Расчет батарей в частном доме: Расчет радиаторов отопления – как не прогадать с количеством секций?

Содержание

Расчет радиаторов отопления – как не прогадать с количеством секций?

С выбором радиаторов отопления сегодня никаких проблем. Тут тебе и чугунные, и алюминиевые, и биметаллические – выбирай, какие хочешь. Однако сам факт покупки дорогих радиаторов особенной конструкции – еще не гарантия  того, что в вашем доме будет тепло. В этом случае играет роль и качество, и количество. Давайте разберемся, как правильно рассчитать радиаторы отопления.

Расчет всему голова – отталкиваемся от площади

Неправильный расчет количества радиаторов может привести не только к недостатку тепла в помещении, но и к чересчур большим счетам за отопление и слишком высокой температуре в комнатах. Расчет следует производить как во время самой первой установки радиаторов, так и при замене старой системы, где, казалось бы, с количеством секций давно все понятно, поскольку теплоотдача радиаторов может существенно отличаться.

Разные помещения – разные расчеты. Например, для квартиры в многоэтажном доме можно обойтись самыми простыми формулами или же расспросить соседей об их опыте отопления. В большом частном доме простые формулы не помогут – нужно будет учесть множество факторов, которые в городских квартирах попросту отсутствуют, например, степень утепления дома.

Самое главное – не доверяйте цифрам, озвученным наобум всевозможными «консультантами», которые на глаз (даже не видя помещения!) называют вам количество секций для отопления. Как правило, оно значительно завышено, из-за чего вы будете постоянно переплачивать за лишнее тепло, которое буквально будет уходить в открытую форточку. Рекомендуем использовать несколько способов расчета количества радиаторов.

Простые формулы – для квартиры

Жители многоэтажных домов могут использовать достаточно простые способы расчетов, которые совершенно не подходят для частного дома. Самый простой расчет радиаторов отопления не блещет высокой точностью, однако он подойдет для квартир со стандартными потолками не выше 2. 6 м. Учтите, что для каждой комнаты проводится отдельный расчет количества секций.

За основу берется утверждение, что на отопление квадратного метра комнаты нужно 100 Вт тепловой мощности радиатора. Соответственно, для того, чтобы вычислить количество тепла, необходимое для комнаты, умножаем ее площадь на 100 Вт. Так, для комнаты площадью 25 м2 необходимо приобрести секции с совокупной мощностью 2500 Вт или 2,5 кВт. Производители всегда указывают теплоотдачу секций на упаковке, например, 150 Вт. Наверняка вы уже поняли, что делать дальше: 2500/150 = 16,6 секций

Результат округляем в большую сторону, впрочем, для кухни можно округлить и в меньшую – помимо батарей, там еще будет нагревать воздух плитка, чайник.

Также следует учесть возможные потери тепла в зависимости от расположения комнаты. Например, если это помещение, расположенное на углу здания, то тепловую мощность батарей можно смело увеличивать на 20 % (17 *1,2 = 20,4 секций), такое же количество секций понадобится и для комнаты с балконом. Учтите, что если вы намерены запрятать радиаторы в нишу или скрыть их за красивым экраном, то вы автоматически теряете до 20 % тепловой мощности, которую придется компенсировать количеством секций.

Расчеты от объема – что говорит СНиП?

Более точное количество секций можно высчитать, учитывая высоту потолков – этот способ особенно актуален для квартир с нестандартной высотой комнат, а также для частного дома в качестве предварительного расчета. В этом случае мы определим тепловую мощность, исходя из объема помещения. Согласно нормам СНиП, для обогрева одного кубического метра жилой площади в стандартном многоэтажном доме необходим 41 Вт тепловой энергии. Это нормативное значение необходимо умножить на общий объем, который можно получить, перемножим высоту комнаты на ее площадь.

Например, объем комнаты площадью 25 м2 ­с потолками 2,8 м составляет 70 м3. Эту цифру умножаем на стандартные 41 Вт и получаем 2870 Вт. Дальше действуем, как и в предыдущем примере – делим общее количество Вт на теплоотдачу одной секции. Так, если теплоотдача равна 150 Вт, то количество секций – приблизительно 19 (2870/150 = 19,1). К слову, ориентируйтесь на минимальные показатели теплоотдачи радиаторов, ведь температура носителя в трубах редко когда в наших реалиях соответствует требованиям СНиП. То есть, если в техпаспорте радиатора указаны рамки от 150 до 250 Вт, то по умолчанию берем меньшую цифру. Если вы сами отвечаете за отопление частного дома, то берите среднее значение.

Точные цифры для частных домов – учитываем все нюансы

Частные дома и большие современные квартиры никак не попадают под стандартные расчеты – слишком много нюансов нужно учесть. В этих случаях можно применить самый точный способ расчета, в котором эти нюансы как раз и учитываются. Собственно, формула сама по себе весьма простая – с такой справится и школьник, главное – правильно подобрать все коэффициенты, которые учитывают особенности дома или квартиры, влияющие на возможность сохранять или терять тепловую энергию. Итак, вот наша точная формула:

  • КТ = N*S*K1*K2*K3*K4*K5*K6*K7
  • КТ – это количество тепловой мощности в Вт, которое нам необходимо для отопления конкретной комнаты;
  • N – 100 Вт/кв.м, стандартное количество тепла на метр квадратный, к которому мы и будем применять понижающие или повышающие коэффициенты;
  • S – площадь помещения, для которого мы будем рассчитывать количество секций.

Следующие коэффициенты имеют как свойство повышать количество тепловой энергии, так и понижать, в зависимости от условий комнаты.

  • K1 – учитываем характер остекления окон. Если это окна с обычным двойным остеклением, коэффициент равен 1,27. Окна с двойным стеклопакетом – 1,0, с тройным – 0,85.
  • K2 – учитываем качество теплоизоляции стен. Для холодных неутепленных стен этот коэффициент равен по умолчанию 1,27, для нормальной теплоизоляции (кладка в два кирпича) – 1,0, для хорошо утепленных стен – 0,85.
  • K3 – учитываем среднюю температуру воздуха в пик зимних холодов. Так, для -10 °С коэффициент равен 0,7. На каждые -5 °С добавляем к коэффициенту 0,2. Так, для -25 °С коэффициент будет равен 1,3.
  • K4 – принимаем во внимание соотношение пола и площади окон. Начиная с 10 % (коэффициент равен 0,8) на каждые следующие 10 % добавляем 0,1 к коэффициенту. Так, для соотношения 40 % коэффициент будет равен 1,1 (0,8 (10%) +0,1 (20%)+0,1(30%)+0,1(40%)).
  • K5 – понижающий коэффициент, корректирующий количество тепловой энергии с учетом типа помещения, расположенного выше. За единицу берем холодный чердак, если чердак отапливаемый – 0,9, если над комнатой отапливаемое жилое помещение – 0,8.
  • K6 – корректируем результат в сторону увеличения с учетом количества стен, контактирующих с окружающей атмосферой.  Если 1 стена – коэффициент равен 1,1, если две – 1,2 и так далее до 1,4.
  • K7 – и последний коэффициент, корректирующий расчеты относительно высоты потолков. За единицу берется высота 2,5, и на каждые полметра высоты прибавляется 0.05 к коэффициенту Таким образом, для 3 метров коэффициент – 1,05, для 4 – 1,15.

Благодаря этому расчету, вы получите количество тепловой энергии, которая необходима для поддержания комфортной среды обитания в частном доме или нестандартной квартире. Остается только разделить готовый результат на значение теплоотдачи выбранных вами радиаторов, чтобы определить количество секций.

Оцените статью: Поделитесь с друзьями!

Как рассчитать радиаторы отопления для частного дома

Комфортные условия жизни в зимнее время всецело зависят от достаточности снабжения теплом жилых помещений. Если это новостройка, например, на дачном или приусадебном участке, то необходимо знать, как рассчитать радиаторы отопления для частного дома.

Как рассчитать радиаторы отопления для частного дома

Все операции сводятся к вычислению количества секций радиаторов и подчиняются четкому алгоритму, поэтому нет нужды быть квалифицированным специалистом – каждый человек сможет проделать довольно точное теплотехническое вычисление своего жилища.

Почему необходим точный расчет

Теплоотдача приборов теплоснабжения зависит от материала изготовления и площади отдельных секций. От правильных вычислений зависит не только тепло в доме, но также сбалансированность и экономичность системы в целом: недостаточное число установленных секций радиаторов не обеспечит должное тепло в комнате, а излишнее количество секций ударит по карману.

Виды радиаторов отопления

Для вычислений необходимо определиться с типом батарей и системы теплоснабжения. К примеру, расчет алюминиевых радиаторов теплоснабжения для частного дома отличается от других элементов системы. Радиаторы бывают чугунными, стальными, алюминиевыми, алюминиевыми анодированными и биметаллическими:

  • Наиболее известны чугунные батареи, так называемые «гармошки». Они долговечны, стойки к коррозии, обладают мощностью секций 160 Вт при высоте 50 см и температуре воды 70 градусов. Существенный недостаток этих приборов – неприглядный внешний вид, но современные производители выпускают гладкие и достаточно эстетичные чугунные батареи, сохраняя все преимущества материала и делая их конкурентоспособными.

Чугунные батареи отопления

  • Алюминиевые радиаторы по тепловой мощности превосходят чугунные изделия, они прочны, обладают легким собственным весом, что дает преимущество при монтаже. Единственный недостаток подверженность к кислородной коррозии. Для его устранения взято на вооружение производство анодированных радиаторов из алюминия.

Алюминиевые радиаторы отопления

  • Стальные приборы не обладают достаточной тепловой мощностью, не подлежат разборке и увеличению секций при необходимости, подвержены коррозии, поэтому не пользуются популярностью.

Стальные радиаторы

  • Биметаллические радиаторы отопления – это сочетание стальных и алюминиевых деталей. Теплоносителями и крепежными деталями в них являются стальные трубы и резьбовые соединения, покрытые алюминиевым кожухом. Недостаток – довольно высокая стоимость.

Биметаллические батареи

По типу системы теплоснабжения различают однотрубное и двухтрубное подключение элементов отопления. В многоэтажных жилых домах в основном применена однотрубная схема системы теплоснабжения. Недостатком здесь является довольно значительная разница температуры входящей и исходящей воды на разных концах системы, что свидетельствует о неравномерности распределения тепловой энергии по приборам батареям.

Однотрубная и двухтрубная система отопления

Для равномерного распределения тепловой энергии в частных домах можно применять двухтрубную систему теплоснабжения, когда горячая вода подается по одной трубе, а охлажденная выводится по другой.

Кроме этого, точное вычисление количества батарей отопления в частном доме зависит от схемы подключения приборов, высоты потолка, площади оконных проемов, количества наружных стен, типа помещения, закрытости приборов декоративными панелями и от других факторов.

Помните! Необходимо правильно рассчитать требуемое число радиаторов отопления в частном доме, чтобы гарантировать достаточное количество тепла в помещении и обеспечить экономию финансовых средств.

Таблица для расчета количества секций батареи

Виды расчетов отопления для частного дома

Вид расчета радиаторов отопления для частного дома зависит от поставленной цели, то есть насколько точно вы хотите рассчитать батареи отопления для частного дома. Различают упрощенный и точный методы, а также по площади и по объему рассчитываемого пространства.

По упрощенному или предварительному методу подсчеты сводятся к умножению площади помещения на 100 Вт: стандартную величину достаточной тепловой энергии на метр в квадрате, при этом формула подсчета примет следующий вид:

Q = S*100, где

Q – потребная мощность тепла;

S – расчетная площадь комнаты;

Вычисление нужного числа секций разборных радиаторов ведется по формуле:

N = Q/Qx, где

N – требуемое количество секций;

Qx – удельная мощность секции по паспорту изделия.

Так как эти формулы для высоты комнаты – 2,7 м, для других величин требуется вводить коэффициенты поправки. Вычисления сводятся к определению количества тепла на 1 м3 объема помещения. Упрощенная формула выглядит так:

Q = S*h*Qy, где

H – высота комнаты от пола до потолка;

Qy – средний показатель тепловой мощности в зависимости от вида ограждения, для кирпичных стен равен 34 Вт/м3, для панельных стен – 41 Вт/м3.

Эти формулы не могут гарантировать комфортные условия. Поэтому требуются точные вычисления, учитывающие все сопутствующие особенности здания.

Точный расчет приборов отопления

Теплопотери здания

Наиболее точная формула необходимой тепловой мощности выглядит следующим образом:

Q = S*100*(K1*К2*…*Kn-1*Kn), где

K1, K2 … Kn – коэффициенты, зависящие от различных условий.

Какие условия влияют на микроклимат в помещении? Для точного расчета учитывается до 10 показателей.

K1 – показатель, зависящий от числа наружных стен, чем больше поверхности соприкасается с внешней средой, тем больше потери тепловой энергии:

  • при одной наружной стене показатель равен единице;
  • если две наружные стены — 1,2;
  • если три внешние стены — 1,3;
  • если все четыре стены наружные (т.е. здание однокомнатное) — 1,4.

К2 – учитывает ориентацию здания: считается, что комнаты хорошо прогреваются, если расположены в южном и западном направлении, здесь К2 = 1,0, и наоборот недостаточно – когда окна выходят на север или восток – К2 = 1,1. С этим можно поспорить: в восточном направлении помещение все же прогревается по утрам, поэтому целесообразнее применить коэффициент 1,05.

Расчитываем, насколько сильно должна греть батарея

К3 – показатель утепления наружных стен, зависит от материала и степени термоизоляции:

  • для наружных стен в два кирпича, а также при использовании утеплителя для не утепленных стен показатель равен единице;
  • для неутепленных стен – К3 = 1,27;
  • при утеплении жилища на основании теплотехнических расчетов по СНиП – К3 = 0,85.

К4 – коэффициент, учитывающий самые низкие температуры холодного периода года для конкретного региона:

  • до 35 °С К4 = 1,5;
  • от 25 °С до 35 °С К4 = 1,3;
  • до 20 °С К4 = 1,1;
  • до 15 °С К4 = 0,9;
  • до 10 °С К4 = 0,7.

Расчет радиаторов отопления по площади

К5 – зависит от высоты помещения от пола до потолка. В качестве стандартной высоты принята h = 2,7 м с показателем равной единице. Если высота комнаты отличается от стандартной, вводится поправочный коэффициент:

  • 2,8-3,0 м – К5 = 1,05;
  • 3,1-3,5 м – К5 = 1,1;
  • 3,6-4,0 м – К5 = 1,15;
  • более 4 м – К5 = 1,2.

К6 – показатель, учитывающий характер помещения, находящегося сверху. Полы жилых зданий всегда утепляются, комнаты сверху могут быть отапливаемыми или холодными, а это неизбежно повлияет на микроклимат рассчитываемого пространства:

  • для холодного чердака, а также если помещение сверху не отапливается, показатель будет равен единице;
  • при утепленном чердаке или кровле – К6 = 0,9;
  • если сверху расположено отапливаемая комната – К6 = 0,8.

К7 – показатель, учитывающий тип оконных блоков. Конструкция окна существенным образом влияет на потери тепла. При этом величина коэффициента К7 определяется следующим образом:

  • так как окна из дерева с двойным остеклением недостаточно защищают комнату, показатель самый высокий К7 = 1,27;
  • стеклопакеты обладают отличными свойствами защиты от теплопотерь, при однокамерном стеклопакете из двух стекол К7 равен единице;
  • улучшенный однокамерный стеклопакет с аргоновым заполнением или двойной стеклопакет, состоящий из трех стекол К7 = 0,85.

Однотрубная и двухтрубная система отопления

К8 – коэффициент, зависящий от площади остекления оконных проемов. Теплопотери зависят от количества и площади установленных окон. Соотношение площади окон к площади комнаты должно быть урегулировано таким образом, чтобы коэффициент имел низшие значения. В зависимости от отношения площади окон к площади помещения определяется искомый показатель:

  • менее 0,1 – К8 = 0,8;
  • от 0,11 до 0,2 – К8 = 0,9;
  • от 0,21 до 0,3 – К8 = 1,0;
  • от 0,31 до 0,4 – К8 = 1,1;
  • от 0,41 до 0,5 – К8 = 1,2.

Схемы подключения отопительных приборов

К9 – учитывает схему подключения приборов. В зависимости от способа подключения горячей и вывода холодной воды зависит отдача тепла. Этот фактор необходимо учитывать при установке и определении требуемой площади приборов теплоснабжения. С учетом схемы подключения:

  • при диагональном расположении труб подача горячей воды осуществляется сверху, обратка – снизу с другой стороны батареи, а показатель равен единице;
  • при подключении подачи и обратки с одной стороны и сверху, и снизу одной секции К9 = 1,03;
  • примыкание труб с двух сторон подразумевает и подачу, и обратку снизу, при этом коэффициент К9 = 1,13;
  • вариант диагонального подключения, когда подача производится снизу, обратка сверху К9 = 1,25;
  • вариант одностороннего подключения с подачей снизу, обраткой сверху и одностороннее нижнее подключение К9 = 1,28.

Потеря теплоотдачи из-за установки экрана радиатора

К10 – коэффициент, зависящий от степени закрытости приборов декорирующими панелями. Открытость приборов для свободного обмена теплом с пространством помещения имеет немаловажное значение, так как создание искусственных барьеров снижает теплоотдачу батарей.

Имеющиеся или искусственно созданные преграды могут изрядно понизить отдачу батареи из-за ухудшения обмена теплом с комнатой. В зависимости от этих условий коэффициент равен:

  • при открытом расположении радиатора на стене со всех сторон 0,9;
  • если прибор прикрыт сверху единице;
  • когда радиаторы прикрыты сверху ниши стены1,07;
  • если прибор прикрыт подоконником и декоративным элементом 1,12;
  • когда радиаторы полностью прикрыты декоративным кожухом 1,2.

Правила установки радиаторов отопления.

Кроме этого, существуют специальные нормы расположения приборов отопления, которые необходимо соблюдать. То есть батарею располагать не менее, чем на:

  • 10 см от низа подоконника;
  • 12 см от пола;
  • 2 см от поверхности наружной стены.

Подставляя все необходимые показатели, можно получить достаточно точное значение требуемой тепловой мощности помещения. Путем разделения полученных результатов на паспортные данные отдачи тепла одной секции выбранного прибора и, округлив до целого числа, получаем количество требуемых секций. Теперь можно, не опасаясь последствий, подобрать и установить необходимое оборудование с нужной тепловой отдачей.

Установка батареи отопления в доме

Способы упрощения расчетов

Несмотря на кажущуюся простоту формулы, на самом деле практический расчет не так прост, особенно если количество рассчитываемых комнат велико. Упростить расчеты поможет применение специальных калькуляторов, размещаемых на сайтах некоторых производителей. Достаточно ввести все необходимые данные в соответствующие поля, после чего можно получить точный результат. Можно воспользоваться и табличным методом, так как алгоритм вычисления достаточно прост и однообразен.

Правильный и четкий расчет секций радиаторов отопления способен создать тепло и уют в любом доме

Выбирая батареи для Вашего дома, не забудьте правильно произвести подсчет секций радиатора отопления, поскольку маленькое их количество не сможет обогреть помещение, а наоборот – излишнее количество создаст жару. Чтобы избежать и одной и другой проблемы – нужно правильно подсчитывать их количество.

Как нужно рассчитывать секции радиаторов отопления?

Блоки можно посчитать, исходя из площади комнаты. По стандартам необходимо на один квадратный метр 100 Вт мощности тепла. Подсчитываем сначала квадратуру комнаты и потом умножаем ее на 100 Вт. Полученный результат мы должны разделить на теплоотдачу, которую сможет отдавать одна секция.

Обычно их производители пишут в техническом описании радиаторов. В среднем теплоотдача составляет 170 Вт на один блок. Разделив результат, который мы получили на теплоотдачу, мы получаем число наборных элементов батареи. Если при подсчете число получается не целым, то округляем его в большую сторону для спален и залов, для кухонь – можно округлить в меньшую сторону, поскольку там и так всегда достаточно жарко от печки.

При расчете секций радиаторов отопления, нужно обращать внимание не только на квадратуру, но и на тип самого радиатора. Они бывают: чугунные, биметаллические, алюминиевые и штампованные. Самым идеальным вариантом для дома считаются чугунные батареи, которые способны выдерживать высокое давление системы, отлично отдавать тепло, и при этом еще и защищены от коррозии.


Как рассчитать отопление частных домов, исходя из объема?

Принцип расчета по этому принципу похож на расчет по площади. Сначала нужно вычислить общую потребность в тепле и только после этого рассчитывать нужное количество блоков.

Например, посчитаем, сколько понадобится блоков для комнаты, площадью в 20 квадратов и высотой потолков в 3 метра. Рассчитываем объем помещения (20х3=60 куб.м). Теперь подсчитываем тепловую мощность (60х41 Вт=2460 Вт).

Теперь считаем блоки. Делим полученные данные на теплоотдачу одной из секций (берем среднюю теплоотдачу – 170 Вт). 2460/170Вт = 14,47. Округляем в большую сторону и получаем 15 секций.

Расчет отопления помещения и его основные нюансы

При расчете тепла нужно учитывать и нюансы, поскольку стандартного расчете как такового нет. Если у Вас в квартире пластиковые окна с наружным утеплением, то всю квадратуру помещения нужно умножать не на 41 Вт, а на 34 Вт в расчете на один метр кубический.

Не стоит производить расчет отопления частного дома по максимальной теплоотдаче, которую пишут производители на упаковках, поскольку как показывает практика, практически всегда эти показатели завышены.

как рассчитать мощность радиатора
расчет мощности радиатора

таблица расчета мощности радиаторов известных производителей
таблица расчета мощности нагрева радиаторов

 

Чтобы получить более точные расчеты для отопления помещения, ориентируйтесь на показатель теплоотдачи (минимальный), указанный в паспорте.

Если в помещении высота потолка выше 3-х метров, то тепловую мощность каждого блока стоит самостоятельно пропорционально увеличить. При установленных в помещении пластиковых окнах, рассчитывая количество секций, стоит брать мощность каждого блока на 10-20% ниже максимальной, указанной в паспорте.

Если в комнате находятся два окна, тогда нужно устанавливать блоки под каждым из них, однако при таком расчете отопления для частного дома учтите то, что суммарная мощность тепла всех секций должна быть больше его номинальной мощности в 1,6-1,7 раза.

Некоторые люди допускают серьезную ошибку при расчете отопления помещения, считая количество блоков в зависимости от общей площади дома. Этот подсчет неправильный, считать количество секций нужно для каждой комнаты отдельно.

Если при подсчёте Вы получили не точную цифру, а которую нужно округлить, то округляйте лучше в большую сторону. При избыточном отоплении Вы можете просто открыть окно и проветрить, а если же не хватит одного блока, то придется докупать секции и снова приглашать мастера, а это отразится на Вашем бюджете. Также читайте о дизельных тепловых пушках.

Посчитав правильно количество блоков, необходимое для комнат, Вы всегда сможете насладиться уютом и теплом в квартире даже в самые суровые зимние дни. Если же секций будет мало, то в доме будет сыро и холодно, так что это не тот пункт ремонта, на котором можно сэкономить.

Расчет количества батарей отопления в частном доме

Как рассчитать батареи отопления для частного дома? Этот вопрос возникает у владельцев частных домостроений при сооружении новой или реконструкции старой системы водяного отопления. Материал публикации дает обзор методов расчета и некоторые рекомендации по их применению.

Расчет количества батарей отопления в частном доме начинают с вычисления количества теплоты, требуемого для отопления (компенсации тепловых потерь). Эту величину рассчитывают 3 способами:

  1. На базе теплового расчета;
  2. По площади отапливаемого помещения;
  3. По внутреннему объему помещений.

Тепловой расчет является наиболее точным – он учитывает массу показателей. Это теплопроводность строительных и теплоизоляционных материалов, ориентация здания относительно сторон света, климатические показатели региона, величина инфильтрации воздуха и многие другие. Алгоритм расчета содержит много формул, для его выполнения требуется собрать массу справочных данных. Для простого обывателя выполнить такой подсчет зачастую трудно, поэтому обычно его выполняют специалисты с опытом и профильным образованием.

Для владельцев частных домов, вложивших серьезные средства в утепление здания, рекомендуется для определения числа радиаторов использовать именно тепловой расчет. Если использовать общие методики, то можно истратить лишние средства на приобретение секций, которые будут не нужны для реализации отопления. На базе теплового баланса можно определить оптимальное число секций и радиаторов.

В случае, если тепловой расчет выполнить трудно – используют методики подсчета тепловой мощности по площади или по объему отапливаемых помещений. Они актуальны для зданий со средними показателями тепловой изоляции.

Первый способ – по площади – использует в расчете показатель удельной тепловой мощности. Он равен 90 – 100 Вт на 1 квадратный метр площади. Расчет производится для каждой комнаты отдельно. Допустим, комната имеет площадь 22 м2, в ней имеется 2 окна. Тогда требуемая тепловая мощность составит 22 х 100 = 2200 Вт.

 Эту величину делят на удельную (единичную) мощность 1 секции радиатора (паспортные данные). Предположим, планируется приобретение биметаллических радиаторов. Средняя мощность одной секции стандартной высоты (500 мм) равна 160 Вт. Тогда число секций будет 2200/160 = 13,75 шт. Эту величину округляют всегда в большую сторону (14). При наличии 2 окон требуется установить 2 радиатора – получаем 14/2 = 7 секций (2 радиатора по 7 секций каждый).

Эта методика применяется для помещений с высотой потолка не более 2,7 метра. При большем значении высоты используют расчет по объему помещения. Здесь удельный показатель тепловой мощности равен 35 – 40 Вт на 1 кубометр объема комнаты. Тогда для той же комнаты (22 м2), но с высотой потолка 3 метра требуемая мощность будет равна 22 х 3 х 40 = 2640 Вт, число секций – 2640/160 = 16,5 (округляем до 17). Получается 2 радиатора – по 8 и 9 секций каждый соответственно.

В случае установки в систему отопления стальных или монолитных радиаторов из других материалов, имеющих единичную мощность, выбор устройств производят по каталогам производителей. Например, если требуемая общая мощность на отопление комнаты равна 2640 Вт, то нужно подобрать 2 батареи примерно по 1320 Ватт мощностью каждая.

(Просмотров 453 , 1 сегодня)

Рекомендуем прочитать:

методика + встроенный калькулятор,объем батареи,для панорамных окон, объем воды в радиаторе отопления таблица, отопительные приборы систем водяного отопления,теплоотдача,конвекторные радиаторы, еврочугун,водяное отопление в гараже своими руками схемы,размеры радиаторов, акт опрессовки системы, обарзец,ошибка 27 котел навьен, навьен делюкс ошибка 13 как исправитькак рассчитать мощность радиатора,на квадратный метр, расчёт количества секций,расчёт количества секций, алюминиевые радиаторы,как расчитать сколько надо батарей в дом, 1 секция радиатора сколько м2 отапливаемой площадиэлектрический радиатор.

Один из наиболее важных вопросов создания комфортных условий проживания в доме или квартире – это надежная, правильно рассчитанная и смонтированная, хорошо сбалансированная система отопления. Именно поэтому создание такой системы – главнейшая задача при организации строительства собственного дома или при проведении капитального ремонта в квартире многоэтажки.

Несмотря на современное разнообразие систем отопления различных типов, лидером по популярности все же остается проверенная схема: контуры труб с циркулирующим по ним теплоносителем, и приборы теплообмена – радиаторы, установленные в помещениях. Казалось бы – все просто, батареи стоят под окнами и обеспечивают требуемый нагрев… Однако, необходимо знать, что теплоотдача от радиаторов должна соответствовать и площади помещения, и целому ряду других специфических критериев. Теплотехнические расчеты, основанные на требованиях СНиП – достаточно сложная процедура, выполняемая специалистами. Тем не менее, можно выполнить ее и своими силами, естественно, с допустимым упрощением. В настоящей публикации будет рассказано, как самостоятельно провести расчет батарей отопления на площадь обогреваемого помещения с учетом различных нюансов.

Расчет батарей отопления на площадь

Но, для начала, нужно хотя бы бегло ознакомиться с существующими радиаторами отопления – от их параметров во многом будут зависеть и результаты проводимых расчетов.

Кратко о существующих типах радиаторов отопления

Содержание статьи

Современный ассортимент радиаторов, представленных в продаже, включает следующие их виды:

  • Стальные радиаторы панельной или трубчатой конструкции.
  • Чугунные батареи.
  • Алюминиевые радиаторы нескольких модификаций.
  • Биметаллические радиаторы.
Стальные радиаторы

Этот тип радиаторов не снискал себе особой популярности, несмотря на то, что некоторым моделям придается весьма элегантное дизайнерское оформление. Проблема в том, что недостатки таких приборов теплообмена существенно превышают их достоинства – невысокую цену¸ относительно небольшую массу и простоту монтажа.

Стальные радиаторы отопления имеют немало недостатков

Тонкие стальные стенки таких радиаторов недостаточно теплоёмки – быстро нагреваются, но и столь же стремительно остывают. Могут возникнуть проблемы и при гидравлических ударах – сварные соединения листов иногда дают при этом течь. Кроме того, недорогие модели, не имеющие специального покрытия, подвержены коррозии, и срок службы таких батарей невелик – обычно производители дают им довольно небольшую по длительности эксплуатации  гарантию.

В подавляющем большинстве случаев стальные радиаторы представляют собой цельную конструкцию, и варьировать теплоотдачу изменением числа секций не позволяют. Они имеют паспортную тепловую мощность, которую сразу же нужно выбирать, исходя из площади и особенностей помещения, где они планируются к установке. Исключение – некоторые трубчатые радиаторы имеют возможность изменения количества секций, но это обычно делается под заказ, при изготовлении, а не в домашних условиях.

Чугунные радиаторы

Представители этого типа батарей наверняка знакомы каждому еще с раннего детства – именно такие гармошки устанавливались ранее буквально повсеместно.

Знакомый всем с детских лет чугунный радиатор МС-140-500

Возможно, такие батареи МС-140—500 и не отличались особым изяществом, но зато верно служили не одному поколению жильцов. Каждая секция подобного радиатора обеспечивала теплоотдачу в 160 Вт. Радиатор сборный, и количество секций, в принципе, ничем не ограничивалось.

Современные чугунные батареи отопления

В настоящее время в продаже немало современных чугунных радиаторов. Их уже отличает более элегантный внешний вид, ровные гладкие наружные поверхности, которые облегчают уборку. Выпускаются и эксклюзивные варианты, с интересным рельефным рисунком чугунного литься.

При всем этом, такие модели в полной мере сохраняют основные достоинства чугунных батарей:

  • Высокая теплоемкость чугуна и массивность батарей способствуют длительному сохранению и высокой отдаче тепла.
  • Чугунные батареи, при правильной сборке и качественном уплотнении соединений, не боятся гидроударов, перепадов температур.
  • Толстые чугунные стенки мало восприимчивы к коррозии и к абразивному износу.  Может использоваться практически любой теплоноситель, так что такие батареи одинаково хороши и для автономной, и для центральной систем отопления.

Если не принимать в расчёт внешние данные старых чугунных батарей, то из недостатков можно отметить хрупкость металла (недопустимы акцентированные удары), относительную сложность монтажа, связанную в больше мере с массивностью. Кроме того, далеко не любые стеновые перегородки смогут выдержать вес таких радиаторов.

Алюминиевые радиаторы

Алюминиевые радиаторы, появившись сравнительно недавно, очень быстро завоевали популярность. Они относительно недороги, имеют современный, достаточно элегантный внешний вид, обладают отменной теплоотдачей.

При выборе алюминиевых радиаторов нужно учитывать некоторые важные нюансы

Качественные алюминиевые батареи способны выдерживать давление в 15 и более атмосфер, высокую температуру теплоносителя – порядка 100 градусов. При этом тепловая отдача от одной секции у некоторых моделей достигает порой 200 Вт. Но при этом они небольшой массой (вес секции – обычно до 2 кг) и не требуют большого объема теплоносителя (емкость – не более 500 мл).

Алюминиевые радиаторы представлены в продаже как наборными батареями, с возможностью изменения количества секций, так и цельными изделиями, рассчитанными на определенную мощность.

Недостатки алюминиевых радиаторов:

  • Некоторые типы весьма подвержены кислородной коррозии алюминия, с высоким риском газообразования при этом. Это предъявляет особы требования к качеству теплоносителя, поэтому такие батареи обычно устанавливают в автономных системах отопления.
  • Некоторые алюминиевые радиаторы неразборной конструкции, секции которых изготавливаются по технологии экструзии, могут при определенных неблагоприятных условиях дать течь на соединениях. При этом провести ремонт – попросту невозможно, и придется менять всю батарею в целом.

Изо всех алюминиевых батарей самые качественные – изготовленные с применением анодного оксидирования металла. Этим изделиям практически не страшна кислородная коррозия.

Внешне все алюминиевые радиаторы примерно похожи, поэтому необходимо очень внимательно читать техническую документацию, делая выбор.

Биметаллические радиаторы отопления

Подобные радиаторы по своей надежности оспаривают первенство с чугунными, а по тепловой отдаче – с алюминиевыми. Причина тому заключается в их особой конструкции.

Строение биметаллического радиатора отопления

Каждая из секций состоит из двух, верхнего и нижнего, стальных горизонтальных коллекторов (поз. 1), соединенных таким же стальным вертикальным каналом (поз.2). Соединение в единую батарею производится высококачественными резьбовыми муфтами (поз. 3). Высокая теплоотдача обеспечивается наружной алюминиевой оболочкой.

Стальные внутренние трубы выполнены из металла, которые не подвержен коррозии или имеет защитное полимерное покрытие. Ну а алюминиевый теплообменник ни при каких обстоятельствах не контактирует с теплоносителем, и коррозия ему абсолютно не страшна.

Таким образом, получается сочетание высокой прочности и износоустойчивости с отличными теплотехническими показателями.

Цены на популярные радиаторы отопления

Радиаторы отопления

Такие батареи не боятся даже очень больших скачков давления, высоких температур. Они, по сути, универсальны, и подходят для любых систем отопления, правда, наилучшие эксплуатационные характеристики они все же показывают в условиях высокого давления центральной системы – для контуров с естественной циркуляцией они малопригодны.

Пожалуй, единственных их недостаток – высокая цена по сравнению с любыми другими радиаторами.

Для удобства восприятия размещена таблица, в которой приведены сравнительные характеристики радиаторов. Условные обозначения в ней:

  • ТС – трубчатые стальные;
  • Чг – чугунные;
  • Ал – алюминиевые обычные;
  • АА – алюминиевые анодированные;
  • БМ – биметаллические.
 ЧгТСАлААБМ
Давление максимальное (атмосфер)
рабочее6-96-1210-2015-4035
опрессовочное12-15915-3025-7557
разрушения20-2518-2530-5010075
Ограничение по рН (водородному показателю)6,5-96,5-97-86,5-96,5-9
Подверженность коррозии под воздействием:
кислороданетданетнетда
блуждающих токовнетдаданетда
электролитических парнетслабоеданетслабое
Мощность секции при h=500 мм; Dt=70 ° , Вт16085175-200216,3до 200
Гарантия, лет1013-10303-10
Видео: рекомендации по выбору радиаторов отопления

Возможно, вас заинтересует информация о том, что собой представляет батарея биметаллическая

Как рассчитать нужное количество секций радиатора отопления

Понятно, что установленный в помещении радиатор (один или несколько) должен обеспечить прогрев до комфортной температуры и компенсировать неизбежные теплопотери, независимо от погоды на улице.

Базовой величиной для вычислений всегда выступает площадь или объем комнаты. Сами по себе профессиональные расчеты – весьма сложны, и учитывают очень большое число критериев. Но для бытовых нужд можно воспользоваться упрощенными методиками.

Самые простые способы расчета

Принято считать, что для создания нормальных условий в стандартном жилом помещении достаточно 100 Вт на квадратный метр площади. Таким образом, следует всего лишь вычислить площадь комнаты и умножить ее на 100.

Q = S × 100

Q– требуемая теплоотдача от радиаторов отопления.

S– площадь обогреваемого помещения.

Если планируется установка неразборного радиатора, то это значение и станет ориентиром для подбора необходимой модели. В случае, когда будут устанавливаться батареи, допускающие изменение количества секций, следует провести еще один подсчет:

N = Q/ Qус

N– рассчитываемое количество секций.

Qус – удельная тепловая мощность одной секции. Эта величина в обязательном порядке указывается в техническом паспорте изделия.

Как видите, расчеты эти чрезвычайно просты, и не требуют каких-либо особых знаний математики – достаточно рулетки чтобы измерить комнату и листка бумаги для вычислений. Кроме того, можно воспользоваться и таблицей, расположенной ниже – там приведены уже рассчитанные значения для комнат различной площади и определённых мощностей обогревательных секций.

Таблица секции

Однако, нужно помнить, что эти значения – для стандартной высоты потолка (2,7 м) многоэтажки. Если высота комнаты иная, то лучше просчитать количество секций батареи, исходя из объема помещения. Для этого применяется усредненный показатель – 41 Вт тепловой мощности на 1 м³ объема в панельном доме, или 34 Вт – в кирпичном.

Q = S × h× 40 (34)

где – высота потолка над уровнем пола.

Дальнейший расчет – ничем не отличается от представленного выше.

Подробный расчет  с учетом особенностей помещения

А теперь перейдем к более серьезным расчетам. Упрощенная методика вычисления, приведенная выше, может преподнести хозяевам дома или квартиры «сюрприз». Когда установленные радиаторы не будут создавать в жилых помещениях требуемого комфортного микроклимата. И причина тому – целый перечень нюансов, которых рассмотренный метод просто не учитывает. А между тем, подобные нюансы могут иметь весьма важное значение.

Итак, за основу вновь берется площадь помещения и всё те же 100 Вт на м². Но сама формула уже выглядит несколько иначе:

Q = S × 100 × А × В × С × D× Е × F× G× H× I× J

Буквами от А до J условно обозначены коэффициенты, учитывающие особенности помещения и установки в нем радиаторов. Рассмотрим их по порядку:

А – количество внешних стен в помещении.

Понятно, что чем выше площадь контакта помещения с улицей, то есть, чем больше в комнате внешних стен, тем выше общие теплопотери. Эту зависимость учитывает коэффициент А:

  • Одна внешняя стена – А = 1,0
  • Две внешних стены – А = 1,2
  • Три внешний стены – А = 1,3
  • Все четыре стены внешние – А = 1,4

В – ориентация помещения по сторонам света.

Максимальные теплопотери всегда в комнатах, в которые не поступает прямого солнечного света. Это, безусловно, северная сторона дома, и сюда же можно отнести восточную – лучи Солнца здесь бывают только по утрам, когда светило еще «не вышло на полную мощность».

Прогреваемость помещений во многом зависит от их расположения относительно сторон света

Южная и западная стороны дома всегда прогреваются Солнцем значительно сильнее.

Отсюда – значения коэффициента В:

  • Комната выходит на север или восток – В = 1,1
  • Южная или западная комнаты – В = 1, то есть, может не учитываться.

С – коэффициент, учитывающий степень утепленности стен.

Понятно, что теплопотери из отапливаемого помещения будут зависеть от качества термоизоляции внешних стен. Значение коэффициента С принимают равным:

  • Средний уровень — стены выложены в два кирпича, или предусмотрено их поверхностное утепление другим материалом – С = 1,0
  • Внешние стены не утеплены – С = 1,27
  • Высокий уровень утепления на основе теплотехнических расчетов – С = 0,85.

D – особенности климатических условий региона.

Естественно, что нельзя равнять все базовые показатели требуемой мощности обогрева «под одну гребенку» — они зависят и от уровня зимних отрицательных температур, характерного для конкретной местности. Это учитывает коэффициент D. Для его выбора берутся средние температуры самой холодной декады января – обычно это значение несложно уточнить в местной гидрометеорологической службе.

  • — 35 °С и ниже – D= 1,5
  • — 25  ÷ — 35 °С – D= 1,3
  • до – 20 °С – D= 1,1
  • не ниже – 15 °С – D= 0,9
  • не ниже – 10 °С – D= 0,7

Е – коэффициент высоты потолков помещения.

Как уже говорилось, 100 Вт/м² — это усредненное значение для стандартной высоты потолков. Если она отличается, следует ввести поправочный коэффициент Е:

  • До 2,7 м – Е = 1,0
  • 2,8 – 3,0 м – Е = 1,05
  • 3,1 – 3,5 м – Е = 1,1
  • 3,6 – 4,0 м – Е = 1,15
  • Более 4,1 м – Е = 1,2

F– коэффициент, учитывающий тип помещения, расположенного выше

Устраивать систему отопления в помещениях с холодным полом – бессмысленное занятие, и хозяева всегда в этом вопросе принимают меры. А вот тип помещения, расположенного выше, часто от них никак не зависит. А между тем, если сверху жилое или утепленное помещение, то общая потребность в тепловой энергии значительно снизится:

  • холодный чердак или неотапливаемое помещение – F= 1,0
  • утепленный чердак (в том числе – и утепленная кровля) – F= 0,9
  • отапливаемое помещение – F= 0,8

G– коэффициент учета типа установленных окон.

Различные оконные конструкции подвержены теплопотерям неодинаково. Это учитывает коэффициент G:

  • обычные деревянные рамы с двойным остеклением – G= 1,27
  • окна оснащены  однокамерным стеклопакетом (2 стекла) – G= 1,0
  •  однокамерный стеклопакет с аргоновым заполнением или двойной стеклопакет (3 стекла) — G= 0,85

Н – коэффициент площади остекления помещения.

Общее количество теплопотерь зависит и от суммарной площади окон, установленных в помещении. Эта величина рассчитывается на основании отношения площади окон к площади помещения. В зависимости от полученного результата находим коэффициент Н:

  • Отношение менее 0,1 – Н = 0,8
  • 0,11 ÷ 0,2 – Н = 0,9
  • 0,21 ÷ 0,3 – Н = 1,0
  • 0,31÷ 0,4 – Н = 1,1
  • 0,41 ÷ 0,5 – Н = 1,2

I– коэффициент, учитывающий схему подключения радиаторов.

От того, как подключены радиаторы к трубам подачи и обратки, зависит их теплоотдача. Это тоже следует учесть при планировании установки и определения нужного количества секций:

Схемы врезки радиаторов в контур отопления

  • а – диагональное подключение, подача сверху, обратка снизу – I = 1,0
  • б – одностороннее подключение, подача сверху, обратка снизу – I = 1,03
  • в – двустороннее подключение, и подача, и обратка снизу – I = 1,13
  • г – диагональное подключение, подача снизу, обратка сверху – I = 1,25
  • д – одностороннее подключение, подача снизу, обратка сверху – I = 1,28
  • е – одностороннее нижнее подключение обратки и подачи – I = 1,28

J– коэффициент, учитывающий степень открытости установленных радиаторов.

Многое зависит и от того, насколько установленные батареи открыты для свободного теплообмена с воздухом помещения. Имеющиеся или искусственно созданные преграды способны существенно снизить теплоотдачу радиатора. Это учитывает коэффициент J:

На теплоотдачу батарей влияет место и способ их установки в помещении

а – радиатор расположен открыто на стене или не прикрыт подоконником – J= 0,9

б – радиатор прикрыт сверху подоконником или полкой – J= 1,0

в – радиатор прикрыт сверху горизонтальным выступом стеновой ниши – J= 1,07

г – радиатор сверху прикрыт подоконником, а с фронтальной стороны — частично прикрыт декоративным кожухом – J= 1,12

д – радиатор полностью прикрыт декоративным кожухом  – J= 1,2

  ⃰⃰⃰⃰⃰⃰⃰⃰⃰   ⃰⃰⃰⃰⃰⃰⃰⃰⃰   ⃰⃰⃰⃰⃰⃰⃰⃰⃰   ⃰⃰⃰⃰⃰⃰⃰⃰   ⃰⃰⃰⃰⃰⃰⃰⃰⃰   ⃰⃰⃰⃰⃰⃰⃰⃰⃰   ⃰⃰⃰⃰⃰⃰⃰⃰⃰   ⃰⃰⃰⃰⃰⃰⃰⃰

Ну вот, наконец, и все. Теперь можно подставлять в формулу нужные значения и соответствующие условиям коэффициенты, и на выходе получится требуемая тепловая мощность для надежного обогрева помещения, с учетом все нюансов.

После этого останется или подобрать неразборный радиатор с нужной тепловой отдачей, или же разделить вычисленное значение на удельную тепловую мощность одной секции батареи выбранной модели.

Наверняка, многим такой подсчет покажется чрезмерно громоздким, в котором легко запутаться. Для облегчения проведения вычислений предлагаем воспользоваться специальным калькулятором – в него уже заложены все требуемые величины. Пользователю остается лишь ввести запрашиваемые исходные значения или выбрать из списков нужные позиции. Кнопка «рассчитать» сразу приведет к получению точного результата с округлением в большую сторону.

Калькулятор для точного расчета радиаторов отопления

Перейти к расчётам

 

Последовательно введите запрашиваемые значения или отметьте нужные варианты в предлагаемых списках

Установите ползунком значение площади помещения, м²

Сколько внешних стен в помещении?

однадветричетыре

В какую сторону света смотрят внешние стены

Север, Северо-Восток, ВостокЮг, Юго-Запад, Запад

Укажите степень утепленности внешних стен

Внешние стены не утепленыСредняя степень утепленияВнешние стены имеют качественное утепление

Укажите среднюю температуру воздуха в регионе в самую холодную декаду года

— 35 °С и нижеот — 25 °С до — 35 °Сдо — 20 °Сдо — 15 °Сне ниже — 10 °С

Укажите высоту потолка в помещении

до 2,7 м2,8 ÷ 3,0 м3,1 ÷ 3,5 м3,6 ÷ 4,0 мболее 4,1 м

Что располагается над помещением?

холодный чердак или неотапливаемое и не утепленное помещениеутепленные чердак или иное помещениеотапливаемое помещение

Укажите тип установленных окон

Обычные деревянные рамы с двойным остеклениемОкна с однокамерным (2 стекла) стеклопакетомОкна с двухкамерным (3 стекла) стеклопакетом или с аргоновым заполнением

Укажите количество окон в помещении

Укажите высоту окна, м

Укажите ширину окна, м

Выберите схему подключения батарей

Укажите особенности установки радиаторов

Радиатор располжен открыто на стене или не прикрыт подоконникомРадиатор полностью прикрыт сверху подоконником или полкойРадиатор установлен в стеновой нишеРадиатор частично прикрыт фронтальным декоративным экраномРадиатор полностью закрыт декоративным кожухом

 

Ниже будет предложено ввести паспортную мощность одной секции выбранной модели радиатора.
Если целью расчетов стоит определение потребной суммарной тепловой мощности для отопления комнаты (например, для выбора неразборных радиаторов) то оставьте поле пустым

Введите паспортную тепловую мощность одной секции выбранной модели радиатора

Автор публикации, и он же – составитель калькулятора, надеется, что посетитель нашего портала получил полноценную информацию и хорошее подспорье для самостоятельного расчета.

Возможно, вас заинтересует информация о том, как выбрать электрокотел.

Расчет количества батарей отопления в частном доме

Как рассчитать количество радиаторов отопления?

Расчет радиаторов нужно выполнять правильно, иначе малое их количество не сможет достаточно прогреть помещение, а большое, наоборот, создаст некомфортные условия пребывания, и придется постоянно открывать окна. Известны разные методики расчета. На их выбор влияет материал батарей, климатические условия, обустройство дома.

Расчет количества батарей на 1 кв. м

Площадь каждой комнаты, где будут установлены радиаторы, можно посмотреть в документах на недвижимость или измерить самостоятельно. Потребность тепла для каждой комнаты можно узнать в строительных нормах, где приведено, что для отопления 1м2 в определенной зоне проживания потребуется:

  • для суровых климатических условий (температура достигает ниже -60 град.) – 150-200 Вт;
  • для средней полосы – 60-100 Вт.

Чтобы рассчитать, нужно умножить площадь (P) на значение потребности тепла. Учитывая эти данные, в качестве примера, приведем расчет для климата средней полосы. Чтобы достаточно отопить комнату в 16 кв. м, нужно применить расчет:

16 х 100 = 1600 Вт

Далее рассчитывается количество секций батарей (N) – полученное значение делиться на тепло, которое выделяет одна секция. Принимается, что одна секция выделяет 170 Вт, исходя из этого, проводится расчет:

Лучше округлить в большую сторону – 10 штук. Но для некоторых комнат целесообразней округлять в меньшую сторону, например, для кухни, в которой есть дополнительные источники тепла. Тогда будет 9 секций.

Расчеты можно провести по другой формуле, которая при этом аналогична выше представленным расчетам:

  • N – количество секций;
  • S – площадь комнаты;
  • P – теплоотдача одной секции.

Так, N = 16 / 170 * 100, отсюда N = 9,4.

Выбор точного количества секций биметаллических батарей

Они бывают нескольких видов, каждый из них имеет свою мощность. Минимальное выделение тепла достигает – 120 Вт, максимальное – 190 Вт. При расчете количества секций нужно учитывать необходимое потребление тепла в зависимости от места расположения дома, а также с учетом теплопотерь:

  • Сквозняки, которые происходят из-за некачественно выполненных оконных проемов и профиля окон, щелей в стенах.
  • Растраты тепла по пути следования теплоносителя от одной батареи к другой.
  • Угловое расположение комнаты.
  • Количества окон в помещении: чем их больше, тем больше теплопотери.
  • Регулярное проветривание комнат зимой также накладывает отпечаток на количество секций.

Для примера, если нужно обогреть комнату в 10 кв. м, расположенную в доме, находящемся в средней климатической полосе, то нужно приобрести батарею с 10 секциями, мощность каждой из них должна быть равна 120 Вт или ее аналог на 6 секций при теплоотдаче в 190 Вт.

Расчет количества радиаторов в частном доме

Если для квартир можно брать усредненные параметры потребляемого тепла, так как они рассчитаны на стандартные габариты комнаты, то в частном строительстве это неправильно. Ведь многие владельцы строят свои дома с высотой потолков, превышающей 2,8 метра, к тому же практически все помещения частного владения получаются угловыми, поэтому для их обогрева потребуется больше мощности.

В таком случае расчеты, основанные на учете площади помещения, не подходят: нужно применять формулу с учетом объема комнаты и делать корректировку, применяя коэффициенты уменьшения или увеличения теплоотдачи.

Значения коэффициентов следующие:

  • 0,2 – на этот показатель умножается полученное конечное число мощности, если в доме установлены многокамерные пластиковые стеклопакеты.
  • 1,15 – если установленный в доме котел работает на пределе своей мощности. В этом случае каждые 10 градусов нагреваемого теплоносителя понижают мощность радиаторов на 15%.
  • 1,8 – коэффициент увеличения, который нужно применить, если комната угловая, и в ней присутствует более одного окна.

Для расчета мощности радиаторов в частном доме применяется следующая формула:

  • V – объем помещения;
  • 41– усредненная мощность, необходимая для обогрева 1 кв. м частного дома.

Пример расчета

Если имеется комната в 20 кв. м (4х5 м – длина стен) с высотой потолков 3 метра, то ее объем легко рассчитать:

Полученное значение умножается на принятую по нормам мощность:

60 х 41 = 2460 Вт – столько требуется тепла, чтобы отопить рассматриваемую площадь.

Расчет количества радиаторов сводится к следующему (если учесть, что одна секция радиатора в среднем выделяет 160 Вт, а точные их данные зависят от материала, из которого изготовлены батареи):

2460 / 160 = 15,4 штуки

Примем, что всего нужно 16 секций, то есть нужно приобрести 4 радиатора по 4 секции на каждую стену или 2 по 8 секций. При этом не нужно забывать о коэффициентах корректировки.

Расчет отдачи тепла одного алюминиевого радиатора (видео)

В видео вы узнаете, как рассчитать теплоотдачи одной секции батареи из алюминия при разных параметрах входящего и выходящего теплоносителя.

Одна секция алюминиевого радиатора имеет мощность 199 Ватт, но это при условии, что заявленный перепад температур в 70 град. будет соблюдаться. Это означает, что на входе температура теплоносителя составляет 110 град., а на выходе 70 град. Помещение при таком перепаде должно прогреваться до 20 град. Обозначается эта разница температур DT.

В качестве примера, можно рассчитать этот параметр при следующих данных:

  • Температура теплоносителя на входе в радиатор – 85 град.;
  • Остывание воды при выходе из радиатора – 63 град.;
  • Обогрев помещения – 23 град.

Нужно сложить между собой два первых значения, разделить их на 2 и вычесть температуру помещения, наглядно это происходит так:

(85 + 63) / 2 – 23 = 52

Полученное число равняется DT, по предлагаемой таблице можно установить, что при нем коэффициент равняется 0,68. Учитывая это можно определить теплоотдачу одной секции:

199 х 0,68 = 135 Вт

Затем, зная теплопотери в каждом помещении, можно рассчитать, сколько всего нужно секций радиаторов для установки в определенную комнату. Даже если по расчетам получилась одна секция, нужно устанавливать минимум 3, иначе вся система отопления будет выглядеть нелепо и достаточно не обогреет площадь.

Расчет секций радиаторов отопления.

Если необходим точный расчет секций радиаторов отопления, то сделать это можно по площади помещения. Данный расчет подходит для помещений с низким потолком не более 2,6 метра. Для того, чтобы его обогреть тратится 100 Вт тепловой мощности на 1 м 2 . Исходя из этого, не трудно посчитать, сколько понадобится тепла на всю комнату. То есть площадь нужно умножить на количество квадратных метров.

Далее имеющийся результат следует разделить на значение теплоотдачи одной секции, полученное значение просто округляем в сторону увеличения. Если это теплое помещение, например кухня, то результат можно округлить в меньшую сторону.

При вычислении количества радиаторов нужно учитывать возможные теплопотери, учитывая определенные ситуации и состояние жилья. Например, если комната квартиры угловая и имеет балкон или лоджию, то тепло она теряет намного быстрее, нежели комнаты квартир с другим расположением. Для таких помещений расчеты по тепловой мощности необходимо увеличить минимум на 20%. Если в планах монтировать радиаторы отопления в нише или скрыть их за экраном, то расчет тепла увеличивают на 15-20%.

Для расчета радиаторов отопления, вы можете воспользоваться калькулятором расчета радиаторов отопления.

Расчеты учитывая объем помещения.

Расчет секций радиаторов отопления будет более точным, если их рассчитывать, основываясь на высоте потолка, то есть исходя из объема помещения. Принцип расчета в этом случае аналогичный предыдущему варианту.

Вначале нужно вычислить общую потребность в тепле, а уже потом рассчитать количество секций в радиаторах. Когда радиатор скрывают за экраном, то потребность помещения в тепловой энергии увеличивают минимум на 15-20%. Если брать во внимание рекомендации СНИП, то для того, чтобы обогреть один кубический метр жилой комнаты в стандартном панельном доме необходимо потратить 41 Вт тепловой мощности.

Для расчета берем площадь комнаты и умножаем на высоту потолка, получится общий объем, его нужно умножить на нормативное значение, то есть на 41. Если квартира с хорошими современными стеклопакетами, на стенах есть утепление из пенопласта, то тепла понадобится меньшее значение – 34 Вт на м 3 . Например, если комната с площадью 20 кв. метров имеет потолки с высотой 3 метра, то объем помещения будет составлять всего 60 м 3 , то есть 20Х3. При расчете тепловой мощности комнаты получаем 2460 Вт, то есть 60Х41.

Таблица расчетов необходимого теплоснабжения.

Приступаем к расчету: Чтобы рассчитать необходимое количество радиаторов отопления необходимо полученные данные разделить на теплоотдачу одной секции, которую указывает производитель. Например, если взять за пример: одна секция выдает 170 Вт, берем площадь комнаты, для которой нужно 2460 Вт и делим его на 170 Вт, получаем 14,47. Далее округляем и получаем 15 секций отопления на одну комнату. Однако следует учитывать тот факт, что многие производители намеренно указывают завышенные показатели по теплоотдаче для своих секций, основываясь на том, что температура в батареях будет максимальной. В реальной жизни такие требования не выполняются, а трубы иногда чуть теплые, вместо горячих. Поэтому нужно исходить из минимальных показателей теплоотдачи на одну секцию, которые указывают в паспорте товара. Благодаря этому полученные расчеты будут более точными.

Как получить максимально точный расчет.

Расчет секций радиаторов отопления с максимальной точностью получить довольно трудно, ведь не все квартиры считаются стандартными. И особенно это касается частных строений. Поэтому у многих хозяев возникает вопрос: как сделать расчет секций радиаторов отопления по индивидуальным условиям эксплуатации? В этом случае учитывается высота потолка, размеры и количество окон, утепление стен и другие параметры. По этому методу расчетов необходимо использовать целый перечень коэффициентов, которые будут учитывать особенности определенного помещения, именно они могут повлиять на способность отдавать или сохранять тепловую энергию.

Вот как выглядит формула расчета секций радиаторов отопления: КТ = 100Вт/кв.м. * П * К1 * К2 * К3 * К4 * К5 * К6 * К7, показатель КТ — это количество тепла, которое нужно для индивидуального помещения.

1. где П — общая площадь комнаты, указана в кв.м.;

2. К1 — коэффициент, который учитывает остекление оконных проемов: если окно с обычным двойным остеклением, то показатель — 1,27;

  • Если окно с двойным стеклопакетом — 1,0;
  • Если окно с тройным стеклопакетом — 0,85.

3. К2 — коэффициент теплоизоляции стен:

  • Очень низкая степень теплоизоляции — 1,27;
  • Отличная теплоизоляция (кладка стен на два кирпича или же утеплитель) — 1,0;
  • Высокая степень теплоизоляции — 0,85.

4. К3 — соотношение площади окон и пола в комнате:

5. К4 — коэффициент, который позволяет учитывать среднюю температуру воздуха в самое холодное время:

  • Для -35 градусов — 1,5;
  • Для -25 градусов — 1,3;
  • Для -20 градусов — 1,1;
  • Для -15 градусов — 0,9;
  • Для -10 градусов — 0,7.

6. К5 — корректирует потребность в тепле, учитывая количество наружных стен:

7. К6 — учитывает тип помещения, которое находится выше:

  • Очень холодный чердак — 1,0;
  • Чердак с отоплением — 0,9;
  • Отапливаемое помещение — 0,8

8. К7 — коэффициент, который учитывает высоту потолков:

Представленный расчет секций радиаторов отопления учитывает все нюансы комнаты и расположения квартиры, поэтому достаточно точно определяет потребность помещения в тепловой энергии. Полученный результат нужно только разделить на значение теплоотдачи от одной секции, готовый результат округляет. Есть и такие производители, которые предлагают воспользоваться более простым способом расчета. На их сайтах представлен точный калькулятор расчетов, необходимый для вычислений. Для работы с этой программой, пользователь вводит нужные значения в поля и получает готовый результат. Кроме этого, он может использовать специальный софт.

Калькулятор расчета количества секций радиаторов

Информация по назначению калькулятора

К алькулятор радиаторов отопления предназначен для расчета количества секций радиатора, обеспечивающих необходимый тепловой поток, возмещающий теплопотери рассчитываемого помещения и поддержания на заданном уровне температуры, отвечающей условиям теплового комфорта и/или требованиям технологического процесса. Расчет производится с учетом теплопотерь ограждающих конструкций, а также особенностей системы отопления.

В опросы отопления являются основополагающими как для частного хозяйства, так и квартир в многоэтажном доме. Особенно они актуальны для РФ, большая часть территории которой находится в зоне пониженных температур. Для создания оптимальных и благоприятных температурных условий в помещениях разрабатывается множество материалов с усиленными теплоизоляционными свойствами.

К аждый год на рынках появляются высокотехнологичные и эффективные системы теплоснабжения. Но особое внимание всегда уделяется радиаторам, поскольку они являются конечным звеном в отопительной цепи. Отдаваемое ими тепло служит главным критерием работы всей системы теплоснабжения.

Н есмотря на важность роли, которая отведена радиаторам отопления, они остаются самыми консервативными элементами в строительной индустрии. Инновационные нововведения в этой сфере появляются редко, хотя исследователи постоянно работают над совершенствованием конструкций изделий. В современном тепловом обеспечении зданий и сооружений используется 4 основных типов, и данный калькулятор подскажет как рассчитать сколько необходимо радиаторов отопления на 1 м2.

И х классификация предопределяется материалами изготовления, в соответствии с которыми они подразделяются на:

  • Стальные
  • Чугунные
  • Алюминиевые
  • Биметаллические

С тальные радиаторы подразделяются на панельные и трубчатые. Панельные, именуемые также конвекторами, обладают КПД, достигающим 75%. Это высокий показатель эффективной работы всей системы. Другое их достоинство – дешевизна. Панели обладают малой энергетической емкостью, что позволяет снижать расходы теплового носителя. К недостаткам относится низкая стойкость против коррозии после слива воды.

И зделия просты в эксплуатации. По мере необходимости нагревательные панели могут легко наращиваться до 33 штук. Относительно низкая стоимость делает их самыми распространенными продуктами в модельном ряду.

Р оссийские бренды сейчас занимают лидирующие позиции на внутреннем рынке. Импорт зарубежной продукции достаточно дорогой, а российские производители уже наладили выпуск панельных систем радиаторов, которые по качеству не уступают зарубежным аналогам.

Т рубчатые системы радиаторов по конструкции состоят из стальных труб, в которых циркулирует теплоноситель. Данные приборы достаточно технологически сложны для промышленного производства. Это сказывается на цене конечной продукции.

Т рубчатые радиаторы полностью сохраняют все преимущества панельных, но по сравнению с ними имеют более высокое рабочее давление 9-16 бар против 7-10 бар. По показателям тепловой мощности (120 – 1600 Вт) и максимальной температуре нагрева воды (120 градусов) обе модели сопоставимы друг с другом. Если вы не знаете как правильно рассчитать количество радиаторов, воспользуйтесь онлайн калькулятором.

А люминиевые отопительные приборы изготовлены из одноименного материала или его сплавов. Подразделяются они на литые и экструзионные. Эта разновидность чаще всего применяется в системах автономного теплоснабжения в индивидуальных хозяйствах. Для централизованного отопления данный вид не подходит, так как чувствителен к качеству теплоносителя. Они могут быстро выйти из строя, если в воде есть агрессивные примеси и не выдерживают сильных давлений.

Р адиаторы, изготовленные путем литья, отличаются широкими каналами для теплоносителя и упрочненными стенками увеличенной толщины. Имеют несколько секций, число которых можно увеличивать или снижать.

Э кструзионный метод изготовления приборов основан на механическом выдавливании элементов из алюминиевого сплава. Весь процесс относительно дешевый, но конечный продукт имеет цельный вид. Количество секций не подлежит изменению.

А люминиевые радиаторы обладают очень высокой теплоотдачей, быстро нагревают помещение и просты при монтаже, так как имеют небольшой вес. Но алюминий вступает в химические реакции с теплоносителем, поэтому ему требуется хорошо очищенная вода. Слабое место – стыковки секций с трубными соединениями. Со временем возможны протечки. Они не ударопрочные. По давлению, температурному режиму и другим характеристикам коррелируют со стальными радиаторами.

Ч угунные радиаторы являются самым традиционным элементом теплоснабжения. За долгие годы они практически не видоизменялись, но сохранили свою популярность и просты по форме и дизайну. Долговечны, надежны, хорошо держат тепло. Могут долго сопротивляться коррозии и воздействию химических реагентов. По температурному режиму не уступают другим приборам аналогичной комплектации. По давлению и мощности – превосходят, но сложны в установке и транспортировке.

Б иметаллические устройства обычно имеют трубчатый стальной сердечник и алюминиевый корпус. Такие отопительные устройства выдерживают высокое давление. В целом, они отличаются повышенной надежностью и прочностью. При низкой инерционности обладают высокой теплоотдачей и низким расходом воды, не боятся гидравлических ударов. По базовым показателям в 1,5-2 раза превосходят аналогичные устройства. Главный недостаток – высокая цена.

Общие сведения по результатам расчетов

  • К оличество секций радиатора — Расчетное кол-во секций радиатора, с обеспечением необходимого теплового потока для достаточного обогрева помещения при заданных параметрах.
  • К ол-во тепла, необходимое для обогрева — Общие теплопотери помещения с учетом особенностей данного помещения и особенностей функционирования системы отопления.
  • К ол-во тепла, выделяемое радиатором — Общий тепловой поток от всех секций радиатора, выделяемый в помещение при заданной температуре теплоносителя.
  • К ол-во тепла, выделяемое одной секцией — Фактический тепловой поток, выделяемый одной секцией радиатора с учетом особенностей системы отопления.

Калькулятор работает в тестовом режиме.

Калькулятор расчета количества секций радиаторов отопления

В подавляющем числе случаев основными приборами конечного теплообмена в системах отопления остаются радиаторы. Значит, важно не только правильно заранее рассчитать требуемую тепловую мощность котла отопления, но и правильно расставить приборы теплообмена в помещениях дома или квартиры, чтобы обеспечить комфортный микроклимат в каждом из них.

Калькулятор расчета количества секций радиаторов отопления

В этом вопросе поможет калькулятор расчета количества секций радиаторов отопления, который размещен ниже. Он также позволяет определить необходимую суммарную тепловую мощность радиатора, если тот является неразборной моделью.

Если в ходе расчетов будут возникать вопросы, то ниже калькулятора размещены основные пояснения по его структуре и правилам применения.

Калькулятор расчета количества секций радиаторов отопления

Некоторые разъяснения по работе с калькулятором

Часто можно встретить утверждение, что для расчета требуемой тепловой отдачи радиаторов достаточно принять соотношение 100 Вт на 1 м² площади комнаты. Однако, согласитесь, что такой подход совершенно не учитывает ни климатических условий региона проживания, ни специфики дома и конкретного помещения, ни особенностей установки самих радиаторов. А ведь все это имеет определенное значение.

В данном алгоритме за основу также взято соотношение 100 Вт/м², однако, введены поправочные коэффициенты, которые и внесут необходимые коррективы, учитывающие различные нюансы.

— Площадь помещения – хозяевам известна.

— Количество внешних стен – чем их больше, тем выше теплопотери, которые необходимо компенсировать дополнительной мощностью радиаторов. В угловых квартирах часто комнаты имеют по две внешних стены, а в частных домах встречаются помещения и с тремя такими стенами. В то же время бывают и внутренние помещения, в которых теплопотери через стены практически отсутствуют.

— Направление внешних стен по сторонам света. Южная или юго-западная сторона будет получать какой-никакой солнечный «заряд», а вот стены с севера и северо-востока Солнца не видят никогда.

— Зимняя «роза ветров» – стены с наветренной стороны, естественно, выхолаживаются намного быстрее. Если хозяевам этот параметр неизвестен, то можно оставить без заполнения – калькулятор рассчитает для самых неблагоприятных условий.

— Уровень минимальных температур – скажет о климатических особенностях региона. Сюда должны вноситься не аномальные значения, а средние, характерные для данной местности в самую холодную декаду года.

— Степень утепления стен. По большому счету, стены без утепления – вообще не должны рассматриваться. Средний уровень утепления будет соответствовать, примерно, стене в 2 кирпича из пустотного керамического кирпича. Полноценное утепление – выполненное в полном объеме на основании теплотехнических расчетов.

— Немалые теплопотери происходят через перекрытия – полы и потолки. Поэтому важное значение имеет соседство помещения сверху и снизу – по вертикали.

— Количество, размер и тип окон – связь с теплотехническими характеристиками помещения очевидна.

— Количество входных дверей (на улицу, в подъезд или на неотапливаемый балкон) – любое открытие будет сопровождаться «порцией» поступающего холодного воздуха, и это необходимо каким-то образом компенсировать.

— Имеет значение схема врезки радиаторов в контур – теплоотдача от этого существенно изменяется. Кроме того, эффективность теплообмена зависит и от степени закрытости батареи на стене.

— Наконец, последним пунктом будет предложено ввести удельную тепловую мощность одной секции батареи отопления. В результате будет получено требуемое количество секций для размещения в данном помещении. Если расчет проводится для неразборной модели, то этот пункт оставляют незаполненным, а результирующее значение берут из второй строки расчета – она покажет необходимую мощность радиатора в кВт.

В расчетное значение уже заложен необходимый эксплуатационный резерв.

Что необходимо еще знать про радиаторы отопления?

При выборе этих приборов теплообмена следует учитывать ряд важных нюансов. Подробнее об этом можно узнать в публикациях нашего портала, посвящённых стальным , алюминиевым и биметаллическим радиаторам отопления.

Расчет радиаторов отопления – как не прогадать с количеством секций?

С выбором радиаторов отопления сегодня никаких проблем. Тут тебе и чугунные, и алюминиевые, и биметаллические – выбирай, какие хочешь. Однако сам факт покупки дорогих радиаторов особенной конструкции – еще не гарантия того, что в вашем доме будет тепло. В этом случае играет роль и качество, и количество. Давайте разберемся, как правильно рассчитать радиаторы отопления.

Расчет всему голова – отталкиваемся от площади

Неправильный расчет количества радиаторов может привести не только к недостатку тепла в помещении, но и к чересчур большим счетам за отопление и слишком высокой температуре в комнатах. Расчет следует производить как во время самой первой установки радиаторов, так и при замене старой системы, где, казалось бы, с количеством секций давно все понятно, поскольку теплоотдача радиаторов может существенно отличаться.

Разные помещения – разные расчеты. Например, для квартиры в многоэтажном доме можно обойтись самыми простыми формулами или же расспросить соседей об их опыте отопления. В большом частном доме простые формулы не помогут – нужно будет учесть множество факторов, которые в городских квартирах попросту отсутствуют, например, степень утепления дома.

Самое главное – не доверяйте цифрам, озвученным наобум всевозможными «консультантами», которые на глаз (даже не видя помещения!) называют вам количество секций для отопления. Как правило, оно значительно завышено, из-за чего вы будете постоянно переплачивать за лишнее тепло, которое буквально будет уходить в открытую форточку. Рекомендуем использовать несколько способов расчета количества радиаторов.

Простые формулы – для квартиры

Жители многоэтажных домов могут использовать достаточно простые способы расчетов, которые совершенно не подходят для частного дома. Самый простой расчет радиаторов отопления не блещет высокой точностью, однако он подойдет для квартир со стандартными потолками не выше 2.6 м. Учтите, что для каждой комнаты проводится отдельный расчет количества секций.

За основу берется утверждение, что на отопление квадратного метра комнаты нужно 100 Вт тепловой мощности радиатора. Соответственно, для того, чтобы вычислить количество тепла, необходимое для комнаты, умножаем ее площадь на 100 Вт. Так, для комнаты площадью 25 м 2 необходимо приобрести секции с совокупной мощностью 2500 Вт или 2,5 кВт. Производители всегда указывают теплоотдачу секций на упаковке, например, 150 Вт. Наверняка вы уже поняли, что делать дальше: 2500/150 = 16,6 секций

Результат округляем в большую сторону, впрочем, для кухни можно округлить и в меньшую – помимо батарей, там еще будет нагревать воздух плитка, чайник.

Также следует учесть возможные потери тепла в зависимости от расположения комнаты. Например, если это помещение, расположенное на углу здания, то тепловую мощность батарей можно смело увеличивать на 20 % (17 *1,2 = 20,4 секций), такое же количество секций понадобится и для комнаты с балконом. Учтите, что если вы намерены запрятать радиаторы в нишу или скрыть их за красивым экраном, то вы автоматически теряете до 20 % тепловой мощности, которую придется компенсировать количеством секций.

Расчеты от объема – что говорит СНиП?

Более точное количество секций можно высчитать, учитывая высоту потолков – этот способ особенно актуален для квартир с нестандартной высотой комнат, а также для частного дома в качестве предварительного расчета. В этом случае мы определим тепловую мощность, исходя из объема помещения. Согласно нормам СНиП, для обогрева одного кубического метра жилой площади в стандартном многоэтажном доме необходим 41 Вт тепловой энергии. Это нормативное значение необходимо умножить на общий объем, который можно получить, перемножим высоту комнаты на ее площадь.

Например, объем комнаты площадью 25 м 2 ­ с потолками 2,8 м составляет 70 м 3 . Эту цифру умножаем на стандартные 41 Вт и получаем 2870 Вт. Дальше действуем, как и в предыдущем примере – делим общее количество Вт на теплоотдачу одной секции. Так, если теплоотдача равна 150 Вт, то количество секций – приблизительно 19 (2870/150 = 19,1). К слову, ориентируйтесь на минимальные показатели теплоотдачи радиаторов, ведь температура носителя в трубах редко когда в наших реалиях соответствует требованиям СНиП. То есть, если в техпаспорте радиатора указаны рамки от 150 до 250 Вт, то по умолчанию берем меньшую цифру. Если вы сами отвечаете за отопление частного дома, то берите среднее значение.

Точные цифры для частных домов – учитываем все нюансы

Частные дома и большие современные квартиры никак не попадают под стандартные расчеты – слишком много нюансов нужно учесть. В этих случаях можно применить самый точный способ расчета, в котором эти нюансы как раз и учитываются. Собственно, формула сама по себе весьма простая – с такой справится и школьник, главное – правильно подобрать все коэффициенты, которые учитывают особенности дома или квартиры, влияющие на возможность сохранять или терять тепловую энергию. Итак, вот наша точная формула:

  • КТ = N*S*K 1 *K 2 *K 3 *K 4 *K 5 *K 6 *K 7
  • КТ – это количество тепловой мощности в Вт, которое нам необходимо для отопления конкретной комнаты;
  • N – 100 Вт/кв.м, стандартное количество тепла на метр квадратный, к которому мы и будем применять понижающие или повышающие коэффициенты;
  • S – площадь помещения, для которого мы будем рассчитывать количество секций.

Следующие коэффициенты имеют как свойство повышать количество тепловой энергии, так и понижать, в зависимости от условий комнаты.

  • K 1 – учитываем характер остекления окон. Если это окна с обычным двойным остеклением, коэффициент равен 1,27. Окна с двойным стеклопакетом – 1,0, с тройным – 0,85.
  • K 2 – учитываем качество теплоизоляции стен. Для холодных неутепленных стен этот коэффициент равен по умолчанию 1,27, для нормальной теплоизоляции (кладка в два кирпича) – 1,0, для хорошо утепленных стен – 0,85.
  • K 3 – учитываем среднюю температуру воздуха в пик зимних холодов. Так, для -10 °С коэффициент равен 0,7. На каждые -5 °С добавляем к коэффициенту 0,2. Так, для -25 °С коэффициент будет равен 1,3.
  • K 4 – принимаем во внимание соотношение пола и площади окон. Начиная с 10 % (коэффициент равен 0,8) на каждые следующие 10 % добавляем 0,1 к коэффициенту. Так, для соотношения 40 % коэффициент будет равен 1,1 (0,8 (10%) +0,1 (20%)+0,1(30%)+0,1(40%)).
  • K 5 – понижающий коэффициент, корректирующий количество тепловой энергии с учетом типа помещения, расположенного выше. За единицу берем холодный чердак, если чердак отапливаемый – 0,9, если над комнатой отапливаемое жилое помещение – 0,8.
  • K 6 – корректируем результат в сторону увеличения с учетом количества стен, контактирующих с окружающей атмосферой. Если 1 стена – коэффициент равен 1,1, если две – 1,2 и так далее до 1,4.
  • K 7 – и последний коэффициент, корректирующий расчеты относительно высоты потолков. За единицу берется высота 2,5, и на каждые полметра высоты прибавляется 0.05 к коэффициенту Таким образом, для 3 метров коэффициент – 1,05, для 4 – 1,15.

Благодаря этому расчету, вы получите количество тепловой энергии, которая необходима для поддержания комфортной среды обитания в частном доме или нестандартной квартире. Остается только разделить готовый результат на значение теплоотдачи выбранных вами радиаторов, чтобы определить количество секций.

Расчет количества секций радиаторов отопления на 1 кв.м

 При планировании капитального ремонта в вашем доме или же квартире, а так же при планировке постройки нового дома необходимо произвести расчет мощности радиаторов отопления. Это позволит вам определить количество радиаторов, способных обеспечить теплом ваш дом в самые лютые морозы. Для проведения расчетов необходимо узнать необходимые параметры, такие как размер помещений и мощность радиатора, заявленной производителем в прилагаемой технической документации. Форма радиатора, материал из которого он выполнен, и уровень теплоотдачи в данных расчетах не учитываются. Зачастую количество радиаторов  равно количеству оконных проемов в помещении, поэтому, рассчитываемая мощность разделяется на общее количество оконных проемов, так можно определить величину одного радиатора.

Следует помнить, что не нужно производить расчет для всей квартиры, ведь каждая комната имеет свою отопительную систему и требует к себе индивидуальный подход. Так если у вас угловая комната, то к полученной величине мощности необходимо прибавить еще около двадцати процентов. Такое же количество нужно прибавить, если ваша система отопления работает с перебоями или имеет другие недостатки эффективности.

Расчет мощности радиаторов отопления может осуществляться тремя способами:

Стандартный расчет радиаторов отопления

Согласно строительным нормами и другими правилами необходимо затрачивать 100Вт мощности вашего радиатора на 1метр квадратный жилплощади. В таком случае необходимые расчеты производятся при использовании формулы:

С*100/Р=К, где

К— мощность одной секции вашей радиаторной батареи, согласно заявленной в ее характеристике;

С— площадь помещения. Она равна произведению длины комнаты на ее ширину.

К примеру, комната имеет 4 метра в длину и 3.5 в ширину. В таком случае ее площадь равна:4*3.5=14 метров квадратных.

Мощность, выбранной вами одной секции батареи заявлена производителем в 160 Вт. Получаем:

14*100/160=8.75. полученную цифру необходимо округлить и получается что для такого помещения потребуется 9 секций радиатора отопления. Если же это угловая комната, то 9*1.2=10.8, округляется до 11. А если ваша система теплоснабжения недостаточно эффективна, то еще раз добавляем 20 процентов от первоначального числа: 9*20/100=1.8 округляется до 2.

 Итого: 11+2=13. Для угловой комнаты площадью 14 метров квадратных, если система отопления работает с кратковременными перебоями понадобиться приобрести 13 секций батарей.

Примерный расчет — сколько секций батареи на квадратный метр

Он базируется на том, что радиаторы отопления при серийном производстве имеют определенные размеры. Если помещение имеет высоту потолка равную 2.5 метра, то на площадь в 1.8 метров квадратных потребуется лишь одна секция радиатора.

Подсчет количества секций радиатора для комнаты с площадью в 14 метров квадратных равен:

14/1.8=7.8, округляется до 8. Так для помещения с высотой до потолка в 2.5м понадобится восемь секций радиатора. Следует учитывать, что этот способ не подходит, если у отопительного прибора малая мощность (менее 60Вт) ввиду большой погрешности.

Объемный или для нестандартных помещений

Такой расчет применяется для помещений с высокими или очень низкими потолками. Здесь расчет ведется из данных о том, что для обогрева одного метра кубического помещения необходима мощность в 41ВТ. Для этого применяется формула:

К=О*41, где:

 К- необходимое количество секций радиатора,

О-объем помещения, он равен произведению высоты на ширину и на длину комнаты.

Если комната имеет высоту-3.0м; длину – 4.0м и ширину – 3.5м, то объем помещения равен:

3.0*4.0*3.5=42 метра кубических.

Расчитывается общая потребность в тепловой энергии данной комнаты:

42*41=1722Вт, учитывая, сто мощность одной секции составляет 160Вт,можно расчитать необходимое их количество путем деления общей потребности в мощности на мощность одной секции: 1722/160=10.8, округляется до 11 секций.

Если выбраны радиаторы, которые не делятся на секции, от общее число нужно поделить на мощность одного радиатора.

Округлять полученные данные лучше в большую сторону, так как производители иногда завышают заявленную мощность.

 

Аккумулятор какого размера вам понадобится для питания вашего дома?

Похоже, Tesla делает аккумулятор для вашего дома. Было бы круто? Я думаю так. Но зачем вам домашний аккумулятор? Я могу придумать пару вариантов использования:

  • Для автономного дома вы можете использовать солнечную или ветровую энергию. К сожалению, ни один из этих двух источников не обеспечивает постоянной энергии. Если бы вы могли хранить энергию в батарее, вы могли бы использовать ее ночью или в безветренную погоду.
  • Многие люди держат дома бензиновый генератор. У меня есть один, который я использую не слишком часто, но он великолепен, когда он вам нужен. Что, если бы у вас была батарея, которую вы могли бы использовать в своем доме во время перебоев в подаче электроэнергии? Это было бы круто.
  • Вроде бы энергокомпания хотела бы, чтобы у всех был аккумулятор. С домашней батареей вы можете уменьшить скачки напряжения в сети. Когда вы включаете кондиционер, он потребляет большой ток в течение короткого периода времени (вот объяснение, почему ток резко возрастает).С батареей этот текущий спрос может быть нивелирован (я думаю).

Но вы здесь не для этого, не так ли? Вы хотите знать, какой большой аккумулятор вам понадобится. Давай выясним.

Размер батареи

Нам нужны некоторые начальные значения. Во-первых, как долго вы хотите, чтобы ваш дом работал от батареи? Я думаю, Илон Маск (из Tesla) сказал одну неделю. Понятно. Следующим важным моментом является потребление энергии. Я думаю, что справедливым предположением является постоянное потребление мощности 2000 Вт. Очевидно, что дому в какой-то момент дня потребуется более 2000 Вт.Тем не менее, ночью вам не потребуется много энергии, так что средняя дневная мощность может составлять 2000 Вт. Если вам не нравится это значение, вы можете использовать свои собственные числа в расчетах.

Если я знаю мощность и время, я могу использовать определение мощности для расчета энергии, хранящейся в батарее.

Мощность в ваттах — это нормально (поскольку ватт — это джоуль в секунду), но мне нужно время в секундах.

Теперь я могу рассчитать запасенную в батарее энергию.

Отлично. Но что, черт возьми, такое Джоуль? Конечно, это единица энергии, но много ли это? Вот простой эксперимент, который вы можете провести самостоятельно. Возьмите учебник и положите на пол. Теперь возьмите его и положите на стол. Чтобы поднять книгу, вам нужна энергия (чтобы изменить ее гравитационную потенциальную энергию). Книга весит около 1 кг, а вы подняли ее примерно на 1 метр. Это дает изменение энергии примерно на 10 Джоулей (не забывайте, что гравитационное поле составляет 9,8 Н / кг). Итак, теперь вы знаете о Джоулях.

Оценка углеродного следа аккумуляторных батарей общего назначения

С начала века в мире произошел взрыв в производстве возобновляемой энергии. Согласно Статистическому обзору мировой энергетики BP за 2018 год, мировое производство возобновляемой энергии в 2000 году составило 218 тераватт-часов (ТВтч). К 2018 году это число достигло 2480 ТВтч, при этом среднегодовой рост за последнее десятилетие составил в среднем 16%.

Столь быстрый рост возобновляемой энергетики был вызван снижением кривых затрат и поддерживался законодательством, направленным на сокращение выбросов в атмосферу, таких как углекислый газ.Но также потребовались коммунальные услуги, чтобы приспособиться к этому притоку прерывистой возобновляемой энергии.

Запас энергии

Поскольку возобновляемые источники, такие как ветер и солнечная энергия, могут внезапно изменять мощность без предупреждения, возможность хранения прерывистой энергии стала более важной. Исторически сложилось так, что гидроаккумулятор с гидроаккумулятором (PHES) был основным типом хранилища в масштабе сети. PHES включает перекачку воды вверх в резервуар, а затем позволяет этой воде течь обратно вниз через турбину по мере необходимости.

На

PHES по-прежнему приходится около 95% всех хранилищ в масштабе сети, но в последние годы это число снижается, поскольку решения для аккумуляторов стали более экономичными.

В декабре 2017 года самая большая на сегодняшний день аккумуляторная система хранения была подключена к сети в Южной Австралии. Запас энергии Хорнсдейла мощностью 100 мегаватт (МВт) был построен Tesla для поддержки соседней ветряной электростанции Хорнсдейл мощностью 315 МВт.

Это всего лишь около 1/30 мощности крупнейшего в мире объекта PHES.Однако Управление энергетической информации (EIA) недавно сообщило, что емкость аккумуляторных батарей увеличилась в четыре раза за последние четыре года. Ожидается, что в 2021 году во Флориде будет запущен проект по хранению солнечных батарей мощностью 409 МВт.

Следы выбросов углерода при хранении аккумуляторов

По мере роста приложений для аккумуляторов возрастает интерес к выбросам углерода, связанным с этими приложениями. Обычные выбросы при производстве электроэнергии были охарактеризованы для множества источников энергии, но было проведено мало исследований, чтобы охарактеризовать выбросы, связанные с использованием батарей в устройствах хранения.

Для этого мы можем рассмотреть в качестве примера Hornsdale Power Reserve. Он питается от литий-ионных аккумуляторов. Чтобы провести оценку жизненного цикла (ОЖЦ) выбросов углекислого газа этого проекта, нам необходимо рассмотреть 1). Выбросы, связанные с постройкой батарей; 2). Выбросы, связанные с зарядкой и разрядкой аккумуляторов во время нормальной работы; и 3). Выбросы, связанные с переработкой или утилизацией батарей.

Конечно, выбросы, связанные с нормальной работой объекта, будут зависеть от вида энергии, используемой для зарядки батарей.В случае Хорнсдейла это энергия ветра, которая имеет один из самых низких выбросов углерода среди всех источников электроэнергии.

В докладе IVL Шведского института экологических исследований за 2019 год были рассмотрены имеющиеся данные о выбросах углерода для литий-ионных аккумуляторов. В исследовании рассматривался обычно используемый аккумулятор NMC (батарея с примерно 30% никеля, 30% марганца и 30% кобальта в катоде).

В исследовании рассматривались три этапа изготовления батареи:

  • Горнодобывающая промышленность
  • Производство материалов для аккумуляторов
  • Производство элементов и сборка аккумуляторных батарей

Авторы обнаружили, что производство материалов для аккумуляторных батарей обычно составляет наибольшую долю выбросов, которые они определили как 59 килограммов (кг) эквивалента CO2 (экв.) На киловатт-час (кВтч) емкости аккумулятора.Производство элементов и сборка аккумуляторных батарей потребляют больше электроэнергии, поэтому этот процесс сильно зависит от типа используемой электроэнергии. Для этого процесса авторы оценили диапазон от 0-60 кг CO2-экв / кВтч батареи, с диапазоном, считающимся 100% возобновляемой энергией, вплоть до энергии, полученной в основном из ископаемого топлива.

Таким образом, комбинация шагов привела к общему диапазону выбросов углерода в 59-119 кг CO2-экв / кВтч аккумулятор со средним значением 89 кг CO2-экв / кВтч. Это номер от колыбели до ворот.

По окончании срока службы аккумулятор следует утилизировать, что создает еще одно бремя выбросов парниковых газов. Авторы указали, что из-за потенциальных рисков поставки таких материалов для аккумуляторов, как литий, кобальт и никель, «переработка стала чем-то, что большинство стран считает необходимым для дальнейшего внедрения литий-ионных аккумуляторов сегодня и в будущем».

Утилизация по окончании срока службы не рассматривалась в этом исследовании, хотя в предыдущей версии этого исследования рассматривалась стадия утилизации.Эрик Эмильссон, один из соавторов исследования, объяснил причину, по которой они решили не включать переработку на этот раз:

«Методы, используемые для расчета рециркуляции, сильно различаются, что добавляет ненужные неопределенности в оценку. Основная проблема заключается в том, как добавляются кредиты от вторичных материалов (иногда случайно дважды) или не включаются вообще при моделировании производства. Помимо различий в моделировании, переработка автомобильных аккумуляторов все еще находится на начальной стадии из-за отсутствия доступных автомобильных аккумуляторов с истекшим сроком службы.”

В статье 2017 года авторы оценили несколько текущих технологий и после прогнозирования того, чем может закончиться отрасль по переработке литий-ионных аккумуляторов, остановились на уровне выбросов парниковых газов на этапе переработки 15 кг CO2-экв / кВтч аккумулятора.

Авторы также отметили, что ЕС принял Правила категорий экологического следа продукции (PEFCR). Исследование аккумуляторов PEFCR показало, что 12% выбросов парниковых газов в течение срока службы литий-ионных аккумуляторов происходят в конце срока службы. При предыдущем среднем значении 89 кг CO2-экв / кВтч, 12% добавили бы еще 11 кг, что в сумме составит 100 кг CO2-экв / кВтч.

Последняя часть LCA касается нормальной работы аккумулятора. Вырабатывается электричество, которое используется для зарядки батареи, а затем батарея разряжается по мере потребления электроэнергии. Этот расчет состоит из двух компонентов: эффективности заряда / разряда батареи и источника электроэнергии.

Исследование PEFCR показало, что энергоэффективность литий-ионных батарей составляет 96%. Таким образом, при зарядке и разряде аккумулятора происходит потеря примерно 4%.

Имейте в виду, что этот след парниковых газов является одноразовой зарядкой аккумулятора. Таким образом, общий углеродный след ветряной электростанции будет зависеть от количества циклов, которые выполняет батарея. (Я несколько раз обращался к Хорнсдейлу и Тесле за рекомендациями по химическому составу батарей и количеству ожидаемых циклов, но ответа не получил).

Оценка площади основания

Согласно исследованию PEFCR, литий-ионные батареи могут выдержать около 400 циклов.Это означает, что аккумулятор можно полностью зарядить и разрядить 400 раз, прежде чем емкость аккумулятора упадет до неприемлемого уровня (определяемого как 60%). Поскольку эта мощность со временем снижается, в исследовании PEFCR говорится, что «минимальная энергия, обеспечиваемая в течение всего срока службы, может быть рассчитана как 400-кратная средняя мощность за цикл (80% от начальной энергии)».

(После первоначальной попытки выполнить этот расчет я получил довольно много отзывов о том, что предполагаемое количество циклов должно быть намного больше, чем это.Таким образом, мы можем считать это нижней оценкой количества циклов. Я прослежу влияние, если мы предположим гораздо большее количество циклов).

Исследование PEFCR дает нам основу для оценки углеродного следа литий-ионных батарей. Аккумуляторная система хранения Хорнсдейла имеет общую генерирующую мощность 100 мегаватт и 129 мегаватт-часов (МВтч) хранения энергии. Более 400 циклов заряда и разряда — при 80% начальной энергии — это 41.3 гигаватт-часа (ГВтч). При КПД батареи 96% это означает, что необходимо выработать 43 ГВтч энергии ветра, чтобы батарея могла обеспечить такое количество энергии.

Эмиссия парниковых газов в течение жизненного цикла, связанная с производством электроэнергии, составила , по оценкам, Национальной лабораторией возобновляемой энергии (NREL). Для наземных ветряных электростанций, таких как ветряная электростанция Хорнсдейл, выбросы парниковых газов оцениваются в 30 г CO2-экв / кВтч. Гигаватт в миллион раз больше, чем киловатт, поэтому для 43 ГВтч это становится 1.3 миллиона килограммов углекислого газа только для ветрогенератора в течение 400 циклов срока службы батареи.

Батареи увеличивают занимаемую площадь. Для 129 МВт-ч аккумуляторной батареи (что составляет 129 000 кВт-ч) и общего углеродного следа батареи в 100 кг CO2-экв / кВтч, это добавляет еще 12,9 миллиона килограммов углекислого газа к углеродному следу ветряной электростанции.

Другими словами, исходя из 400 циклов, общий углеродный след, связанный с электричеством, использующим аккумуляторную батарею в этой ветряной электростанции, равен 1.3 миллиона плюс 12,9 миллиона = 14,2 миллиона кг углекислого газа, разделенные на 43 ГВт-ч электроэнергии, или 330 г CO2-экв / кВт-ч выбросы парниковых газов. Это в 11 раз больше выбросов углекислого газа по сравнению с ветровой энергией без накопителя, но все же намного ниже 970 г CO2-экв / кВтч выбросов парниковых газов, связанных с угольной энергией.

Таким образом, сами батареи в течение всего срока службы имеют соответствующий профиль выбросов углерода в размере 300 г CO2-экв / кВт · ч выбросов парниковых газов с использованием допущений PEFCR.

Влияние большего количества циклов

Однако, как я указал, некоторые люди оспаривали то, что я использую только 400 циклов.Реальность такова, что у нас просто недостаточно долгосрочных данных, чтобы получить точную оценку. После того, как Хорнсдейл и Тесла не ответили на мои запросы, я обратился к другому источнику.

Калифорнийский поставщик литий-ионных аккумуляторов OneCharge сообщил мне в электронном письме, что их аккумуляторы работают не менее 3000 полных циклов, и это основа их гарантии. Они также указали, что химический состав батарей, которые они используют, не содержит кобальта, что могло бы повлиять на расчетные выбросы, связанные с горнодобывающим сырьем.

В любом случае мы можем повторить расчет, используя 3000 циклов для определения удара. Более 3000 циклов зарядки и разрядки — при 80% начальной энергии — это 310 гигаватт-часов (ГВтч). При КПД батареи 96% это означает, что для обеспечения такого количества энергии необходимо выработать 322,5 ГВтч энергии ветра.

Для 322,5 ГВт-ч, произведенных ветром, это равно 9,7 миллионов килограммов углекислого газа за 3000 циклов срока службы батареи — опять же, только для ветровой части.

Площадь основания самих аккумуляторов остается такой же, как и в примере с 400 циклами — 12,9 миллиона килограммов углекислого газа. В результате получается 9,7 миллиона плюс 12,9 миллиона = 22,6 миллиона кг углекислого газа, разделенные на 322,5 ГВт-ч электроэнергии, или 70 г CO2-экв / кВт-ч выбросов парниковых газов. Это все еще чуть более чем вдвое превышает углеродный след энергии ветра без накопителей, но находится в пределах диапазона большинства других возобновляемых источников энергии, которые составляют менее 100 г CO2-экв / кВтч.

Конечно, если количество циклов аккумулятора в конечном итоге станет еще выше или химический состав аккумуляторов в будущем улучшится так, что некоторые энергоемкие металлы не потребуются, то возможный углеродный след будет еще ниже.

В любом случае, кажется вероятным, что аккумуляторные батареи коммунальных предприятий, использующие литий-ионные батареи и береговую ветроэнергетику, будут иметь выбросы парниковых газов от 70 г CO2-экв / кВтч до 300 г CO2-экв / кВтч Рекомендации PEFCR). Судя по полученным мной отзывам, лучшая оценка, вероятно, ближе к нижнему пределу диапазона.

Источники

Производство литий-ионных аккумуляторов для транспортных средств: статус 2019 по использованию энергии, выбросам CO2, использованию металлов, экологическому следу продукции и переработке, Эрик Эмильссон и Лисбет Даллёф.Опубликовано в ноябре 2019 г. Ссылка .

PEFCR — Правила для перезаряжаемых батарей с высокой удельной энергией для мобильных приложений. Опубликовано в феврале 2018 г. Ссылка .

Насколько большой аккумуляторный блок вам нужен, чтобы содержать дом? | Руководства для дома

Джозеф Уэст Обновлено 15 декабря 2018 г.

Многие домашние энергетические системы сталкиваются с перспективой несоответствия с основным источником питания.Ветрогенераторы мало помогают в безветренные дни, а солнечные батареи бесполезны, когда они засыпаны снегом. Даже дома, подключенные к электросети, время от времени сталкиваются с перебоями в подаче электроэнергии. Вы можете создать резервную копию с аккумуляторным блоком, который сможет обеспечить электричеством ваш дом при выходе из строя основных источников.

Киловатт-час

Бытовое потребление электроэнергии измеряется в киловатт-часах. Киловатт-час соответствует количеству энергии, необходимому для питания устройства мощностью 1 киловатт в течение одного часа или устройства мощностью 100 Вт в течение 10 часов.В ежемесячном счете за электроэнергию указано, сколько киловатт-часов вы израсходовали, а в счете также может отображаться статистика использования за предыдущие месяцы. По данным Управления энергетической информации США, средний американский дом потребляет 901 киловатт-час в месяц, или примерно 30 киловатт-часов в день.

Количество дней

Непрактично построить аккумуляторную батарею, способную обеспечивать электроэнергию дома в течение многих дней. Реалистичная система обеспечит электроэнергией дом на несколько дней, чтобы учесть любые сбои в системе первичной энергии.При проектировании аккумуляторной батареи вы должны определить, сколько дней вы планируете провести без питания. Например, если вы живете в сельской местности, где сильные штормы иногда вызывают перебои в подаче электроэнергии, вы можете рассчитать свою систему на три дня работы от батареи.

Характеристики батареи

Батареи предназначены для выработки определенного напряжения и рассчитаны на определенное количество ампер-часов. Например, батарея на 400 ампер-часов может обеспечивать ток 4 ампера в течение 100 часов.Напряжение батареи считается довольно постоянным, хотя напряжение постепенно снижается по мере разряда батареи. Чтобы оценить энергоемкость батареи в киловатт-часах, умножьте типичное рабочее напряжение на номинальное значение в ампер-часах, а затем разделите на 1000. Батарея на 400 ампер-часов, вырабатывающая 6 вольт, может обеспечить примерно 2,4 киловатт-часа.

Количество батарей

Блок батарей, предназначенный для питания среднего американского домохозяйства в течение трех дней, должен обеспечивать 90 киловатт-часов энергии.Батарея из предыдущего примера может обеспечивать 2,4 киловатт-часа, поэтому для этой системы потребуется 38 батарей. В действительности, потребуется еще несколько батарей, чтобы учесть недостатки батареи и мощность, потребляемую инвертором, который представляет собой устройство, необходимое для преобразования энергии батареи постоянного тока в переменный ток, необходимый для бытовой электросистемы.

Tesla Powerwall 2: как это работает

Линия продуктов Tesla для солнечных батарей, хотя и известна электромобилями, приобрела значительную популярность.Многие люди особенно восхищаются солнечной черепицей и домашними батареями компании.

Хотя солнечная черепица изо всех сил пыталась набрать популярность, домашний аккумулятор Tesla Powerwall стал лучшей солнечной аккумуляторной батареей на рынке. Powerwall демонстрирует стремление Tesla к прогрессу как передовой компании.

Основные характеристики и характеристики Tesla Powerwall 2

Как лидер в области технологии резервного питания от батарей, Tesla обновила свой первоначальный дизайн.Новая модель может хранить вдвое больше энергии, имеет встроенный инвертор, легко подключается к приложению Tesla, имеет обновленную технологию жидкостного охлаждения и может монтироваться на полу или стене.

Следующие спецификации Powerwall 2 делают его оптимальным методом энергосбережения для домовладельцев. Tesla Powerwall 2 + шлюз Входов:

  • Макс. 5 кВт при непрерывной зарядке / разрядке
  • Мощность 13,5 кВтч
  • Макс. Пиковая мощность 7 кВт в течение 10 секунд
  • Размеры: 45,3 дюйма x 29.6 дюймов x 5,75 дюйма
  • 30 ампер или меньше с 1 Powerwall
  • 2+ обычно требуется для резервного копирования всего дома.
  • Gateway = мозг системы Powerwall
  • 10-летняя ограниченная гарантия.
  • Вес: 276 фунтов.
  • Типы монтажа: напольный и настенный
  • Напряжение переменного тока (номинальное): 120/240 В
  • Внутренняя батарея Напряжение постоянного тока: 50 В
  • Частота сети: 60 Гц
  • Общая энергия: 14 кВтч
  • Полезная энергия: 13,5 кВтч
  • Макс.прерывная мощность: 5 кВтч
  • Пиковая мощность: 7 кВтч
  • КПД в оба конца: 90%

Как работает Tesla Powerwall

Хотя существует множество вариантов накопления энергии, в домашних аккумуляторах обычно используется одна из двух технологий.К ним относятся литий-ионные и свинцово-кислотные.

Свинцово-кислотные батареи обычно дешевле. Однако они также имеют меньшую глубину разряда, меньший срок службы и весят больше, чем литий-ионные батареи. Таким образом, хотя свинцово-кислотная батарея не так дорого стоит, в долгосрочной перспективе она стоит дороже, что и повлияло на решение Tesla использовать литий-ионную технологию при создании своих домашних аккумуляторов.

Сколько Powerwall требуется для питания дома

Сколько Powerwall нужно в доме, зависит от того, сколько энергии в доме обычно используется.Это также зависит от того, хочет ли домовладелец питать основные нагрузки во время отключения электроэнергии или весь дом.

Питание основных нагрузок

Если заказчик решает, что он хочет обеспечить питание только пары устройств в случае сбоя, один Powerwall сделает свое дело. Совокупные основные потребности домовладельца в электроэнергии должны быть меньше, чем номинальная мощность непрерывного источника питания батареи. Если ваши потребности не превышают возможности аккумулятора, это позволит аккумулятору заряжать все устройства, которые вы хотите использовать, одновременно.

Энергия для всего дома

Электроснабжение всего дома — это количество батарей, необходимое для нормальной работы дома во время отключения электричества. Потребности дома в батарее на пару часов не покрывают потребности дома в постоянной энергии. Потребности в батареях как для всего дома, так и для непрерывного питания зависят от энергопотребления дома.

Типы крепления для Powerwall 2

Powerwall 2 можно устанавливать рядом или спереди назад. Количество Powerwall и место для монтажа определяет лучший способ монтажа.

При установке бок о бок каждый Powerwall устанавливается вдоль стены. Для работы этого крепления Powerwall необходимо место для вентиляции и с каждой стороны для электрических соединений.

Крепления спереди назад для крепления к полу и стене. Каждый стек может содержать до трех Powerwall.

Мобильное приложение Tesla

После установки клиент может использовать мобильное приложение Tesla для мониторинга своего Powerwall. Это приложение отслеживает использование Powerwall и позволяет владельцам контролировать его.

Федеральные льготы для резервного питания от батарей

Если клиент приобретает Powerwall 2 со своей солнечной батареей, он может претендовать на получение Федерального инвестиционного налогового кредита. Компании, покупающие солнечные батареи и резервные батареи, также могут претендовать на Модифицированную систему ускоренного возмещения затрат (MACRS).

Эти льготы покрывают часть стоимости. Клиенты захотят запомнить это при подаче налоговой декларации в следующем году.

Хотя эти стимулы доступны для всех систем хранения энергии, они имеют несколько условий.

Квалификация для Solar ITC

Чтобы получить право на участие в ITC, клиентам необходимы резервные аккумуляторные батареи и солнечная энергия или другой подходящий возобновляемый источник энергии на месте. Комбинация резервного аккумулятора с солнечной батареей передает батарею как часть варианта возобновляемой энергии. Поскольку батареи могут накапливать электроэнергию независимо от того, как она вырабатывается, сами по себе батареи не квалифицируются как возобновляемые источники энергии.

Клиенты также должны владеть своими солнечными батареями и решениями для резервного питания от батарей, чтобы претендовать на участие в ITC.Это требование — одна из причин, почему лучше владеть солнечной батареей, чем сдавать ее в аренду.

Фото: NREL
Определение налоговой льготы для Powerwall

Уровень заряда возобновляемого источника определяет размер поощрения за аккумулятор. Чтобы иметь право на налоговую скидку, по крайней мере 75 процентов батареи необходимо заряжать от возобновляемого источника.

Аккумулятор получит тот же процент ITC, который он использует из возобновляемых источников энергии. Например, домашний аккумулятор, который получает 75 процентов своего заряда от возобновляемых источников энергии, получит 75 процентов налогового кредита.

Резервная батарея и MACRS

Только частное лицо может претендовать на MACRS. Предприятия, платящие налоги, включают один конкретный пример.

Владельцы

Powerwall могут иметь MACRS независимо от того, есть ли у них солнечная энергия. Те, у кого есть только резервная батарея, могут принять 7-летний MACRS, который равен 20 процентам заряда батареи. Те, кто также имеет право на участие в ITC, могут получить 5-летний MACRS, что эквивалентно 21 проценту затрат на аккумулятор.

Обратная сторона ожидания резервного аккумулятора

Если человек может претендовать на использование солнечной энергии, в его интересах установить солнечную батарею и резервную батарею раньше, чем позже.Сворачивание ИТЦ — одна из причин, по которой лучше сделать покупку раньше.

В декабре 2020 года 27-процентный ITC продлен до 2022 года, но в 2023 году он снова снизится до 22 процентов. Это сокращение может означать потерю тысяч долларов сбережений, если не воспользоваться возможностью раньше.

Экономия затрат на Tesla Powerwall

Потребители заботятся о стоимости, особенно при крупных покупках, таких как домашний аккумулятор. Однако также важно учитывать экономию на цене.

Как Powerwall окупается

Даже при наличии льгот Powerwall потребует некоторых вложений. Когда домовладельцы приобретают Powerwall, они вкладывают средства в накопление солнечной энергии, а также в свободу и будущую экономию, которую он предлагает.

Солнечная энергетическая установка может вырабатывать электричество в течение всего дня. Однако как только солнце садится, оно больше не может производить энергию. Часто люди компенсируют это, оставаясь подключенными к сети.

К сожалению, те, кто остается подключенным к сети без резервного аккумулятора, имеют программы чистых измерений, которые не всегда приносят пользу потребителю.Коммунальные предприятия часто платят меньше за производство солнечной энергии потребителям, чем за электроэнергию из сети.

Когда вы устанавливаете Powerwall, избыточная мощность сохраняется для дальнейшего использования, что означает, что вам не нужно беспокоиться о потере денег для коммунального предприятия. Фактически, со временем вы окупите деньги, потраченные на домашнюю батарею, за счет экономии на счетах за электричество.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *