Расчет кв метр усеченные конуса онлайн калькулятор: Онлайн калькулятор: Конус

Содержание

Расчет усеченного конуса развертка


Онлайн калькулятор: Развертка (выкройка) конуса

Калькулятор рассчитывает параметры развертки прямого кругового конуса на плоскости. Картинка ниже иллюстрирует задачу.

Про конус нам известен радиус основания и высота конуса (или высота усеченного конуса). Для описания развертки нам надо найти радиус внешней дуги, радиус внутренней дуги (если конус усеченный), длину образующей и центральный угол.

Длину образующей можно посчитать по теореме Пифагора:
,
при этом для полного конуса r1 просто обращается в ноль.

Радиус внутренней дуги можно найти из подобия треугольников:
,
опять же, для полного конуса она равна нулю.

Соответственно, радиус внешней дуги:
,
для полного конуса он совпадает с L.

Ну и центральный угол:

Развертка (выкройка) конуса

Радиус второго основания (для случая усеченного конуса)

Точность вычисления

Знаков после запятой: 2

Длина образующей L

 

Радиус внешней дуги выкройки R2

 

Радиус внутренней дуги выкройки R1

 

Центральный угол выкройки (в градусах)

 

Длина внешней дуги

 

Длина внутренней дуги

 

Длина хорды, соединяющей края внешней дуги

 

content_copy Ссылка save Сохранить extension Виджет

Развертка усеченного и прямого конуса

Расчёт развёртки конуса

Введите размеры в мм, и тип конуса:

Результат расчёта:

Скачать, сохранить результат

Выберите способ сохранения

Информация

Часто в строительной практике или даже повседневной жизни приходится сталкиваться с необходимостью построения конуса. Процесс построения требует определенных знаний и высокой точности, иначе конус будет иметь определенные отклонения от необходимых параметров и это может привести к тем или иным неприятным последствиям. Расчет развертки конуса является важнейшей частью при создании выкройки для конуса. Данный показатель относительный и при его расчете необходимо знать ряд других параметров. При этом, необходимо понимать, что существует два вида конусов. Первый вид называется «Прямой конус», то есть классическом его понимании. Второй вид называется «Усеченный конус» — часть конуса, которая заключается между основанием и секущей плоскостью, параллельной его основанию. Расчет развертки прямого конуса отличается от того, как производится расчет развертки усеченного конуса. Отличие заключается в том, что у усеченного конуса появляется еще одна переменная и по итогу расчета калькулятор сообщает в расчете не только расстояние и угол, но и два радиуса.

Наш онлайн калькулятор имеет встроенные формулы, что позволяет производить расчет данных показателей, просто выбрав вид конуса и введя абсолютные значения в соответствующие ячейки. Возможности и принцип построения системы калькулятора исключают допущение ошибок при расчетах, и избавляют пользователя от необходимости в самостоятельном детальном изучении методик расчета.

Преимущества, которые дает онлайн калькулятор

  • Большая экономия времени;
  • Гарантированно правильный и предельно точный расчет;
  • Удобный интерфейс, который будет понятен даже новичку;
  • Открытый доступ к калькулятору для всех пользователей.

Таким образом, можно сделать вывод, что расчет развертки конуса требует концентрации внимания на многих деталях, и самостоятельный его расчет является достаточно трудоемким. Наш онлайн калькулятор является инструментом, который упростит Вашу жизнь при точном расчете данного показателя. Также Вам доступна информация о том, какая формула применяется при расчете и определенная справочная информация.

поделиться и оценить

Калькуляторы расчета размеров развертки конуса

Иногда в ходе выполнения тех или иных хозяйственных работ мастер встаёт перед проблемой изготовления конуса – полного или усеченного. Это могут быть операции, скажем, с тонким листовым металлом, эластичным пластиком, обычной тканью или даже бумагой или картоном. А задачи встречаются самый разные – изготовление кожухов, переходников с одного диаметра на другой, козырьков или дефлекторов для дымохода или вентиляции, воронок для водостоков, самодельного абажура. А может быть даже просто маскарадного костюма для ребенка или поделок, заданных учителем труда на дом.

Калькуляторы расчета размеров развертки конуса

Чтобы из плоского материала свернуть объёмную фигуру с заданными параметрами, необходимо вычертить развертку. А для этого требуется рассчитать математически и перенести графически необходимые точные размеры этой плоской фигуры. Как это делается – рассмотрим в настоящей публикации. Помогут нам в этом вопросе калькуляторы расчета размеров развертки конуса.

Калькуляторы расчета размеров развертки конуса
Несколько слов о рассчитываемых параметрах

Понять принцип расчета будет несложно, разобравшись со следующей схемой:

Усеченный конус с определяющими размерами и его развёртка. Показан усеченный конус, но с полным — принцип не меняется, а расчеты  и построение становятся даже проще.

Итак, сам конус определяется радиусами оснований (нижней и верхней окружности) R1 и R2, и высотой Н. Понятно, что если конус не усеченный, то R2 просто равно нулю.

Буквой L обозначена длина боковой стороны (образующей) конуса. Она в некоторых случаях уже известна – например, требуется сделать конус по образцу или выкроить материал для обтяжки уже имеющегося каркаса. Но если она неизвестна – не беда, ее несложно рассчитать.

Справа показана развёртка. Она для усеченного конуса ограничена сектором кольца, образованного двумя дугами, внешней и внутренней, с радиусами Rb и Rs. Для полного конуса Rs также будет равен нулю. Хорошо видно, что Rb = Rs + L

Угловую длину сектора определяет центральный угол f, который в любом случае предстоит рассчитать.

Все расчеты займут буквально минуту, если воспользоваться предлагаемыми калькуляторами:

Шаг 1 – определение длины образующей L

(Если она уже известна – шаг пропускается)

Перейти к расчётам

Шаг 2 – определение радиусов внутренней и внешней дуги развертки

Радиусы рассчитываются поочередно – с выбором в соответствующем поле калькулятора.

Шаг 3 – определение величины центрального угла f

Перейти к расчётам

*  *  *  *  *  *  *

Итак, все данные имеются. Остается на листе бумаги циркулем провести две дуги рассчитанных радиусов. А затем из точки центра с помощью транспортира прочертить два луча под рассчитанным углом – они ограничат развертку по угловой длине.

Существуют и чисто геометрические методы построения довольно точной развертки конуса, без проведения расчётов. Один из них подробно описан в статье нашего портала «Как сделать абажур своими руками».

прямой, наклонный и усеченный конус

Развертка поверхности конуса — это плоская фигура, полученная путем совмещения боковой поверхности и основания конуса с некоторой плоскостью.

Варианты построения развертки:

Развертка прямого кругового конуса

Развертка боковой поверхности прямого кругового конуса представляет собой круговой сектор, радиус которого равен длине образующей конической поверхности l, а центральный угол φ определяется по формуле φ=360*R/l, где R – радиус окружности основания конуса.

В ряде задач начертательной геометрии предпочтительным решением является аппроксимация (замена) конуса вписанной в него пирамидой и построение приближенной развертки, на которую удобно наносить линии, лежащие на конической поверхности.

Алгоритм построения

  1. Вписываем в коническую поверхность многоугольную пирамиду. Чем больше боковых граней у вписанной пирамиды, тем точнее соответствие между действительной и приближенной разверткой.
  2. Строим развертку боковой поверхности пирамиды способом треугольников. Точки, принадлежащие основанию конуса, соединяем плавной кривой.

Пример

На рисунке ниже в прямой круговой конус вписана правильная шестиугольная пирамида SABCDEF, и приближенная развертка его боковой поверхности состоит из шести равнобедренных треугольников – граней пирамиды.

Рассмотрим треугольник S0A0B0. Длины его сторон S0A0 и S0B0 равны образующей l конической поверхности. Величина A0B0 соответствует длине A’B’. Для построения треугольника S0A0B0 в произвольном месте чертежа откладываем отрезок S0A0=l, после чего из точек S0 и A0 проводим окружности радиусом S0B0=l и A0B0= A’B’ соответственно. Соединяем точку пересечения окружностей B0 с точками A0 и S0.

Грани S0B0C0, S0C0D0, S0D0E0, S0E0F0, S0F0A0 пирамиды SABCDEF строим аналогично треугольнику S0A0B0.

Точки A, B, C, D, E и F, лежащие в основании конуса, соединяем плавной кривой – дугой окружности, радиус которой равен l.

Развертка наклонного конуса

Рассмотрим порядок построения развертки боковой поверхности наклонного конуса методом аппроксимации (приближения).

Алгоритм

  1. Вписываем в окружность основания конуса шестиугольник 123456. Соединяем точки 1, 2, 3, 4, 5 и 6 с вершиной S. Пирамида S123456, построенная таким образом, с некоторой степенью приближения является заменой конической поверхности и используется в этом качестве в дальнейших построениях.
  2. Определяем натуральные величины ребер пирамиды, используя способ вращения вокруг проецирующей прямой: в примере используется ось i, перпендикулярная горизонтальной плоскости проекций и проходящая через вершину S.
    Так, в результате вращения ребра S5 его новая горизонтальная проекция S’5’1 занимает положение, при котором она параллельна фронтальной плоскости π2. Соответственно, S’’5’’1 – натуральная величина S5.
  3. Строим развертку боковой поверхности пирамиды S123456, состоящую из шести треугольников: S01060, S06050, S05040, S04030, S03020, S02010. Построение каждого треугольника выполняется по трем сторонам. Например, у △S01060 длина S010=S’’1’’0, S060=S’’6’’1, 1060=1’6’.

Степень соответствия приближенной развертки действительной зависит от количества граней вписанной пирамиды. Число граней выбирают, исходя из удобства чтения чертежа, требований к его точности, наличия характерных точек и линий, которые нужно перенести на развертку.

Перенос линии с поверхности конуса на развертку

Линия n, лежащая на поверхности конуса, образована в результате его пересечения с некоторой плоскостью (рисунок ниже). Рассмотрим алгоритм построения линии n на развертке.

Алгоритм

  1. Находим проекции точек A, B и C, в которых линия n пересекает ребра вписанной в конус пирамиды S123456.
  2. Определяем натуральную величину отрезков SA, SB, SC способом вращения вокруг проецирующей прямой. В рассматриваемом примере SA=S’’A’’, SB=S’’B’’1, SC=S’’C’’1.
  3. Находим положение точек A0, B0, C0 на соответствующих им ребрах пирамиды, откладывая на развертке отрезки S0A0=S’’A’’, S0B0=S’’B’’1, S0C0=S’’C’’1.
  4. Соединяем точки A0, B0, C0 плавной линией.

Развертка усеченного конуса

Описываемый ниже способ построения развертки прямого кругового усеченного конуса основан на принципе подобия.

Алгоритм

  1. Строим вспомогательный конус ε, подобный конусу ω, как это показано на рисунке выше. Для удобства построения величину диаметра d выбираем таким образом, чтобы соотношение t=D/d выражалось целым числом. В рассматриваемом примере t=2.
  2. Строим развертку боковой поверхности конуса ε – S0A01020304050A0 и на биссектрисе угла A0S0A0 отмечаем точку O0, выбрав ее расположение произвольно.
  3. Проводим прямые O0A0, O010, O020, O030, O040, O050, O0A0 и на них откладываем отрезки [O0A10]=t×|O0A0|, [O0110]= t×|O010|, [O0210]=t×|O020|, [O0310]=t×|O030|, [O0410]=t×|O040|, [O0510]=t×|O050|, [O0A10]=t×|O0A0| соответственно, где t=D/d. Соединяем точки A10, 110, 210, 310, 410, 510, A10 плавной линией.
  4. Из точек A10, 110, 210, 310, 410, 510, A10 проводим лучи, которые параллельны соответственно прямым A0S0, 10S0, 20S0, 30S0, 40S0, 50S0, A0S0, и на них откладываем отрезки A10B10, 110120, 210220, 310320, 410420, 510520, A10B10, равные l – образующей усеченного конуса. Проводим линию B10120220320420520B10.

Развертка конуса — онлайн калькулятор

Данный калькулятор может пригодится инженерам-технологам или инженерам-конструкторам, то есть всем тем, кому часто приходится рассчитывать развертку прямого конуса обычного и усеченного.

Сам калькулятор ниже, он может рассчитать все необходимые параметры развертки прямого кругового конуса.

Калькулятор рассчитывает параметры развертки прямого кругового конуса на плоскости — визуально это можно посмотреть на рисунке внизу.

The field is not filled.

‘%1’ is not a valid e-mail address.

Please fill in this field.

The field must contain at least% 1 characters.

The value must not be longer than% 1 characters.

Field value does not coincide with the field ‘%1’

An invalid character. Valid characters:’%1′.

Expected number.

It is expected a positive number.

Expected integer.

It is expected a positive integer.

The value should be in the range of [%1 .. %2]

The ‘% 1’ is already present in the set of valid characters.

The field must be less than 1%.

The first character must be a letter of the Latin alphabet.

Su

Mo

Tu

We

Th

Fr

Sa

January

February

March

April

May

June

July

August

September

October

November

December

century

B.C.

%1 century

An error occurred while importing data on line% 1. Value: ‘%2’. Error: %3

Unable to determine the field separator. To separate fields, you can use the following characters: Tab, semicolon (;) or comma (,).

%3.%2.%1%4

%3.%2.%1%4 %6:%7

s.sh.

u.sh.

v.d.

z.d.

yes

no

Wrong file format. Only the following formats: %1

Please leave your phone number and / or email.

Развертка усеченного конуса. Формула площади и пример решения задачи

Каждый школьник слышал о фигуре конус. Его свойства и характеристики изучает стереометрия. Из этой фигуры можно получить ее усеченный вариант. В данной статье рассмотрим вопрос, что такое развертка усеченного конуса и как найти ее площадь.

Какую фигуру будем изучать?

Круглый прямой усеченный конус представляет собой два круга, имеющих разный диаметр, которые расположены в параллельных плоскостях. Окружности этих кругов соединены прямыми отрезками равной длины, именуемых образующими фигуры. Расстояние между круглыми основаниями называется высотой. Описанная фигура показана ниже на фото.

Получить ее можно двумя принципиально отличающимися геометрическими способами. Во-первых, можно взять обычный круглый конус и параллельной его основанию плоскостью отсечь верхнюю часть. Такое действие приведет к образованию верхнего (малого) основания усеченного конуса. Во-вторых, можно взять трапецию с двумя прямыми углами и вращать ее вокруг стороны, ограниченной этими углами. Сторона трапеции, вокруг которой будет происходить вращение, называется осью фигуры. Две параллельные стороны трапеции опишут круглые основания во время вращения, а четвертая наклонная сторона образует боковую поверхность фигуры.

Схема выше демонстрирует получение усеченного конуса с помощью сечения плоскостью.

Развертка усеченного конуса

Как мы видели, рассматриваемая фигура образована тремя поверхностями. Две из них представляют основания, а третья является боковой. Сумма площадей этих поверхностей является полной поверхностью усеченного конуса. В трехмерном пространстве ее площадь вычислять неудобно, поскольку сама величина является двумерной. В связи с этим при возникновении проблемы определения площади поверхности пространственных фигур, их принято представлять на плоскости.

В нашем случае развертку получить достаточно просто. Для этого следует мысленно отрезать по соответствующим окружностям основания от фигуры. Затем, необходимо разрезать вдоль образующей и раскрыть поверхность боковую. В итоге получится результат, показанный на фото.

Она представляет собой два разных круга и часть кругового сектора, у которого вырезан центр.

Формула площади поверхности фигуры

Для вычисления площади поверхности усеченного конуса необходимо определить эту величину для каждой части его развертки. Обозначим радиусы оснований буквами R и r. Тогда их площади будут равны:

So1 = pi*R2;

So2 = pi*r2.

Для вычисления площади боковой поверхности учтем, что ее развертка образована двумя одинаковыми генератрисами g и двумя дугами окружностей, которые имеют длину 2*pi*r и 2*pi*R. Опуская рассуждения и промежуточные математические формулы, приведем конечное выражение для площади этой части развертки фигуры. Оно имеет форму:

Sb = pi*g*(R + r).

Получив площади для оснований и боковой поверхности, можно записать формулу развертки конуса усеченного. Ее общая площадь S равна:

S = So1 + So2 + Sb = pi*(R2 + r2 + g*(R + r)).

Таким образом, площадь S фигуры однозначно определяется из знания радиусов ее оснований и длины генератрисы.

Геометрическая задача

Необходимо провести расчет развертки усеченного конуса, который имеет высоту 13 см и радиусы оснований 2 см и 7 см.

Решение данной задачи с помощью непосредственного применения формулы для S невозможно, поскольку не известна длина генератрисы g. Тем не менее, ее можно вычислить, используя такую формулу:

g = √(h2 + (R-r)2).

Это выражение можно самостоятельно получить, рассмотрев прямоугольный треугольник со сторонами g, h и (R-r), здесь h — высота усеченного конуса. Генератриса g будет равна 13,93 см (значение приведено с точностью до 0,01 см).

Осталось подставить значения генератрисы и радиусов в формулу для S, чтобы получить требуемый ответ:

S = 3,14*(72 + 22 + 13,93*(7 + 2)) ≈ 560,1 см2.

Следует не забывать, что записанная для S формула справедлива только для круглого прямого усеченного конуса.

Калькулятор конуса / усеченного конуса / усеченного конуса

Калькулятор Frustum (усеченного конуса)

Используйте форму ниже, чтобы ввести 3 значения, и будут показаны результаты остальных.

Я решил создать эту страницу, потому что знал высоту и ширину выреза в два круга для создания моих рук Бендера. Проблема была в том, что я не знал, как нарисовать узор. В конце концов я использовал Google Sketchup для создания 3D-изображения и импортировал его в Pepakura, распечатал плоский дизайн, приклеил / вырезал его на пену, а затем вырезал формы.Я решил, что должен быть способ вычислить форму, чтобы я мог просто нарисовать ее и вырезать. Мне нужна была длина линии r , длина rH и c или степень A . Введите следующие 3 значения для результатов.
Пример с верхним отверстием диаметром 10 дюймов, нижним 12 дюймов и высотой 7,5 дюймов.

Оригинальный способ, нарисованный от руки, был найден на сайте homedistiller.org, но я хотел иметь возможность вычислить общую высоту, тогда я мог бы использовать циркуль, чтобы нарисовать ее на куске синтры / пены. В некоторых онлайн-калькуляторах есть некоторые формулы, но не все, что мне нужно. Затем я наткнулся на изображение выше и создал эту страницу, чтобы рассчитать все, что мне нужно.

1. Вы знаете, какой длины должна быть усеченная пирамида, какой ширины она должна быть у основания и какой ширины она должна быть на конце сопла. Нарисуйте основание усеченной кости. Усеченный конус — это часть конуса или конуса с отрубленным кончиком.Я отметил базу здесь буквой «А».

2. Под углом 90 градусов к середине основания «А» нарисуйте линию той длины, на которую вы хотите, чтобы ваша усеченная вершина. Вверху и параллельно с буквой «А» нарисуйте конец усеченной кости «В».

3. Проведите прямые линии от каждого конца «A» до соответствующего конца «B», но проводите линии до тех пор, пока они не встретятся. Вы рисуете конус / треугольник, из которого происходит усеченная пирамида.
4. Поместите заостренный конец циркуля на кончик конуса и проведите дугу наружу от одного конца буквы «А».Помните, что ваш компас должен быть такого же размера, как усеченная пирамида, которую вы делаете. Для наших приложений это означает довольно большой компас. Однако циркуль можно заменить обрывком веревки или куском более твердого материала с двумя просверленными в нем отверстиями: 1 там, где должен быть остроконечный наконечник, и 1, где идет карандаш. Эти замены не будут такими точными.

5. Нарисуйте аналогичную дугу наружу от «B» с той же стороны, с которой вы рисовали дугу на «A».

6. Теперь умножьте длину «A» на «пи».«Пи» — бесконечное число, которое связывает радиус / диаметр круга с его длиной окружности. Для наших целей «пи» можно понимать как около 3,142.
E.G. Если основание моей усеченной кости составляет 200 мм в диаметре (т.е. длина буквы «А» составляет 200 мм), тогда окружность основания моей усеченной кости, умноженная на 3,142, будет 628 мм.
Хорошо, теперь у вас есть окружность. Допустим, это 628 мм. Разделите это число на произвольное число, скажем 20. Получается 31,4 мм.
Теперь установите компас на это расстояние, например.г. 31,4 мм. Теперь, начиная с того места, где начинается дуга, «пройдитесь» компасом по дуге 20 раз. Это даст вам базовую окружность пирамиды, измеренную на вашей дуге.
N.B. Чем больше произвольное число, на которое вы делите окружность, тем выше ваша точность (и тем сильнее болит ваша задница).

7. Затем, измерив длину окружности дуги, проведите прямую линию от последней отметки до вершины конуса / треугольника.

8. Вот и все, выкройка усеченной вершины «C»;

Как сделать свой компас:
.

Усеченный конус | Superprof

Усеченный конус — это результат разрезания конуса плоскостью, параллельной основанию, и удаления части, содержащей вершину.

Высота — это отрезок прямой, соединяющий два основания перпендикулярно.

Радиусы — это радиусы их оснований.

Высота наклона — это кратчайшее возможное расстояние между краями двух оснований.

Наклонная высота усеченного конуса получается путем применения теоремы Пифагора для заштрихованного треугольника:

Развертывание усеченного конуса

Боковая площадь усеченного конуса 9000

Площадь усеченного конуса

Объем усеченного конуса

Рассчитайте поперечную площадь, площадь поверхности и объем усеченного конуса радиусом 2 и 6 см и высотой 10 см.

.

Усеченный конус — Калькулятор геометрии

1D линия 2D правильных многоугольников:
равносторонний треугольник, квадрат, пятиугольник, шестиугольник, семиугольник, восьмиугольник, нонагон, десятиугольник, шестиугольник, двенадцатигранник, шестиугольник, N-угольник, многоугольник кольцо

другие многоугольники:
треугольник, прямоугольный треугольник, равнобедренный треугольник ИК-треугольник, четырехугольник, прямоугольник, золотой прямоугольник, ромб, параллелограмм, полуквадратный воздушный змей, воздушный змей, воздушный змей, правая трапеция, равнобедренная трапеция, трех равносторонняя трапеция, трапеция, циклический четырехугольник, тангенциальный четырехугольник, стрелка, вогнутый четырехугольник, крест Антипараллелограмм, Форма дома, Симметричный пятиугольник, Вырезанный прямоугольник, Вогнутый пятиугольник, Вогнутый правильный пятиугольник, Параллелогон, Вытянутый шестиугольник, Вогнутый шестиугольник, Стрелка-шестиугольник, Прямоугольный шестиугольник, L-образная форма, Острый перегиб, T-образная форма, Усеченный квадрат, Рамка, Открытая рамка, сетка, крест, форма X, форма H, тройная звезда, четыре звезды, пентаграмма, гексаграмма, уникурсальная гексаграмма, октаграмма, звезда Лакшми, многоугольник с двойной звездой, многоугольник, многоугольник

90 004 Круглые формы:
Круг, Полукруг, Круговой сектор, Круговой сегмент, Круговой слой, Круговой центральный сегмент, Круглый угол, Круглый угол, Круговая касательная стрелка, Форма капли, Полумесяц, Остроконечный овал, Ланцетная арка, Бугорок, Кольцо, Кольцевой сектор , Изогнутый прямоугольник, закругленный многоугольник, закругленный прямоугольник, эллипс, полуэллипс, эллиптический сегмент, эллиптический сектор, эллиптическое кольцо, стадион, спираль, бревно.Спираль, Треугольник Рело, Циклоида, Двойная циклоида, Астроид, Гипоциклоида, Кардиоида, Эпициклоида, Параболический сегмент, Сердце, Треугольник, Межугловой треугольник, Круговой треугольник дуги, Четырехугольник Interarc, Межкруговый четырехугольник, Круговой четырехугольник дуги, Круговой многоугольник дуги, Коготь — Ян, Арбелос, Салинон, Выпуклость, Луна, Три круга, Поликруг, Многоугольник с закругленными краями, Роза, Шестеренка, Овал, Профиль яйца, Лемниската, Сквикул, Круглый квадрат, Дигон, Сферический треугольник

3D Платоновых тел:
тетраэдр, куб, октаэдр, додекаэдр, икосаэдр

архимедова Solids:
усеченный тетраэдр, кубооктаэдр, усеченный куб, усеченный октаэдр, ромбокубооктаэдр, усеченный кубооктаэдр, икосододекаэдр, усеченный додекаэдр, усеченный икосаэдр, Snub куб, ромбоикосододекаэдр , Усеченный икосододекаэдр, Snub Додекаэдр

Каталонских Сухой остаток:
триакистетраэдр, ромбический додекаэдр, триакисоктаэдр, тетракисгексаэдр, дельтоидальный икоситетраэдр, гексакис октаэдр, ромбический триаконтаэдр, триакисикосаэдр, пентакисдодекаэдр, Пятиугольные Icositetrahedron, дельтоидальный гексеконтаэдр, гексакис Икосаэдр, Пятиугольный гексеконтаэдр

Твердые тела Джонсона:
Пирамиды, купола, ротонда, удлиненные пирамиды, гиро-продолговатые пирамиды, бипирамиды, удлиненные бипирамиды, гиро-продолговатая квадратная дипирамида, гиробифастигедрон, дисфагениум Sphenocorona, Disphenocingulum

Другие многогранники:
Кубоид, квадратный столб, треугольная пирамида, квадратная пирамида, правильная пирамида, пирамида, правильная пирамида, створка, правильная бипирамида, бипирамида, бифрустум, клин-фрустум, клиновидная пирамида Полутетраэдр, ромбоэдр, параллелепипед, правильная призма, призма, наклонная призма, антикуб, антипризма, призматоид, трапецоэдр, дисфеноид, угол, общий тетраэдр, клин-кубоид, полукубоид, скошенный кубоид, слиток, скошенная трехгранная призма , Усеченный кубоид, кубоид с тупыми краями, удлиненный додекаэдр, усеченный ромбоэдр, обелиск, изогнутый кубоид, полый кубоид, полая пирамида, полый ствол, звездная пирамида, звездчатый октаэдр, малый звездчатый додекаэдр, большой звездчатый додекаэдр70004, большой додекаэдр70004 Круглые формы:
Сфера, полусфера, сферический угол, цилиндр, отрезной цилиндр, наклонный цилиндр, изогнутый цилиндр, эллиптический цилиндр, обобщенный Цилиндр, конус, усеченный конус, косой круговой конус, эллиптический конус, биконус, усеченный биконус, заостренный столб, закругленный конус, капля, сфероид, эллипсоид, полуэллипсоид, сферический сектор, сферическая крышка, сферический сегмент, сферический центральный сегмент, двойной калотт , Сферический клин, полуцилиндр, диагонально разрезанный пополам цилиндр, цилиндрический клин, цилиндрический сектор, цилиндрический сегмент, цилиндр с плоским концом, полуконус, конический сектор, конический клин, сферическая оболочка, полусферическая оболочка, цилиндрическая оболочка, цилиндрическая оболочка с вырезом, наклонная цилиндрическая оболочка , Полый конус, усеченный полый конус, сферическое кольцо, тор, шпиндельный тор, тороид, сектор тора, сектор тороида, арка, тетраэдр Рело, капсула, сегмент капсулы, двойная точка, антиконус, усеченный антиконус, сферический цилиндр, линза, вогнутый Линза, ствол, форма яйца, параболоид, гиперболоид, олоид, твердые тела Штейнмеца, твердые тела вращения

4D Тессеракт, Гиперсфера

Anzeige

Расчеты на усеченном правом круговом конусе (усеченном конусе).Усеченный конус — это конус с отрезанным прямым концом. Основание — это больший круг, верхняя поверхность — меньший круг. Наклонная высота — это кратчайшее расстояние между двумя кругами, боковая поверхность — это поверхность без кругов. Введите радиусы и высоту и выберите количество десятичных знаков. Затем нажмите Рассчитать. Для расчета общих усеченных конусов см. Усеченный конус.

Формулы:
s = √ (R — r) ² + h²
L = (R + r) * π * с
A = L + πr² + πR²
V = h * π / 3 * (R² + Rr + r²)

пи:
π = 3.141592653589793 …

Радиусы, высота и наклонная высота имеют одну и ту же единицу измерения (например, метр), поверхности имеют эту единицу в квадрате (например, квадратный метр), объем имеет эту единицу в степени трех (например, кубический метр). Аудио / видео имеет это устройство -1 .

Anzeige

Поделиться:

© Jumk.de Webprojects

Anzeige

.

Усеченный полый конус — Калькулятор геометрии

1D линия 2D правильных многоугольников:
равносторонний треугольник, квадрат, пятиугольник, шестиугольник, семиугольник, восьмиугольник, нонагон, десятиугольник, шестиугольник, двенадцатигранник, шестиугольник, N-угольник, многоугольник кольцо

другие многоугольники:
треугольник, прямоугольный треугольник, равнобедренный треугольник ИК-треугольник, четырехугольник, прямоугольник, золотой прямоугольник, ромб, параллелограмм, полуквадратный воздушный змей, воздушный змей, воздушный змей, правая трапеция, равнобедренная трапеция, трех равносторонняя трапеция, трапеция, циклический четырехугольник, тангенциальный четырехугольник, стрелка, вогнутый четырехугольник, крест Антипараллелограмм, Форма дома, Симметричный пятиугольник, Вырезанный прямоугольник, Вогнутый пятиугольник, Вогнутый правильный пятиугольник, Параллелогон, Вытянутый шестиугольник, Вогнутый шестиугольник, Стрелка-шестиугольник, Прямоугольный шестиугольник, L-образная форма, Острый перегиб, T-образная форма, Усеченный квадрат, Рамка, Открытая рамка, сетка, крест, форма X, форма H, тройная звезда, четыре звезды, пентаграмма, гексаграмма, уникурсальная гексаграмма, октаграмма, звезда Лакшми, многоугольник с двойной звездой, многоугольник, многоугольник

90 004 Круглые формы:
Круг, Полукруг, Круговой сектор, Круговой сегмент, Круговой слой, Круговой центральный сегмент, Круглый угол, Круглый угол, Круговая касательная стрелка, Форма капли, Полумесяц, Остроконечный овал, Ланцетная арка, Бугорок, Кольцо, Кольцевой сектор , Изогнутый прямоугольник, закругленный многоугольник, закругленный прямоугольник, эллипс, полуэллипс, эллиптический сегмент, эллиптический сектор, эллиптическое кольцо, стадион, спираль, бревно.Спираль, Треугольник Рело, Циклоида, Двойная циклоида, Астроид, Гипоциклоида, Кардиоида, Эпициклоида, Параболический сегмент, Сердце, Треугольник, Межугловой треугольник, Круговой треугольник дуги, Четырехугольник Interarc, Межкруговый четырехугольник, Круговой четырехугольник дуги, Круговой многоугольник дуги, Коготь — Ян, Арбелос, Салинон, Выпуклость, Луна, Три круга, Поликруг, Многоугольник с закругленными краями, Роза, Шестеренка, Овал, Профиль яйца, Лемниската, Сквикул, Круглый квадрат, Дигон, Сферический треугольник

3D Платоновых тел:
тетраэдр, куб, октаэдр, додекаэдр, икосаэдр

архимедова Solids:
усеченный тетраэдр, кубооктаэдр, усеченный куб, усеченный октаэдр, ромбокубооктаэдр, усеченный кубооктаэдр, икосододекаэдр, усеченный додекаэдр, усеченный икосаэдр, Snub куб, ромбоикосододекаэдр , Усеченный икосододекаэдр, Snub Додекаэдр

Каталонских Сухой остаток:
триакистетраэдр, ромбический додекаэдр, триакисоктаэдр, тетракисгексаэдр, дельтоидальный икоситетраэдр, гексакис октаэдр, ромбический триаконтаэдр, триакисикосаэдр, пентакисдодекаэдр, Пятиугольные Icositetrahedron, дельтоидальный гексеконтаэдр, гексакис Икосаэдр, Пятиугольный гексеконтаэдр

Твердые тела Джонсона:
Пирамиды, купола, ротонда, удлиненные пирамиды, гиро-продолговатые пирамиды, бипирамиды, удлиненные бипирамиды, гиро-продолговатая квадратная дипирамида, гиробифастигедрон, дисфагениум Sphenocorona, Disphenocingulum

Другие многогранники:
Кубоид, квадратный столб, треугольная пирамида, квадратная пирамида, правильная пирамида, пирамида, правильная пирамида, створка, правильная бипирамида, бипирамида, бифрустум, клин-фрустум, клиновидная пирамида Полутетраэдр, ромбоэдр, параллелепипед, правильная призма, призма, наклонная призма, антикуб, антипризма, призматоид, трапецоэдр, дисфеноид, угол, общий тетраэдр, клин-кубоид, полукубоид, скошенный кубоид, слиток, скошенная трехгранная призма , Усеченный кубоид, кубоид с тупыми краями, удлиненный додекаэдр, усеченный ромбоэдр, обелиск, изогнутый кубоид, полый кубоид, полая пирамида, полый ствол, звездная пирамида, звездчатый октаэдр, малый звездчатый додекаэдр, большой звездчатый додекаэдр70004, большой додекаэдр70004 Круглые формы:
Сфера, полусфера, сферический угол, цилиндр, отрезной цилиндр, наклонный цилиндр, изогнутый цилиндр, эллиптический цилиндр, обобщенный Цилиндр, конус, усеченный конус, косой круговой конус, эллиптический конус, биконус, усеченный биконус, заостренный столб, закругленный конус, капля, сфероид, эллипсоид, полуэллипсоид, сферический сектор, сферическая крышка, сферический сегмент, сферический центральный сегмент, двойной калотт , Сферический клин, полуцилиндр, диагонально разрезанный пополам цилиндр, цилиндрический клин, цилиндрический сектор, цилиндрический сегмент, цилиндр с плоским концом, полуконус, конический сектор, конический клин, сферическая оболочка, полусферическая оболочка, цилиндрическая оболочка, цилиндрическая оболочка с вырезом, наклонная цилиндрическая оболочка , Полый конус, усеченный полый конус, сферическое кольцо, тор, шпиндельный тор, тороид, сектор тора, сектор тороида, арка, тетраэдр Рело, капсула, сегмент капсулы, двойная точка, антиконус, усеченный антиконус, сферический цилиндр, линза, вогнутый Линза, ствол, форма яйца, параболоид, гиперболоид, олоид, твердые тела Штейнмеца, твердые тела вращения

4D Тессеракт, Гиперсфера

Anzeige

Расчеты на усеченном полом правом круговом конусе.Усеченный полый конус представляет собой полый конус с прямым концом, отрезанным внутри полой области, или усеченный конус, из середины которого удален такой же усеченный конус меньшего размера. Основание — большее кольцевое пространство, верхняя поверхность — меньшее кольцевое пространство. Введите один внешний и один внутренний радиус, толщину или еще один радиус и высоту. Выберите количество знаков после запятой, затем нажмите «Рассчитать».

Формулы:
d = R — S = r — s
A = π * [(R + r) * √ (R — r) ² + h² + (S + s) * √ (S — s) ² + h² + (R² — S² + r² — s²)]
V = h * π / 3 * (R² + Rr + r² — S² — Ss — s²)

pi:
π = 3.141592653589793 …

Радиусы, толщина и высота имеют одну и ту же единицу измерения (например, метр), поверхность имеет эту единицу в квадрате (например, квадратный метр), объем имеет эту единицу с точностью до трех (например, кубический метр). A / V имеет этот блок -1 .

Anzeige

Поделиться:

© Jumk.de Webprojects

Anzeige

.

Объем круглого усеченного конуса Калькулятор

[1] 2020/12/04 07:22 Мужчина / 50-летний уровень / Пенсионер / Очень /

Цель использования
Расчет внутреннего объема Instant Pot

[2] 2020/11/13 08:39 Женский / До 20 лет / Высшая школа / Университет / Аспирант / Очень /

Цель использования
Расчет объема кофейной чашки

[3] 2020 / 10/01 08:18 Мужчина / Уровень 30 лет / Инженер / Очень /

Цель использования
Рассчитать объем воды в коробке клапана в земле, чтобы я мог определить расход воды в землю.

[4] 2020/09/27 03:51 Женщина / Уровень 40 лет / Домохозяйка / Полезно /

Цель использования
Требуется для определения объема садового контейнера. А теперь посчитаем, сколько галлонов!

[5] 2020/09/05 19:49 Мужской / 50-летний уровень / Самозанятые люди / Очень /

Цель использования
Завод по выращиванию устриц, расчет размеров для создания корзин для устриц: 1 бушель, полтора бушеля

[6] 2020/09/03 06:27 Мужчина / 60 лет и старше / Пенсионер / Очень /

Цель использования
Примерная вместимость деревянной урны, для которой я делаю умерший родственник

[7] 2020/08/19 04:09 Мужчина / 30-летний уровень / Учитель / исследователь / Очень /

Цель использования
Получение площади поверхности для определения пределов для проверки очистки различных компоненты при производстве активных фармацевтических ингредиентов.

[8] 2020/08/07 22:51 Мужчина / Уровень 40 лет / Офисный работник / Государственный служащий / Очень /

Цель использования
Расчет бетона, необходимого для грунтового основания для 50-футовый флагшток. Кстати, 63 кубических фута.

[9] 2020/07/07 22:38 Мужчина / 60 лет и старше / Пенсионер / Очень /

Цель использования
Смешивание эпоксидной смолы в соотношении 4: 1 в конической емкости, с использованием линейных измерений вверх по наклонной стороне.

База r = 23,5 мм
Конечная поверхность r = 26 мм
h = 20 мм

[10] 2020/06/29 20:01 Женщина / 60 лет и старше / Пенсионер / Очень /

Цель использования
Объем контейнера для растений
Комментарий / запрос
Большое спасибо — мои математические дни далеко!
.

Калькулятор конуса

Форма конуса

r = радиус
h = высота
s = наклонная высота
В = объем
L = площадь боковой поверхности
B = площадь основания
A = общая площадь поверхности
π = пи = 3.1415926535898
√ = квадратный корень

Использование калькулятора

Этот онлайн-калькулятор рассчитает различные свойства правильного кругового конуса с учетом любых двух известных переменных. Термин «круглая» поясняет эту форму как пирамиду с круглым поперечным сечением. Термин «справа» означает, что вершина конуса центрируется над основанием. Сам по себе термин «конус» часто означает правильный круговой конус.

Единицы: Обратите внимание, что единицы показаны для удобства, но не влияют на вычисления. Единицы измерения указывают порядок результатов, например футы, футы 2 или футы 3 . Например, если вы начинаете с мм и знаете r и h в мм, ваши расчеты приведут к s в мм, V в мм 3 , L в мм 2 , B в мм 2 и A в мм 2 .

Ниже приведены стандартные формулы для конуса.Вычисления основаны на алгебраическом манипулировании этими стандартными формулами.

Формулы кругового конуса для радиуса r и высоты h:

  • Объем конуса:
  • Наклонная высота конуса:
  • Площадь боковой поверхности конуса:
    • L = πrs = πr√ (r 2 + h 2 )
  • Площадь основания конуса (кружка):
  • Общая площадь конуса:
    • A = L + B = πrs + πr 2 = πr (s + r) = πr (r + √ (r 2 + h 2 ))
Расчет круглого конуса:

Используйте следующие дополнительные формулы наряду с формулами выше.

  • По заданным радиусу и высоте рассчитайте наклонную высоту, объем, площадь боковой поверхности и общую площадь поверхности.
    По заданным r, h найти s, V, L, A
  • По заданному радиусу и наклонной высоте рассчитайте высоту, объем, площадь боковой поверхности и общую площадь поверхности.
    По заданному r, s найти h, V, L, A
  • По заданному радиусу и объему рассчитайте высоту, наклонную высоту, площадь боковой поверхности и общую площадь поверхности.
    Для данного r, V найти h, s, L, A
  • По заданному радиусу и площади боковой поверхности рассчитайте высоту, наклонную высоту, объем и общую площадь поверхности.
    Для данного r, L найти h, s, V, A
    • с = L / (πr)
    • h = √ (с 2 — r 2 )
  • По заданному радиусу и общей площади поверхности рассчитайте высоту, наклонную высоту, объем и площадь боковой поверхности.
    Для данного r, A найти h, s, V, L
    • s = [A — (πr 2 )] / (πr)
    • h = √ (с 2 — r 2 )
  • Зная высоту и наклонную высоту, рассчитайте радиус, объем, площадь боковой поверхности и общую площадь поверхности.
    По заданному h, s найти r, V, L, A
  • По заданной высоте и объему рассчитайте радиус, наклонную высоту, площадь боковой поверхности и общую площадь поверхности.
    По заданному h, V найти r, s, L, A
    • r = √ [(3 * v) / (π * h)]
  • Зная наклонную высоту и площадь боковой поверхности, рассчитайте радиус, высоту, объем и общую площадь поверхности.
    По s, L найти r, h, V, A
    • r = л / (π * с)
    • h = √ (с 2 — r 2 )

Список литературы

Вайсштейн, Эрик В.»Конус». Из MathWorld — Интернет-ресурс Wolfram.
http://mathworld.wolfram.com/Cone.html

.

Образующая конуса. Длина образующей конуса

прямой круговой конус прямой и косой круговые конусы с равным основанием и высотой: они обладают одинаковым объёмом


усечённый прямой круговой конус

конус в Викисловаре
Конус на Викискладе

Ко́нус

(от др.-греч. κώνος «сосновая шишка»[1]) — тело в евклидовом пространстве, полученное объединением всех лучей, исходящих из одной точки (
вершины
конуса) и проходящих через плоскую поверхность. Иногда конусом называют часть такого тела, имеющую ограниченный объём и полученную объединением всех отрезков, соединяющих вершину и точки плоской поверхности (последнюю в таком случае называют
основанием
конуса, а конус называют
опирающимся
на данное основание). Если основание конуса представляет собой многоугольник, такой конус является пирамидой.

Связанные определения

  • образующая конуса
    — отрезок, соединяющий вершину и границу основания.
  • образующая
    (или
    боковая
    )
    поверхность конуса
    — объединение образующих конуса; образующая поверхность конуса является конической поверхностью.
  • высота конуса
    — отрезок, опущенный перпендикулярно из вершины на плоскость основания (а также длина такого отрезка).
  • угол раствора конуса
    — угол между двумя противоположными образующими (угол при вершине конуса, внутри конуса).
  • конусность
    — соотношение высоты и диаметра основания конуса.
  • прямой конус
    — конус, основание которого имеет центр симметрии (например, является кругом или эллипсом) и ортогональная проекция вершины конуса на плоскость основания совпадает с этим центром; при этом прямая, соединяющая вершину и центр основания, называется
    осью конуса
    .
  • косой
    (или
    наклонный
    )
    конус
    — конус, у которого ортогональная проекция вершины на основание не совпадает с его центром симметрии.
  • круговой конус
    — конус, основание которого является кругом.
  • прямой круговой конус
    (часто его называют просто конусом) можно получить вращением прямоугольного треугольника вокруг прямой, содержащей катет (эта прямая представляет собой ось конуса).
  • конус, опирающийся на эллипс, параболу или гиперболу, называют соответственно эллиптическим
    ,
    параболическим
    и
    гиперболическим конусом
    : последние два имеют бесконечный объём.
  • усечённый конус
    или
    конический слой
    — часть конуса, лежащая между основанием и плоскостью, параллельной основанию и находящейся между вершиной и основанием.

Образующая в наклонном конусе

Исходя из того, что в косом, или наклонном конусе образующие имеют не одинаковую длину, рассчитать их без дополнительных построений и вычислений не получится.

Прежде всего необходимо знать высоту, длину оси и радиус основания.

Имея эти данные, можно рассчитать часть радиуса, лежащую между осью и высотой, по формуле из теоремы Пифагора:

r1= √k2 — h3

где r1 – это часть радиуса между осью и высотой;

k – длина оси;

h – высота.

В результате сложения радиуса (r) и его части, лежащей между осью и высотой (r1), можно узнать полную сторону прямоугольного треугольника, сформированного образующей конуса, его высотой и частью диаметра:

R = r + r1

где R – катет треугольника, образованного высотой, образующей и частью диаметра основания;

r – радиус основания;

r1 – часть радиуса между осью и высотой.

Пользуясь все той же формулой из теоремы Пифагора, можно найти длину образующей конуса:

l = √h3+ R2

или, не производя отдельно расчет R, объединить две формулы в одну:

l = √h3 + (r + r1)2.

Несмотря на то, прямой или косой конус и какие вводные данные, все способы нахождения длины образующей всегда сводятся к одному итогу — использованию теоремы Пифагора.

Свойства

  • Если площадь основания конечна, то объём конуса также конечен и равен трети произведения высоты на площадь основания.

V = 1 3 S H , {\displaystyle V={1 \over 3}SH,} где S
— площадь основания,
H
— высота. Таким образом, все конусы, опирающиеся на данное основание (конечной площади) и имеющие вершину, находящуюся на данной плоскости, параллельной основанию, имеют равный объём, поскольку их высоты равны.

  • Центр тяжести любого конуса с конечным объёмом лежит на четверти высоты от основания.
  • Телесный угол при вершине прямого кругового конуса равен

2 π ( 1 − cos ⁡ α 2 ) , {\displaystyle 2\pi \left(1-\cos {\alpha \over 2}\right),} где α — угол раствора конуса.

  • Площадь боковой поверхности такого конуса равна

S = π R l , {\displaystyle S=\pi Rl,} а полная площадь поверхности (то есть сумма площадей боковой поверхности и основания) S = π R ( l + R ) , {\displaystyle S=\pi R(l+R),} где R
— радиус основания, l = R 2 + H 2 {\displaystyle l={\sqrt {R^{2}+H^{2}}}} — длина образующей.{2}),} где R {\displaystyle R} и r {\displaystyle r} — радиусы соответственно нижнего и верхнего оснований, H {\displaystyle H} — высота от плоскости нижнего основания,до верхнего основания.

  • Для произвольного усечённого конуса (не обязательно прямого и кругового) объём равен:

V = 1 3 ( H 2 S 2 − H 1 S 1 ) , {\displaystyle V={1 \over 3}(H_{2}S_{2}-H_{1}S_{1}),} где S 1 {\displaystyle S_{1}} и S 2 {\displaystyle S_{2}} — площади соответственно верхнего (ближнего к вершине) и нижнего оснований, H 1 {\displaystyle H_{1}} и H 2 {\displaystyle H_{2}} — расстояния от плоскости соответственно верхнего и нижнего основания до вершины.

  • Пересечение плоскости с прямым круговым конусом является одним из конических сечений (в невырожденных случаях — эллипсом, параболой или гиперболой, в зависимости от положения секущей плоскости).

Расчет объема

Формула объема любого конуса выглядит следующим образом:

V = 1/3 * π * h * r2

где V – это объем конуса;

h – высота;

r – радиус;

π — константа, равная 3,14.

Для того чтобы рассчитать обьем конуса, необходимо иметь данные о высоте и радиусе основания тела.

Для расчета высоты тела необходимо знать радиус основания и длину его образующей. Поскольку радиус, высота и образующая объединяются в прямоугольный треугольник, то высоту можно рассчитать по формуле из теоремы Пифагора (a2+ b2= c2 или в нашем случае h3+ r2= l2, где l – образующая). Высота при этом будет рассчитываться путем извлечения квадратного корня из разности квадратов гипотенузы и другого катета:

a = √c2- b2

То есть высота конуса будет равна величине, полученной после извлечения квадратного корня из разности квадрата длины образующей и квадрата радиуса основания:

h = √l2 — r2

Рассчитав таким методом высоту и зная радиус его основания, можно вычислить объем конуса. Образующая при этом играет важную роль, так как служит вспомогательным элементом в расчетах.

Аналогичным образом, если известна высота тела и длина его образующей, можно узнать радиус его основания, извлекая квадратный корень из разности квадрата образующей и квадрата высоты:

r = √l2 — h3

После чего по той же формуле, что указана выше, рассчитать объем конуса.{n}f(x,y,z)} для любого действительного числа α.

Что это — конус?

С точки зрения геометрии речь идет о пространственной фигуре, которая образована совокупностью прямых отрезков, соединяющих некоторую точку пространства со всеми точками плавной плоской кривой. Этой кривой может быть окружность или эллипс. На рисунке ниже показан конус.

Вам будет интересно:Советские вещи: фото и описание

Представленная фигура не обладает объемом, поскольку стенки ее поверхности имеют бесконечно малую толщину. Однако если ее заполнить веществом и ограничить сверху не кривой, а плоской фигурой, например кругом, то мы получим твердое объемное тело, которое также принято называть конусом.

Форму конуса можно часто встретить в жизни. Так, ею обладает мороженое-рожок или полосатые черно-оранжевые дорожные конусы, которые выставляют на проезжую часть для привлечения внимания участников движения.

Развёртка


Развёртка прямого кругового конуса
Прямой круговой конус как тело вращения образован прямоугольным треугольником, вращающимся вокруг одного из катетов, где h

— высота конуса от центра основания до вершины — является катетом прямоугольного треугольника, вокруг которого происходит вращение. Второй катет прямоугольного треугольника
r
— радиус в основании конуса. Гипотенузой прямоугольного треугольника является
l
— образующая конуса.

В создании развёртки конуса могут использоваться всего две величины r

и
l
. Радиус основания
r
определяет в развертке круг основания конуса, а сектор боковой поверхности конуса определяет образующая боковой поверхности
l
, являющаяся радиусом сектора боковой поверхности. Угол сектора φ {\displaystyle \varphi } в развёртке боковой поверхности конуса определяется по формуле:
φ = 360°·(r
/
l
).

Длина образующих в прямом конусе

Как написано ранее, высота в прямом геометрическом теле вращения перпендикулярна плоскости основания. Таким образом, образующая, высота и радиус основания создают в конусе прямоугольный треугольник.

То есть, зная радиус основания и высоту, при помощи формулы из теоремы Пифагора, можно вычислить длину образующей, которая будет равна сумме квадратов радиуса основания и высоты:

l2 = r2+ h3 или l = √r2 + h3

где l – образующая;

r – радиус;

h – высота.

Вариации и обобщения

  • В алгебраической геометрии конус
    — это произвольное подмножество K {\displaystyle K} векторного пространства V {\displaystyle V} над полем F {\displaystyle F} , для которого для любого λ ∈ F {\displaystyle \lambda \in F} λ K = K . {\displaystyle \lambda K=K.}
  • В топологии конус над топологическим пространством X
    есть фактор-пространство X × [ 0 , ∞ ) {\displaystyle X\times [0,\infty )} по отношению эквивалентности ( x , 0 ) ∼ ( y , 0 ) . {\displaystyle (x,0)\sim (y,0).}

Что такое уклон? Как определить уклон? Как построить уклон? Обозначение уклона на чертежах по ГОСТ.

Уклон. Уклон это отклонение прямой линии от вертикального или горизонтального положения. Определение уклона. Уклон определяется как отношение противолежащего катета угла прямоугольного треугольника к прилежащему катету, то есть он выражается тангенсом угла а. Уклон можно посчитать по формуле i=AC/AB=tga.

Построение уклона. На примере (рисунок ) наглядно продемонстрировано построение уклона. Для построения уклона 1:1, например, нужно на сторонах прямого угла отложить произвольные, но равные отрезки. Такой уклон, будет соответствовать углу в 45 градусов. Для того чтобы построить уклон 1:2, нужно по горизонтали отложить отрезок равный по значению двум отрезкам отложенным по вертикали. Как видно из чертежа, уклон есть отношение катета противолежащего к катету прилежащему, т. е. он выражается тангенсом угла а.

Обозначение уклона на чертежах. Обозначение уклонов на чертеже выполняется в соответствии с ГОСТ 2.307—68. На чертеже указывают величину уклона с помощью линии-выноски. На полке линии-выноски наносят знак и величину уклона. Знак уклона должен соответствовать уклону определяемой линии, то есть одна из прямых знака уклона должна быть горизонтальна, а другая должна быть наклонена в ту же сторону, что и определяемая линия уклона. Угол уклона линии знака примерно 30°.

Определение и элементы конуса

Под конусом понимают тело, состоящее из круга и точки, которая удалена от его поверхности на определённое расстояние.

При этом точка соединяется с основанием посредством проведения лучей, которые называются образующими. Линия, соединяющая центр круга с удалённой точкой, является высотой данной фигуры.

Обратите внимание!

Также существует такое понятие, как ось конуса. Это линия, проходящая через его центр и совпадающая с высотой. Образующие строятся относительно оси.

Хотелось бы рассмотреть ещё несколько понятий по этой теме:

1. Под конусностью понимают отношение диаметра основания фигуры и её высоты:

Важно!

Конусность отвечает за угол наклона образующих. Чем больше данный параметр, тем острее угол.

2. Осевое сечение предполагает наличие плоскости, которая будет рассекать фигуру, проходя через ось:

3. Касательная— это плоскость, которая соприкасается с образующей конуса. При этом важно, чтобы она была перпендикулярна осевому сечению.

Как рассчитать угол конуса

Содержание

Элементы конусаРасчетные формулыЭлементы конусаРасчетные формулы
KK = (D-d)/ lK = 2tgaDD = K× l + dD = 2× l×tga + d
atga = (D-d)/ 2ltga = K / 2dd = D – 2× l×tgad = D – K× l

Угол a вычисляют по тригонометрической функции тангенса.

Нормальные конические поверхности должны быть изготовлены по стандартным размерам, некоторые из которых указаны в табл.4.

Кроме этих поверхностей, различают также конусы Морзе и метрические конусы. Наружные конусы Морзе выполняют на хвостовой части сверл (см. рис.6

), зенкеров, разверток, центров, а внутренние конусы – в отверстиях шпинделей, оправок, переходных втулок, в которые эти инструменты устанавливают. Существуют семь номеров конусов Морзе (от до
6
) со своими размерами и углами наклона
a
. Наименьшим является конус Морзе (
1:19,212
), наибольшим – конус Морзе
6
(
1:19,18
). Их размеры приведены в стандарте СТ СЭВ 147-75. Недостатком конусов Морзе следует считать разные углы наклона
a
у различных номеров.

Таблица 4

Стандартные размеры конусов деталей

Конусность KУгол конуса 2aУгол наклона aОбозначение конусности
1:100 1:50 1:20 1:10 1:3 1:1,866 1:1,207 1:0,8660 0 34¢23² 1 0 8¢45² 2 0 51¢51² 5 0 43¢29² 18 0 55¢30² 30 0 45 0 60 00 0 17¢12² 0 0 34¢23² 1 0 25¢56² 2 0 51¢45² 9 0 27¢45² 15 0 22 0 30¢ 30 01:100 1:50 1:20 1:10 1:3 30 0 45 0 60 0

Метрические конусы 4, 6, 80, 100, 120, 160, 200

(см. тот же стандарт) имеют одинаковую конусность
1:20
(и угол
a
), а номер конуса обозначает размер диаметра большого основания.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения:
Да какие ж вы математики, если запаролиться нормально не можете.
8256 – | 7223 – или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock! и обновите страницу (F5)

очень нужно

Конусность – отношение разности диаметров двух поперечных сечений кругового конуса к расстоянию между ними.

Конусность имеет двойной Уклон: k=2i Конусность на чертеже может быть указана в градусной мере, в радианах и в процентах. Заданы конусность пробки крана 1:5, диаметр D=BC=20 мм, длина l=35 мм.

Необходимо построить очертание пробки крана одним из двух способов: Первый способ. Из формулы k=2i находим i=1:10. Отмечаем точки BC и строим треугольник DKP так, чтобы KP:BK=1:10. Продолжив BP до пересечения с осью конуса, получим вершину конуса S. Точку S соединяем с точкой C. Отложив по оси пробки от BC отрезок l=35 мм и проведя через конец этого отрезка прямую, перпендикулярную к оси , получим диаметр d=EF=13 мм торца пробки; Второй способ. Из формулы k=(D-d)/l находим d=EF=20-35/5=13 мм; Величина угла при вершине конуса:

здесь угол φ представлен в радианах.

где L – расстояние от большого сечения до вершины S конуса, а отношение: D/(2L) = tgφ Пусть задана конусность например 1 : 2,5 откуда i=1:5 и tgφ=0,2 тогда перевод ее в градусы выполняется по формулам:

Конусность стандартизована. ГОСТ 8593-81 устанавливает нормальные конусности и углы конусов

Обозна- чениеконусаКонус-ностьУголконусаУголуклона
Ряд 1Ряд 2Угл. ед.Рад.Угл. ед.Рад.
1:5001:5000,00200006`52,5″0,00200003`26,25″0,0010000
1:2001:2000,005000017`11,3″0,00500008`25,65″0,0025000
1:1001:1000,010000034`22,6″0,010000017`11,3″0,0050000
1:501:500,02000001°8`45,2″0,019999634`22,6″0,0099998
1:301:300,03333331°54`34,9″0,033330457`17,45″0,0166652
1:201:200,05000002°51`51,1″0,04998961°25`55,55″0,0249948
1:151:150,06666673°49`5,9″0,06664201°54`32,95″0,0333210
1:121:120,08333334°46`18,8″0,08328522°23`9,4″0,0416426
1:101:100,10000005°43`29,3″0,09991682°51`44,65″0,0499584
1:81:80,12500007°9`9,6″0,12483763°34`34,8″0,0624188
1:71:70,14285718°10`16,4″0,14261484°5`8,2″0,0713074
1:61:60,16666679°31`38,2″0,16628244°45`49,1″0,0831412
1:51:50,200000011°25`16,3″0,19933745°42`38,15″0,0996687
1:41:40,250000014°15`0,1″0,24871007°7`30,05″0,1243550
1:31:30,333333318°55`28,7″0,33029729°27`44,35″0,1651486
30°1:1,8660250,535898530°0,523598815°0,2617994
45°1:1,2071070,828426945°0,785398222°30`0,3926991
60°1:0,8660251,154701060°1,047197630°0,5235988
75°1:0,6516131,534653275°1,308997037°30`0,6544985
90°1:0,5000002,000000090°1,570796445°0,7853982
120°1:0,2886753,4641032120°2,094395260°1,0471976

Конусности и углы конусов должны соответствовать указанным на чертеже и в таблице. При выборе конусностей или углов конусов ряд 1 следует предпочитать ряду 2.

Конусность поверхности

обозначается на чертеже: – надписью Конусность с указанием ее величины; – указывающей на нее стрелкой с полкой где пишется: – Конусность с указанием ее величины; – знак конусности и ее величина.

В машиностроении, наряду с цилиндрическими, широко применяются детали с коническими поверхностями в виде наружных конусов или в виде конических отверстий. Например, центр токарного станка имеет два наружных конуса, из которых один служит для установки и закрепления его в коническом отверстии шпинделя; наружный конус для установки и закрепления имеют также сверло, зенкер, развертка и т. д. Переходная втулка для закрепления сверл с коническим хвостовиком имеет наружный конус и коническое отверстие

Читать также: Как сделать лазер из дисковода

Понятие о конусе и его элементах

Элементы конуса . Если вращать прямоугольный треугольник АБВ вокруг катета АБ (рис. 202, а), то образуется тело АВГ, называемое полным конусом

. Линия АБ называется осью или
высотой конуса
, линия АВ —
образующей конуса
. Точка А является
вершиной конуса
.

При вращении катета БВ вокруг оси АБ образуется поверхность круга, называемая основанием конуса

.

Угол ВАГ между боковыми сторонами АВ и АГ называется углом конуса

и обозначается 2α. Половина этого угла, образуемая боковой стороной АГ и осью АБ, называется
углом уклона конуса
и обозначается α. Углы выражаются в градусах, минутах и секундах.

Если от полного конуса отрезать его верхнюю часть плоскостью, параллельной егооснованию (рис. 202, б), то получим тело, называемое усеченным конусом

. Оно имеет два основания верхнее и нижнее. Расстояние OO1 по оси между основаниями называется
высотой усеченного конуса
. Так как в машиностроении большей частью приходится иметь дело с частями конусов, т. е. усеченными конусами, то обычно их просто называют конусами; дальше будем называть все конические поверхности конусами.

Связь между элементами конуса. На чертеже указывают обычно три основных размера конуса: больший диаметр D, меньший — d и высоту конуса l (рис. 203).

Иногда на чертеже указывается только один из диаметров конуса, например, больший D, высота конуса l и так называемая конусность. Конусностью называется отношение разности диаметров конуса к его длине. Обозначим конусность буквой K, тогда

Если конус имеет размеры: D =80 мм, d = 70 мм и l = 100 мм, то согласно формуле (10):

Это значит, что на длине 10 мм диаметр конуса уменьшается на 1 мм или на каждый миллиметр длины конуса разница между его диаметрами изменяется на

Иногда на чертеже вместо угла конуса указывается уклон конуса

. Уклон конуса показывает, в какой мере отклоняется образующая конуса от его оси. Уклон конуса определяется по формуле

где tg α — уклон конуса; D — диаметр большого основания конуса в мм; d — диаметр малого основания конуса в мм; l — высота конуса в мм.

Пользуясь формулой (11), можно при помощи тригонометрических таблиц определить угол а уклона конуса.

Уклон конуса и конусность обычно выражают простой дробью, например: 1 : 10; 1 : 50, или десятичной дробью, например, 0,1; 0,05; 0,02 и т. д.

Способы получения конических поверхностей на токарном станке

На токарном станке обработка конических поверхностей производится одним из следующих способов: а) поворотом верхней части суппорта; б) поперечным смещением корпуса задней бабки; в) с помощью конусной линейки; г) с помощью широкого резца.

Обработка конических поверхностей поворотом верхней части суппорта

При изготовлении на токарном станке коротких наружных и внутренних конических поверхностей с большим углом уклона нужно повернуть верхнюю часть суппорта относительно оси станка под углом α уклона конуса (см. рис. 204). При таком способе работы подачу можно производить только от руки, вращая рукоятку ходового винта верхней части суппорта, и лишь в наиболее современных токарных станках имеется механическая подача верхней части суппорта.

Для установки верхней части суппорта 1 на требуемый угол можно использовать деления, нанесенные на фланце 2 поворотной части суппорта (рис. 204). Если угол α уклона конуса задан по чертежу, то верхнюю часть суппорта повертывают вместе с его поворотной частью на требуемое число делений, обозначающих градусы. Число делений отсчитывают относительно риски, нанесенной на нижней части суппорта.

Если на чертеже угол α не дан, а указаны больший и меньший диаметры конуса и длина его конической части, то величину угла поворота суппорта определяют по формуле (11)

Способ обтачивания конических поверхностей поворотом верхней части суппорта имеет следующие недостатки: он допускает обычно применение только ручной подачи, что отражается на производительности труда и чистоте обработанной поверхности; позволяет обтачивать сравнительно короткие конические поверхности, ограниченные длиной хода верхней части суппорта.

Обработка конических поверхностей способом поперечного смещения корпуса задней бабки

Для получения конической поверхности на токарном станке необходимо при вращении заготовки вершину резца перемещать не параллельно, а под некоторым углом к оси центров. Этот угол должен равняться углу α уклона конуса. Наиболее простой способ получения угла между осью центров и направлением подачи — сместить линию центров, сдвинув задний центр в поперечном направлении. Путем смещения заднего центра в сторону резца (на себя) в результате обтачивания получают конус, у которого большее основание направлено в сторону передней бабки; при смещении заднего центра в противоположную сторону, т. е. от резца (от себя), большее основание конуса окажется со стороны задней бабки (рис. 205).

Смещение корпуса задней бабки определяют по формуле

где S — смещение корпуса задней бабки от оси шпинделя передней бабки в мм; D — диаметр большого основания конуса в мм; d — диаметр малого основания конуса в мм; L — длина всей детали или расстояние между центрами в мм; l — длина конической части детали в мм.

Смещение корпуса задней бабки производят, используя деления 1 (рис 206), нанесенные на торце опорной плиты, и риску 2 на торце корпуса задней бабки.

Если на торце плиты делений нет, то смещают корпус задней бабки, пользуясь измерительной линейкой, как показано на рис. 207.

Читать также: Как правильно подсоединить двухклавишный выключатель

Преимущество обработки конических поверхностей путем смещения корпуса задней бабки заключается в том, что этим способом можно обтачивать конусы большой длины и вести обтачивание с механической подачей.

Недостатки этого способа: невозможность растачивать конические отверстия; потеря времени на перестановку задней бабки; возможность обрабатывать лишь пологие конусы; перекос центров в центровых отверстиях, что приводит к быстрому и неравномерному износу центров и центровых отверстий и служит причиной брака при вторичной установке детали в этих же центровых отверстиях.

Неравномерного износа центровых отверстий можно избежать, если вместо обычного применять специальный шаровой центр (рис. 208). Такие центры используют преимущественно при обработке точных конусов.

Обработка конических поверхностей с применением конусной линейки

Для обработки конических поверхностей с углом уклона а до 10—12° современные токарные станки обычно имеют особое приспособление, называемое конусной линейкой. Схема обработки конуса с применением конусной линейки приводится на рис. 209.

К станине станка прикреплена плита 11, на которой установлена конусная линейка 9. Линейку можно поворачивать вокруг пальца 8 под требуемым углом а к оси обрабатываемой детали. Для закрепления линейки в требуемом положении служат два болта 4 и 10. По линейке свободно скользит ползун 7, соединяющийся с нижней поперечной частью 12 суппорта при помощи тяги 5 и зажима 6. Чтобы эта часть суппорта могла свободно скользить по направляющим, ее отсоединяют от каретки 3, вывинчивая поперечный винт или отсоединяя от суппорта его гайку.

Если сообщить каретке продольную подачу, то ползун 7, захватываемый тягой 5, начнет перемещаться вдоль линейки 9. Так как ползун скреплен с поперечными салазками суппорта, то они вместе с резцом будут перемещаться параллельно линейке 9. Благодаря этому резец будет обрабатывать коническую поверхность с углом уклона, равным углу α поворота конусной линейки.

После каждого прохода резец устанавливают на глубину резания с помощью рукоятки 1 верхней части 2 суппорта. Эта часть суппорта должна быть повернута на 90° относительно нормального положения, т. е. так, как это показано на рис. 209.

Если даны диаметры оснований конуса D и d и его длина l, то угол поворота линейки можно найти по формуле (11).

Подсчитав величину tg α, легко определить значение угла α по таблице тангенсов. Применение конусной линейки имеет ряд преимуществ: 1) наладка линейки удобна и производится быстро; 2) при переходе к обработке конусов не требуется нарушать нормальную наладку станка, т. е. не нужно смещать корпус задней бабки; центры станка остаются в нормальном положении, т. е. на одной оси, благодаря чему центровые отверстия в детали и центры станка не срабатываются; 3) при помощи конусной линейки можно не только обтачивать наружные конические поверхности, но и растачивать конические отверстия; 4) возможна работа е продольным самоходом, что увеличивает производительность труда и улучшает качество обработки.

Недостатком конусной линейки является необходимость отсоединять салазки суппорта от винта поперечной подачи. Этот недостаток устранен в конструкции некоторых токарных станков, у которых винт не связан жестко со своим маховичком и зубчатыми колесами поперечного самохода.

Обработка конических поверхностей широким резцом

Обработку конических поверхностей (наружных и внутренних) с небольшой длиной конуса можно производить широким резцом с углом в плане, соответствующим углу α уклона конуса (рис. 210). Подача резца может быть продольная и поперечная.

Однако использование широкого резца на обычных станках возможно только при длине конуса, не превышающей примерно 20 мм. Применять более широкие резцы можно лишь на особо жестких станках и деталях, если это не вызывает вибрации резца и обрабатываемой детали.

Растачивание и развертывание конических отверстий

Обработка конических отверстий является одной из наиболее трудных токарных работ; она значительно труднее, чем обработка наружных конусов.

Обработку конических отверстий на токарных станках в большинстве случаев производят растачиванием резцом с поворотом верхней части суппорта и реже с помощью конусной линейки. Все подсчеты, связанные с поворотом верхней части суппорта или конусной линейки, выполняются так же, как при обтачивании наружных конических поверхностей.

Если отверстие должно быть в сплошном материале, то сначала сверлят цилиндрическое отверстие, которое затем растачивают резцом на конус или обрабатывают коническими зенкерами и развертками.

Чтобы ускорить растачивание или развертывание, следует предварительно просверлить отверстие сверлом, диаметр d, которого на 1—2 мм меньше диаметра малого основания конуса (рис. 211, а). После этого рассверливают отверстие одним (рис. 211, б) или двумя (рис. 211, в) сверлами для получения ступеней.

После чистового растачивания конуса его развертывают конической разверткой соответствующей конусности. Для конусов с небольшой конусностью выгоднее производить обработку конических отверстий непосредственно после сверления набором специальных разверток, как показано на рис. 212.

Режимы резания при обработке отверстий коническими развертками

Конические развертки работают в более тяжелых условиях, чем цилиндрические: в то время как цилиндрические развертки снимают незначительный припуск небольшими режущими кромками, конические развертки режут всей длиной их режущих кромок, расположенных на образующей конуса. Поэтому при работе коническими развертками применяют подачи и скорости резания меньше, чем при работе цилиндрическими развертками.

При обработке отверстий коническими развертками подачу производят вручную, вращая маховичок задней бабки. Необходимо следить за тем, чтобы пиноль задней бабки перемещалась равномерно.

Подачи при развертывании стали 0,1—0,2 мм/об, при развертывании чугуна 0,2—0,4 мм/об.

Скорость резания при развертывании конических отверстий развертками из быстрорежущей стали 6—10 м/мин.

Читать также: Изделия с элементами холодной ковки

Для облегчения работы конических разверток и получения чистой и гладкой поверхности следует применять охлаждение. При обработке стали и чугуна применяют эмульсию или сульфофрезол.

Измерение конических поверхностей

Поверхности конусов проверяют шаблонами и калибрами; измерение и одновременно проверку углов конуса производят угломерами. На рис. 213 показан способ проверки конуса с помощью шаблона.

Наружные и внутренние углы различных деталей можно измерять универсальным угломером (рис. 214). Он состоит из основания 1, На котором на дуге 130 нанесена основная шкала. С основанием 1 жестко скреплена линейка 5. По дуге основания перемещается сектор 4, несущий нониус 3. К сектору 4 посредством державки 7 может быть прикреплен угольник 2, в котором, в свою очередь, закрепляется съемная линейка 5. Угольник 2 и съемная линейка 5 имеют возможность перемещаться по грани сектора 4.

Путем различных комбинаций в установке измерительных деталей угломера можно производить измерение углов от 0 до 320°. Величина отсчета по нониусу 2′. Отсчет, полученный при измерении углов, производится по шкале и нониусу (рис. 215) следующим образом: нулевой штрих нониуса показывает число градусов, а штрих нониуса, совпадающий со штрихом шкалы основания, — число минут. На рис. 215 со штрихом шкалы основания совпадает 11-й штрих нониуса, что означает 2’Х 11 = 22′. Следовательно, угол в данном случае равен 76°22′.

На рис. 216 показаны комбинации измерительных деталей универсального угломера, позволяющие производить измерение различных углов от 0 до 320°.

Для более точной проверки конусов в серийном производстве применяют специальные калибры. На рис. 217, а показан кониче-ский калибр-втулка для проверки наружных конусов, а на рис. 217, б—конический калибр-пробка для проверки конических отверстий.

На калибрах делаются уступы 1 и 2 на торцах или наносятся риски 3, служащие для определения точности проверяемых поверхностей.

На. рис. 218 приводится пример проверки конического отверстия калибром-пробкой.

Для проверки отверстия калибр (см. рис. 218), имеющий уступ 1 на определенном расстоянии от торца 2 и две риски 3, вводят с легким нажимом в отверстие и проверяют, нет ли качания калибра в отверстии. Отсутствие качания показывает, что угол конуса правилен. Убедившись, что угол конуса правилен, приступают к проверке его размера. Для этого наблюдают, до какого места калибр войдет в проверяемую деталь. Если конец конуса детали совпадает с левым торцом уступа 1 или с одной из рисок 3 или находится между рисками, то размеры конуса правильны. Но может случиться, что калибр войдет в деталь настолько глубоко, что обе риски 3 войдут в отверстие или оба торца уступа 1 выйдут из него наружу. Это показывает, что диаметр отверстия больше заданного. Если, наоборот, обе риски окажутся вне отверстия или ни один из торцов уступа не выйдет из него, то диаметр отверстия меньше требуемого.

Для точной проверки конусности применяют следующий способ. На измеряемой поверхности детали или калибра проводят мелом или карандашом две-три линии вдоль образующей конуса, затем вставляют или надевают калибр на деталь и повертывают его на часть оборота. Если линии сотрутся неравномерно, это значит, что конус детали обработан неточно и необходимо его исправить. Стирание линий по концам калибра говорит о неправильной конусности; стирание линий в средней части калибра показывает, что конус имеет небольшую вогнутость, причиной чего обычно является неточное расположение вершины резца по высоте центров. Вместо меловых линий можно нанести на всю коническую поверхность детали или калибра тонкий слой специальной краски (синьки). Такой способ дает большую точность измерения.

Брак при обработке конических поверхностей и меры его предупреждения

При обработке конических поверхностей, помимо упомянутых видов брака для цилиндрических поверхностей, дополнительно возможны следующие виды брака: 1) неправильная конусность; 2) отклонения в размерах конуса; 3) отклонения в размерах диаметров оснований при правильной конусности; 4) непрямолинейность образующей конической поверхности.

1. Неправильная конусность получается главным образом вследствие неточного смещения корпуса задней бабки, неточного поворота верхней части суппорта, неправильной установки конусной линейки, неправильной заточки или установки широкого резца. Следовательно, точной установкой корпуса задней бабки, верхней части суппорта или конусной линейки перед началом обработки можно брак предупредить. Этот вид брака исправим только в том случае, если ошибка во всей длине конуса направлена в тело детали, т. е. все диаметры у втулки меньше, а у конического стержня больше требуемых.

2. Неправильный размер конуса при правильном угле его, т. е. неправильная величина диаметров по всей длине конуса, получается, если снято недостаточно или слишком много материала. Предупредить брак можно только внимательной установкой глубины резания по лимбу на чистовых проходах. Брак исправим, если снято недостаточно материала.

3. Может получиться, что при правильной конусности и точных размерах одного конца конуса диаметр второго конца неправилен. Единственной причиной является несоблюдение требуемой длины всего конического участка детали. Брак исправим, если деталь излишне длинна. Чтобы избежать этого вида брака, необходимо перед обработкой конуса тщательно проверить его длину.

4. Непрямолинейность образующей обрабатываемого конуса получается при установке резца выше (рис. 219, б) или ниже (рис. 219, в) центра (на этих рисунках для большей наглядности искажения образующей конуса показаны в сильно преувеличенном виде). Таким образом, и этот вид брака является результатом невнимательной работы токаря.

Объём усечённого конуса

Это часть прямого конуса, которая находится в пространстве между основой и плоскостью, параллельной этому основанию. В общем виде выглядит следующим образом:

Объём данного тела можно вычислить по формуле:

Важно! S и S1 это площади соответствующих основ, которые равняются ПR2 и ПR12 При нахождении этих значений поможет онлайн калькулятор.

Расчет кубатуры блоков на дом


Онлайн калькулятор расчета количества строительных блоков

Информация по назначению калькулятора

Онлайн калькулятор строительных блоков предназначен для выполнения расчетов строительных материалов необходимых для постройки стен домов, гаражей, хозяйственных и других помещений. В расчетах могут быть учтены размеры фронтонов постройки, дверные и оконные проемы, а так же сопутствующие материалы, такие как строительный раствор и кладочная сетка. Будьте внимательны при заполнении данных, обращайте особое внимание на единицы измерения.

При заполнении данных, обратите внимание на дополнительную информацию со знаком Дополнительная информация

Технологии не стоят на месте и строительные в том числе. Для строительства стен на смену дереву пришел кирпич, а сегодня его место все чаще занимают строительные блоки, получаемые искусственным путем, и в зависимости от используемого сырья, могут обладать различными характеристиками.

Строительные блоки популярны при возведении малоэтажных зданий, и стен монолитно-каркасных построек. Из них можно не только возводить наружные стены, но так же использовать для внутренних перегородок и межкомнатных стен. Бетонные блоки подойдут и для изготовления сборного фундамента для легких построек.

Преимущества строительных блоков очевидны. С их помощью можно в сжатые сроки построить здание без использования специальной техники. Они обладают хорошей теплоизоляцией и необходимой прочностью. Поэтому средства, потраченные на утепление, будут существенно ниже, чем при строительстве из кирпича. А если сравнивать строительные блоки с деревянными срубами, то это не только меньше дополнительных средств и работ, но и более высокая долговечность постройки.

Блокам не нужна столь сильная пароизоляция, как например, дереву. Учитывая их габариты и легкость, даже фундамент под такой дом будет стоить значительно дешевле по сравнению с кирпичом и железобетоном. Использование специального кладочного клея увеличивает теплоизоляцию стен, и делает их более привлекательными по внешнему виду.

Строительные блоки можно разделить на два вида:
  • Искусственные
  • – их получают путем смешивания различных по составу бетонов на заводах, с использованием специальных виброформовочных станков. Получаемый материал, в зависимости от сырья, отличается необходимой прочностью, плотностью и теплоизоляционными свойствами.
  • Природные
  • – стоят сравнительно дороже, чем предлагаемые заводом. Их получают путем тщательной обработки, шлифовки горных пород. Чаще всего они использую в качестве декоративной отделки фасадов.

К искусственным строительным блокам относятся: газобетонные, пенобетонные, керамзитобетонные, полистиролбетонные, опилкобетонные и многие другие. Каждый вид применяется в зависимости от необходимых качеств, и обладает как рядом преимуществ, так и рядом недостатков. У одного вида хорошие теплоизоляционные показатели, но они несколько уступают по прочности (если сравнивать, например, газобетон и керамзитобетон). В любом случае, здания, построенные с использованием строительных блоков, требуют меньше времени для возведения домов под ключ, по сравнению с теми же деревянными срубами, которым требуется много времени, чтобы окончательно просохнуть и отстояться. И только после этого можно начинать окончательную отделку помещения.

При строительстве из блоков, внутреннюю отделку помещений возможно производить сразу же после окончания строительства.

По конструктивным особенностям строительные блоки различают на:
  1. Конструкционные
  2. Применяются для возведения несущих стен постройки. Обладают высокой прочностью, но так же и высокой теплопроводностью и большим весом. В связи с этим, при постройке жилых помещений, необходимо обязательное дополнительное утепление.
  3. Конструкционно-теплоизоляционные
  4. Применяются для возведения несущих стен малоэтажных строений. Обладают средними характеристиками, как по прочности, так и по теплоизоляционным качествам. Идеально подходят для жилых помещений с сезонным проживанием.
  5. Теплоизоляционные
  6. Применяются для возведения только самонесущих стен, таких как внутренние перегородки и стены каркасных построек, а так же для утепления несущих стен. Обладают низкой теплопроводностью, малым весом, но так же малой прочностью.

К сожалению, на данный момент не существует идеального материала, обладающего высокими показателями сразу всех необходимых характеристик, таких как низкая теплопроводность, высокая прочность, малый вес и стоимость. И в каждом конкретном случае необходимо выбирать именно тот материал, который больше всего подходит для планируемой постройки с учетом необходимых требований.

Стоимость готовых стен приблизительно равна 1/3 стоимости всей постройки.

Далее представлен полный список выполняемых расчетов с кратким описанием каждого пункта. Если вы не нашли ответа на свой вопрос, вы можете связаться с нами по обратной связи находящейся в правом блоке.

Общие сведения по результатам расчетов

  • Периметр строения
  • — Общая длина всех стен учтенных в расчетах.
  • Общая площадь кладки
  • — Площадь внешней стороны стен. Соответствует площади необходимого утеплителя, если такой предусмотрен проектом.
  • Толщина стены
  • — Толщина готовой стены с учетом толщины растворного шва. Может незначительно отличаться от конечного результата в зависимости от вида кладки.
  • Количество блоков
  • — Общее количество блоков необходимое для постройки стен по заданным параметрам
  • Общий вес блоков
  • — Вес без учета раствора и кладочной сетки. Так же как и общий объем, необходим для выбора варианта доставки.
  • Кол-во раствора на всю кладку
  • — Объем строительного раствора, необходимый для кладки всех блоков. Объемный вес раствора может отличаться в зависимости от соотношения компонентов и введенных добавок.
  • Кол-во рядов блоков с учетом швов
  • — Зависит от высоты стен, размеров применяемого материала и толщины кладочного раствора. Без учета фронтонов.
  • Кол-во кладочной сетки
  • — Необходимое количество кладочной сетки в метрах. Применяется для армирования кладки, увеличивая монолитность и общую прочность конструкции. Обратите внимание на количество армированных рядов, по умолчанию указано армирование каждого ряда.
  • Примерный вес готовых стен
  • — Вес готовых стен с учетом всех строительных блоков, раствора и кладочной сетки, но без учета веса утеплителя и облицовки.
  • Нагрузка на фундамент от стен
  • — Нагрузка без учета веса кровли и перекрытий. Данный параметр необходим для выбора прочностных характеристик фундамента.

Что бы произвести расчет материала для перегородок, необходимо начать новый расчет и указать длину только всех перегородок, толщину стен в пол блока, а так же другие необходимые параметры.

Онлайн калькулятор расчета количества пенобетонных блоков

Информация по назначению калькулятора

Онлайн калькулятор пеноблоков предназначен для расчета количества и параметров пенобетонных блоков для возведения стен жилых домов и нежилых помещений, а так же других сооружений, с учетом фронтонов, оконных и дверных проемов. Расчет количества сопутствующих материалов, таких как количество песчанно-цементного раствора, кладочной сетки и стоимости материалов.

При заполнении данных, обратите внимание на дополнительную информацию со знаком Дополнительная информация

Пенобетонные блоки являются одним из видов ячеистого бетона, в состав которых помимо воды, цемента и песка входит химический пенообразователь. Именно благодаря пенообразователю, данный материал получается легким и имеет достаточную прочность для препятствия внешним нагрузкам. Сама структура бетона, так же как и в газоблоках, ячеистая, содержащая множество замкнутых воздушных пор, которые равномерно распределены по всему объему.

Пенобетон достаточно популярный строительный материал, и используется во всех основных видах строительства, таких как:

  1. Блочное возведение стен
  2. Монолитная заливка
  3. Использование в качестве тепло- и звукоизоляционного материала

Прочность такого бетона зависит от его плотности, чем выше плотность, тем выше прочность. Но данное правило работает только при соблюдении всех норм в процессе производства. Именно от вида производства зависит качество материала. Производственный процесс является достаточно простым, из-за чего данный материал получил высокую известность и популярность даже в мало населенных пунктах. Но в данном случае это явилось большим минусом, так как возможность производства в «гаражных» условиях, самым наихудшим образом отражается на качестве.

На крупных предприятиях используются специальные пеногенераторы и автоклавные камеры высокого давления, в которых пенобетон набирает свою прочность, сохраняя равномерное распределение воздушных пор по всему объему. К сожалению, многие малые предприятия производят пенобетонные блоки без таких камер, а так же пренебрегают многими другими правилами (не точный расчет сырья, малое количество цемента, дешевые пенообразователи, нарушение режимов сушки, самодельное оборудование). В связи с этим получаемый бетон имеет явно неравномерную плотность, из-за чего не соответствует принятым стандартам и заявленным характеристикам. Со временем такие пеноблоки дают трещины различного размера, расслаиваются и крошатся.

Попытки экономии на строительных материалах приводят к частичному (а иногда и полному) разрушению целостности строения уже через несколько лет.

Механическая же прочность пенобетона, из-за своей пористой структуры, достаточно мала по сравнению с обычным бетоном. В связи с этим применение этого материала возможно только в стенах, не несущих существенных нагрузок. А так же обязательное наличие армирующих поясов над верхними рядами, при устройстве даже деревянных перекрытий.

Несмотря на это, пенобетон обладает рядом существенных преимуществ, по сравнению со многими другими видами тяжелых бетонов:

  • Низкая теплопроводность
  • но при условии сухого состояния.
  • Низкий объемный вес
  • существенно снижающий трудозатраты, а так же возможность использования более упрощенных фундаментов.
  • Легкость механической обработки
  • нет необходимости в специальном оборудовании для распиливания и сверления.

Приобретайте пеноблоки только на крупных предприятиях, имеющих полных цикл производства, соответствующий всем нормам, а так же имеющих сертификаты соответствия ГОСТу.

Далее представлен полный список выполняемых расчетов с кратким описанием каждого пункта. Если вы не нашли ответа на свой вопрос, вы можете связаться с нами по обратной связи.

Общие сведения по результатам расчетов

  • Периметр строения
  • — Общая длина всех стен учтенных в расчетах.
  • Общая площадь кладки
  • — Площадь внешней стороны стен. Соответствует площади необходимого утеплителя, если такой предусмотрен проектом.
  • Толщина стены
  • — Толщина готовой стены с учетом толщины растворного шва. Может незначительно отличаться от конечного результата в зависимости от вида кладки.
  • Количество блоков
  • — Общее количество блоков необходимое для постройки стен по заданным параметрам
  • Общий вес блоков
  • — Вес без учета раствора и кладочной сетки. Так же как и общий объем, необходим для выбора варианта доставки.
  • Кол-во раствора на всю кладку
  • — Объем строительного раствора, необходимый для кладки всех блоков. Объемный вес раствора может отличаться в зависимости от соотношения компонентов и введенных добавок.
  • Кол-во рядов с учетом швов
  • — Зависит от высоты стен, размеров применяемого материала и толщины кладочного раствора. Без учета фронтонов.
  • Кол-во кладочной сетки
  • — Необходимое количество кладочной сетки в метрах. Применяется для армирования кладки, увеличивая монолитность и общую прочность конструкции. Обратите внимание на количество армированных рядов, по умолчанию указано армирование каждого ряда.
  • Примерный вес готовых стен
  • — Вес готовых стен с учетом всех строительных блоков, раствора и кладочной сетки, но без учета веса утеплителя и облицовки.
  • Нагрузка на фундамент от стен
  • — Нагрузка без учета веса кровли и перекрытий. Данный параметр необходим для выбора прочностных характеристик фундамента.

Что бы произвести расчет блоков для перегородок, необходимо начать новый расчет и указать длину только всех перегородок, толщину стен в пол блока, а так же другие необходимые параметры.

Расчет блоков на строительство дома: онлайн калькулятор

Размеры в сантиметрах:
Блок
Размеры блока K

400*200*200390*190*190625*300*250600*300*200510*250*219400*400*200Другие размерыНеверный ввод