Работа стабилизатора: Принцип работы стабилизатора напряжения

Содержание

Принцип работы стабилизатора напряжения

Стабилизатор напряжения – устройство, преобразующее электроэнергию с неустойчивыми характеристиками, которые не подходят для устройств энергопотребления. На выходе поступает напряжение с заданными стабильными параметрами, которыми снабжаются потребители энергии.

Разновидности устройств

Стабилизаторы напряжения Штиль
(от 0,1 до 100 кВА)

Стабилизаторы напряжения СДП Русэлт
(от 1 до 10 кВА)

Стабилизаторы напряжения
для газовых котлов

Прежде всего стоит разобраться, какие бывают разновидности устройств. Стабилизатор напряжения купить можно разный, например:

  • Постоянного напряжения;
  • Переменного напряжения.

Стабилизаторы постоянного напряжения

Они необходимы, если значение поступающего тока мало или наоборот слишком велико для электропотребителя. Проходя через устройство, напряжение преобразуется до заданного уровня. В свою очередь они делятся на:

  • Линейный стабилизатор. Принцип функционирования основан на непрерывном изменении сопротивления для осуществления стабильного показателя на выходе. Простая конструкция устройства с минимальным количеством деталей работает без помех;
  • Импульсный. С помощь коротких импульсов нестабильный ток накапливается на катушке или в конденсаторе. В последствии накопленная электроэнергия поступает на выход с заданными параметрами. Если жена выходе показатель превышает возможное допустимое значение, то накопитель сбрасывает напряжение, переставая аккумулировать энергию, тем самым позволяя на выходе подавать напряжение с меньшим значением.

Стабилизаторы переменного напряжения

Устройство, которые поддерживает выход тока с заданными характеристиками, вне зависимости от того, какие показатели были на входе. Они бывают:

  • Накопительные. Этот стабилизатор напряжения купить необходимо, если для применения достаточно накопления электроэнергии в системе, с последующим преобразованием и выдачи на выходе тока со стабильными параметрами;
  • Корректирующие. Стабилизатор напряжения, преобразующий энергию за счет добавления потенциала, которого не хватает для получения необходимых параметров.

Качество и долговременность работы таких устройств зависит от скачков напряжения и других параметров подаваемой энергии. И только благодаря стабилизаторам напряжения возможно бесперебойное электроснабжение с заданными параметрами.

Выгода в использовании стабилизаторов напряжения

Благодаря использованию стабилизаторов напряжения можно добиться эффективного расходования электроэнергии, обезопасить оборудование от перепадов напряжения, вызванного под воздействием различных факторов. Среди преимуществ данного оборудования:

· Обеспечение качественного питания электросети, исключающего поломку дорогостоящей электроники и техники. Повреждение современного дорогостоящего оборудование сопряжено с серьезными затратами на ремонтные работы. Применение стабилизатора исключает риск поломки, вызванный нестабильной работой сети.

· Низкое напряжение приводит к повышению потребления электроэнергии. Увеличение потребления становится причиной повышения расходов на оплату счетов. Стабилизатор позволяет отказаться от перерасхода и сохранить бюджет.

· Перепады напряжения приводят к КЗ, перегреву проводов. Кроме того, от них возможно возгорание. Стабилизаторы способствуют исключению этих рисков.

· Если напряжение держится на нормальном уровне, могут возникнуть импульсы из-за погодных явлений или перекоса фаз. Стабилизатор позволяет обезопасить техники, предотвращая такое воздействие.

Совокупность преимуществ позволяет не только экономить благодаря стабилизатором, но и обезопасить электросеть и приборы, подключенные к ней.

Как выбрать стабилизатор напряжения

Выбирая стабилизатор напряжения, стоит обратить внимание на такие характеристики, как:

· Особенности монтажа. Существуют модели, которые устанавливаются в непосредственной близости от электроприбора, на стену. Если требуется использование стабилизатора на улице, то стоит задуматься о наличии защиты от воздействия влаги и других внешних факторов. Если стабилизатор будет работать в условиях повышенных температур, то необходима модель, оснащенная охлаждением.

· Тип электросети: для одной фазы подходит устройство с напряжением 220-250 В, трехфазные обустраиваются при помощи устройств в 380-415 В.

· Допустимые показатели нагрузки. Бытовые стабилизаторы могут иметь мощность 3-5 кВт. Для коммерческих и общественных помещений подойдут устройства средней мощности, а для производства – высокомощное оборудование на десятки-сотни кВт. Мощность стабилизатора должна быть больше мощностей используемой техники на 30%.

· Максимальную и минимальную мощность на выходе.

· Мощность на выходе должна превышать минимум на 15% мощность всех используемых электроприборов.

· Точность регулировки. Для использования в быту подойдет устройство с точностью 5-7%. В промышленном применении важна большая точность. Поэтом предельный показатель – 3%.

· Скорость регулировки – не должна превышать 20 мс. Чем меньше – тем лучше.

· Особенность регулировки – дискретная или электродинамическая. Первый тип стоит дешевле и применяется для дома и коммерческой недвижимости. Второй – стоит дорого и подойдет для промышленности.

· Уровень издаваемого шума и размеры устройства.

Сделайте заказ на стабилизаторы напряжения в нашей компании, и мы выполним его быстро.

виды приборов и технологий стабилизации

Содержание

Технология стабилизации напряжения, основанная на эффекте феррорезонанса

В 1938 году был изобретен и запатентован феррорезонансный трансформатор (автор Джозеф Сола). Именно это устройство, изначально названное «трансформатор постоянного напряжения», стали впервые использовать для стабилизации параметров электрической энергии, так как оно за счет электромагнитного явления, называемого феррорезонансом, при колебаниях входного напряжения сохраняло неизменным значение выходного.

Отметим, что феррорезонансный эффект не регулирует напряжение напрямую, однако при правильном применении позволяет минимизировать влияние первичного (входного) напряжения на вторичное (выходное).

Феррорезонансный трансформатор включает в себя две магнитные цепи (обмотки) со слабой связью друг с другом. Магнитопроводы цепей имеют различную магнитную проницаемость, поэтому во время работы выходная цепь находится в режиме постоянного насыщения, а входная, наоборот, не достигает насыщенности. Благодаря этому даже значительные отклонения напряжения на входе не приводят к существенным колебаниям на выходе. Разница между величиной фактически снимаемого с трансформатора напряжения и его номинальным значением обычно не превышает пяти процентов (при соблюдении определённых условий).

Феррорезонансные трансформаторы выпускаются по сей день, правда, современные модели из-за высокой цены и некоторых особенностей эксплуатации, практически не используются в качестве стабилизаторов напряжения.

Первые стабилизаторы напряжения в СССР

В нашей стране разработки приборов, обеспечивающих коррекцию переменного напряжения, начались в конце 1950-х годов. Именно тогда возникла потребность в качественном электропитании бытовой техники, начавшей массово появляться в советских квартирах и домах.

За основу для первых серийных стабилизаторов отечественные инженеры взяли описанную выше технологию феррорезонанса – она не требовала сложной схемы и, самое главное, полностью удовлетворяла существующие на тот момент требования к качеству электропитания.

В широкий обиход советские феррорезонансные стабилизаторы вошли уже в 1960-х годах. Их конструкция включала в себя автотрансформатор, входной и фильтрующий дроссель, а также конденсатор.

Данные изделия не отличались большой мощностью и в основном были рассчитаны на 200-300 Вт. Но этого вполне хватало для питания типичных нагрузок того времени: цветных и чёрно-белых телевизоров, радиоаппаратуры, магнитофонов и измерительных приборов (более мощные трехфазные стабилизаторы использовались для защиты ответственного электрооборудования на промышленных предприятиях).

В течение 1960-1970-х годов наибольшее распространение в бытовом секторе получили модели ТСН-170, ФСН-200, СНБ-200, СН-200, УСН-200, ТСН-200 СН-250, СН-315 и СНП-400 (цифра в названии означает выходную мощность устройства). Перечисленные устройства выпускались как в пластиковых, так и металлических корпусах и предназначались для настенного или напольного размещения. Для сети предусматривался выведенный шнур со штепсельной вилкой, для нагрузки – розеточное гнездо.

Использовались советские феррорезонансные стабилизаторы в первую очередь для защиты телевизоров от сильно завышенного или заниженного сетевого напряжения: они обеспечивали возможность нормального приема телевизионных передач, сохранность и увеличение срока службы кинескопа, ламп и других элементов телевизионного приёмника.

Что касается технических характеристик, то данные изделия в основном были рассчитаны на работу от сети переменного тока с частотой 50 Гц и номинальным напряжением 127 или 220 В. При этом рабочий диапазон входных напряжений составлял 85-140 В (для сети 127 В) и 155-250 В (для сети 220 В). Приборы имели коэффициент полезного действия не менее 80%, не боялись перегрузок и коротких замыканий. Кроме того, феррорезонансные стабилизаторы благодаря отсутствию электромеханических частей имели длительный срок службы. У некоторых пользователей сделанные во времена СССР устройства до сих пор исправно работают!

Были у этих стабилизаторов и свои недостатки: постоянный гул при работе (доходил до 32 дБА), существенные искажения формы выходного напряжения, большая зависимость от входной частоты и величины подключённой нагрузки, а также сильное электромагнитное поле, которое при близком расположении к телевизору создавало помехи в его работе.

Отметим, что разработки в области стабилизации сетевого напряжения велись в СССР непрерывно, поэтому параллельно с феррорезонансными стабилизаторами с конвейеров профильных заводов выходили и приборы иных типов. В частности, автотрансформаторные регуляторы моделей АРН-250, АРБ-400 и АТ-2, которые предполагали ручное поддержание выходного напряжения в установленных пределах. Однако ни одна разновидность изделий не получила в советский период такого распространения, как стабилизаторы на базе феррорезонанса.

Лишь с начала 90-х годов, когда в нашей стране появляется большое количество требовательной к качеству электропитания зарубежной бытовой техники и электроники, российские производители начинают выпуск стабилизаторов напряжения, в основу которых положены рассмотренные далее технологии.

Стабилизация напряжения с помощью сервопривода

В 1960-х стали активно распространяться сервоприводы – специальные электромоторы, механизм которых мог поворачиваться под разным углом и удерживать необходимое положение.

В тех же годах сервопривод начал использоваться и в стабилизаторах напряжения. Так, в 1961 году был запатентован электромеханический стабилизатор, силовая честь которого состояла из регулируемого автотрансформатора, подвижного токосъемного контакта с приводом от двигателя постоянного тока и источника напряжения собственных нужд. Прибор позволял автоматически стабилизировать сетевое напряжение, не искажая при этом форму его кривой.

Сегодня электромеханические стабилизаторы по-прежнему выпускаются и несмотря на разнообразие моделей имеют схожий принцип работы – плата управления сравнивает значение напряжения на входе изделия с установленным образцовым. В случае различия этих двух параметров сервопривод с графитовым ползунком, роликом или щеткой (в зависимости от конкретной модели стабилизатора) перемещается по обмотке автотрансформатора и подключает к цепи количество витков, достаточное для получения выходного напряжения максимально приближенного к эталонной величине.

Такой принцип работы сопряжен с существенными недостатками. Речь, в первую очередь, о невысокой скорости срабатывания – сервоприводу при возникновении сетевого отклонения требуется определенное время, чтобы передвинуть токосниматель в необходимое положение. Кроме того, быстрый механический износ подвижных деталей обуславливает необходимость их периодической замены.

Шум при передвижении щеток сервопривода, возможное искрение во время работы и громоздкая конструкция создают дополнительные сложности при бытовой эксплуатации данных устройств.

Подробнее об электромеханических стабилизаторах можно узнать в статье «Электромеханические стабилизаторы напряжения».

Релейная технология стабилизации напряжения

Появившееся еще в 19 веке электромеханическое реле – это, наверное, самый распространённый в автоматике элемент. В нашей стране оно сначала применялось в промышленности для управления технологическими процессами, а затем вошло и в состав различной бытовой техники. Разработка в СССР стабилизаторов напряжения, действующих на основе релейного элемента и получивших соответствующее название «релейные», приходится на 1970-е годы.

Основные элементы типичного релейного стабилизатора – это автотрансформатор, электронная плата управления и блок силовых реле, каждое из которых по сути представляют собой автоматический выключатель, соединяющий или разъединяющий электрическую цепь под внешним воздействием либо при достижении определенных параметров.

Во время работы релейного стабилизатора управляющая плата постоянно контролирует входное напряжение и в случае его отклонения от номинальных показателей подает сигнал на релейный блок. Последующее замыкание (размыкание) определённого реле коммутирует обмотки трансформатора и обеспечивает необходимый для нейтрализации входного искажения коэффициент трансформации.

Устройства данного типа имеют повышенную скорость срабатывания, но регулировка сетевого напряжения выполняется ступенчато (не плавно), что сказывается на форме подаваемого на нагрузку сигнала. Кроме того, срабатывание реле всегда сопровождается щелчками, создающими определенный шум во время работы устройства.

Подробнее о данном типе стабилизаторов можно узнать в статье «Релейные стабилизаторы напряжения».

Стабилизация напряжения на основе тиристоров и симисторов

Активное проникновение в электротехнику полупроводниковых компонентов нашло своё отражение и в вопросе стабилизации электрической энергии. В конце 1970-х начались разработки стабилизаторов напряжения, работающих на основе тиристоров – полупроводниковых приборов, имеющих два состояния «закрытое» с низкой проводимостью и «открытое» с высокой.

Обычно тиристоры используются как силовые ключи в различных электронных устройствах, например, в переключателях скорости электродвигателей, таймерах, диммерах и т.д. Отметим, что тиристоры в зависимости от конструкции могут проводить ток как в одном направлении, так и в двух (приборы второго типа получили название – симисторы).

Тиристорные и симисторные стабилизаторы напряжения по принципу своей работы схожи с релейными и отличаются лишь тем, что коммутация обмоток автотрансформатора выполняется не релейными блоками, а электронными, состоящими из тиристоров или симисторов. Применение таких блоков позволяет регулировать напряжение гораздо быстрее, чем с помощью классических электромеханических реле. Другие преимущества данной технологии: абсолютная бесшумность работы и отсутствие требующих технического обслуживания деталей.

Сегодня симисторные и тиристорные стабилизаторы являются одними из самых распространённых и популярных, что, однако, не отменяет их главного недостатка – ступенчатого регулирования напряжения (аналогично релейным моделям).

Более подробно о тиристорных и симисторных стабилизаторах рассказано в статье «Электронные стабилизаторы напряжения».

Технология двойного преобразования энергии

Инверторы и выпрямители – статические преобразователи напряжения, совместное использование которых в 1980-х породило технологию двойного бестрансформаторного преобразования энергии. Данная технология в течение нескольких десятилетий успешно применялась в онлайн ИБП, а в 2015 году была использована и при создании стабилизаторов напряжения нового поколения. Полученные устройства, названые инверторными стабилизаторами, обеспечили непревзойдённые технические характеристики и стали настоящим прорывом в своей отрасли.

Инверторные стабилизаторы избавлены от громоздкого автотрансформатора и каких-либо электромеханических частей, силовая часть приборов состоит исключительно из электронных модулей: выпрямителя, накопительной емкости и инвертора.

Работа такого стабилизатора заключается в двукратном преобразовании поступающего на вход напряжения. Сначала оно с помощью выпрямителя преобразуется в постоянное, затем проходит через промежуточную (накопительную) емкость и попадает на инвертор, где снова становится переменным. В итоге на выход устройства подаётся снятое с инвертора напряжение, которое обладает точным значением и синусоидальной формой.

Важно!
Двойное преобразование в инверторных стабилизаторах является штатным рабочим процессом и осуществляется постоянно, а не только в момент отклонения сетевых параметров от нормы. Именно из-за этого данные устройства отличаются мгновенным срабатыванием и бесступенчатой стабилизацией, а генерируемая ими идеальная синусоидальная форма выходного сигнала не зависит от любых колебаний и помех во внешней сети. Кроме того, инверторные стабилизаторы работают в расширенном диапазоне входного напряжения и способны обеспечить эталонную точность стабилизации.

В настоящее время инверторные стабилизаторы удовлетворяют даже самые жесткие требования к качеству электропитания и входят в число наиболее популярных устройств в соответствующем им сегменте рынка.

Подробнее об инверторных стабилизаторах читайте в статье «Инверторные стабилизаторы: устройство, принцип работы, преимущества и недостатки».

Работа стабилизатора напряжения и его важность Электронный узел

Стабилизатор напряжения очень часто используется в холодильниках, кондиционерах, телевизорах, печном оборудовании, микропечах, музыкальных системах, стиральных машинах и т. д. Основная цель использования напряжения Стабилизаторы предназначены для защиты устройств от скачков напряжения.

[adsense1]

Это связано с тем, что каждый электроприбор рассчитан на работу при определенном напряжении для обеспечения желаемой производительности.

Если это напряжение ниже или выше определенного значения, прибор может выйти из строя или работать в худшем состоянии, или даже может быть поврежден.

В домашнем и промышленном применении, как правило, используются автоматические регуляторы напряжения для поддержания постоянного напряжения на конкретном оборудовании. Дайте нам знать больше об этих стабилизаторах напряжения в деталях.

Краткое описание

Что такое стабилизаторы напряжения?

Как следует из названия, стабилизатор напряжения стабилизирует или регулирует напряжение, если напряжение питания изменяется или колеблется в заданном диапазоне.

Это электроприбор, который подает постоянное напряжение на нагрузку в условиях повышенного и пониженного напряжения. Это устройство обнаруживает эти состояния напряжения и, соответственно, приводит напряжение в желаемый диапазон.

Стабилизатор напряжения для холодильника

Стабилизатор напряжения позволяет регулировать напряжение питания нагрузки. Они не предназначены для обеспечения постоянного выходного напряжения; вместо этого он управляет нагрузкой или системой в допустимом диапазоне напряжений.

Внутренняя схема стабилизатора показана на рисунке ниже. Он состоит из автотрансформатора/трансформатора, выпрямительного блока, компараторов, коммутационной цепи и реле.

[adsense2]

В современных стабилизаторах цифрового типа в качестве центрального блока управления используется микроконтроллер или микропроцессор.

Внутренняя схема стабилизатора

На современном рынке доступны различные типы стабилизаторов напряжения от разных производителей. Стабилизаторы поставляются с разным номиналом кВА для нормального диапазона (для получения выходного напряжения 200–240 В с повышающим напряжением 20–35 В для входного диапазона 180–270 В), а также для широкого диапазона (для получения выходного напряжения 190–240 В с повышающим напряжением 50–55 В). -buck для входного диапазона приложений 140-300 В).

Стабилизаторы доступны в виде специальных стабилизаторов для различных бытовых и промышленных приборов, таких как кондиционеры, LCD/LED-телевизоры, холодильники, музыкальные системы, стиральные машины, а также доступны в виде одного большого блока для всех приборов.

Стабилизаторы потребляют очень мало энергии, обычно от 2 до 5% от максимальной нагрузки (т. е. номинальной мощности стабилизатора). Это устройства с высоким КПД, обычно от 95 до 98%.

Трехфазный стабилизатор

Это могут быть однофазные или трехфазные стабилизаторы напряжения. Как нецифровые, так и цифровые автоматические стабилизаторы напряжения доступны от известных производителей.

Некоторые дополнительные функции доступны в современных стабилизаторах, включая защиту от высокого напряжения, защиту от перегрузки, переключение при нулевом напряжении, защиту от колебаний частоты, отображение отключения напряжения и т. д.

Необходимость в стабилизаторах напряжения

величина напряжения, которое обычно превышает или ниже диапазона установившегося напряжения, предписанного некоторыми стандартами.

В некоторых странах электроэнергия распределяется при напряжении 230 вольт для однофазной сети и 415 вольт для трехфазной сети. При этом все электроприборы (особенно однофазные) рассчитаны на работу в диапазоне напряжений от 220 до 240В.

Допустимый диапазон напряжения в некоторых странах (в том числе в Индии) составляет 220 ± 10 В в соответствии со стандартами электроэнергии. А также многие бытовые приборы выдерживают этот диапазон колебаний напряжения.

Но в большинстве мест колебания напряжения довольно распространены и обычно находятся в диапазоне от 170 до 270 В. Эти колебания напряжения могут оказывать существенное неблагоприятное воздействие на электроприборы.

  • В случае осветительного оборудования низкое падение напряжения снижает световой поток (освещенность), что еще больше сокращает срок службы лампы.
  • Двигатель переменного тока
  • создает меньший крутящий момент и, следовательно, скорость при низком напряжении, и они развивают большую скорость, чем требуется, при перенапряжении. Это снижает срок службы двигателя, а также вызывает повреждение изоляции под высоким напряжением.
  • В случае индукционного нагрева низкое напряжение снижает тепловую мощность, что приводит к тому, что нагрузка работает при температуре, не соответствующей желаемой.
  • Падение напряжения при передаче по телевидению и радио приведет к снижению качества передачи, а также к неисправности других электронных компонентов.
  • Холодильники — это устройства с приводом от двигателя переменного тока, потребляющие большие токи в условиях падения напряжения, что может привести к перегреву обмоток.

Для преодоления вышеупомянутых последствий колебаний напряжения необходимы стабилизаторы напряжения.

Основной принцип работы стабилизатора напряжения

Регулировка напряжения необходима для двух различных целей; в условиях перенапряжения и пониженного напряжения. Процесс увеличения напряжения из состояния пониженного напряжения называется форсированием, тогда как снижение напряжения из состояния повышенного напряжения называется операцией понижения.

Эти две основные операции необходимы для каждого стабилизатора напряжения.

Как обсуждалось выше, компоненты стабилизатора напряжения включают трансформатор, реле и электронную схему. Если стабилизатор определяет падение входного напряжения, он включает электромагнитное реле, чтобы добавить больше напряжения от трансформатора, чтобы компенсировать потерю напряжения.

Когда входное напряжение превышает нормальное значение, стабилизатор активирует другое электромагнитное реле, которое вычитает напряжение для поддержания нормального значения напряжения.

Boost Operation

Принцип работы Boost стабилизатора напряжения показан на рисунке ниже.

Здесь напряжение питания подается на трансформатор, который обычно является понижающим трансформатором. Этот трансформатор подключен таким образом, что вторичный выход добавляется к первичному напряжению питания.

В случае низкого напряжения электронная схема в стабилизаторе переключает соответствующее реле таким образом, что это дополнительное питание (входящее питание + вторичный выход трансформатора) подается на нагрузку.

Понижающий режим

Принцип работы понижающего стабилизатора напряжения показан на рисунке ниже.

В понижающем режиме вторичная обмотка понижающего трансформатора подключается таким образом, что выходное напряжение вторичной обмотки вычитается из входного напряжения.

Таким образом, в случае повышения входного напряжения электронная схема переключает реле, которое переключает вычитаемое напряжение питания (т.е. входное напряжение – вторичное напряжение трансформатора) на цепь нагрузки.

В случае нормального рабочего состояния напряжения электронная схема полностью переключает нагрузку на входное питание без напряжения трансформатора.

Эти понижающие, повышающие и нормальные операции одинаковы для всех стабилизаторов, будь то стабилизаторы нормального типа или стабилизаторы с сервоприводом. В дополнение к этим двум основным операциям стабилизатор напряжения также выполняет операции отключения при более низком и более высоком напряжении.

Работа стабилизатора напряжения

На рисунке ниже показана работающая модель стабилизатора напряжения, который содержит понижающий трансформатор (обычно с отводами на вторичной обмотке), выпрямитель, блок операционного усилителя/микроконтроллера и набор реле.

При этом операционные усилители настраиваются таким образом, чтобы они могли воспринимать различные заданные напряжения, такие как более низкое напряжение отсечки, напряжение в режиме повышения, нормальное рабочее напряжение, более высокое напряжение отсечки и рабочее напряжение понижения.

Набор реле подключен таким образом, что они отключают цепь нагрузки при повышении и понижении напряжения отсечки, а также переключают понижающее и повышающее напряжения на цепь нагрузки.

Понижающий трансформатор с переключением ответвлений имеет различные ответвления вторичного напряжения, которые полезны для работы операционного усилителя с различными напряжениями, а также для сложения и вычитания напряжений для операций повышения и понижения соответственно.

Цепь выпрямителя преобразует переменный ток в постоянный для питания всей электронной схемы управления, а также катушек реле.
Предположим, что это однофазный стабилизатор мощностью 1 кВА, обеспечивающий стабилизацию в диапазоне напряжений от 200 до 245 В с повышающим напряжением 20-35 В для входного напряжения от 180 до 270 В.

Если входное питание, скажем, 195 В, тогда операционный усилитель подает питание на катушку повышающего реле, так что на нагрузку подается 195 + 25 = 220 В. Если входное напряжение составляет 260 В, соответствующий операционный усилитель подает питание на катушку понижающего реле, так что на нагрузку подается напряжение 260-30 = 225 В.

Если входное напряжение ниже 180 В, соответствующий операционный усилитель переключает катушку реле отключения вниз таким образом, что нагрузка отключается от питания.

И если напряжение питания превышает 270 В, соответствующий операционный усилитель подает питание на катушку реле с более высокой отсечкой, и, следовательно, нагрузка отключается от источника питания.

Все эти значения являются приблизительными; оно может варьироваться в зависимости от приложения. Таким образом, стабилизатор работает при различных условиях напряжения.

Сервоуправляемые стабилизаторы напряжения

В случае автоматических стабилизаторов напряжения скорость коррекции напряжения очень низкая. Высокоскоростная коррекция напряжения с большей точностью достигается стабилизаторами с сервоуправлением.

В стабилизаторах с сервоуправлением коррекция напряжения производится очень точно, т.е. ближе к базовому значению напряжения.

Основные компоненты сервостабилизатора включают бесступенчатый автотрансформатор с серводвигателем, повышающе-понижающий трансформатор и полупроводниковую схему управления, как показано на рисунке ниже.

Стабилизатор с сервоуправлением

В этом стабилизаторе полупроводниковая схема управления измеряет падение и повышение напряжения от заданного значения и соответственно управляет серводвигателем.

Первичная обмотка повышающе-понижающего преобразователя подключается к моторизованному автотрансформатору, а его вторичная обмотка подключается последовательно с входным питанием.

Всякий раз, когда двигатель приводит в действие автотрансформатор, соответствующее напряжение подается на первичную обмотку повышающе-понижающего трансформатора, и, следовательно, соответствующее вторичное напряжение корректирует напряжение питания нагрузки.

Здесь компараторы (не что иное, как операционные усилители) в полупроводниковой схеме управления воспринимают изменения напряжения и активируют серводвигатель в желаемом месте, так что переменный трансформатор увеличивает или уменьшает выходное напряжение на нагрузке.

Когда схема управления обнаруживает, что выходное напряжение выше опорного напряжения, она подает положительный сигнал на контроллер серводвигателя, и, следовательно, рычаг вращается до тех пор, пока два напряжения не сравняются.

Если выходное напряжение падает ниже опорного значения, на серводвигатель поступает отрицательный сигнал, и рычаг поворачивает контакт в другую сторону, чтобы уменьшить напряжение. Сервостабилизаторы могут производить регулировку выходного сигнала ±0,5% с высокой эффективностью около 98%.

Как выбрать подходящий стабилизатор для домашних нужд?

Размер стабилизатора напряжения зависит от мощности оборудования, в котором должна использоваться стабилизация. Таким образом, в первую очередь при покупке стабилизатора напряжения следует учитывать мощность всех электроприборов (или конкретного электроприбора), которые будут питаться от стабилизатора. Такие номинальные мощности обычно указываются в ВА или кВА. А также необходимо учитывать, является ли это однофазным или трехфазным питанием.

Номинальная мощность приборов обычно указывается на заводской табличке этого прибора; если номинальная мощность недоступна, просто рассчитайте произведение напряжения и тока этого оборудования, чтобы получить номинальную мощность.

Всегда рекомендуется учитывать среднеквадратичное значение напряжения нагрузки.

Другим важным фактором является рассмотрение будущего расширения нагрузки. Таким образом, определение общей номинальной мощности требует возможного расширения в будущем, обычно на 20% больше, чем фактическая потребность в мощности, чтобы подключать нагрузки в долгосрочной перспективе.

Для бытовых нужд подходят стабилизаторы номинального напряжения 200 ВА, 300 ВА, 500 ВА, 1 кВА, 2 кВА, 3 кВА, 4 кВА, 5 кВА, 8 кВА и 10 кВА. Для промышленных и коммерческих целей необходимы сервостабилизаторы большой мощности.

Слово от Electronics Hub Team

Существует общее мнение, что современные светодиодные телевизоры, холодильники, кондиционеры и другие бытовые приборы имеют встроенную функцию стабилизации и, следовательно, им не нужны дополнительные стабилизаторы напряжения.

Тем не менее, они не могут повышать или понижать такое большое напряжение диапазона, как отдельные стабилизаторы напряжения. Поэтому команда Electronics Hub всегда рекомендует вам иметь стабилизатор напряжения для ваших домашних или промышленных нужд, если ваше электричество имеет частые колебания напряжения.

Авторы изображений

  • Стабилизатор напряжения: pimg.tradeindia.com
  • Внутренняя цепь: g02.s.alicdn.com
  • Трехфазный стабилизатор: canadian-power.com
  • Необходимость стабилизатора: vguard.in
  • Стабилизатор с сервоуправлением: i00.i.aliimg.com

 

Понимание стабилизаторов плавников и их работы

Чтобы понять, почему компания Quantum Marine Stabilizers создала превосходную серию стабилизаторов плавников, полезно углубиться в то, как работают стабилизаторы плавников. Эти детали, наряду со спецификой наших инновационных разработок, дают более четкое представление о преимуществах продуктов, производимых Quantum.

Что такое плавниковый стабилизатор?

Стабилизатор киля, расположенный под ватерлинией на боковой стороне корпуса судна, обеспечивает эффект демпфирования бортовой качки для противодействия естественной качке судна. Многие люди никогда не видят стабилизатор киля корабля, пока их судно не отправится в сухой док для осмотра и осмотра корпуса. Однако ожидается, что бортовые офицеры и инженеры понимают, как работает система, и знают отдельные компоненты своей системы стабилизатора киля.

Компоненты системы стабилизатора киля

Независимо от того, имеете ли вы в виду военное судно, коммерческое судно, роскошную яхту или круизный лайнер, все системы стабилизатора обычно состоят из ряда основных компонентов:

  1. Два или четыре плавники , сконфигурированные попарно, на левый/правый борт. Четыре плавника расположены с разбросом вперед и назад. Плавники соединены с валом, который проходит внутри судна до корпуса.
  2. Два или четыре корпуса жестко крепятся к внутренней части корпуса. Они преобразуют гидравлическую энергию в механическую с помощью гидравлических цилиндров. Здесь плавники могут быть заблокированы или повернуты для работы на ходу и при нулевой скорости ™.
  3. Требуется от одного до четырех гидравлических силовых агрегатов для питания плавников через блок корпуса.
  4. Контроллер движения корабля (SMC) является основным контроллером, который управляет углом оперения и обеспечивает управление всей логикой системы.
  5. Интерфейс «человек-машина» (ЧМИ) позволяет использовать элементы управления и индикаторы, которые обеспечивают первичное управление с мостика и/или машинного отделения. Эту панель можно интегрировать в стеклянный мост через контроллер SMC.
  6. Два или четыре блока управления эффекторами (ECM) расположены рядом с каждым стабилизатором киля для локальной индикации и управления замкнутым контуром соответствующего киля.
  7. Датчик угла ребра измеряет положение угла ребра, передавая информацию в ECM. Датчик угла ребра напрямую соединен с валом ребра.
  8. Датчик крена оценивает скорость и угол крена корабля и передает эти данные в SMC.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *