Как рассчитать радиаторы отопления для частного дома
Комфортные условия жизни в зимнее время всецело зависят от достаточности снабжения теплом жилых помещений. Если это новостройка, например, на дачном или приусадебном участке, то необходимо знать, как рассчитать радиаторы отопления для частного дома.
Как рассчитать радиаторы отопления для частного дома
Все операции сводятся к вычислению количества секций радиаторов и подчиняются четкому алгоритму, поэтому нет нужды быть квалифицированным специалистом – каждый человек сможет проделать довольно точное теплотехническое вычисление своего жилища.
Почему необходим точный расчет
Теплоотдача приборов теплоснабжения зависит от материала изготовления и площади отдельных секций. От правильных вычислений зависит не только тепло в доме, но также сбалансированность и экономичность системы в целом: недостаточное число установленных секций радиаторов не обеспечит должное тепло в комнате, а излишнее количество секций ударит по карману.
Виды радиаторов отопления
Для вычислений необходимо определиться с типом батарей и системы теплоснабжения. К примеру, расчет алюминиевых радиаторов теплоснабжения для частного дома отличается от других элементов системы. Радиаторы бывают чугунными, стальными, алюминиевыми, алюминиевыми анодированными и биметаллическими:
- Наиболее известны чугунные батареи, так называемые «гармошки». Они долговечны, стойки к коррозии, обладают мощностью секций 160 Вт при высоте 50 см и температуре воды 70 градусов. Существенный недостаток этих приборов – неприглядный внешний вид, но современные производители выпускают гладкие и достаточно эстетичные чугунные батареи, сохраняя все преимущества материала и делая их конкурентоспособными.
Чугунные батареи отопления
- Алюминиевые радиаторы по тепловой мощности превосходят чугунные изделия, они прочны, обладают легким собственным весом, что дает преимущество при монтаже. Единственный недостаток подверженность к кислородной коррозии. Для его устранения взято на вооружение производство анодированных радиаторов из алюминия.
Алюминиевые радиаторы отопления
- Стальные приборы не обладают достаточной тепловой мощностью, не подлежат разборке и увеличению секций при необходимости, подвержены коррозии, поэтому не пользуются популярностью.
Стальные радиаторы
- Биметаллические радиаторы отопления – это сочетание стальных и алюминиевых деталей. Теплоносителями и крепежными деталями в них являются стальные трубы и резьбовые соединения, покрытые алюминиевым кожухом. Недостаток – довольно высокая стоимость.
Биметаллические батареи
По типу системы теплоснабжения различают однотрубное и двухтрубное подключение элементов отопления. В многоэтажных жилых домах в основном применена однотрубная схема системы теплоснабжения. Недостатком здесь является довольно значительная разница температуры входящей и исходящей воды на разных концах системы, что свидетельствует о неравномерности распределения тепловой энергии по приборам батареям.
Однотрубная и двухтрубная система отопления
Для равномерного распределения тепловой энергии в частных домах можно применять двухтрубную систему теплоснабжения, когда горячая вода подается по одной трубе, а охлажденная выводится по другой.
Кроме этого, точное вычисление количества батарей отопления в частном доме зависит от схемы подключения приборов, высоты потолка, площади оконных проемов, количества наружных стен, типа помещения, закрытости приборов декоративными панелями и от других факторов.
Помните! Необходимо правильно рассчитать требуемое число радиаторов отопления в частном доме, чтобы гарантировать достаточное количество тепла в помещении и обеспечить экономию финансовых средств.
Таблица для расчета количества секций батареи
Виды расчетов отопления для частного дома
Вид расчета радиаторов отопления для частного дома зависит от поставленной цели, то есть насколько точно вы хотите рассчитать батареи отопления для частного дома. Различают упрощенный и точный методы, а также по площади и по объему рассчитываемого пространства.
По упрощенному или предварительному методу подсчеты сводятся к умножению площади помещения на 100 Вт: стандартную величину достаточной тепловой энергии на метр в квадрате, при этом формула подсчета примет следующий вид:
Q = S*100, где
Q – потребная мощность тепла;
S – расчетная площадь комнаты;
Вычисление нужного числа секций разборных радиаторов ведется по формуле:
N = Q/Qx, где
N – требуемое количество секций;
Qx – удельная мощность секции по паспорту изделия.
Так как эти формулы для высоты комнаты – 2,7 м, для других величин требуется вводить коэффициенты поправки. Вычисления сводятся к определению количества тепла на 1 м3 объема помещения. Упрощенная формула выглядит так:
Q = S*h*Qy, где
H – высота комнаты от пола до потолка;
Qy – средний показатель тепловой мощности в зависимости от вида ограждения, для кирпичных стен равен 34 Вт/м3, для панельных стен – 41 Вт/м3.
Эти формулы не могут гарантировать комфортные условия. Поэтому требуются точные вычисления, учитывающие все сопутствующие особенности здания.
Точный расчет приборов отопления
Теплопотери здания
Наиболее точная формула необходимой тепловой мощности выглядит следующим образом:
Q = S*100*(K1*К2*…*Kn-1*Kn), где
K1, K2 … Kn – коэффициенты, зависящие от различных условий.
Какие условия влияют на микроклимат в помещении? Для точного расчета учитывается до 10 показателей.
K1 – показатель, зависящий от числа наружных стен, чем больше поверхности соприкасается с внешней средой, тем больше потери тепловой энергии:
- при одной наружной стене показатель равен единице;
- если две наружные стены — 1,2;
- если три внешние стены — 1,3;
- если все четыре стены наружные (т.е. здание однокомнатное) — 1,4.
К2 – учитывает ориентацию здания: считается, что комнаты хорошо прогреваются, если расположены в южном и западном направлении, здесь К2 = 1,0, и наоборот недостаточно – когда окна выходят на север или восток – К2 = 1,1. С этим можно поспорить: в восточном направлении помещение все же прогревается по утрам, поэтому целесообразнее применить коэффициент 1,05.
Расчитываем, насколько сильно должна греть батарея
К3 – показатель утепления наружных стен, зависит от материала и степени термоизоляции:
- для наружных стен в два кирпича, а также при использовании утеплителя для не утепленных стен показатель равен единице;
- для неутепленных стен – К3 = 1,27;
- при утеплении жилища на основании теплотехнических расчетов по СНиП – К3 = 0,85.
К4 – коэффициент, учитывающий самые низкие температуры холодного периода года для конкретного региона:
- до 35 °С К4 = 1,5;
- от 25 °С до 35 °С К4 = 1,3;
- до 20 °С К4 = 1,1;
- до 15 °С К4 = 0,9;
- до 10 °С К4 = 0,7.
Расчет радиаторов отопления по площади
К5 – зависит от высоты помещения от пола до потолка. В качестве стандартной высоты принята h = 2,7 м с показателем равной единице. Если высота комнаты отличается от стандартной, вводится поправочный коэффициент:
- 2,8-3,0 м – К5 = 1,05;
- 3,1-3,5 м – К5 = 1,1;
- 3,6-4,0 м – К5 = 1,15;
- более 4 м – К5 = 1,2.
К6 – показатель, учитывающий характер помещения, находящегося сверху. Полы жилых зданий всегда утепляются, комнаты сверху могут быть отапливаемыми или холодными, а это неизбежно повлияет на микроклимат рассчитываемого пространства:
- для холодного чердака, а также если помещение сверху не отапливается, показатель будет равен единице;
- при утепленном чердаке или кровле – К6 = 0,9;
- если сверху расположено отапливаемая комната – К6 = 0,8.
К7 – показатель, учитывающий тип оконных блоков. Конструкция окна существенным образом влияет на потери тепла. При этом величина коэффициента К7 определяется следующим образом:
- так как окна из дерева с двойным остеклением недостаточно защищают комнату, показатель самый высокий К7 = 1,27;
- стеклопакеты обладают отличными свойствами защиты от теплопотерь, при однокамерном стеклопакете из двух стекол К7 равен единице;
- улучшенный однокамерный стеклопакет с аргоновым заполнением или двойной стеклопакет, состоящий из трех стекол К7 = 0,85.
Однотрубная и двухтрубная система отопления
К8 – коэффициент, зависящий от площади остекления оконных проемов. Теплопотери зависят от количества и площади установленных окон. Соотношение площади окон к площади комнаты должно быть урегулировано таким образом, чтобы коэффициент имел низшие значения. В зависимости от отношения площади окон к площади помещения определяется искомый показатель:
- менее 0,1 – К8 = 0,8;
- от 0,11 до 0,2 – К8 = 0,9;
- от 0,21 до 0,3 – К8 = 1,0;
- от 0,31 до 0,4 – К8 = 1,1;
- от 0,41 до 0,5 – К8 = 1,2.
Схемы подключения отопительных приборов
К9 – учитывает схему подключения приборов. В зависимости от способа подключения горячей и вывода холодной воды зависит отдача тепла. Этот фактор необходимо учитывать при установке и определении требуемой площади приборов теплоснабжения. С учетом схемы подключения:
- при диагональном расположении труб подача горячей воды осуществляется сверху, обратка – снизу с другой стороны батареи, а показатель равен единице;
- при подключении подачи и обратки с одной стороны и сверху, и снизу одной секции К9 = 1,03;
- примыкание труб с двух сторон подразумевает и подачу, и обратку снизу, при этом коэффициент К9 = 1,13;
- вариант диагонального подключения, когда подача производится снизу, обратка сверху К9 = 1,25;
- вариант одностороннего подключения с подачей снизу, обраткой сверху и одностороннее нижнее подключение К9 = 1,28.
Потеря теплоотдачи из-за установки экрана радиатора
К10 – коэффициент, зависящий от степени закрытости приборов декорирующими панелями. Открытость приборов для свободного обмена теплом с пространством помещения имеет немаловажное значение, так как создание искусственных барьеров снижает теплоотдачу батарей.
Имеющиеся или искусственно созданные преграды могут изрядно понизить отдачу батареи из-за ухудшения обмена теплом с комнатой. В зависимости от этих условий коэффициент равен:
- при открытом расположении радиатора на стене со всех сторон 0,9;
- если прибор прикрыт сверху единице;
- когда радиаторы прикрыты сверху ниши стены1,07;
- если прибор прикрыт подоконником и декоративным элементом 1,12;
- когда радиаторы полностью прикрыты декоративным кожухом 1,2.
Правила установки радиаторов отопления.
Кроме этого, существуют специальные нормы расположения приборов отопления, которые необходимо соблюдать. То есть батарею располагать не менее, чем на:
- 10 см от низа подоконника;
- 12 см от пола;
- 2 см от поверхности наружной стены.
Подставляя все необходимые показатели, можно получить достаточно точное значение требуемой тепловой мощности помещения. Путем разделения полученных результатов на паспортные данные отдачи тепла одной секции выбранного прибора и, округлив до целого числа, получаем количество требуемых секций. Теперь можно, не опасаясь последствий, подобрать и установить необходимое оборудование с нужной тепловой отдачей.
Установка батареи отопления в доме
Способы упрощения расчетов
Несмотря на кажущуюся простоту формулы, на самом деле практический расчет не так прост, особенно если количество рассчитываемых комнат велико. Упростить расчеты поможет применение специальных калькуляторов, размещаемых на сайтах некоторых производителей. Достаточно ввести все необходимые данные в соответствующие поля, после чего можно получить точный результат. Можно воспользоваться и табличным методом, так как алгоритм вычисления достаточно прост и однообразен.
25.11.2016
gopb.ru
Расчет батарей отопления на площадь: методика + встроенный калькулятор
Один из наиболее важных вопросов создания комфортных условий проживания в доме или квартире – это надежная, правильно рассчитанная и смонтированная, хорошо сбалансированная система отопления. Именно поэтому создание такой системы – главнейшая задача при организации строительства собственного дома или при проведении капитального ремонта в квартире многоэтажки.
Несмотря на современное разнообразие систем отопления различных типов, лидером по популярности все же остается проверенная схема: контуры труб с циркулирующим по ним теплоносителем, и приборы теплообмена – радиаторы, установленные в помещениях. Казалось бы – все просто, батареи стоят под окнами и обеспечивают требуемый нагрев… Однако, необходимо знать, что теплоотдача от радиаторов должна соответствовать и площади помещения, и целому ряду других специфических критериев. Теплотехнические расчеты, основанные на требованиях СНиП – достаточно сложная процедура, выполняемая специалистами. Тем не менее, можно выполнить ее и своими силами, естественно, с допустимым упрощением. В настоящей публикации будет рассказано, как самостоятельно провести расчет батарей отопления на площадь обогреваемого помещения с учетом различных нюансов.
Расчет батарей отопления на площадь
Но, для начала, нужно хотя бы бегло ознакомиться с существующими радиаторами отопления – от их параметров во многом будут зависеть и результаты проводимых расчетов.
Кратко о существующих типах радиаторов отопления
Содержание статьи
Современный ассортимент радиаторов, представленных в продаже, включает следующие их виды:
- Стальные радиаторы панельной или трубчатой конструкции.
- Чугунные батареи.
- Алюминиевые радиаторы нескольких модификаций.
- Биметаллические радиаторы.
Стальные радиаторы
Этот тип радиаторов не снискал себе особой популярности, несмотря на то, что некоторым моделям придается весьма элегантное дизайнерское оформление. Проблема в том, что недостатки таких приборов теплообмена существенно превышают их достоинства – невысокую цену¸ относительно небольшую массу и простоту монтажа.
Стальные радиаторы отопления имеют немало недостатков
Тонкие стальные стенки таких радиаторов недостаточно теплоёмки – быстро нагреваются, но и столь же стремительно остывают. Могут возникнуть проблемы и при гидравлических ударах – сварные соединения листов иногда дают при этом течь. Кроме того, недорогие модели, не имеющие специального покрытия, подвержены коррозии, и срок службы таких батарей невелик – обычно производители дают им довольно небольшую по длительности эксплуатации гарантию.
В подавляющем большинстве случаев стальные радиаторы представляют собой цельную конструкцию, и варьировать теплоотдачу изменением числа секций не позволяют. Они имеют паспортную тепловую мощность, которую сразу же нужно выбирать, исходя из площади и особенностей помещения, где они планируются к установке. Исключение – некоторые трубчатые радиаторы имеют возможность изменения количества секций, но это обычно делается под заказ, при изготовлении, а не в домашних условиях.
Чугунные радиаторы
Представители этого типа батарей наверняка знакомы каждому еще с раннего детства – именно такие гармошки устанавливались ранее буквально повсеместно.
Знакомый всем с детских лет чугунный радиатор МС-140-500
Возможно, такие батареи МС-140—500 и не отличались особым изяществом, но зато верно служили не одному поколению жильцов. Каждая секция подобного радиатора обеспечивала теплоотдачу в 160 Вт. Радиатор сборный, и количество секций, в принципе, ничем не ограничивалось.
Современные чугунные батареи отопления
В настоящее время в продаже немало современных чугунных радиаторов. Их уже отличает более элегантный внешний вид, ровные гладкие наружные поверхности, которые облегчают уборку. Выпускаются и эксклюзивные варианты, с интересным рельефным рисунком чугунного литься.
При всем этом, такие модели в полной мере сохраняют основные достоинства чугунных батарей:
- Высокая теплоемкость чугуна и массивность батарей способствуют длительному сохранению и высокой отдаче тепла.
- Чугунные батареи, при правильной сборке и качественном уплотнении соединений, не боятся гидроударов, перепадов температур.
- Толстые чугунные стенки мало восприимчивы к коррозии и к абразивному износу. Может использоваться практически любой теплоноситель, так что такие батареи одинаково хороши и для автономной, и для центральной систем отопления.
Если не принимать в расчёт внешние данные старых чугунных батарей, то из недостатков можно отметить хрупкость металла (недопустимы акцентированные удары), относительную сложность монтажа, связанную в больше мере с массивностью. Кроме того, далеко не любые стеновые перегородки смогут выдержать вес таких радиаторов.
Алюминиевые радиаторы
Алюминиевые радиаторы, появившись сравнительно недавно, очень быстро завоевали популярность. Они относительно недороги, имеют современный, достаточно элегантный внешний вид, обладают отменной теплоотдачей.
При выборе алюминиевых радиаторов нужно учитывать некоторые важные нюансы
Качественные алюминиевые батареи способны выдерживать давление в 15 и более атмосфер, высокую температуру теплоносителя – порядка 100 градусов. При этом тепловая отдача от одной секции у некоторых моделей достигает порой 200 Вт. Но при этом они небольшой массой (вес секции – обычно до 2 кг) и не требуют большого объема теплоносителя (емкость – не более 500 мл).
Алюминиевые радиаторы представлены в продаже как наборными батареями, с возможностью изменения количества секций, так и цельными изделиями, рассчитанными на определенную мощность.
Недостатки алюминиевых радиаторов:
- Некоторые типы весьма подвержены кислородной коррозии алюминия, с высоким риском газообразования при этом. Это предъявляет особы требования к качеству теплоносителя, поэтому такие батареи обычно устанавливают в автономных системах отопления.
- Некоторые алюминиевые радиаторы неразборной конструкции, секции которых изготавливаются по технологии экструзии, могут при определенных неблагоприятных условиях дать течь на соединениях. При этом провести ремонт – попросту невозможно, и придется менять всю батарею в целом.
Изо всех алюминиевых батарей самые качественные – изготовленные с применением анодного оксидирования металла. Этим изделиям практически не страшна кислородная коррозия.
Внешне все алюминиевые радиаторы примерно похожи, поэтому необходимо очень внимательно читать техническую документацию, делая выбор.
Биметаллические радиаторы отопления
Подобные радиаторы по своей надежности оспаривают первенство с чугунными, а по тепловой отдаче – с алюминиевыми. Причина тому заключается в их особой конструкции.
Строение биметаллического радиатора отопления
Каждая из секций состоит из двух, верхнего и нижнего, стальных горизонтальных коллекторов (поз. 1), соединенных таким же стальным вертикальным каналом (поз.2). Соединение в единую батарею производится высококачественными резьбовыми муфтами (поз. 3). Высокая теплоотдача обеспечивается наружной алюминиевой оболочкой.
Стальные внутренние трубы выполнены из металла, которые не подвержен коррозии или имеет защитное полимерное покрытие. Ну а алюминиевый теплообменник ни при каких обстоятельствах не контактирует с теплоносителем, и коррозия ему абсолютно не страшна.
Таким образом, получается сочетание высокой прочности и износоустойчивости с отличными теплотехническими показателями.
Цены на популярные радиаторы отопления
Радиаторы отопления
Такие батареи не боятся даже очень больших скачков давления, высоких температур. Они, по сути, универсальны, и подходят для любых систем отопления, правда, наилучшие эксплуатационные характеристики они все же показывают в условиях высокого давления центральной системы – для контуров с естественной циркуляцией они малопригодны.
Пожалуй, единственных их недостаток – высокая цена по сравнению с любыми другими радиаторами.
Для удобства восприятия размещена таблица, в которой приведены сравнительные характеристики радиаторов. Условные обозначения в ней:
- ТС – трубчатые стальные;
- Чг – чугунные;
- Ал – алюминиевые обычные;
- АА – алюминиевые анодированные;
- БМ – биметаллические.
Чг | ТС | Ал | АА | БМ | |
---|---|---|---|---|---|
Давление максимальное (атмосфер) | |||||
рабочее | 6-9 | 6-12 | 10-20 | 15-40 | 35 |
опрессовочное | 12-15 | 9 | 15-30 | 25-75 | 57 |
разрушения | 20-25 | 18-25 | 30-50 | 100 | 75 |
Ограничение по рН (водородному показателю) | 6,5-9 | 6,5-9 | 7-8 | 6,5-9 | 6,5-9 |
Подверженность коррозии под воздействием: | |||||
кислорода | нет | да | нет | нет | да |
блуждающих токов | нет | да | да | нет | да |
электролитических пар | нет | слабое | да | нет | слабое |
Мощность секции при h=500 мм; Dt=70 ° , Вт | 160 | 85 | 175-200 | 216,3 | до 200 |
Гарантия, лет | 10 | 1 | 3-10 | 30 | 3-10 |
Видео: рекомендации по выбору радиаторов отопления
Возможно, вас заинтересует информация о том, что собой представляет батарея биметаллическая
Как рассчитать нужное количество секций радиатора отопления
Понятно, что установленный в помещении радиатор (один или несколько) должен обеспечить прогрев до комфортной температуры и компенсировать неизбежные теплопотери, независимо от погоды на улице.
Базовой величиной для вычислений всегда выступает площадь или объем комнаты. Сами по себе профессиональные расчеты – весьма сложны, и учитывают очень большое число критериев. Но для бытовых нужд можно воспользоваться упрощенными методиками.
Самые простые способы расчета
Принято считать, что для создания нормальных условий в стандартном жилом помещении достаточно 100 Вт на квадратный метр площади. Таким образом, следует всего лишь вычислить площадь комнаты и умножить ее на 100.
Q = S × 100
Q– требуемая теплоотдача от радиаторов отопления.
S– площадь обогреваемого помещения.
Если планируется установка неразборного радиатора, то это значение и станет ориентиром для подбора необходимой модели. В случае, когда будут устанавливаться батареи, допускающие изменение количества секций, следует провести еще один подсчет:
N = Q/ Qус
N– рассчитываемое количество секций.
Qус – удельная тепловая мощность одной секции. Эта величина в обязательном порядке указывается в техническом паспорте изделия.
Как видите, расчеты эти чрезвычайно просты, и не требуют каких-либо особых знаний математики – достаточно рулетки чтобы измерить комнату и листка бумаги для вычислений. Кроме того, можно воспользоваться и таблицей, расположенной ниже – там приведены уже рассчитанные значения для комнат различной площади и определённых мощностей обогревательных секций.
Таблица секции
Однако, нужно помнить, что эти значения – для стандартной высоты потолка (2,7 м) многоэтажки. Если высота комнаты иная, то лучше просчитать количество секций батареи, исходя из объема помещения. Для этого применяется усредненный показатель – 41 Вт тепловой мощности на 1 м³ объема в панельном доме, или 34 Вт – в кирпичном.
Q = S × h× 40 (34)
где h – высота потолка над уровнем пола.
Дальнейший расчет – ничем не отличается от представленного выше.
Подробный расчет с учетом особенностей помещения
А теперь перейдем к более серьезным расчетам. Упрощенная методика вычисления, приведенная выше, может преподнести хозяевам дома или квартиры «сюрприз». Когда установленные радиаторы не будут создавать в жилых помещениях требуемого комфортного микроклимата. И причина тому – целый перечень нюансов, которых рассмотренный метод просто не учитывает. А между тем, подобные нюансы могут иметь весьма важное значение.
Итак, за основу вновь берется площадь помещения и всё те же 100 Вт на м². Но сама формула уже выглядит несколько иначе:
Q = S × 100 × А × В × С × D× Е × F× G× H× I× J
Буквами от А до J условно обозначены коэффициенты, учитывающие особенности помещения и установки в нем радиаторов. Рассмотрим их по порядку:
А – количество внешних стен в помещении.
Понятно, что чем выше площадь контакта помещения с улицей, то есть, чем больше в комнате внешних стен, тем выше общие теплопотери. Эту зависимость учитывает коэффициент А:
- Одна внешняя стена – А = 1,0
- Две внешних стены – А = 1,2
- Три внешний стены – А = 1,3
- Все четыре стены внешние – А = 1,4
В – ориентация помещения по сторонам света.
Максимальные теплопотери всегда в комнатах, в которые не поступает прямого солнечного света. Это, безусловно, северная сторона дома, и сюда же можно отнести восточную – лучи Солнца здесь бывают только по утрам, когда светило еще «не вышло на полную мощность».
Прогреваемость помещений во многом зависит от их расположения относительно сторон света
Южная и западная стороны дома всегда прогреваются Солнцем значительно сильнее.
Отсюда – значения коэффициента В:
- Комната выходит на север или восток – В = 1,1
- Южная или западная комнаты – В = 1, то есть, может не учитываться.
С – коэффициент, учитывающий степень утепленности стен.
Понятно, что теплопотери из отапливаемого помещения будут зависеть от качества термоизоляции внешних стен. Значение коэффициента С принимают равным:
- Средний уровень — стены выложены в два кирпича, или предусмотрено их поверхностное утепление другим материалом – С = 1,0
- Внешние стены не утеплены – С = 1,27
- Высокий уровень утепления на основе теплотехнических расчетов – С = 0,85.
D – особенности климатических условий региона.
Естественно, что нельзя равнять все базовые показатели требуемой мощности обогрева «под одну гребенку» — они зависят и от уровня зимних отрицательных температур, характерного для конкретной местности. Это учитывает коэффициент D. Для его выбора берутся средние температуры самой холодной декады января – обычно это значение несложно уточнить в местной гидрометеорологической службе.
- — 35 °С и ниже – D= 1,5
- — 25 ÷ — 35 °С – D= 1,3
- до – 20 °С – D= 1,1
- не ниже – 15 °С – D= 0,9
- не ниже – 10 °С – D= 0,7
Е – коэффициент высоты потолков помещения.
Как уже говорилось, 100 Вт/м² — это усредненное значение для стандартной высоты потолков. Если она отличается, следует ввести поправочный коэффициент Е:
- До 2,7 м – Е = 1,0
- 2,8 – 3,0 м – Е = 1,05
- 3,1 – 3,5 м – Е = 1,1
- 3,6 – 4,0 м – Е = 1,15
- Более 4,1 м – Е = 1,2
F– коэффициент, учитывающий тип помещения, расположенного выше
Устраивать систему отопления в помещениях с холодным полом – бессмысленное занятие, и хозяева всегда в этом вопросе принимают меры. А вот тип помещения, расположенного выше, часто от них никак не зависит. А между тем, если сверху жилое или утепленное помещение, то общая потребность в тепловой энергии значительно снизится:
- холодный чердак или неотапливаемое помещение – F= 1,0
- утепленный чердак (в том числе – и утепленная кровля) – F= 0,9
- отапливаемое помещение – F= 0,8
G– коэффициент учета типа установленных окон.
Различные оконные конструкции подвержены теплопотерям неодинаково. Это учитывает коэффициент G:
- обычные деревянные рамы с двойным остеклением – G= 1,27
- окна оснащены однокамерным стеклопакетом (2 стекла) – G= 1,0
- однокамерный стеклопакет с аргоновым заполнением или двойной стеклопакет (3 стекла) — G= 0,85
Н – коэффициент площади остекления помещения.
Общее количество теплопотерь зависит и от суммарной площади окон, установленных в помещении. Эта величина рассчитывается на основании отношения площади окон к площади помещения. В зависимости от полученного результата находим коэффициент Н:
- Отношение менее 0,1 – Н = 0,8
- 0,11 ÷ 0,2 – Н = 0,9
- 0,21 ÷ 0,3 – Н = 1,0
- 0,31÷ 0,4 – Н = 1,1
- 0,41 ÷ 0,5 – Н = 1,2
I– коэффициент, учитывающий схему подключения радиаторов.
От того, как подключены радиаторы к трубам подачи и обратки, зависит их теплоотдача. Это тоже следует учесть при планировании установки и определения нужного количества секций:
Схемы врезки радиаторов в контур отопления
- а – диагональное подключение, подача сверху, обратка снизу – I = 1,0
- б – одностороннее подключение, подача сверху, обратка снизу – I = 1,03
- в – двустороннее подключение, и подача, и обратка снизу – I = 1,13
- г – диагональное подключение, подача снизу, обратка сверху – I = 1,25
- д – одностороннее подключение, подача снизу, обратка сверху – I = 1,28
- е – одностороннее нижнее подключение обратки и подачи – I = 1,28
J– коэффициент, учитывающий степень открытости установленных радиаторов.
Многое зависит и от того, насколько установленные батареи открыты для свободного теплообмена с воздухом помещения. Имеющиеся или искусственно созданные преграды способны существенно снизить теплоотдачу радиатора. Это учитывает коэффициент J:
На теплоотдачу батарей влияет место и способ их установки в помещении
а – радиатор расположен открыто на стене или не прикрыт подоконником – J= 0,9
б – радиатор прикрыт сверху подоконником или полкой – J= 1,0
в – радиатор прикрыт сверху горизонтальным выступом стеновой ниши – J= 1,07
г – радиатор сверху прикрыт подоконником, а с фронтальной стороны — частично прикрыт декоративным кожухом – J= 1,12
д – радиатор полностью прикрыт декоративным кожухом – J= 1,2
⃰⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰
Ну вот, наконец, и все. Теперь можно подставлять в формулу нужные значения и соответствующие условиям коэффициенты, и на выходе получится требуемая тепловая мощность для надежного обогрева помещения, с учетом все нюансов.
После этого останется или подобрать неразборный радиатор с нужной тепловой отдачей, или же разделить вычисленное значение на удельную тепловую мощность одной секции батареи выбранной модели.
Наверняка, многим такой подсчет покажется чрезмерно громоздким, в котором легко запутаться. Для облегчения проведения вычислений предлагаем воспользоваться специальным калькулятором – в него уже заложены все требуемые величины. Пользователю остается лишь ввести запрашиваемые исходные значения или выбрать из списков нужные позиции. Кнопка «рассчитать» сразу приведет к получению точного результата с округлением в большую сторону.
Калькулятор для точного расчета радиаторов отопления
Перейти к расчётам
Последовательно введите запрашиваемые значения или отметьте нужные варианты в предлагаемых списках
Установите ползунком значение площади помещения, м²
Сколько внешних стен в помещении?
однадветричетыре
В какую сторону света смотрят внешние стены
Север, Северо-Восток, ВостокЮг, Юго-Запад, Запад
Укажите степень утепленности внешних стен
Внешние стены не утепленыСредняя степень утепленияВнешние стены имеют качественное утепление
Укажите среднюю температуру воздуха в регионе в самую холодную декаду года
— 35 °С и нижеот — 25 °С до — 35 °Сдо — 20 °Сдо — 15 °Сне ниже — 10 °С
Укажите высоту потолка в помещении
до 2,7 м2,8 ÷ 3,0 м3,1 ÷ 3,5 м3,6 ÷ 4,0 мболее 4,1 м
Что располагается над помещением?
холодный чердак или неотапливаемое и не утепленное помещениеутепленные чердак или иное помещениеотапливаемое помещение
Укажите тип установленных окон
Обычные деревянные рамы с двойным остеклениемОкна с однокамерным (2 стекла) стеклопакетомОкна с двухкамерным (3 стекла) стеклопакетом или с аргоновым заполнением
Укажите количество окон в помещении
Укажите высоту окна, м
Укажите ширину окна, м
Выберите схему подключения батарей
Укажите особенности установки радиаторов
Радиатор располжен открыто на стене или не прикрыт подоконникомРадиатор полностью прикрыт сверху подоконником или полкойРадиатор установлен в стеновой нишеРадиатор частично прикрыт фронтальным декоративным экраномРадиатор полностью закрыт декоративным кожухом
Ниже будет предложено ввести паспортную мощность одной секции выбранной модели радиатора.
Если целью расчетов стоит определение потребной суммарной тепловой мощности для отопления комнаты (например, для выбора неразборных радиаторов) то оставьте поле пустым
Введите паспортную тепловую мощность одной секции выбранной модели радиатора
Автор публикации, и он же – составитель калькулятора, надеется, что посетитель нашего портала получил полноценную информацию и хорошее подспорье для самостоятельного расчета.
Возможно, вас заинтересует информация о том, как выбрать электрокотел.
otoplenie-expert.com
Расчет радиаторов отопления – как не прогадать с количеством секций?
С выбором радиаторов отопления сегодня никаких проблем. Тут тебе и чугунные, и алюминиевые, и биметаллические – выбирай, какие хочешь. Однако сам факт покупки дорогих радиаторов особенной конструкции – еще не гарантия того, что в вашем доме будет тепло. В этом случае играет роль и качество, и количество. Давайте разберемся, как правильно рассчитать радиаторы отопления.
Расчет всему голова – отталкиваемся от площади
Неправильный расчет количества радиаторов может привести не только к недостатку тепла в помещении, но и к чересчур большим счетам за отопление и слишком высокой температуре в комнатах. Расчет следует производить как во время самой первой установки радиаторов, так и при замене старой системы, где, казалось бы, с количеством секций давно все понятно, поскольку теплоотдача радиаторов может существенно отличаться.
Разные помещения – разные расчеты. Например, для квартиры в многоэтажном доме можно обойтись самыми простыми формулами или же расспросить соседей об их опыте отопления. В большом частном доме простые формулы не помогут – нужно будет учесть множество факторов, которые в городских квартирах попросту отсутствуют, например, степень утепления дома.
Самое главное – не доверяйте цифрам, озвученным наобум всевозможными «консультантами», которые на глаз (даже не видя помещения!) называют вам количество секций для отопления. Как правило, оно значительно завышено, из-за чего вы будете постоянно переплачивать за лишнее тепло, которое буквально будет уходить в открытую форточку. Рекомендуем использовать несколько способов расчета количества радиаторов.
Простые формулы – для квартиры
Жители многоэтажных домов могут использовать достаточно простые способы расчетов, которые совершенно не подходят для частного дома. Самый простой расчет радиаторов отопления не блещет высокой точностью, однако он подойдет для квартир со стандартными потолками не выше 2.6 м. Учтите, что для каждой комнаты проводится отдельный расчет количества секций.
За основу берется утверждение, что на отопление квадратного метра комнаты нужно 100 Вт тепловой мощности радиатора. Соответственно, для того, чтобы вычислить количество тепла, необходимое для комнаты, умножаем ее площадь на 100 Вт. Так, для комнаты площадью 25 м2 необходимо приобрести секции с совокупной мощностью 2500 Вт или 2,5 кВт. Производители всегда указывают теплоотдачу секций на упаковке, например, 150 Вт. Наверняка вы уже поняли, что делать дальше: 2500/150 = 16,6 секций
Результат округляем в большую сторону, впрочем, для кухни можно округлить и в меньшую – помимо батарей, там еще будет нагревать воздух плитка, чайник.
Также следует учесть возможные потери тепла в зависимости от расположения комнаты. Например, если это помещение, расположенное на углу здания, то тепловую мощность батарей можно смело увеличивать на 20 % (17 *1,2 = 20,4 секций), такое же количество секций понадобится и для комнаты с балконом. Учтите, что если вы намерены запрятать радиаторы в нишу или скрыть их за красивым экраном, то вы автоматически теряете до 20 % тепловой мощности, которую придется компенсировать количеством секций.
Расчеты от объема – что говорит СНиП?
Более точное количество секций можно высчитать, учитывая высоту потолков – этот способ особенно актуален для квартир с нестандартной высотой комнат, а также для частного дома в качестве предварительного расчета. В этом случае мы определим тепловую мощность, исходя из объема помещения. Согласно нормам СНиП, для обогрева одного кубического метра жилой площади в стандартном многоэтажном доме необходим 41 Вт тепловой энергии. Это нормативное значение необходимо умножить на общий объем, который можно получить, перемножим высоту комнаты на ее площадь.
Например, объем комнаты площадью 25 м2 с потолками 2,8 м составляет 70 м3. Эту цифру умножаем на стандартные 41 Вт и получаем 2870 Вт. Дальше действуем, как и в предыдущем примере – делим общее количество Вт на теплоотдачу одной секции. Так, если теплоотдача равна 150 Вт, то количество секций – приблизительно 19 (2870/150 = 19,1). К слову, ориентируйтесь на минимальные показатели теплоотдачи радиаторов, ведь температура носителя в трубах редко когда в наших реалиях соответствует требованиям СНиП. То есть, если в техпаспорте радиатора указаны рамки от 150 до 250 Вт, то по умолчанию берем меньшую цифру. Если вы сами отвечаете за отопление частного дома, то берите среднее значение.
Точные цифры для частных домов – учитываем все нюансы
Частные дома и большие современные квартиры никак не попадают под стандартные расчеты – слишком много нюансов нужно учесть. В этих случаях можно применить самый точный способ расчета, в котором эти нюансы как раз и учитываются. Собственно, формула сама по себе весьма простая – с такой справится и школьник, главное – правильно подобрать все коэффициенты, которые учитывают особенности дома или квартиры, влияющие на возможность сохранять или терять тепловую энергию. Итак, вот наша точная формула:
- КТ = N*S*K1*K2*K3*K4*K5*K6*K7
- КТ – это количество тепловой мощности в Вт, которое нам необходимо для отопления конкретной комнаты;
- N – 100 Вт/кв.м, стандартное количество тепла на метр квадратный, к которому мы и будем применять понижающие или повышающие коэффициенты;
- S – площадь помещения, для которого мы будем рассчитывать количество секций.
Следующие коэффициенты имеют как свойство повышать количество тепловой энергии, так и понижать, в зависимости от условий комнаты.
- K1 – учитываем характер остекления окон. Если это окна с обычным двойным остеклением, коэффициент равен 1,27. Окна с двойным стеклопакетом – 1,0, с тройным – 0,85.
- K2 – учитываем качество теплоизоляции стен. Для холодных неутепленных стен этот коэффициент равен по умолчанию 1,27, для нормальной теплоизоляции (кладка в два кирпича) – 1,0, для хорошо утепленных стен – 0,85.
- K3 – учитываем среднюю температуру воздуха в пик зимних холодов. Так, для -10 °С коэффициент равен 0,7. На каждые -5 °С добавляем к коэффициенту 0,2. Так, для -25 °С коэффициент будет равен 1,3.
- K4 – принимаем во внимание соотношение пола и площади окон. Начиная с 10 % (коэффициент равен 0,8) на каждые следующие 10 % добавляем 0,1 к коэффициенту. Так, для соотношения 40 % коэффициент будет равен 1,1 (0,8 (10%) +0,1 (20%)+0,1(30%)+0,1(40%)).
- K5 – понижающий коэффициент, корректирующий количество тепловой энергии с учетом типа помещения, расположенного выше. За единицу берем холодный чердак, если чердак отапливаемый – 0,9, если над комнатой отапливаемое жилое помещение – 0,8.
- K6 – корректируем результат в сторону увеличения с учетом количества стен, контактирующих с окружающей атмосферой. Если 1 стена – коэффициент равен 1,1, если две – 1,2 и так далее до 1,4.
- K7 – и последний коэффициент, корректирующий расчеты относительно высоты потолков. За единицу берется высота 2,5, и на каждые полметра высоты прибавляется 0.05 к коэффициенту Таким образом, для 3 метров коэффициент – 1,05, для 4 – 1,15.
Благодаря этому расчету, вы получите количество тепловой энергии, которая необходима для поддержания комфортной среды обитания в частном доме или нестандартной квартире. Остается только разделить готовый результат на значение теплоотдачи выбранных вами радиаторов, чтобы определить количество секций.
remoskop.ru
Калькулятор расчета количества секций радиаторов отопления
В подавляющем числе случаев основными приборами конечного теплообмена в системах отопления остаются радиаторы. Значит, важно не только правильно заранее рассчитать требуемую тепловую мощность котла отопления, но и правильно расставить приборы теплообмена в помещениях дома или квартиры, чтобы обеспечить комфортный микроклимат в каждом из них.
Калькулятор расчета количества секций радиаторов отопленияВ этом вопросе поможет калькулятор расчета количества секций радиаторов отопления, который размещен ниже. Он также позволяет определить необходимую суммарную тепловую мощность радиатора, если тот является неразборной моделью.
Если в ходе расчетов будут возникать вопросы, то ниже калькулятора размещены основные пояснения по его структуре и правилам применения.
Калькулятор расчета количества секций радиаторов отопления
Перейти к расчётам
Укажите запрашиваемые данные и нажмите
«РАССЧИТАТЬ ПАРАМЕТРЫ РАДИАТОРА ОТОПЛЕНИЯ»
КЛИМАТИЧЕСКИЕ УСЛОВИЯ РЕГИОНА
ГЕОМЕТРИЯ ПОМЕЩЕНИЯ
Площадь помещения, м²
ДРУГИЕ ВАЖНЫЕ ОСОБЕННОСТИ ПОМЕЩЕНИЯ
Внешние стены смотрят на:
Положение внешней стены относительно зимней розы ветров
ТИП, КОЛИЧЕСТВО И РАЗМЕРЫ ОКОН В ПОМЕЩЕНИИ
Высота окна, м Ширина окна, мТип установленных окон
ДВЕРИ НА УЛИЦУ ИЛИ В ХОЛОДНЫЕ ПОМЕЩЕНИЯ
ОСОБЕННОСТИ ПОДКЛЮЧЕНИЯ И РАСПОЛОЖЕНИЯ РАДИАТОРОВ
Планируемая схема врезки радиаторов в контур отопления
Планируемое размещение радиатора на стене
ВЫБОР НАПРАВЛЕНИЯ РАСЧЕТА
ЧТО ТРЕБУЕТСЯ РАССЧИТАТЬ?
Паспортная мощность одной секции радиатора, Ватт (только для разборных моделей)Некоторые разъяснения по работе с калькулятором
Часто можно встретить утверждение, что для расчета требуемой тепловой отдачи радиаторов достаточно принять соотношение 100 Вт на 1 м² площади комнаты. Однако, согласитесь, что такой подход совершенно не учитывает ни климатических условий региона проживания, ни специфики дома и конкретного помещения, ни особенностей установки самих радиаторов. А ведь все это имеет определенное значение.
В данном алгоритме за основу также взято соотношение 100 Вт/м², однако, введены поправочные коэффициенты, которые и внесут необходимые коррективы, учитывающие различные нюансы.
— Площадь помещения – хозяевам известна.
— Количество внешних стен – чем их больше, тем выше теплопотери, которые необходимо компенсировать дополнительной мощностью радиаторов. В угловых квартирах часто комнаты имеют по две внешних стены, а в частных домах встречаются помещения и с тремя такими стенами. В то же время бывают и внутренние помещения, в которых теплопотери через стены практически отсутствуют.
— Направление внешних стен по сторонам света. Южная или юго-западная сторона будет получать какой-никакой солнечный «заряд», а вот стены с севера и северо-востока Солнца не видят никогда.
— Зимняя «роза ветров» – стены с наветренной стороны, естественно, выхолаживаются намного быстрее. Если хозяевам этот параметр неизвестен, то можно оставить без заполнения – калькулятор рассчитает для самых неблагоприятных условий.
— Уровень минимальных температур – скажет о климатических особенностях региона. Сюда должны вноситься не аномальные значения, а средние, характерные для данной местности в самую холодную декаду года.
— Степень утепления стен. По большому счету, стены без утепления – вообще не должны рассматриваться. Средний уровень утепления будет соответствовать, примерно, стене в 2 кирпича из пустотного керамического кирпича. Полноценное утепление – выполненное в полном объеме на основании теплотехнических расчетов.
— Немалые теплопотери происходят через перекрытия – полы и потолки. Поэтому важное значение имеет соседство помещения сверху и снизу – по вертикали.
— Количество, размер и тип окон – связь с теплотехническими характеристиками помещения очевидна.
— Количество входных дверей (на улицу, в подъезд или на неотапливаемый балкон) – любое открытие будет сопровождаться «порцией» поступающего холодного воздуха, и это необходимо каким-то образом компенсировать.
— Имеет значение схема врезки радиаторов в контур – теплоотдача от этого существенно изменяется. Кроме того, эффективность теплообмена зависит и от степени закрытости батареи на стене.
— Наконец, последним пунктом будет предложено ввести удельную тепловую мощность одной секции батареи отопления. В результате будет получено требуемое количество секций для размещения в данном помещении. Если расчет проводится для неразборной модели, то этот пункт оставляют незаполненным, а результирующее значение берут из второй строки расчета – она покажет необходимую мощность радиатора в кВт.
В расчетное значение уже заложен необходимый эксплуатационный резерв.
алюминиевый радиатор отопления
Что необходимо еще знать про радиаторы отопления?
При выборе этих приборов теплообмена следует учитывать ряд важных нюансов. Подробнее об этом можно узнать в публикациях нашего портала, посвящённых стальным, алюминиевым и биметаллическим радиаторам отопления.
stroyday.ru
Расчёт количества секций радиатора отопления
На этапе подготовки к капитальным ремонтным работам и в процессе планирования возведения нового дома возникает необходимость расчета количества секций радиатора отопления. Результаты подобных вычислений позволяют узнать количество батарей, которого было бы достаточно для обеспечения квартиры либо дома достаточным теплом даже в наиболее холодную погоду.
Расчёт количества секций радиатора отопленияПорядок расчета может меняться в зависимости от множества факторов. Ознакомьтесь с инструкциями по быстрому расчету для типичных ситуаций, вычислению для нестандартных комнат, а также с порядком выполнения максимально подробных и точных расчетов с учетом всевозможных значимых характеристик помещения.
Расчёт количества секций радиатора отопленияРекомендации по расчету до начала работы
Чтобы самостоятельно рассчитать нужное количество секций отопительной батареи, вы обязательно должны узнать следующие параметры:
Показатели теплоотдачи, форма батареи и материал ее изготовления – эти показатели в расчетах не учитываем.
Важно! Не выполняйте расчет сразу для всего дома либо квартиры. Потратьте немного больше времени и проведите вычисления для каждой комнаты отдельно. Только так можно получить максимально достоверные сведения. При этом в процессе расчета количества секций батареи для обогрева угловой комнаты к итоговому результату нужно добавить 20%. Такой же запас нужно накинуть сверху, если в работе обогрева появляются перебои либо же его эффективности недостаточно для качественного прогрева.
Стандартный расчет радиаторов отопления
Расчет радиаторов отопленияНачнем обучение с рассмотрения наиболее часто использующегося метода расчета. Его вряд ли можно считать самым точным, зато по простоте выполнения он определенно вырывается вперед.
Стандартный расчет радиаторов отопленияВ соответствии с этим «универсальным» методом для обогрева 1 м2 площади помещения нужно 100 Вт мощности батареи. В данном случае вычисления ограничиваются одной простой формулой:
K=S/U*100
В этой формуле:
Для примера рассмотрим порядок расчета необходимого числа секций батареи для комнаты габаритами 4х3,5 м. Площадь такого помещения составляет 14 м2. Производитель заявляет, что каждая секция выпущенной им батареи выдает 160 Вт мощности.
Подставляем значения в приведенную выше формулу и получаем, что для обогрева нашей комнаты нужно 8,75 секций радиатора. Округляем, конечно же, в большую сторону, т.е. к 9. Если комната угловая, добавляем 20%-й запас, снова округляем, и получаем 11 секций. Если в работе отопительной системы наблюдаются проблемы, добавляем еще 20% к первоначально рассчитанному значению. Получится около 2. То есть в сумме для обогрева 14-метровой угловой комнаты в условиях нестабильной работы отопительной системы понадобится 13 секций батареи.
Расчет алюминиевых радиаторов отопленияПриблизительный расчет для стандартных помещений
Очень простой вариант расчета. Основывается он на том, что размер отопительных батарей серийного производства практически не отличается. Если высота комнаты составляет 250 см (стандартное значение для большинства жилых помещений), то одна секция радиатора сможет обогреть 1,8 м2 пространства.
Площадь комнаты составляет 14 м2. Для расчета достаточно разделить значение площади на упоминавшиеся ранее 1,8 м2. В результате получается 7,8. Округляем до 8.
Таким образом, чтобы прогреть 14-метровую комнату с 2,5-метровым потолком нужно купить батарею на 8 секций.
Подбор радиаторов отопления по тепловой мощностиВажно! Не используйте этот метод при расчете маломощного агрегата (до 60 Вт). Погрешность будет слишком большой.
Расчет для нестандартных комнат
Этот вариант расчета подходит для нестандартных комнат со слишком низкими либо же чересчур высокими потолками. В основу расчета положено утверждение, в соответствии с которым для прогрева 1 м3 жилого пространства нужно порядка 41 Вт мощности батареи. То есть вычисления выполняются по единственной формуле, имеющей такой вид:
A=Bx41,
где:
- А – нужное число секций отопительной батареи;
- B – объем комнаты. Рассчитывается как произведение длины помещения на его ширину и на высоту.
Для примера рассмотрим комнату длиной 4 м, шириной 3,5 м и высотой 3 м. Ее объем составит 42 м3.
Общую потребность этого помещения в тепловой энергии рассчитаем, умножив его объем на упоминавшиеся ранее 41 Вт. Результат – 1722 Вт. Для примера возьмем батарею, каждая секция которой выдает 160 Вт тепловой мощности. Нужное количество секций рассчитаем, разделив суммарную потребность в тепловой мощности на значение мощности каждой секции. Получится 10,8. Как обычно, округляем до ближайшего большего целого числа, т.е. до 11.
Важно! Если вы купили батареи, не разделенные на секции, разделите общую потребность в тепле на мощность целой батареи (указывается в сопутствующей технической документации). Так вы узнаете нужное количество отопительных радиаторов.
Расчетные данные рекомендуется округлять в сторону увеличения по той причине, что компании-произво
Максимально точный вариант расчета
Из приведенных выше расчетов мы увидели, что ни один из них не является идеально точным, т.к. даже для одинаковых помещений результаты пусть и немного, но все равно отличаются.
Если вам нужна максимальная точность вычислений, используйте следующий метод. Он учитывает множество коэффициентов, способных повлиять на эффективность обогрева и прочие значимые показатели.
В целом расчетная формула имеет следующий вид:
T=100 Вт/м2 *A *B * C * D * E * F * G * S,
- где Т – суммарное количество тепла, необходимое для обогрева рассматриваемой комнаты;
- S – площадь обогреваемой комнаты.
Остальные коэффициенты нуждаются в более подробном изучении. Так, коэффициент А учитывает особенности остекления помещения.
Особенности остекления помещенияЗначения следующие:
- 1,27 для комнат, окна которых остеклены просто двумя стеклами;
- 1,0 – для помещений с окнами, оснащенными двойными стеклопакетами;
- 0,85 – если окна имеют тройной стеклопакет.
Коэффициент В учитывает особенности утепления стен помещения.
Особенности утепления стен помещенияЗависимость следующая:
- если утепление низкоэффективное
, коэффициент принимается равным 1,27; - при хорошем утеплении (к примеру, если стены выложены в 2 кирпича либо же целенаправленно утеплены качественным теплоизолятором)
, используется коэффициент равный 1,0; - при высоком уровне утепления – 0,85.
Коэффициент C указывает на соотношение суммарной площади оконных проемов и поверхности пола в комнате.
Соотношение суммарной площади оконных проемов и поверхности пола в комнатеЗависимость выглядит так:
- при соотношении равном 50% коэффициент С принимается как 1,2;
- если соотношение составляет 40%, используют коэффициент равный 1,1;
- при соотношении равном 30% значение коэффициента уменьшают до 1,0;
- в случае с еще меньшим процентным соотношением используют коэффициенты равные 0,9 (для 20%) и 0,8 (для 10%).
Коэффициент D указывает на среднюю температуру в наиболее холодный период года.
Распределение тепла в комнате при использовании радиаторовЗависимость выглядит так:
- если температура составляет -35 и ниже, коэффициент принимается равным 1,5;
- при температуре до -25 градусов используется значение 1,3;
- если температура не опускается ниже -20 градусов, расчет ведется с коэффициентом равным 1,1;
- жителям регионов, в которых температура не опускается ниже -15, следует использовать коэффициент 0,9;
- если температура зимой не падает ниже -10, считайте с коэффициентом 0,7.
Коэффициент E указывает на количество внешних стен.
Количество внешних стенЕсли внешняя стена одна, используйте коэффициент 1,1. При двух стенах увеличьте его до 1,2; при трех – до 1,3; если же внешних стен 4, используйте коэффициент равный 1,4.
Коэффициент F учитывает особенности вышерасположенно
- если выше находится не обогреваемое чердачное помещение, коэффициент принимается равным 1,0;
- если чердак отапливаемый – 0,9;
- если соседом сверху является отапливаемая жилая комната, коэффициент можно уменьшить до 0,8.
И последний коэффициент формулы – G – учитывает высоту помещения.
Высота комнатыПорядок следующий:
- в комнатах с потолками высотой 2,5 м расчет ведется с использованием коэффициента равного 1,0;
- если помещение имеет 3-метровый потолок, коэффициент увеличивают до 1,05;
- при высоте потолка в 3,5 м считайте с коэффициентом 1,1;
- комнаты с 4-метровым потолком рассчитываются с коэффициентом 1,15;
- при расчете количества секций батареи для обогрева помещения высотой 4,5 м увеличьте коэффициент до 1,2.
Этот расчет учитывает почти все существующие нюансы и позволяет определить необходимое число секций отопительного агрегата с наименьшей погрешностью. В завершение вам останется лишь разделить расчетный показатель на теплоотдачу одной секции батареи (уточните в прилагающемся паспорте) и, конечно же, округлить найденное число до ближайшего целого значения в сторону увеличения.
Цены на популярные модели радиаторов отопления
Радиаторы отопления
Калькулятор расчета радиатора отопления
Для удобства, все эти параметры внесены в специальный калькулятор расчета радиаторов отопления. Достаточно указать все запрашиваемые параметры — и нажатие на кнопку «РАССЧИТАТЬ» сразу даст искомый результат:
Перейти к расчётам
Последовательно введите запрашиваемые значения или отметьте нужные варианты в предлагаемых списках
Установите ползунком значение площади помещения, м²
Сколько внешних стен в помещении?
однадветричетыре
В какую сторону света смотрят внешние стены
Север, Северо-Восток, ВостокЮг, Юго-Запад, Запад
Укажите степень утепленности внешних стен
Внешние стены не утепленыСредняя степень утепленияВнешние стены имеют качественное утепление
Укажите среднюю температуру воздуха в регионе в самую холодную декаду года
— 35 °С и нижеот — 25 °С до — 35 °Сдо — 20 °Сдо — 15 °Сне ниже — 10 °С
Укажите высоту потолка в помещении
до 2,7 м2,8 ÷ 3,0 м3,1 ÷ 3,5 м3,6 ÷ 4,0 мболее 4,1 м
Что располагается над помещением?
холодный чердак или неотапливаемое и не утепленное помещениеутепленные чердак или иное помещениеотапливаемое помещение
Укажите тип установленных окон
Обычные деревянные рамы с двойным остеклениемОкна с однокамерным (2 стекла) стеклопакетомОкна с двухкамерным (3 стекла) стеклопакетом или с аргоновым заполнением
Укажите количество окон в помещении
Укажите высоту окна, м
Укажите ширину окна, м
Выберите схему подключения батарей
Укажите особенности установки радиаторов
Радиатор располжен открыто на стене или не прикрыт подоконникомРадиатор полностью прикрыт сверху подоконником или полкойРадиатор установлен в стеновой нишеРадиатор частично прикрыт фронтальным декоративным экраномРадиатор полностью закрыт декоративным кожухом
Ниже будет предложено ввести паспортную мощность одной секции выбранной модели радиатора.
Если целью расчетов стоит определение потребной суммарной тепловой мощности для отопления комнаты (например, для выбора неразборных радиаторов) то оставьте поле пустым
Введите паспортную тепловую мощность одной секции выбранной модели радиатора
Советы по энергосбережениюСоветы по энергосбережениюУдачных расчетов!
Видео – Расчёт количества секций радиатора отопления
stroyday.ru
калькулятор расчета количества секций радиатора отопления по площади помещения
При расчете необходимого количества тепла учитываются площадь отапливаемого помещения из расчета из расчета требуемого потребления 100 ватт на квадратный метр. Кроме того учитывается ряд факторов, влияющих на суммарные теплопотери помещения, каждый из этих факторов вносит свой коэффициент в общий результат расчета.
Такая методика расчета включает практически все нюансы и базируется на формуле довольно точного определения потребности помещения в тепловой энергии. Остается полученный результат разделить на значение теплоотдачи одной секции алюминиевого, стального или биметаллического радиатора и полученный результат округлить в большую сторону.
параметры отаплваемого помещения
Площадь комнаты | м2 |
Высота потолка | до 2,6 м — 1.0более 2,6 м — 1.1 |
Количество наружных стен комнаты | 1 (обычно) — 1.12 (угловая комната) — 1.2 |
Коэффициент теплоизоляции стен | низкая степень теплоизоляции — 1,27средняя теплоизоляция (кладка в два кирпича или слой утеплителя) — 1,0высокая степень теплоизоляции — 0,85 |
Учет типа помещения, расположенного этажом выше | обогреваемое помещение — 0,8теплый чердак — 0,9холодный чердак — 1,0 |
Количество окон | 1 окно2 окна3 окна |
Коэффициент, учитывающий остекление оконных проемов | обычное двойное остекление — 1,27двойной стеклопакет — 1,0 тройной стеклопакет — 0,85 |
Средняя температура на улице зимой | -10°C — 0.7-20°C — 1.1-30°C — 1.5 |
результат расчета
необходимое количества тепла: Вт
количество секций радиатора, выбранного типа:
тип радиатора
теплоотдача 1 секции | рабочее давление | давление опресовки | вместительность 1 секции | масса 1 секции | |
алюминевые, с межосевым расстоянием 500 мм | 183 Вт | 20 Бар | 30 Бар | 0,27 л | 1,45 кг |
алюминевые, с межосевым расстоянием 350 мм | 139 Вт | 20 Бар | 30 Бар | 0,19 л | 1,2 кг |
биметалические, с межосевым расстоянием 500 мм | 204 Вт | 20 Бар | 30 Бар | 0,2 л | 1,92 кг |
биметалические, с межосевым расстоянием 350 мм | 136 Вт | 20 Бар | 30 Бар | 0,18 л | 1,36 кг |
чугунные, с межосевым расстоянием 500 мм | 160 Вт | 9 Бар | 15 Бар | 1,45 л | 7,12 кг |
чугунные, с межосевым расстоянием 300 мм | 140 Вт | 9 Бар | 15 Бар | 1,1 л | 5,4 кг |
rem-mastera.ru
Расчет батарей отопления частного дома
Расчет радиаторов отопления в доме
Существуют разные методы расчёта количества радиаторов отопления. На это влияют и материал, из которого построено здание, и климатическая зона, где расположен дом, и температура носителя, и особенности теплоотдачи самого радиатора, а так же много других факторов. Рассмотрим подробнее технологию правильного расчета количества радиаторов отопления для частных домов, ведь от этого зависит эффективность работы, а так же экономичность отопительной системы дома.Самым демократичным способом является расчёт радиатора исходя из мощности на квадратный метр. В средней полосе России зимний показатель составляет 50−100 ватт, в регионах Сибири и Урала 100−200 ватт. Стандартные 8-секционные чугунные батареи с межосевым расстояние 50 см имеют теплоотдачу 120−150 ватт на одну секцию. Биметаллические радиации имеют мощность около 200 ватт, что немного повыше. Если мы имеем ввиду стандартный водный теплоноситель, то для комнаты в 18−20 м 2 со стандартной высотой потолков в 2,5−2,7 м понадобится два чугунных радиатора по 8-м секций.От чего зависит количество радиаторов
Есть ещё ряд факторов, которые должны учитываться при расчёте количества радиаторов:
- паровой теплоноситель имеет большую теплоотдачу. чем водный;
- угловая комната холоднее. так как у неё две стены выходят на улицу;
- чем больше окон в помещении, тем там холоднее;
- если высота потолков выше 3 метров. то мощность теплоносителя надо высчитывать, исходя из объёма помещения, а не её площади;
- материал, из которого изготовлен радиатор, имеет свою теплопроводность;
- теплоизолированные стены увеличивают теплоизоляцию комнаты;
- чем ниже зимние температуры на улице, тем большее количество батарей необходимо установить;
- современные стеклопакеты увеличивают теплоизоляцию помещения;
- при одностороннем подключении труб к радиатору не имеет смысла устанавливать более 10 секций;
- если теплоноситель движется сверху вниз, его мощность увеличивается на 20%;
- наличие вентиляции предполагает большую мощность.
Формула и пример расчета
Учитывая вышеперечисленные факторы, можно сделать расчёт. На 1 м 2 понадобится 100 Вт, соответственно, на отопление комнаты в 18м 2 нужно затратить 1800 Вт. Одна батарея из 8-ми чугунных секций выделяет 120 Вт. Делим 1800 на 120 и получаем 15 секций. Это весьма средний показатель.В частном доме с собственным водонагревателем мощность теплоносителя высчитывается по максимуму. Тогда 1800 делим на 150 и получаем 12 секций. Столько нам понадобится для обогрева комнаты в 18м 2. Существует весьма сложная формула, по которой можно рассчитать точное количество секций в радиаторе.
Формула выглядит так:
- q1 — это вид остекления: тройной стеклопакет 0,85; двойной стеклопакет 1; обычное стекло 1,27;
- q 2 — теплоизоляция стен: современная теплоизоляция 0,85; стена в 2 кирпича 1; плохая изоляция 1,27;
- q3 — отношение площади окон к площади пола: 10% 0,8; 20% 0,9; 30% 1,1; 40% 1,2;
- q 4 — минимальная температура снаружи: -10 0 С 0,7; -15 0 С 0,9; -20 0 С 1,1; -25 0 С 1,3; -35 0 С 1,5;
- q5 — количество наружных стен: одна 1,1; две (угловая) 1,2; три 1,3; четыре 1,4;
- q6 — тип помещения над расчётным: обогреваемое помещение 0,8; отапливаемый чердак 0,9; холодный чердак 1;
- q7 — высота потолков: 2,5 м — 1; 3 м — 1,05; 3,5м — 1,1; 4м — 1,15; 4,5м — 1,2;
Проведём расчёт для угловой комнаты 20 м 2 с высотой потолка 3 м, двумя 2-х створчатыми окнами с тройным стеклопакетом, стенками в 2 кирпича, расположенной под холодным чердаком в доме в подмосковном посёлке, где зимой температура опускается до 20 0 С.
Получится 1844,9 Вт. Разделим на 150 Вт и получим 12,3 или 12 секций.
Радиаторы делаются из трёх видов металла: чугунные, алюминиевые и биметаллические. Чугунные и алюминиевые радиаторы имеют одинаковую теплоотдачу, но нагретый чугун остывает медленнее алюминия. Биметаллические батареи имеют большую теплоотдачу, чем чугунные, но они быстрее остывают. Стальные радиаторы имеют высокую теплоотдачу, но они подвержены коррозии.
Самой комфортной для человеческого организма температурой в помещении принято считать 21 0 С. Однако для хорошего крепкого сна больше подходит температура не выше 18 0 С, поэтому немалую роль играет и назначение отапливаемого помещения. И если в зале площадью 20 м2 нужно установить 12 секций батареи. то в аналогичном спальном помещении предпочтительнее установить 10 батарей, и человеку в такой комнате будет комфортно спать. В угловом помещении такой же площади смело размещайте 16 батарей. и Вам не будет жарко. Т. е. расчёт радиаторов в помещении весьма индивидуален, и можно давать только приблизительные рекомендации, сколько секций необходимо установить в той или иной комнате. Главное, произвести установку грамотно, и тепло всегда будет в вашем доме.
Расчет радиаторов в двухтрубной системе (видео)
Расчет радиаторов отопления частного дома: какими бывают батареи и как вычислить мощность
Утепление и обогрев собственного жилья всегда имеет одно из первостепенных значений в жизни человека, особенно, если он живёт в холодных регионах, поэтому, можно использовать калькулятор расчета радиаторов отопления частного дома или же сделать такие вычисления самостоятельно, что будет более точно.
Но будет мало подсчитать, сколько вам необходимо секций для той или иной комнаты, вам также придётся позаботиться о максимальной теплоотдаче приборов, что связано с их подключением и видом контура, а также о правильном расположении приборов, что тоже имеет большое значение для создания микроклимата.
Радиаторный контур в помещении
Конечно, требований много, но все они не так уж и сложны, как это может показаться на первый взгляд, о чём мы сейчас вам и расскажем, а ещё продемонстрируем по теме видео в этой статье.
Как вычислить мощность радиаторов
Существуют достаточно сложные расчёты, которые применяются при проектировании жилых и общественных зданий, где учитывается очень много различных нюансов, которые, пожалуй, могут быть известны одним только проектировщикам.
Мы предлагаем вам более простой путь вычисления, при котором возможны небольшие погрешности, но, тем не менее, это т метод действует и никого ещё не подводил.
Какими бывают радиаторы
- Биметаллические радиаторы отопления на сегодняшний день можно назвать самыми востребованными не только для автономных, но и для централизованных систем – несмотря на то, что их цена выше, нежели у чугунных, жильцы их монтируют вместо чугуна в своих квартирах в частном порядке.
Такая популярность не напрасна – прибор сделан из двух металлов – с внутренней стороны там сталь, которая позволяет выдерживать практически любое давление, возможное в отопительном контуре даже в многоэтажных зданиях, а сверху там алюминий, который обладает очень высокой теплопроводностью.
Как правило, такие батареи выпускаются секционного типа, и величина одного прибора будет зависеть от мощности, необходимой для отопления определённого помещения.
Расстояние между осями
Таблица параметров от некоторых производителей на биметаллические радиаторы
Стальные панельные радиаторы
- Наиболее бюджетными можно назвать стальные панельные отопители. где очень высокая теплоотдача, которая приобретается за счёт расстояния между осями и П-образными пластинами, расположенными на трубах, где циркулирует теплоноситель. Их может быть по одной, по две и по три штуки, от чего, вполне естественно, увеличивается мощность прибора при одном и том же количестве циркулируемой в нём воды.
- Такие конструкции достаточно крепкие и выдерживают высокое давление, но их основная проблема заключается в подверженности коррозии и это, пожалуй, является основной причиной, почему инструкция не рекомендует использовать их в централизованном отоплении – во время спуска воды в ёмкость попадает кислород, что вызывает реакцию и прибор ржавеет.
Также стальные радиаторы используются, как полотенцесушители, но как батареи они изготавливаются только по индивидуальному заказу, так как здесь нужна оцинкованная или нержавеющая сталь, а это очень дорого.
Секционный алюминиевый радиатор
- Самой большой теплоотдачей обладают алюминиевые радиаторы. которые могут производиться, как секционные, так и как панельные, а делаются они либо литьевым, либо экструзионным способом (второй способ несколько дешевле, но здесь слабым местом является клееный или сварной стык).
Безусловно, отопительные приборы из такого металла очень дорогие, но, как вы понимаете, за качество платят и, причём немалые деньги, но использовать их можно исключительно для автономных систем. Дело в том, что теплоноситель, циркулирующий в таких приборах, должен быть антифризом со специальными присадками, противостоящим коррозии и образованию накипи, а это возможно только в автономных контурах.
- Ну и, конечно, это до боли знакомые всем чугунные батареи. как на фото вверху, которые смонтированы в подавляющем большинстве квартир многоэтажных домов и устанавливаются в новостроях по сей день, причём зарекомендовали они себя очень даже хорошо. Основными недостатками таких приборов можно назвать большую ёмкость секций (нужно греть много воды) и толстые стенки, которые долго нагреваются, зато также долго и остывают.
Но с такими недостатками превосходно справляются централизованные системы отопления – объём там мало значит на общем фоне, а вот медленное остывание очень удобно, так как это связано с периодическими циклами циркуляции – при неработающей системе тепло сохраняется (для автономных контуров такие радиаторы в эксплуатации обойдутся дорого).
Рассчитываем мощность
Примечание. Следует отметить, что наиболее эффективное место размещение радиатора находится под окном.
Теплый воздух от прибора, поднимаясь вверх, образует заслон холодным потокам, которые движутся от стёкол.
Наиболее эффективное место размещение радиатора находится под окном
Как мы уже говорили, нам не придётся рассматривать сложные вычисления, так как рассчитать радиаторы отопления для частного дома можно более простым способом и даже если это не совсем точно, тем не менее, это действенно и большинство сантехников поступает именно так, не вызывая после запуска системы в эксплуатацию никаких нареканий.
Но существует два способа расчётов – по площади и по объёму помещения – первый вариант возможен лишь в том случае, если высота потолков не превышает 270 см, но если эта цифра окажется больше, то в таких случаях мощность считается из нормы на кубометр.
Обратите внимание!
Для Москвы и Московской области на квадратный метр помещения нужно 100 Вт тепловой энергии, а если вычислять по объёму, то на м 3 нужно 41 Вт.
Секции можно снимать или добавлять
Давай те узнаем, как произвести расчет количества радиаторов отопления в частном доме по площади (потолки не выше 270 см) и для этого мы будем задействовать формулу Kколичество секций=S*100/P, где S — это размеры нашей комнаты, а P — это тепловая мощность одной секции. Для примера возьмём небольшую комнату 3×4м, значит, у нас S=12м2, а за расчетную единицу возьмем секцию радиатора Grandini мощностью 130 Вт.
В таком случае, если у нас такие данные, то мы подставим их в формулу, тогда Kколичество секций=S*100/P=12*100/130=9,23. Но, как правило, округление делают в большую сторону, значит, для помещения площадью 12м2 вам понадобится радиатор из 10 секций, если это Grandini 350 (для других приборов смотрите значение мощности в таблице).
Для тех случаев, если потолок, к примеру, имеет 3м, подходит другая формула – V*41/P и мы возьмём комнату с такой же площадью, тогда Kколичество секций= V*41/P=4*3*3*41/130=11,35 или 12 секций аналогичного радиатора.
Заключение
Следует отметить, что вы можете произвести расчёты своими руками для любых радиаторов, и металл здесь не имеет значения – мощность секции или панели в любом случае указывается заводом-изготовителем. Только панельные приборы вам нужно рассчитывать не по секциям, а по штукам, используя аналогичные формулы, где P будет равно мощности одного панельного отопителя.
Расчет радиаторов отопления – как не прогадать с количеством секций?
С выбором радиаторов отопления сегодня никаких проблем. Тут тебе и чугунные, и алюминиевые, и биметаллические – выбирай, какие хочешь. Однако сам факт покупки дорогих радиаторов особенной конструкции – еще не гарантия того, что в вашем доме будет тепло. В этом случае играет роль и качество, и количество. Давайте разберемся, как правильно рассчитать радиаторы отопления.
Содержание
- Расчет всему голова – отталкиваемся от площади
- Простые формулы – для квартиры
- Расчеты от объема – что говорит СНиП?
- Точные цифры для частных домов – учитываем все нюансы
1 Расчет всему голова – отталкиваемся от площади
Неправильный расчет количества радиаторов может привести не только к недостатку тепла в помещении, но и к чересчур большим счетам за отопление и слишком высокой температуре в комнатах. Расчет следует производить как во время самой первой установки радиаторов, так и при замене старой системы, где, казалось бы, с количеством секций давно все понятно, поскольку теплоотдача радиаторов может существенно отличаться.
Разные помещения – разные расчеты. Например, для квартиры в многоэтажном доме можно обойтись самыми простыми формулами или же расспросить соседей об их опыте отопления. В большом частном доме простые формулы не помогут – нужно будет учесть множество факторов, которые в городских квартирах попросту отсутствуют, например, степень утепления дома.
Самое главное – не доверяйте цифрам, озвученным наобум всевозможными «консультантами», которые на глаз (даже не видя помещения!) называют вам количество секций для отопления. Как правило, оно значительно завышено, из-за чего вы будете постоянно переплачивать за лишнее тепло, которое буквально будет уходить в открытую форточку. Рекомендуем использовать несколько способов расчета количества радиаторов.
2 Простые формулы – для квартиры
Жители многоэтажных домов могут использовать достаточно простые способы расчетов, которые совершенно не подходят для частного дома. Самый простой расчет радиаторов отопления не блещет высокой точностью, однако он подойдет для квартир со стандартными потолками не выше 2.6 м. Учтите, что для каждой комнаты проводится отдельный расчет количества секций.
За основу берется утверждение, что на отопление квадратного метра комнаты нужно 100 Вт тепловой мощности радиатора. Соответственно, для того, чтобы вычислить количество тепла, необходимое для комнаты, умножаем ее площадь на 100 Вт. Так, для комнаты площадью 25 м 2 необходимо приобрести секции с совокупной мощностью 2500 Вт или 2,5 кВт. Производители всегда указывают теплоотдачу секций на упаковке, например, 150 Вт. Наверняка вы уже поняли, что делать дальше: 2500/150 = 16,6 секций
Результат округляем в большую сторону, впрочем, для кухни можно округлить и в меньшую – помимо батарей, там еще будет нагревать воздух плитка, чайник.
Также следует учесть возможные потери тепла в зависимости от расположения комнаты. Например, если это помещение, расположенное на углу здания, то тепловую мощность батарей можно смело увеличивать на 20 % (17 *1,2 = 20,4 секций), такое же количество секций понадобится и для комнаты с балконом. Учтите, что если вы намерены запрятать радиаторы в нишу или скрыть их за красивым экраном, то вы автоматически теряете до 20 % тепловой мощности, которую придется компенсировать количеством секций.
3 Расчеты от объема – что говорит СНиП?
Более точное количество секций можно высчитать, учитывая высоту потолков – этот способ особенно актуален для квартир с нестандартной высотой комнат, а также для частного дома в качестве предварительного расчета. В этом случае мы определим тепловую мощность, исходя из объема помещения. Согласно нормам СНиП, для обогрева одного кубического метра жилой площади в стандартном многоэтажном доме необходим 41 Вт тепловой энергии. Это нормативное значение необходимо умножить на общий объем, который можно получить, перемножим высоту комнаты на ее площадь.
Например, объем комнаты площадью 25 м 2 с потолками 2,8 м составляет 70 м 3. Эту цифру умножаем на стандартные 41 Вт и получаем 2870 Вт. Дальше действуем, как и в предыдущем примере – делим общее количество Вт на теплоотдачу одной секции. Так, если теплоотдача равна 150 Вт, то количество секций – приблизительно 19 (2870/150 = 19,1). К слову, ориентируйтесь на минимальные показатели теплоотдачи радиаторов, ведь температура носителя в трубах редко когда в наших реалиях соответствует требованиям СНиП. То есть, если в техпаспорте радиатора указаны рамки от 150 до 250 Вт, то по умолчанию берем меньшую цифру. Если вы сами отвечаете за отопление частного дома, то берите среднее значение.
4 Точные цифры для частных домов – учитываем все нюансы
Частные дома и большие современные квартиры никак не попадают под стандартные расчеты – слишком много нюансов нужно учесть. В этих случаях можно применить самый точный способ расчета, в котором эти нюансы как раз и учитываются. Собственно, формула сама по себе весьма простая – с такой справится и школьник, главное – правильно подобрать все коэффициенты, которые учитывают особенности дома или квартиры, влияющие на возможность сохранять или терять тепловую энергию. Итак, вот наша точная формула:
- КТ = N*S*K 1 *K 2 *K 3 *K 4 *K 5 *K 6 *K 7
- КТ – это количество тепловой мощности в Вт, которое нам необходимо для отопления конкретной комнаты;
- N – 100 Вт/кв.м, стандартное количество тепла на метр квадратный, к которому мы и будем применять понижающие или повышающие коэффициенты;
- S – площадь помещения, для которого мы будем рассчитывать количество секций.
Следующие коэффициенты имеют как свойство повышать количество тепловой энергии, так и понижать, в зависимости от условий комнаты.
- K 1 – учитываем характер остекления окон. Если это окна с обычным двойным остеклением, коэффициент равен 1,27. Окна с двойным стеклопакетом – 1,0, с тройным – 0,85.
- K 2 – учитываем качество теплоизоляции стен. Для холодных неутепленных стен этот коэффициент равен по умолчанию 1,27, для нормальной теплоизоляции (кладка в два кирпича) – 1,0, для хорошо утепленных стен – 0,85.
- K 3 – учитываем среднюю температуру воздуха в пик зимних холодов. Так, для -10 °С коэффициент равен 0,7. На каждые -5 °С добавляем к коэффициенту 0,2. Так, для -25 °С коэффициент будет равен 1,3.
- K 4 – принимаем во внимание соотношение пола и площади окон. Начиная с 10 % (коэффициент равен 0,8) на каждые следующие 10 % добавляем 0,1 к коэффициенту. Так, для соотношения 40 % коэффициент будет равен 1,1 (0,8 (10%) +0,1 (20%)+0,1(30%)+0,1(40%)).
- K 5 – понижающий коэффициент, корректирующий количество тепловой энергии с учетом типа помещения, расположенного выше. За единицу берем холодный чердак, если чердак отапливаемый – 0,9, если над комнатой отапливаемое жилое помещение – 0,8.
- K 6 – корректируем результат в сторону увеличения с учетом количества стен, контактирующих с окружающей атмосферой. Если 1 стена – коэффициент равен 1,1, если две – 1,2 и так далее до 1,4.
- K 7 – и последний коэффициент, корректирующий расчеты относительно высоты потолков. За единицу берется высота 2,5, и на каждые полметра высоты прибавляется 0.05 к коэффициенту Таким образом, для 3 метров коэффициент – 1,05, для 4 – 1,15.
Благодаря этому расчету, вы получите количество тепловой энергии, которая необходима для поддержания комфортной среды обитания в частном доме или нестандартной квартире. Остается только разделить готовый результат на значение теплоотдачи выбранных вами радиаторов, чтобы определить количество секций.
Источники: http://teplo.guru/radiatory/vybor/raschet-radiatorov-otopleniya-v-dome.html, http://gidroguru.com/otoplenie/otopit-pribory/radiatory/2922-raschet-radiatorov-otopleniya-chastnogo-doma, http://remoskop.ru/raschet-radiatorov-otoplenija-ploshhadi-chastnogo-doma.html
teplosten24.ru