Что же надо было сделать?
Существенно уменьшить либо количество центральных фундаментных столбов, либо их диаметр. Силы сцепления можно было бы уменьшить, обернув фундаментные столбы несколькими слоями гидроизоляции (толь, рубероид) или создав прослойку из крупнозернистого песка вокруг столба. Избежать разрушения можно было бы и через создание массивной ленты-ростверка, соединяющей эти опоры. Другой способ уменьшить подъем таких опор — заменить их на мелкозаглубленный столбчатый фундамент.
Выдавливание грунта
Выдавливание- наиболее ощутимая причина деформации и разрушения фундамента, заложенного выше глубины промерзания.
Чем его можно объяснить?
Выдавливание обязано суточному прохождению границы промерзания мимо нижней опорной плоскости фундамента, которое совершается значительно чаще, чем подъем опор от боковых сил сцепления, имеющих сезонный характер.
Чтобы лучше понять природу этих сил, мерзлый грунт представим в виде плиты. Дом или любое другое строение зимой оказывается надежно вмороженным в эту камнеподобную плиту.
Основные проявления этого процесса видны весной. У стороны дома, обращенной на юг, днем достаточно тепло (в безветрие можно даже загорать). Снеговой покров стаял, а грунт увлажнился весенней капелью. Темный грунт хорошо поглощает солнечные лучи и прогревается.
В звездную ночь ранней весной особенно холодно (рис. 8). Грунт под свесом крыши сильно промерзает. У плиты мерзлого грунта снизу вырастает выступ, который мощью самой плиты сильно уплотняет грунт под собой за счет того, что влажный грунт при замерзании расширяется. Силы подобного уплотнения грунта огромны.
Рис. 8
Плита мерзлого грунта толщиной 1,5 м размерами 10×10 м будет весить более 200 т. Примерно с таким усилием и будет уплотняться грунт под выступом. После подобного воздействия глина под выступом «плиты» становится очень плотной и практически водонепроницаемой.
Наступил день. Темный грунт у дома особенно сильно прогревается солнцем (рис. 9). С повышением влажности увеличивается и его теплопроводность. Граница промерзания поднимается (под выступом это происходит особенно быстро). С оттаиванием грунта уменьшается и его объем, грунт под опорой разрыхляется и по мере оттаивания падает под собственным весом пластами. Образуется множество щелей в грунте, которые заполняются сверху водой и взвесью глинистых частиц. Дом при этом удерживается силами сцепления фундамента с плитой мерзлого грунта и опорой по остальному периметру.
Рис. 9
С наступлением ночи полости, заполненные водой, замерзают, увеличиваясь в объеме и превращаясь в так называемые «ледяные линзы». При амплитуде поднятия и опускания границы промерзания за одни сутки в 30 — 40 см толщина полости увеличится на 3 — 4 см. Вместе с увеличением объема линзы будет подниматься и наша опора. За несколько таких дней и ночей опора, если она не сильно загружена, поднимается порой на 10 — 15 см, как домкратом, опираясь на весьма сильно уплотненный грунт под плитой.
Возвращаясь к нашей плите, заметим, что ленточный фундамент нарушает целостность самой плиты. По боковой поверхности фундамента она разрезана, т. к. битумная обмазка, которой она покрывается, не создает хорошего сцепления фундамента с мерзлым грунтом. Плита мерзлого грунта, создавая своим выступом давление на грунт, сама начинает подниматься, а зона разлома плиты — раскрываться, заполняться влагой и частицами глины. Если лента заглублена ниже глубины промерзания, то плита поднимается, не беспокоя сам дом. Если же глубина заложения фундамента выше глубины промерзания, то давление мерзлого грунта поднимает фундамент, и тогда его разрушение неизбежно (рис. 10).
Рис. 10
Интересно представить плиту мерзлого грунта, перевернутую вверх дном. Это относительно ровная поверхность, на которой ночью в некоторых местах (где нет снега) вырастают холмы, которые днем превращаются в озера. Если же теперь вернуть плиту в исходное положение, то как раз там, где были холмы, и создаются в грунте ледяные линзы. В этих местах грунт ниже глубины промерзания сильно уплотнен, а выше, наоборот, разрыхлен. Это явление происходит не только на площадях застройки, но и в любом другом месте, где присутствует неравномерность в прогреве грунта и в толщине снегового покрова. Именно по такой схеме в глинистых грунтах возникают ледяные линзы, хорошо известные специалистам. Природа возникновения глинистых линз в песчаных грунтах такая же, но протекают эти процессы существенно дольше.
Подъем мелкозаглубленного фундаментного столба
Подъем фундаментного столба мерзлым грунтом осуществляется при ежесуточном прохождении границы промерзания мимо его подошвы. Вот как этот процесс происходит.
До того момента, пока граница промерзания грунта не опустилась ниже опорной поверхности столба, сама опора неподвижна (рис. 11, а). Как только граница промерзания опускается ниже подошвы фундамента, «домкрат» пучинистых процессов сразу включается в работу. Пласт мерзлого грунта, находящегося под опорой, увеличившись в объеме, поднимает её (рис. 11, б). Силы морозного пучения в водонасыщенных грунтах весьма высоки и достигают 10…15 т/м2. С очередным прогревом пласт мерзлого грунта под опорой оттаивает и уменьшается в объеме на 10%. Сама опора удерживается в поднятом положении силами своего сцепления с плитой мерзлого грунта. В образовавшийся зазор под подошвой опоры просачивается вода с частицами грунта (рис. 11, в). Со следующим понижением границы промерзания вода в полости замерзает, а пласт мерзлого грунта под опорой, увеличиваясь в объеме, продолжает подъем фундаментного столба (рис. 11, г).
Рис. 11
Следует обратить внимание на то, что этот процесс подъема опор фундамента имеет ежесуточный (многократный) характер, а выдавливание опор силами сцепления с мерзлым грунтом — сезонный (один раз за сезон).
При большой вертикальной нагрузке, приходящейся на столб, грунт под опорой, сильно уплотненный давлением сверху, становится слабопучинистым, да и вода из-под самой опоры в процессе оттаивания мерзлого грунта выжимается сквозь тонкую его структуру. Поднятия опоры в этом случае практически не происходит.
Физика процесса пучения — SGround.ru
Как именно происходит морозное пучение грунтов?
Оглавление:
- Введение
- Влияние влажности и уровня грунтовых вод
- Влияние гранулометрического состава (размера частиц грунта) на процессы пучения 2
- Влияние пористости на процессы пучения
- Заключение
- Связанные статьи
1. Введение
Почему песок не увеличивается в объеме даже в водонасыщенном обводненном состоянии? Почему разные грунты имеют разный показатель пучинистости? Почему пучение происходит неравномерно?
Суть процесса морозного пучения достаточно сложна и многообразна. Многим известно, что при замерзании определенного объема воды получается лед, занимающий больший объем и имеющий меньшую плотность (плотность льда 917 кг/м3, плотность воды ). Увеличение объема при этом составляет примерно 9 %. Но морозное пучение грунтов связано не только с этим свойством воды.
Пучение в полной мере проявляется только тогда, когда фронт промерзания достигает слоя капиллярного поднятия грунтовых вод – так называемой морозоопасной «каймы», которая в зависимости от дисперсности грунта меняется пределах от 0,3 до 3,5 м над уровнем грунтовых вод. Так же возможно появление техногенного источника замачивания, например прорыва водопровода.
[Чтобы произошел значительный подъем поверхности от пучения должно выполниться сразу несколько условий: наличие в пределах глубины промерзания зоны капиллярного поднятия грунтовых вод, наличие в составе грунта достаточного количества пылеватых и глинистых частиц (более 15%), проникновение отрицательных температур в толщу водонасыщенных грунтов]
Одними из наиболее значимых факторов, определяющих величину поднятия дневной поверхности (степень пучинистости) при промерзании грунтов являются глубина и скорость их промерзания.
Экспериментально установлено, что чем меньше скорость промерзания, тем больше величина пучения и, наоборот, при больших скоростях промерзания грунт меньше увеличивается в объеме.
Наблюдениями за глубиной промерзания грунтов установлено, что влажные глины и суглинки промерзают заметно меньше, чем супеси, пески мелкие и пылеватые, а пески крупные и крупнообломочные грунты промерзают еще больше, чем супеси и пылеватые пески.
[Чем более крупные частицы слагают грунт, тем больше будет глубина его промерзания при прочих равных условиях, однако крупнодисперсные грунты меньше или совсем не подвержены пучению]
2. Влияние влажности и уровня грунтовых вод
При замерзании даже всей поровой воды в грунте увеличение его объема не превышает 3…4% (в закрытой системе). В то же время в природном залегании объем грунта при его промерзании увеличивается на 10—50 и даже 100%.
Пучение грунта достигает таких показателей вследствие кристаллизации в порах грунта воды и последующего поступления дополнительной влаги по капиллярам (миграции) к фронту промерзания из еще не промерзших нижележащих слоев (открытая система). Это сопровождается резким увеличением влажности грунта с образованием в нем льда в виде линз, прослоек, кристаллов и др. структур.
Фото: Кристалл льда[Чем медленнее промерзает грунт, тем большее количество воды накапливается в нем в процессе промерзания за счет миграции влаги из нижележащих слоев, и тем сильнее он увеличится в объеме]
В процессе промерзания грунтов в области интенсивных фазовых переходов воды в лед (фронт промерзания с температурой от 0 до —3°), при наличии уровня грунтовых вод в зоне досягаемости капиллярного поднятия, происходит значительное перераспределение воды, содержащейся в грунте. Обычно в песках мелких и пылеватых, в пылевато-глинистых грунтах наблюдается подтягивание ее снизу вверх (миграция) к фронту охлаждения и промерзания.
Миграция воды в промерзающих грунтах — явление очень сложное. Перемещение воды происходит в том числе и за счет молекулярно-ионных связей.
На качественную сторону процесса миграции оказывают влияние многие факторы: гранулометрический и химико-минералогический состав грунтов, гидрофильность (смачиваемость) частиц грунта, влажность перед замерзанием и наличие подтока воды извне к промерзающему грунту, плотность грунта, скорость промерзания, наличие и значение нагрузки (давления) в слоях грунта, повторность циклов замерзания и оттаивания и др.
[Важнейшим фактором, влияющим на степень пучинистости грунта, является наличие и близость уровня грунтовых вод и возможность притока воды к фронту промерзания по капиллярам в течении зимы]
В грунтах так же присутствует небольшое количество связанной воды, то есть воды котора присоединена к частицам грунта силами молекулярных взаимодействий — эта вода замерзает при очень низких температурах и в обычных условиях не замерзает и не испаряется.
3. Влияние гранулометрического состава (размера частиц грунта) на процессы пучения
Миграция влаги наблюдается только в гидрофильных (смачивающихся водой) замерзающих системах. Наиболее интенсивное перемещение влаги по капиллярам происходит в грунтах с малой скоростью промерзания и с высоким содержанием пылеватых и глинистых частиц (частицы размером 0,05…0,005 мм). Это объясняется тем, что грунты, содержащие в своем составе преобладающее количество (более 50%) пылеватых и глинистых частиц, в природных условиях характеризуются высоким капиллярным поднятием и, следовательно, легкой отдачей воды и быстрым ее поглощением. Структурная связность этих грунтов очень слабая. Такие физические свойства грунтов создают наиболее благоприятные условия для образования льда в промерзающем грунте и, соответственно, пучения.
Наличие в глинистых грунтах большого количества коллоидных частиц (размером менее 0,005 мм) сильно затрудняет передвижение воды по капиллярам, что резко ограничивает возможность большого накопления льда, образующегося за счет подтягивания воды по капиллярам из нижних слоев грунта к фронту промерзания. Кроме того, мелкодисперсные глинистые грунты обладают большой удельной поверхностью частиц и за счет поверхностной энергии притягивают к себе воду; таким образом, эти грунты затрудняют передвижение воды по тонким капиллярам к слою промерзания и, следовательно, уменьшают возможность накопления линз и прослоек льда.
В крупнодисперсных грунтах (крупнообломочные грунты с песчаным заполнением, пески крупные и средние) миграция при промерзании практически отсутствует, что объясняется малой величиной удельной поверхности, наличием фильтрационных и других свойств (при любом положении уровня подземных вод). При промерзании таких грунтов происходит отжатие («поршневой эффект») воды из промерзающего слоя гидростатическими силами, развивающимися вследствие увеличения объема воды при замерзании, и незамерзшая еще вода перемещается от фронта промерзания вниз в талый грунт — отжимается.
Фото: Кристаллы льда в песчаном грунте[Песчаные грунты с достаточно крупными частицами не позволяют влаге мигрировать при промерзании из-за отсутствия узких капилляров и малой поверхности смачивания, а наоборот создают условия для «отжатия» влаги в сторону еще не промерзших слоев, поэтому увеличение объема при промерзании в них практически отсутствует даже при полном водонасыщении. Очень мелкие частицы размером менее 0,005 мм так же затрудняют процесс миграции влаги и снижают пучинистость]
В свою очередь в крупнодисперсных грунтах при содержании в виде заполнителя частиц размером менее 0,1 мм более 10% по массе наблюдается интенсивная миграция влаги. В зависимости от положения уровня подземных вод эти грунты могут относиться к средне- и даже сильнопучинистым грунтам.
В мелкодисперсных грунтах (супесях, суглинках, глинах, песках пылеватых и мелких), промерзающих в условиях водонасыщения происходит активное перемещение влаги. Перечисленные грунты при промерзании дают деформации до десятков сантиметров (например, ленточные глины Карелии — до 20 см на 1 метр промерзания) и причиняют значительные повреждения фундаментам зданий и сооружений. Как правило чем ближе уровень подземных вод к границе промерзания, тем большей степенью пучинистости обладают пылевато-глинистые грунты при прочих равных условиях.
Наиболее пучинистыми грунтами являются грунты с содержанием пылеватых и глинистых частиц от 30 до 80%. Дело в том, что подобные грунты имеют слабо выраженную текстуру и незначительное сцепление между пылеватыми частицами, поэтому при промерзании ледяные кристаллы в таких грунтах образуются внутри структурных элементов и вызывают значительные деформации морозного пучения. При увлажнении пылеватые грунты теряют сцепление между частицами, при промерзании в них образуется большое количество ледяных прослоек и линз.
4. Влияние пористости грунта на процессы пучения
На величину морозного пучения грунтов большое влияние оказывает плотность их сложения. Так, если грунты очень плотные (с малым количеством пор), то при их промерзании наблюдается незначительное пучение (хотя все поры заполнены водой), поскольку такие грунты содержат малое количество воды и в них затруднена возможность ее передвижения при промерзании.
В очень пористых грунтах много пустот, которые обычно свободны от воды, и эти пустоты при промерзании грунта и образовании льда могут сжиматься, уменьшая деформации пучения. Таким образом наиболее пучинистыми являются грунты средней плотности.
5. Заключение
Пучение в полной мере проявляется только тогда, когда фронт промерзания достигает слоя капиллярного поднятия грунтовых вод – так называемой морозоопасной «каймы», которая в зависимости от дисперсности грунта меняется пределах от 0,3 до 3,5 м.
Увеличение объема грунта при промерзании происходит не только за счет увеличения при переходе в твердое состояние объема воды, содержащейся в порах грунта перед замерзанием, но и во многом за счет дополнительной влаги, мигрирующей в промерзающий грунт из нижележащих слоев.
На способность грунта перемещать влагу по капиллярам влияют в основном смачиваемость частиц грунта и количество пылеватых и глинистых частиц (размером 0,05…0,005 мм) – наиболее пучинистые грунты с содержанием таких частиц от 30 до 80%. Так же влияние оказывает пористость грунта – чем она ниже тем более затруднено капиллярное передвижение воды.
Всегда при проектировании фундаментов следует учитывать колебания уровня и возможность поднятия грунтовых вод.
6. Связанные статьи
«Рекомендации по
проектированию оснований и фундаментов на пучинистых грунтах»
составлены по результатам научных исследований и обобщения
передового опыта фундаментостроения на пучинистых грунтах.
В
Рекомендациях изложены инженерно-мелиоративные,
строительно-конструктивные и термохимические мероприятия по борьбе
с вредным влиянием морозного пучения грунтов на фундаменты зданий и
сооружений, а также даны основные требования к производству
строительных работ по нулевому циклу.
Рекомендации
предназначены для инженерно-технических работников проектных и
строительных организаций, которые осуществляют проектирование и
строительство фундаментов зданий и сооружений на пучинистых
грунтах.
ПРЕДИСЛОВИЕ
Действие сил морозного
пучения грунтов ежегодно наносит народному хозяйству большой
материальный ущерб, заключающийся в снижении сроков службы зданий и
сооружений, в ухудшении условий эксплуатации и в больших денежных
затратах на ежегодный ремонт поврежденных зданий и сооружений, на
исправление деформированных конструкций.
В
целях снижения деформаций фундаментов и сил морозного выпучивания
Научно-исследовательским институтом оснований и подземных
сооружений Госстроя СССР на основании проведенных теоретических и
экспериментальных исследований с учетом передового опыта
строительства разработаны новые и усовершенствованы уже
существующие в настоящее время мероприятия против деформации
грунтов при их промерзании и оттаивании.
Обеспечение проектных
условий прочности, устойчивости и эксплуатационной пригодности
зданий и сооружений на пучинистых грунтах достигается применением в
практике строительства инженерно-мелиоративных,
строительно-конструктивных и термохимических мероприятий.
Инженерно-мелиоративные
мероприятия являются коренными, поскольку они направлены на
осушение грунтов в зоне нормативной глубины промерзания и на
снижение степени увлажнения слоя грунта на глубине 2-3 м ниже
глубины сезонного промерзания.
Строительно-конструктивные
мероприятия против сил морозного выпучивания фундаментов направлены
на приспособление конструкций фундаментов и частично
надфундаментного строения к действующим силам морозного пучения
грунтов и к их деформациям при промерзании и оттаивании (например,
выбор типа фундаментов, глубины их заложения в грунт, жесткости
конструкций, нагрузок на фундаменты, анкеровки их в грунтах ниже
глубины промерзания и многие другие конструктивные
приспособления).
Часть предлагаемых
конструктивных мероприятий приведена в самых общих формулировках
без надлежащей конкретизации, как, например, толщина слоя
песчано-гравийной или щебеночной подушки под фундаментами при
замене пучинистого грунта непучинистым, толщина слоя
теплоизолирующих покрытий во время строительства и на период
эксплуатации и др.; более детально даются рекомендации по размерам
засыпки пазух непучинистым грунтом и по размерам теплоизоляционных
подушек в зависимости от глубины промерзания грунтов по опыту
строительства.
В
помощь проектировщикам и строителям приводятся примеры расчетов
конструктивных мероприятий и, кроме того, даны предложения по
заанкериванию сборных фундаментов (монолитное соединение стойки с
анкерной плитой, соединение на сварке и на болтах, а также
замоноличивание сборных железобетонных ленточных фундаментов).
Рекомендуемые для
строительства примеры расчетов по конструктивным мероприятиям
составлены впервые, а поэтому они не могут претендовать на
исчерпывающее и эффективное решение всех затронутых вопросов по
борьбе с вредным влиянием морозного пучения грунтов.
Термохимические
мероприятия предусматривают, главным образом, снижение сил
морозного выпучивания и величин деформации фундаментов при
промерзании грунтов. Это достигается применением рекомендуемых
теплоизоляционных покрытий поверхности грунта вокруг фундаментов,
теплоносителей для обогрева грунтов и химических реагентов,
понижающих температуру смерзания грунта и сил сцепления мерзлого
грунта с плоскостями фундаментов.
При назначении
противопучинных мероприятий рекомендуется руководствоваться в
первую очередь значимостью зданий и сооружений, особенностями
технологических процессов, гидрогеологическими условиями
стройплощадки и климатическими характеристиками данного района. При
проектировании предпочтение должно отдаваться таким мероприятиям,
которые исключают возможность деформации зданий и сооружений силами
морозного выпучивания как в период строительства, так и за весь
срок эксплуатации. Рекомендации составлены доктором технических
наук М.Ф.Киселевым.
1. ОБЩИЕ ПОЛОЖЕНИЯ
1.1. Настоящие
Рекомендации содержат данные по проектированию и строительству
фундаментов зданий, промышленных сооружений и различного
специального и технологического оборудования на пучинистых
грунтах.
1.2. Рекомендации
разработаны в соответствии с основными положениями глав СНиП
II-Б.1-62 «Основания зданий и сооружений. Нормы проектирования»,
СНиП II-Б.6-66 «Основания и фундаменты зданий и сооружений на
вечномерзлых грунтах. Нормы проектирования», СНиП II-А.10-62 «Строительные конструкции и
основания. Основные положения проектирования» и СН 353-66
«Указания по проектированию населенных мест, предприятий, зданий и
сооружений в северной строительно-климатической зоне» и могут быть
использованы для инженерно-геологических и гидрогеологических
изысканий, выполняемых в соответствии с общими требованиями по
исследованию грунтов для строительных целей. Материалы
инженерно-геологических изысканий должны удовлетворять требованиям
п.1.6 настоящих Рекомендаций.
Примечание. Рекомендации
не распространяются на площадки, где сезонное промерзание грунта
сливается с вечномерзлым грунтом.
1.3. Пучинистыми
(морозоопасными) грунтами называются такие грунты, которые при
промерзании обладают свойством увеличиваться в объеме. Изменение
объема грунта обнаруживается в поднятии при промерзании и опускании
при оттаивании дневной поверхности грунта, в результате чего
наносятся повреждения основаниям и фундаментам зданий и
сооружений.
К
пучинистым грунтам относятся пески мелкие и пылеватые, супеси,
суглинки и глины, а также крупнообломочные грунты с содержанием в
виде заполнителя частиц размером менее 0,1 мм в количестве более
30% по весу, промерзающие в условиях увлажнения. К непучинистым
(неморозоопасным) грунтам относятся скальные, крупнообломочные с
содержанием частиц грунта диаметром менее 0,1 мм, менее 30% по
весу, пески гравелистые, крупные и средней крупности.
1.4. В зависимости от
гранулометрического состава, природной влажности, глубины
промерзания грунтов и уровня стояния грунтовых вод грунты, склонные
к деформациям при промерзании, по степени морозного пучения по
табл.1 подразделяются на: сильнопучинистые, среднепучинистые,
слабопучинистые и условнонепучинистые.
Таблица 1
Подразделение грунтов по степени морозной пучинистости
Степень пучинистости грунтов при консистенции | Положение уровня грунтовых вод в м для грунтов | ||||
песков
мелких | песков пылеватых | супесей | суглинков | глин | |
I.
Сильнопучинистые при 0,5 | — | — | 0,5 | 1 | 1,5 |
II.
Среднепучинистые при 0,250,5 | — | 0,6 | 0,51 | 11,5 | 1,52 |
III.
Слабопучинистые при 00,25 | 0,5 | 0,61 | 11,5 | 1,52 | 23 |
IV.
Условнонепучинистые при 0 | 1 | 1 | 1,5 | 2 | 3 |
Примечания: 1.
Наименование грунта по степени пучинистости принимается при
удовлетворении одного из двух показателей или .
2. Консистенция глинистых
грунтов определяется по влажности грунта в слое
сезонного промерзания как средневзвешенное значение. Влажность
грунта первого слоя на глубину от 0 до 0,5 м в расчет не
принимается.
3. Величина , превышающая расчетную глубину промерзания
грунта в м, т.е. разность между глубиной залегания уровня грунтовых
вод и расчетной глубиной промерзания грунта, определяется по
формуле:
,
где — расстояние от планировочной отметки до
залегания уровня грунтовых вод в м;
— расчетная глубина промерзания грунта в м
по главе СНиП II-Б.1-62.
1.5. Приведенные в табл.1
подразделения грунтов по степени пучинистости на основании
показателя консистенции следует учитывать также возможные изменения
влажности грунта в слое сезонного промерзания как в период
строительства, так и за весь период эксплуатации зданий и
сооружений.
1.6. Основанием для
определения степени пучинистости грунтов должны служить материалы
гидрогеологических и грунтовых исследований (состав грунта, его
влажность и уровень грунтовых вод, которые могут охарактеризовать
участок застройки на глубину не менее удвоенной нормативной глубины
промерзания грунта, считая от планировочной отметки).
1.7. Основания и
фундаменты зданий и сооружений на пучинистых грунтах, подверженных
деформациям при промерзании и оттаивании, должны проектироваться с
учетом:
а) степени пучинистости
грунтов;
б) рельефа местности,
времени и количества выпадающих атмосферных осадков,
гидрогеологического режима, условий увлажнения грунтов и глубины
сезонного промерзания;
в) экспозиции
строительной площадки по отношению освещаемости солнцем;
г) назначения, срока
службы, значимости сооружений и условий их эксплуатации;
д) технической и
экономической целесообразности конструкций фундаментов,
трудоемкости и сроков возведения и экономии строительных
материалов;
е) возможности изменения
гидрогеологического режима грунтов, условий их увлажнения в период
строительства и за весь срок эксплуатации здания или
сооружения.
1.8. Объем и виды
гидрогеологических и грунтовых исследований предусматриваются в
зависимости от инженерно-геологических условий и стадии
проектирования общей программой изысканий, составляемой
проектно-изыскательской организацией и согласовываемой с
заказчиком.
2. ОСНОВНЫЕ ПОЛОЖЕНИЯ ПО ПРОЕКТИРОВАНИЮ
2.1. При выборе грунтов в
качестве оснований на строительной площадке следует отдавать
предпочтение непучинистым грунтам (скальным, щебенистым,
галечниковым, дресвяным, гравийным, пескам гравелистым, пескам
крупным и средней крупности, а также глинистым грунтам, залегающим
на возвышенных участках местности с обеспечением поверхностного
стока и с уровнем стояния грунтовых вод ниже планировочной отметки
на 4-5 м).
2.2. При проектировании
фундаментов под каменные здания и сооружения на сильно- и
среднепучинистых грунтах надлежит принимать столбчатые или свайные
фундаменты, заанкеренные по расчету на силу выпучивания и на разрыв
в наиболее опасном сечении, или же предусматривать замену
пучинистых грунтов непучинистыми на глубину сезонного промерзания.
Возможно также устройство подсыпки (подушки) из гравия, песка,
горелых пород и других дренирующих материалов под всем зданием или
сооружением слоем на расчетную глубину промерзания без удаления
пучинистых грунтов или только под фундаментами при надлежащем
технико-экономическом обосновании расчетом.
2.3. Основные
мероприятия, направленные против деформаций конструктивных
элементов зданий и сооружений при промерзании и пучении грунтов,
должны быть предусмотрены при проектировании оснований и
фундаментов.
В
тех случаях, когда проектом мероприятия против пучения не
предусмотрены, а гидрогеологические условия грунтов строительной
площадки в период выполнения работ по нулевому циклу изменились с
ухудшением свойств грунтов оснований, то авторский надзор должен
возбудить вопрос перед проектной организацией о назначении
мероприятий против пучения (осушение грунтов, уплотнение с
втрамбовыванием щебня и др.).
2.4. Прочность,
устойчивость и эксплуатационная пригодность зданий и сооружений на
пучинистых грунтах должны обеспечиваться инженерно-мелиоративными,
строительно-конструктивными и термохимическими мероприятиями.
3. ИНЖЕНЕРНО-МЕЛИОРАТИВНЫЕ МЕРОПРИЯТИЯ
3.1.
Инженерно-мелиоративные мероприятия направлены на осушение грунтов
в слое сезонного промерзания и снижение влажности грунтов в
основании фундаментов в осенне-зимний период до их промерзания.
Примечание. При
проектировании и осуществлении мелиоративных работ необходимо
учитывать характер растительного покрова и требования к его
сохранению.
3.2. При проектировании
фундаментов на пучинистых грунтах надлежит предусмотреть надежный
отвод подземных, атмосферных и производственных вод с площадки
путем своевременной вертикальной планировки застраиваемой
территории, устройства ливневой канализационной сети, водоотводных
каналов и лотков, дренажа и других гидромелиоративных сооружений
сразу же после окончания работ по нулевому циклу, не дожидаясь
полного окончания строительных работ.
При составлении проектов
и выполнении в натуре работ по вертикальной планировке площадок,
сложенных пучинистыми грунтами, следует по возможности не изменять
естественных водостоков.
3.3. При планировочных
работах следует стремиться к минимальному нарушению природного
дерново-почвенного покрова, а на срезках, где позволяют условия,
поверхность грунта покрывать почвенным слоем толщиной 10-12 см с
последующим посевом многолетних дернообразующих трав.
3.4. Насыпной глинистый
грунт при планировке местности в пределах застройки должен быть
послойно уплотнен механизмами до объемного веса скелета не менее
1,6 т/м и пористости не более 40% (для глинистого
грунта без дренирующих прослоек). Поверхность насыпного грунта так
же, как и поверхность на срезке, должна покрываться почвенным слоем
и задерняться.
3.5. Уклон при твердых
покрытиях (отмостки, площадки, подъезды) должен быть не менее 3%, а
для задерненной поверхности — не менее 5%.
3.6. Для снижения
неравномерного увлажнения пучинистых грунтов вокруг фундаментов при
проектировании и строительстве рекомендуется: земляные работы
производить с минимальным объемом нарушения грунтов природного
сложения при рытье котлованов под фундаменты и траншей подземных
инженерных коммуникаций; тщательно послойно уплотнять грунты при
обратной засыпке пазух фундаментов и траншей ручными и пневмо- или
электротрамбовками; обязательно устраивать водонепроницаемые
отмостки шириной не менее 1 м вокруг здания с глиняными
гидроизолирующими слоями в основании или покрывать почвенным слоем
толщиной 10-12 см и задернять многолетними травами.
3.7. На строительных
площадках, сложенных глинистыми грунтами и имеющих уклон местности
более 2‰, при проектировании следует избегать устройства
резервуаров для воды, прудов и других источников увлажнения, а
также расположения вводов в здание трубопроводов канализации и
водоснабжения с нагорной стороны здания или сооружения.
3.8. Строительные
площадки, расположенные на склонах, должны быть ограждены от
стекающих со склонов поверхностных вод постоянной нагорной канавкой
с уклоном не менее 5‰ до начала земляных работ по рытью
котлованов.
3.9. Нельзя допускать при
строительстве скопления воды от повреждения временного водопровода.
При обнаружении на поверхности грунта стоячей воды или при
увлажнении грунта от повреждения трубопровода необходимо принять
срочные меры по ликвидации причин скопления воды или увлажнения
грунта вблизи расположения фундаментов.
3.10. При засыпке
коммуникационных траншей с нагорной стороны от здания или
сооружения необходимо устраивать перемычки из мятой глины или
суглинка с тщательным уплотнением для предотвращения попадания (по
траншеям) воды к зданиям и сооружениям и увлажнения грунтов вблизи
фундаментов.
3.11. Устройство прудов и
водоемов, которые могут изменить гидрогеологические условия
стройплощадки и повысить водонасыщение пучинистых грунтов
застраиваемой территории, не допускается. Необходимо учитывать
проектируемое изменение уровня воды в реках, озерах и прудах в
соответствии с перспективным генеральным планом.
3.12. Следует избегать
расположения зданий и сооружений ближе 20 м к действующим колонкам
для заправки тепловозов, обмывки автомашин, снабжения населения и
для других целей, а также не проектировать колонок на пучинистых
грунтах ближе 20 м к существующим зданиям и сооружениям. Площадки
вокруг колонок должны быть спланированы с обеспечением отвода
воды.
4. СТРОИТЕЛЬНО-КОНСТРУКТИВНЫЕ МЕРОПРИЯТИЯ ПРОТИВ ДЕФОРМАЦИИ ЗДАНИЙ И СООРУЖЕНИЙ ПРИ ПРОМЕРЗАНИИ И ПУЧЕНИИ ГРУНТОВ
4.1. Фундаменты зданий и
сооружений, возводимые на пучинистых грунтах, могут быть
запроектированы из любых строительных материалов, которые
обеспечивают эксплуатационную пригодность зданий и сооружений и
удовлетворяют требованиям прочности и долголетней сохранности. При
этом необходимо считаться с возможными вертикальными
знакопеременными напряжениями от морозного пучения грунтов
(поднятие грунтов при промерзании и осадка их при оттаивании).
4.2. При размещении
зданий и сооружений на строительной площадке необходимо по
возможности учитывать степень пучинистости грунтов с тем расчетом,
чтобы не могли оказаться под фундаментами одного здания грунты с
различной степенью пучинистости. При неизбежности строительства
здания на грунтах с различной степенью пучинистости следует
предусматривать конструктивные мероприятия против действия сил
морозного пучения, например, при ленточных сборных железобетонных
фундаментах устраивать по фундаментным подушкам монолитный
железобетонный пояс и др.
4.3. При проектировании
зданий и сооружений с ленточными фундаментами на сильнопучинистых
грунтах в уровне верха фундаментов надлежит предусматривать для
1-2-этажных каменных зданий по периметру наружных и внутренних
капитальных стен конструктивные железобетонные пояса шириной не
менее 0,8 толщины стены, высотой 0,15 м и над проемами последнего
этажа — армированные пояса.
Примечание.
Железобетонные пояса должны иметь марку бетона не менее 150,
арматуру с минимальным сечением, 3* диаметром 10 мм; с усиленным
стыкованием стержней по длине.
_______________
*
Текст соответствует оригиналу. — Примечание изготовителя базы
данных.
4.4. При проектировании
свайных фундаментов с ростверком на сильно- и среднепучинистых
грунтах необходимо учитывать действие нормальных сил морозного
пучения грунтов на подошву ростверка. Сборные железобетонные
подстеновые рандбалки должны быть монолитно связаны между собой и
уложены с зазором не менее 15 см между рандбалкой и грунтом.
4.5. Глубина заложения
фундаментов каменных гражданских зданий и промышленных сооружений
на пучинистых грунтах принимается не менее расчетной глубины
промерзания грунтов согласно табл.6 главы СНиП II-Б.1-62. В тех
случаях, когда влажность грунтов не повышается в период
строительства и эксплуатации зданий на слабопучинистых грунтах
(полутвердой и тугопластичной консистенции), глубина заложения
фундаментов должна приниматься при нормативной глубине
промерзания:
до 1 м — не
менее 0,5 м от планировочной
отметки | |||||||||||||
до | 1,5 | « | « | « | 0,75 | « | « | « | « | ||||
от | 1,5 | до | 2,5 м | « | 1 | « | « | « | « | ||||
» | 2,5 | « | 3,5 | « | 1,5 | « | « | « |
Группы грунтов | Степень пучиностости | Относительное морозное пучение образца, % |
I | Непучинистые | 1 и менее |
II | Слабопучинистые | Свыше 1 до 4 |
III | Пучинистые | От 4 до 7 |
IV | Сильнопучинистые | От 7 до 10 |
V | Чрезмерно пучинистые | От 10 |
Примечания: 1. Испытание на пучинистость при промерзании осуществляется в лаборатории по специальной методике с подтоком воды. Допускается группу по пучинистости определять по табл. 7 настоящего приложения.
2. При оценке величины морозного пучения расчетом испытания грунтов на интенсивность морозного пучения ведут по специальной методике.
3. В случаях, когда испытание на морозное пучение проводятся, группу по пучиностости допускается устанавливать по табл. 7 настоящего приложения, а среднюю относительную величину морозного пучения зоны промерзания — по табл. 8.
Таблица 7
Группы грунтов по степени пучинистости
Грунт | Группа |
Песок гравелистый, крупный и средней крупности с содержанием частиц мельче 0,05 мм до 2 % | I |
Песок гравелистый, крупный и средней крупности с содержанием частиц мельче 0,05 мм до 15 %, мелкий с содержанием частиц мельче 0,05 мм до 15 %; супесь легкая крупная | II |
Супесь легкая; суглинок легкий и тяжелый; глины | III |
Песок пылеватый; супесь пылеватая; суглинок тяжелый пылеватый | IV |
Супесь тяжелая пылеватая; суглинок легкий пылеватый | V |
Примечание. Величина коэффициента морозного пучения щебенистых, гравелистых, дресвяных песков при содержании частиц мельче 0,05 мм свыше 15 % ориентировочно принимается как для пылеватого песка и проверяется в лаборатории.
Таблица 8
Величина морозного пучения
Грунт | Среднее значение относительного морозного пучения при промерзании 1,5 м, % |
Песок гравелистый, крупный и средней крупности с содержанием частиц мельче 0,05 мм до 2 % | 1 1 |
Песок гравелистый, крупный и средней крупности с содержанием частиц мельче 0,05 мм до 15 %, мелкий с содержанием частиц мельче 0,05 мм до 2 % | 1 1-2 |
Песок мелкий с содержанием частиц мельче 0,05 мм менее 15 %, супесь легкая крупная | 1-2 2-4 |
Песок пылеватый; супесь пылеватая; суглинок тяжелый пылеватый | 2-4 7-10 |
Супесь легкая | 1-2 4-7 |
Супесь тяжелая пылеватая; суглинок легкий пылеватый | 4-7 10 |
Суглинок и тяжелый; глины | 2-4 4-7 |
Примечание. Над чертой — при 1-м типе местности по увлажнению согласно табл. 1 настоящего приложения, под чертой — при 2-м и 3-м типах.
Таблица 9
почвы | Определение, состав и факты
Почвы сильно различаются по своим свойствам из-за геологических и климатических изменений на расстоянии и во времени. Даже простое свойство, такое как толщина почвы, может варьироваться от нескольких сантиметров до многих метров, в зависимости от интенсивности и продолжительности выветривания, эпизодов осаждения и эрозии почвы и моделей эволюции ландшафта. Тем не менее, несмотря на эту изменчивость, почвы имеют уникальную структурную характеристику, которая отличает их от простых земных материалов и служит основой для их классификации: вертикальная последовательность слоев, образующихся при совместном воздействии перколирующих вод и живых организмов.
podzol Профиль почвы Podzol из Ирландии, показывающий отбеленный слой, из которого выщелачиваются гумус и оксиды металлов, а затем осаждаются в типично красноватом горизонте ниже. © ISRIC, www.isric.nl Получите эксклюзивный доступ к контенту из нашего первого издания 1768 года с вашей подпиской. Подпишитесь сегодняЭти слои называются горизонтами, и полная вертикальная последовательность горизонтов составляет профиль почвы (см. Рисунок). Горизонты почвы определяются особенностями, которые отражают почвообразующие процессы.Например, самый верхний слой почвы (не включая поверхностный мусор) называется горизонтом А. Это выветрившийся слой, который содержит скопление гумуса (разложившегося, темного цвета, богатого углеродом вещества) и микробной биомассы, которая смешивается с мелкозернистыми минералами, образуя агрегатные структуры.
Профиль почвы, показывающий основные слои от горизонта O (органический материал) до горизонта R (консолидированная порода). Педон — это наименьшая единица поверхности земли, которую можно использовать для изучения характерного почвенного профиля ландшафта. Encyclopædia Britannica, Inc.Ниже А лежит горизонт Б. В зрелых почвах этот слой характеризуется скоплением глины (мелкие частицы диаметром менее 0,002 мм [0,00008 дюйма]), которая либо осаждается из перколяционных вод, либо осаждается химическими процессами с участием растворенных продуктов выветривания. Глина наделяет горизонты В множеством разнообразных структурных элементов (блоков, колонн и призм), образованных из маленьких частиц глины, которые могут быть связаны в различных конфигурациях по мере развития горизонта.
Ниже горизонтов A и B находится горизонт C, зона с небольшим накоплением гумуса или его отсутствием или развитием структуры почвы. Горизонт С часто состоит из неконсолидированного исходного материала, из которого сформировались горизонты А и В. В нем отсутствуют характерные черты горизонтов A и B, и он может быть относительно не выветренным или сильно выветрившимся. На некоторой глубине ниже горизонтов A, B и C лежит консолидированная порода, которая составляет горизонт R.
Эти простые буквенные обозначения дополняются двумя способами (см. Таблицу буквенных обозначений горизонта почвы).Во-первых, определены два дополнительных горизонта. Подстилке и разложившемуся органическому веществу (например, остаткам растений и животных), которые обычно находятся на поверхности земли выше горизонта А, присваивается обозначение горизонта О, тогда как слой непосредственно под горизонтом А был сильно выщелочен (то есть медленно промывается определенное содержимое под действием перколирующей воды) дается отдельное обозначение E горизонт, или зона элюирования (от латинского ex , «out» и lavere , «to wash»).Развитию горизонтов Е способствует большое количество осадков и песчаный материнский материал, два фактора, которые помогают обеспечить обширную фильтрацию воды. Твердые частицы, потерянные в результате выщелачивания, откладываются в горизонте B, который затем можно рассматривать как зону облучения (от лат. или , «in» и lavere ).
Буквенное обозначение горизонта почвы | |
---|---|
Базовые символы для поверхностных горизонтов | |
O | органический горизонт, содержащий мусор и разложившееся органическое вещество |
А | минеральный горизонт затемнен накоплением гумуса |
Базовые символы для подземных горизонтов | |
E | минеральный горизонт более светлый, чем горизонт А или О и обедненный глинистыми минералами |
AB или EB | переходный горизонт больше похож на А или Е, чем на В |
BA или BE | переходный горизонт больше похож на B, чем на A или E |
B | накопленная глина и гумус ниже горизонта А или Е |
г. до н.э. или CB | переходный горизонт от B до C |
C | неуплотненный материал земли ниже горизонта A или B |
R | консолидированная порода |
Добавлены суффиксы для особых функций горизонтов | |
а | сильно разложившееся органическое вещество |
б | похоронен горизонт |
с | конкреций или твердых конкреций (железо, алюминий, марганец или титан) |
е | органическое вещество промежуточного разложения |
f | мерзлый грунт |
г | серого цвета с сильной пятнистостью и плохим дренажом |
ч | накопление органического вещества |
и | слегка разложившееся органическое вещество |
к | накопление карбоната |
м | цементация или уплотнение |
n | накопление натрия |
или | накопление оксидов железа и алюминия |
р | вспашка или другое антропогенное нарушение |
кв | накопление кремнезема |
р | выветрившихся или мягких пород |
с | накопление оксидов металлов и органических веществ |
т | накопление глины |
v | плинтит (твердый обогащенный железом материал недр) |
Вт | развитие цвета или структуры |
x | хрупкий характер (высокая плотность, хрупкость) |
и | накопление гипса |
з | накопление солей |
Объединенная последовательность горизонтов A, E, B называется solum (лат. «Пол»).Соль является истинным очагом почвообразующих процессов и основным местом обитания почвенных организмов. (Переходные слои, имеющие промежуточные свойства, обозначены двумя буквами смежных горизонтов.)
Второе усовершенствование номенклатуры горизонта почвы (также показано в таблице) — это использование строчных суффиксов для обозначения особых характеристик, важных для развития почвы. Наиболее распространенные из этих суффиксов применяются к горизонтам В: г для обозначения пятнистости, вызванной заболачиванием, ч для обозначения иллювиального накопления гумуса, к для обозначения карбонатных минеральных осадков, o для обозначения остаточных оксидов металлов с для обозначения накопления оксидов и перегноя металлов и т для обозначения накопления глины.
Педоны и полипедоны
Почвы являются естественными элементами выветривания ландшафтов, свойства которых могут варьироваться в пространстве. Однако для научных исследований полезно думать о почвах как об объединении модулей, известных как педоны. Педон — это самый маленький элемент ландшафта, который можно назвать почвой. Его предел глубины является несколько произвольной границей между почвой и «не почвой» (например, коренной породой). Его боковые размеры должны быть достаточно большими, чтобы можно было изучить любые имеющиеся горизонты — в общем, площадь от 1 до 10 квадратных метров (от 10 до 100 квадратных футов), принимая во внимание, что горизонт может быть переменным по толщине или даже прерывистым.Везде, где горизонты являются циклическими и повторяются с интервалами от 2 до 7 метров (от 7 до 23 футов), педон включает половину цикла. Таким образом, каждый педон включает в себя диапазон изменчивости горизонта, который происходит в пределах небольших областей. Везде, где цикл составляет менее 2 метров или где все горизонты непрерывны и имеют одинаковую толщину, площадь педона составляет 1 квадратный метр.
Почвы встречаются на ландшафте в виде групп схожих педонов, называемых полипедонами, которые имеют достаточную площадь, чтобы считаться таксономической единицей.Полипедоны снизу ограничены «не почвой», а сбоку — педонами с разными характеристиками.
Классификация почв | NRCS Soils
Подпишитесь на рассылку обновлений по электронной почте по классификации почвы
Таксономия почв
Таксономия почвы — главная ссылка на классификацию почвы.
Ключи к таксономии почвы — таксономические ключи для классификации полей.
Почвенный Таксономический Форум
Серия почв
Ссылки на официальные описания серии почв (OSD), базу данных классификации почв (SC), инструмент обслуживания SC / OSD и инструмент отчетов по классификации почв перенесены в Инструменты и данные.
Модель
Java Newhall Simulation Model (jNSM) — Традиционная имитационная модель климата почвы (программное обеспечение, руководство пользователя и образцы данных)
Исторические документы
Предыдущие версии таксономии ключей для почвы
Интервью Гая Смита: обоснование концепций таксономии почв
— Интервью «Пост Гай Смит»: достижения в области таксономии почв с середины 1980-х годов
Развитие и значение великих почвенных групп США (PDF; 5.82 MB) Чарльз Э. Келлог; опубликовано в 1936 г.
1918-1922 Ключи классификации почв для почвенных провинций и почвенных регионов США (PDF; 800 КБ)
Рекомендации Исторического международного комитета (ICOMFAM, ICOMID и т. Д.)
мультимедийных файлов
Карты распространения орденов доминирующих почв — изображения и карты.
Таксономия двенадцати орденов почв — плакат.
Другие классификационные системы
Универсальная система классификации почв — рабочая группа при Комиссии 1.4 (Классификация почв), которая является частью Подразделения 1 (Почва в пространстве и времени) Международного союза почвенных наук (IUSS)
Всемирная справочная база (WRB) — WRB, наряду с таксономией почвы, служат международными стандартами для классификации почв. Система WRB одобрена Международным союзом наук о почве и разработана международным сообществом, координируемым Рабочей группой IUSS. WRB в значительной степени заимствует из современных концепций классификации почв, включая таксономию почвы, легенду о ФАО «Карта почв мира 1988 года», Référentiel Pédologique и российские концепции.
,«Мне нравится широта ваших курсов HVAC; не только экология или экономия энергии
курсов. «
Рассел Бейли, П.Е.
Нью-Йорк
«Это укрепило мои текущие знания и дополнительно научило меня нескольким новым вещам
, чтобы выставить меня на новые источники
информации.»
Стивен Дедук, П.Е.
Нью-Джерси
«Материал был очень информативным и организованным. Я многому научился, и они были
очень быстро отвечают на вопросы.
Это было на высшем уровне. Будет использовать
снова. Спасибо. «
Блэр Хейворд, П.Е.
Альберта, Канада
«Простой в использовании сайт.Хорошо организовано. Я действительно буду использовать ваши услуги снова.
Я передам вашу компанию
имя другим на работе. «
Рой Пфлайдерер, П.Е.
Нью-Йорк
«Справочный материал был превосходным, и курс был очень интересным, особенно, поскольку я думал, что я уже был знаком
с подробной информацией о Канзасе
Городская авария Хаятт.»
Майкл Морган, П.Е.
Техас
«Мне очень нравится ваша бизнес-модель. Мне нравится возможность просматривать текст перед покупкой. Я нашел класс
информативно и полезно
в моей работе. «
Уильям Сенкевич, П.Е.
Флорида
«У вас есть большой выбор курсов, и статьи очень информативны.Вы
— лучшее, что я нашел «.
Рассел Смит, П.Е.
Пенсильвания
«Я считаю, что такой подход позволяет работающему инженеру легко заработать PDH, предоставив время для обзора
материал. «
Jesus Sierra, P.E.
Калифорния
«Спасибо, что разрешили мне просмотреть неправильные ответы.На самом деле,
человек учится больше
от сбоев. «
John Scondras, P.E.
Пенсильвания
«Курс был хорошо составлен, и использование конкретных примеров эффективно
способ обучения. «
Джек Лундберг, П.Е.
Висконсин
«Я очень впечатлен тем, как вы представляете курсы; i.э., разрешив
студент пересмотреть курс
материал до оплаты и
получает викторину. «
Арвин Свангер, П.Е.
Вирджиния
«Спасибо за предложение всех этих замечательных курсов. Я, конечно, выучил и
очень понравилось. «
Мехди Рахими, П.Е.
Нью-Йорк
«Я очень рад предложениям курса, качеству материала и простоте поиска и
принимает ваш он-лайн
курсов.»
Уильям Валериоти, П.Е.
Техас
«Этот материал в значительной степени оправдал мои ожидания. Курс был прост в использовании. Фотографии в основном обеспечивали хорошее визуальное отображение
обсуждаемых тем. «
Майкл Райан, П.Е.
Пенсильвания
«Именно то, что я искал. Нужен 1 кредит по этике и нашел его здесь.»
Gerald Notte, P.E.
Нью-Джерси
«Это был мой первый онлайн-опыт получения необходимых кредитов PDH. Это было
информативно, выгодно и экономично.
Я очень рекомендую его
для всех инженеров. «
Джеймс Шурелл, П.Е.
Огайо
«Я ценю вопросы» реального мира «и имеют отношение к моей практике, и
не основано на некоторых неясных раздел
законов, которые не применяются
— «нормальная» практика.»
Марк Каноник, П.Е.
Нью-Йорк
«Большой опыт! Я многому научился возвращаться к своему медицинскому устройству.
организации. «
Иван Харлан, П.Е.
Теннесси
«Материал курса имел хорошее содержание, не слишком математическое, с хорошим акцентом на практическое применение технологий».
Евгений Бойл, П.E.
Калифорния
«Это был очень приятный опыт. Тема была интересной и хорошо представленной,
и онлайн формат был очень
доступны и легко
использовать. Большое спасибо. «
Патриция Адамс, П.Е.
Канзас
«Отличный способ достичь соответствия требованиям PE Continuation Education в течение срока действия лицензии.»
Джозеф Фриссора, П.Е.
Нью-Джерси
«Должен признаться, я действительно многому научился. Это помогает провести печатную викторину в течение
Обзор текстового материала. Я
также оценили просмотр
фактических случаев. «
Жаклин Брукс, П.Е.
Флорида
«Документ Общие ошибки ADA при проектировании объектов очень полезен.
Тесттребовал исследования в
документ , но ответы были
легко доступны. «
Гарольд Катлер, П.Е.
Массачусетс
«Это было эффективное использование моего времени. Спасибо за то, что у вас есть выбор
в транспортной инженерии, которая мне нужна
для выполнения требований
PTOE сертификация.»
Джозеф Гилрой, П.Е.
Иллинойс
«Очень удобный и доступный способ заработать CEU для моих требований Delaware PG».
Ричард Роудс, П.Е.
Мэриленд
«Многому научился с защитным заземлением. До сих пор все курсы, которые я выбрал, были великолепны.
Надеюсь увидеть больше 40%
дисконтных курсов.»
Кристина Николас, П.Е.
Нью-Йорк
«Только что закончили экзамен по радиологическим стандартам и с нетерпением ждем дополнительных
курсов. Процесс прост и
намного эффективнее, чем
приходится путешествовать. «
Деннис Мейер, П.Е.
Айдахо
«Услуги, предоставляемые CEDengineering, очень полезны для профессионалов
Инженеры, чтобы получить единицы PDH
в любое время.Очень удобно. «
Пол Абелла, П.Е.
Аризона
«Пока это было здорово! Будучи полной матерью двоих детей, у меня не так много
время для исследования, где
получить мои кредиты от. «
Кристен Фаррелл, П.Е.
Висконсин
«Это было очень познавательно и познавательно.Легко , чтобы понять с иллюстрациями
и графики; определенно делает это
легче поглотить все
теории. «
Виктор Окампо, P.Eng.
Альберта, Канада
«Хороший обзор принципов полупроводника. Мне понравилось проходить курс в
мой собственный темп во время моего утра
метро добираться
на работу.»
Clifford Greenblatt, P.E.
Мэриленд
«Просто найти интересные курсы, скачать документы и взять
викторина. Я бы высоко рекомендую
Вы на любой ЧП, нуждающихся в
единиц CE. «
Марк Хардкасл, П.Е.
Миссури
«Очень хороший выбор тем в многочисленных областях техники.»
Рэндалл Дрейлинг, П.Е.
Миссури
«Я заново узнал вещи, которые я забыл. Я также рад получить финансово
от ваш промо-мейл который
сниженная цена
на 40%. «
Конрадо Казем, П.E.
Теннесси
«Отличный курс по разумной цене. Я буду использовать ваш сервис в будущем.»
Charles Fleischer, P.E.
Нью-Йорк
«Это был хороший тест, и я действительно проверил, что я прочитал профессиональную этику
коды и Нью-Мексико
постановления. «
Брун Гильберт, П.E.
Калифорния
«Мне очень понравились занятия. Они стоили времени и усилий».
Дэвид Рейнольдс, П.Е.
Канзас
«Очень доволен качеством тестовых документов. Будет использовать CEDengineerng
при необходимости дополнительного
сертификация. «
Томас Каппеллин, П.E.
Иллинойс
«У меня истек срок действия курса, но вы все равно выполнили обязательство и дали
мне, что я заплатил — много
приветствуется! «
Джефф Хэнслик, П.Е.
Оклахома
«CEDengineering предлагает удобные, экономичные и актуальные курсы
для инженера. «
Mike Seidl, P.E.
Небраска
,Классификация почв касается группировки почв с аналогичным набором свойств (химических, физических и биологических) в единицы, которые могут быть географически привязаны и нанесены на карту. Почвы являются очень сложным природным ресурсом, гораздо больше, чем воздух и вода .
Почвысодержат все природные химические элементы и сочетают в себе одновременно твердое, жидкое и газообразное состояния.Более того, количество физических, химических и биологических характеристик и их комбинаций практически бесконечно. Неудивительно, что было предложено много разных подходов к разумной группировке разных почв. Также были разработаны системы классификации почв для различных целей:
Можно выделить три разных этапа для иллюстрации развития систем классификации почв. Ранние системы классификации почв (Russian, USDA 1938) фокусировались на окружающей среде и почвообразующих факторах для классификации почв в зональных почвах (в которых почвообразование определялось в основном климатом и растительностью), а также в азональных и интразональных (в которых почвообразование было главным образом определяется исходным материалом и временем разработки).Различие между азональными и интразональными почвами было сделано на основе развития почвенного профиля. Последующее развитие было сосредоточено на процессах, происходящих в самой почве (таких как фераллитизация, засоление, выщелачивание и накопление и т. Д.). Эти процессы были грубо охарактеризованы свойствами почвы. Хорошим примером последнего подхода является французская система классификации (CPCS, 1967). Современная классификация почв началась с публикации 7-го приближения таксономии почв USDA , где для определения «диагностических горизонтов почв» были использованы точно определенные и количественно оцененные свойства почвы как таковые или в комбинации.
Постмодернистские подходы к классификации почв широко используют статистику и нечеткость и включают численные системы классификации почв (разработанные, среди прочего, Вебстером, Фицпатриком и Макбратни).