Расчет освещенности помещений врукопашную / Хабр
Постараюсь очень кратко и просто изложить метод ручного расчета освещения в помещениях, которому меня научили на курсе «Расчет освещения» школы светодизайна LiDS.Какой должна быть освещенность
При планировании освещения, в первую очередь нужно определить соответствующую нормам целевую освещенность и посчитать общий световой поток, который должны давать светильники в помещении.
С нормативами определиться просто – либо ищем свой тип помещения в таблицах СанПиН 2.21/2.1.1/1278-03 «Гигиенические требования к естественному, искусственному и совмещенному освещению жилых и общественных зданий» и СП 52.13330.2011 «Естественное и искусственное освещение», либо соглашаемся с основным требованием по освещенности жилых помещений – 150лк или офисных помещений с компьютерами – 400лк.
Грубая оценка необходимого светового потока
По умолчанию расчет освещенности делается в программе Dialux. Но результат хотя бы приблизительно нужно знать заранее, чтобы сверить данные с оценкой «на глазок».
Долю света «η», который доходит до рабочих поверхностей, можно оценить на глазок. В самом общем приближении для некоего очень среднего помещения с какими-то там светильниками до рабочих поверхностей доходит примерно половина света, а значит для очень грубой оценки можно использовать коэффициент η = 0,5.
Например, в комнате площадью 20м2 светильник со световым потоком 700лм (эквивалент лампы накаливания 60Вт) создаст освещенность Е = 0,5 × 700лм / 20м2 = 18лк. А это значит, что для достижения норматива в 150лк, нужно F = 700лм × (150лк / 18лк) =5800лм, или эквивалент 8-ми лампочек накаливания по 60Вт!
Более точный метод ручного расчета
Но так как помещения бывают с разными стенами, разной формы, с высокими или низкими потолками, поправочный коэффициент не обязательно равен 0,5 и для каждого случая свой: на практике, от 0,1 до 0,9. При том, что разница между η = 0,3 и η = 0,6 уже означает разбег результатов в два раза.
Точное значение η нужно брать из таблиц коэффициента использования светового потока, разработанных еще в СССР. В полном виде с пояснениями таблицы привожу в отдельном документе. Здесь же воспользуемся выдержкой из таблиц для самого популярного случая. Для стандартного светлого помещения с коэффициентами отражения потолка стен и пола в 70%, 50%, 30%. И для смонтированных на потолок светильников, которые светят под себя и немного вбок (то есть имеют стандартную, так называемую, «косинусную» кривую силы света).
Табл. 1 Коэффициенты использования светового потока для потолочных светильников с косинусной диаграммой в комнате с коэффициентами отражения потолка, стен и пола – 70%, 50% и 30% соответственно.
В левой колонке таблицы указан индекс помещения, который считается по формуле:
, где S — площадь помещения в м2, A и B — длина и ширина помещения, h — расстояние между светильником и горизонтальной поверхностью, на которой рассчитываем освещенность.
Если нас интересует средняя освещенность рабочих поверхностей (стола) в комнате площадью 20м2 со стенами 4м и 5м, и высоте подвеса светильника над столами 2м, индекс помещения будет равен i = 20м2 / ( ( 4м + 5м ) × 2,0м ) = 1,1. Удостоверившись, что помещение и лампы соответствуют указанным в подписи к таблице, получаем коэффициент использования светового потока – 46%. Множитель η = 0,46 очень близок к предположенному навскидку η = 0,5. Средняя освещенность рабочих поверхностей при общем световом потоке 700лм составит 16лк, а для достижения целевых 150лк, потребуется F = 700лм × ( 150лк / 16лк ) = 6500лм.
Проверяем расчеты в диалюксе
Построим в диалюксе комнату 4 × 5м, высотой 2,8м, с высотой рабочих поверхностей 0,8м и теми же коэффициентами отражения, что и при ручном счете. И повесим 9шт мелких светильников с классической косинусной диаграммой по 720лм каждый (6480лм на круг).
Рис. 1 Взятый для примера светильник Philips BWG201 со световым потоком 720лм, и его классическое «косинусное» светораспределение
Получится ли у нас средняя освещенность рабочих поверхностей в 150лк, как мы оценили вручную? Да, результат расчета в Dialux – 143лк (см. рис2), а в пустой комнате без мебели и человеческой фигуры – 149лк. В светотехнике же значения, различающиеся менее чем на 10% считаются совпадающими.
Рис. 2 Результат расчета в диалюксе – средняя освещенность рабочей поверхности (при коэффициенте запаса 1,0) составила 143лк, что соответствует целевому значению 150лк.
Рис. 3 Красивые картинки, в которые верят люди.
Заключение:
На грубую оценку примитивным методом по формуле E = 0.5 × F / S потребуется 1 минута времени, на уточнение коэффициента использования по таблицам – еще 3 минуты, на проект в диалюксе после некоторого обучения – около 20 минут и еще 20 минут, если хочется «навести красоту». Диалюкс выдает очень красивые картинки (см. рис. 3), которые стоят потраченного труда, потому что в них верят люди. Но по соотношению эффективности и трудозатрат оценка освещенности врукопашную вне конкуренции. Ручной счет прост, надежен и эффективен как саперная лопатка, дает уверенность и понимание.
Этот калькулятор поможет Вам рассчитать, какое количество светильников будет необходимо установить на Вашем объекте для достижения необходимого уровня освещенности.
Для расчёта заполните поля формы следующим образом:
- Выберите нормы освещенности в соответствии с типом помещения
- Затем укажите габариты помещения
- Заполните расчётную высоту, т.е. расстояние между светильником и рабочей поверхностью
- Выберите характеристики поверхностей, которые наиболее соответствуют помещению
- Выберите тип лампы
- После нажатия кнопки «Рассчитать» Вы получите примерное количество светильников для данного помещения.
Типы помещений:
Рабочий кабинет Офис Помещение для работы с компьютерами Учебные аудитории и классы Операционный зал банка Читальный зал Проектные и конструкторские бюро Конференц-залы и залы заседаний Спортивный зал Выставочный зал Торговый зал магазина Обеденные залы и буфеты Кабинет врача Гараж Склад (зона приёма) Склад (зона хранения) Вестибюль Коридор Лестницы Чердак
Размеры и характеристики поверхностей помещенияХарактеристики поверхностей помещения:
Белый потолок, светлые стены, светлый пол — коэф.отражения 80-50-30 Белый потолок, серые стены, тёмный пол — 80-30-10 Светлый потолок, светлые стены, серый пол — 70-50-20 Серый потолок, светлые стены, тёмный пол — 50-50-10 Серый потолок, серые стены, тёмный пол — 50-30-10 Темный потолок, серые стены, тёмный пол — 30-30-10
Коэффициент запаса:
Очень чистые помещения, а так же осветительные установки с малым временем использования (k=1.25) Чистые помещения с трехгодичным циклом обслуживания (k=1.50) Наружное освещение, трехгодичный цикл обслуживания (k=1.75) Внутреннее и наружное освещение при сильном загрязнении (k=2.00)
Тип светильника:
Встраиваемые светильники Потолочные светильники Универсальные светильники Светильники для монтажа в световую линию Светильники для школьных и образовательных учреждений Встраиваемые светильники Трековые светильники Потолочные светильники Подвесные светильники Светильники для монтажа в световую линию Прожектора Подвесные светильники Потолочные светильники Переносные светильники Универсальные светильники Декоративное освещение интерьера
Результат* Результаты калькуляции носят ориентировочный характер, ведь для того, чтобы максимально точно определить освещенность помещения, нужно учитывать множество факторов, таких как архитектурные особенности помещения, количество и внешний вид расставленной мебели, запыленность помещения и др.
В электрике существует такое понятие как, расчет освещенности помещения. Данный расчет является фундаментом всей осветительной части электропроводки, поэтому ему следует уделить особое внимание. В этой статье мы подробно разберем:
- Зачем делать расчет освещенности помещения?
- А также рассмотрим пошаговое выполнение расчёта освещённости на конкретном примере
Теперь, обо всем по порядку.
Зачем делать расчет освещения?
В первую очередь, данный расчет необходим, для создания достаточной освещенности помещения, которая в свою очередь обеспечивает благоприятные и комфортные условия для жизнедеятельности человека.
Недостаток освещения или его чрезмерность, вызывает сильное напряжение глаз, быструю утомляемость и оказывает ощутимый психологический дискомфорт, что неблагоприятным образом отражается на здоровье человека в целом.
Идеальным освещением для наших глаз, является естественный природный свет (дневное, утреннее или вечернее солнце, солнце за облаками).
Основной задачей расчета освещенности помещения, является максимальное приближение искусственного освещения к естественному. К искусственному освещению относиться такой свет, которым человек имеет возможность управлять.
Электрический свет, является искусственным, он получается в результате преобразование электрической энергии в один из видов электромагнитного излучения, которое воспринимается человеческим глазом как свет. Именно такое преобразование происходит внутри ламп установленных в корпусах осветительных электроустановок (светильники, люстры, бра, торшеры и так далее).
В строительно-проектировочной документации(СНиП) существуют специальные правила, в которых прописаны нормы освещенности для различных видов помещений. Ниже рассмотрен пример, пошагового выполнение расчета с подробными комментариями и пояснениями.
Расчет освещения, пример
Расчет освещенности помещения производиться по формуле:
Для удобства запишем ее так:
Фл = (Ен * S * k * z) / (N * η * n)
где,
1. Фл – световой поток лампы,
2. Ен – норма освещенности
3. S – площадь помещения
4. k — коэффициент запаса
5. z – поправочный коэффициент
6. N – количество принятых светильников
7. η – коэффициент использования светового потока
8. n – число ламп в светильнике.
Данные нашего примера:
- Жилая комната.
- Длина – 5,5 м,
- Ширина – 3,5 м.
- Потолок — белый крашенный,
- Стены – обои, светлые однотонные (без рисунка) персикового оттенка,
- Пол – линолеум, серого цвета
Планируется установка пяти рожковой люстры, с пятью лампами, каждая из которых монтируется внутри плафона, изготовленного из белой матовой ткани во весь размер лампы.
Данная комната имеет стандартную высоту потолков 2,5 м. Опираясь на конструктивное исполнение светильника определяем высоту его подвеса. Для нашего примера эти данные будут следующими:
- высота установки люстры от пола до плафонов в которых установлены лампы — 2,3 м
Теперь найдем все необходимые для расчетов данные.
2. Ен — нормированная освещенность
Измеряется в Люксах (Лк), является нормированной величиной, прописанной в своде правил строительной документации СНиП. Ниже представлена таблица норм освещенности.
Таблица №1. Рекомендуемые нормы освещенности жилых помещений, согласно СНиП 23-05-95
Помещение нашего примера — жилая комната. Согласно таблицы №1 нормируемая освещенность для данного вида помещений равна 150 Люкс (Лк).
Ен = 150
Подставим значение в формулу:
Фл = (Ен * S * k * z) / (N * η * n)
Фл = (150 * S * k * z) / (N * η * n)
3. S – площадь помещения
Для выполнения последующих расчетов нам потребуется знать площадь данной комнаты. Посчитать ее мы можем по формуле площади прямоугольника:
S = а * b,
где,
- S — площадь помещения (метры квадратные — м2)
- а — длина помещения (метры квадратные — м2), в нашем примере 5,5 м
- b — ширина помещения (метры квадратные — м2), в нашем примере 3,5 м
Подставим наши значения
S = a * b = 5,5 * 3,5 = 19,25 м2
S = 19,25
Подставим данные в формулу:
Фл = (Ен * S * k * z) / (N * η * n)
Фл = (150 * 19,25 * k * z) / (N * η * n)
4. k — коэффициент запаса
Коэффициент запаса (зависит от типа ламп и степени загрязненности помещения) Коэффициент запаса k учитывает запыленность помещения, снижение светового потока ламп в процессе эксплуатации. Значения коэффициента k приведены в таблице.
Таблица №2. Коэффициент запаса для жилых помещений для различных типов ламп
В нашей люстре планируется использование светодиодных ламп, выбираем коэффициент запаса равный 1.
K = 1.
Подставим значение в формулу:
Фл = (Ен * S * k * z) / (N * η * n)
Фл = (150 * 19,25 * 1 * z) / (N * η * n)
5. z – поправочный коэффициент (коэффициент неравномерности)
z — поправочный коэффициент, применяемый в помещениях где требуется освещенность больше чем нормируемая минимальная
Данный коэффициент следует применять в помещениях где планируется выполнение точной зрительной работы, например, читать или писать.
Для ламп накаливания и ДРЛ (ртутная газоразрядная лампа) z = 1,15, для люминесцентных и светодиодных ламп z = 1,1
В наш светильник будут установлены светодиодные лампы, используем поправочный коэффициент 1,1.
z = 1,1
Вставляем данные в формулу:
Фл = (Ен * S * k * z) / (N * η * n)
Фл = (150 * 19,25 * 1 * 1,1) / (N * η * n)
6. N – количество принятых светильников
Освящать комнату будет один светильник, расположенный в центре помещения.
N = 1
Фл = (Ен * S * k * z) / (N * η * n)
Фл = (150 * 19,25 * 1 * 1,1) / (1 * η * n)
7. η – коэффициент использования светового потока
Для того что бы найти коэффициент использования светового потока нам потребуется рассчитать индекс помещения – i.
Воспользуемся следующей формулой:
i = S / ((a + b) * h)
где,
- i — индекс помещения,
- S — площадь помещения (метры квадратные — м2), — в нашем примере 19,25 м2;
- а — длина комнаты (метры квадратные — м2), — в нашем примере 5,5 м;
- b — ширина комнаты (метры квадратные — м2), — в нашем примере 3,5 м;
- h — высота подвеса светильника от пола (метры — м), — в нашем примере 2,3 м;
Считаем:
i = S / ((a + b) * h) = 19,25 / ((5,5 + 3,5) * 2,3) = 19,25 / (9 * 2,3) = 19,25 / 20,7 = 0,929…
округляем до значения близкого к:
0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 3, 3.5, 4, 5
В нашем случае это значение 0.9
Теперь нам потребуются данные о дизайне нашей комнаты. Конкретно интересуют три вещи пол, потолок и стены их цветовой оттенок в формате белый — светлый — темный — серый — черный. Например, бежевые стены будут относиться к светлым, красные, вишневые, коричневые к темным, с черным и белым и так все понятно.
Эти оттенки называются коэффициентом отражения (Р) и выражаются в процентном соотношении следующим образом:
- 70% — белый
- 50% — светлый
- 30% — серый
- 10% — темный
- 0% — черный
Комната, приведенная в нашем примере, имеет:
- Потолок — белый крашенный, в процентном соотношении 70% (белый)
- Стены – обои светлые, однотонные, (без рисунка) персикового оттенка, в процентном соотношении 50% (светлый)
- Пол – линолеум серого цвета, в процентном соотношении 30% (серый)
Обладая всеми этими данными, мы можем определить коэффициент использования светового потока светильника — η.
Для этого воспользуемся соответствующей нашему светильнику таблицей, одной из 5 (таблицы №3-7) приведенных ниже.
Наш светильник за счет конструктивного исполнения плафонов (матовая белая ткань) имеет равномерное распределение светового потока, поэтому данные по нему ищем по таблице №5. Ниже приведены 5 таблиц в которых изложены данные для определения светового потока, после которых будет детально разобрана инструкция с описанием того как ими пользоваться.
Таблица №3. Коэффициент использования для потолочного светильника
Таблица №4. Коэффициент использования для подвесного светильника
Таблица №5. Коэффициент использования для светильника с равномерным освещением
Таблица №6. Коэффициент использования для светильников с косинусным распределением светового потока
Таблица №7. Коэффициент использования для светильников с глубокими плафонами
Напомню, светильник нашего примера является равномерным, относится к Таблице №3.
Комната, приведенная в нашем примере, имеет:
- Потолок — белый крашенный, в процентном соотношении 70% (белый)
- Стены – обои светлые однотонные (без рисунка) персикового оттенка, в процентном соотношении 50% (светлый)
- Пол – серый линолеум, в процентном соотношении 30% (серый)
i — который мы рассчитывали выше по формуле, i = S / (a + b) * h)) = 0.9
В правой вертикальной колонке таблицы ищем соответствующий рассчитанному – i.
В горизонтальных строках подбираем данные комнаты, соответствующие нашим:
- Потолок — 70% (белый),
- стены – 50% (светлый),
- пол – 30% (серый),
Совмещаем линии P и i.
η = 0.51
Подставим полученные данные в формулу:
Фл = (Ен * S * k * z) / (N * η * n)
Фл = (150 * 19,25 * 1 * 1,1) / (1 * 0.51 * n)
8. n – число ламп в светильнике
Люстра в нашем примере пяти рожковая, в ее конструкции предусмотрена установка 5 ламп.
n = 5
Вставляем данное значение в формулу:
Фл = (Ен * S * k * z) / (N * η * n)
Фл = (150 * 19,25 * 1 * 1,1) / (1 * 0.51 * 5)
Все необходимые значения найдены, теперь мы можем рассчитать Фл – световой поток лампы.
Считаем:
Фл = (Ен * S * k * z) / (N * η * n)
Фл = (150 * 19,25 * 1 * 1,1) / (1 * 0.51 * 5) = 3176,25 / 2,55 = 1245,58…
Округлим 1245,58 до целого значения, получим 1246.
Световой поток лампы измеряется в Люменах (Лм), готовый результат запишем как:
Фл = 1246 Лм
Каждая лампа нашего светильника должна иметь световой поток равный 1246 Лм.
Далее, мы рассмотрим, каким образом выбрать лампу зная ее световой поток, но для начала сделаем небольшое отступление.
В настоящее время на рынке электрической продукции представлены следующие лампы:
- Лампа накаливания
- Галогенная лампа
- Светодиодная лампа
- Люминесцентная лампа
- Компактная люминесцентная лампа
- Газоразрядная лампа
Каждая из этих ламп имеет свои характеристики, особенности, преимущества и недостатки. Поэтому, делая выбор в сторону конкретной лампы нужно учитывать следующие вещи:
- Мощность лампы
- Нагрев корпуса (для ламп накаливания и галогенных ламп)
- Световой поток
- Цветопередачу
Эти данные (кроме температуры нагрева корпуса) указаны заводом изготовителем на упаковочной коробке лампы, опираясь на них, мы можем выбрать требуемую освещенность для конкретного помещения.
Мощность лампы – определяет, количество потребляемой электроэнергии, измеряется в Ватах (Вт)
Световой поток – излучаемое лампой количество света, измеряется в Люменах (Лм).
Цветопередача – состоит из цветовой температуры и оттенка. Цветовая температура измеряется в диапазоне от красного 1800 К – до синего 16 000 К цвета.
Чем меньше значение, тем цветность ближе к красному, чем больше, тем ближе к синему. Например, знакомая нам всем 100 Ваттная лампа накаливания имеет цветность 2800 К.
Измеряется цветопередача в Кельвинах (К).
Оттенок, для большинства видов ламп освещения, может быть теплого или холодного света, задает общую тональность светового потока.
Таблица №8. Цветопередача некоторых источников света.
Теперь, поговорим о таких понятиях как световой поток и световая отдача.
Световой поток – количество света, излучаемое лампой.
Световая отдача – отношение светового потока к мощности (люмен на ватт, лм/Вт), показатель эффективности осветительной способности лампы, а также ее экономичности.
Ниже приведены шесть таблиц (таблицы №9-14) световой отдачи наиболее распространенных источников света.
Таблица №9. Лапа накаливания, с прозрачным стеклом (2750 К, теплый свет)
Срок службы 1000 часов. Класс энергоэффективности Е.
Таблица №10. Лапа накаливания, с матовым стеклом (2700 К, теплый свет)
Срок службы 1000 часов. Класс энергоэффективности Е.
Таблица №11. Галогенная лампа (3000 К, теплый свет)
Срок службы 2000 часов. Класс энергоэффективности В.
Таблица №12. Компактная люминесцентная лампа (КЛЛ), 2700 К — теплого света
Срок службы от 8 000 до 10 000 часов. Класс энергоэффективности А.
Таблица №13. Светодиодная лампа, 3000 К — теплого света
Срок службы 30 000 – 40 000 часов. Класс энергоэффективности А.
Таблица №14. Светодиодная лампа, 4500 К — белого света
Срок службы 30 000 – 40 000 часов. Класс энергоэффективности А.
Возвращаемся к нашему примеру.
По выполненным выше результатам расчета освещенности Фл = 1246 Лм, то есть каждая лампа нашего светильника должна быть мощностью 1246 Лм.
Теперь выполним подбор ламп:
- Первым пунктом стоит определить какие лампы могут дать световой поток максимально приближенный к расчетному 1246 Люмен. Для этого воспользуемся таблицами №9-14.
Смотрим:
- таблица №9 – лампа накаливания с прозрачным стеклом, теплого света 2700 К, мощностью 95 Вт – 1300 Лм
- таблица №10 – лампа накаливания с матовым стеклом, теплого света 2700 К, мощностью 95 Вт – 1290 Лм
- таблица №11 галогенная лампа, теплого света 3000 К, мощностью 75 Вт – 1125 Лм
- таблица №12 компактная люминесцентная лампа (КЛЛ), 2700 К — теплого света мощностью 20 Вт – 1170 Лм,
- таблица №13 светодиодная лампа, 3000 К — теплого света мощностью 12 Вт – 1170 Лм,
- таблица №14 светодиодная лампа, 4500 К — белого света – значение соответствующее расчетному отсутствует.
- Следующим пунктом смотрим конструктивные ограничения светильника, в нашем случае люстры. Как правило это наклейка, на которой заводом изготовителем отображена техническая информация устройства. Ниже приведен пример:
- марка (YMP9439)
- напряжение и частота (2230V – 50Hz)
- цоколь и максимальная мощность лампы (Е27, Max. 60W)
- производитель (Made in P.R.C.)
Нас интересует третий пункт, с цоколем все понятно, а вот максимальная мощность лампы (Max. 60W) является существенным ограничением по использованию в светильнике ламп освещения. Допустим, что люстра в нашем примере имеет аналогичные изображенной на картинке выше характеристики.
Максимальная мощность как правило указывается в эквиваленте ламп накаливания, то есть максимальная лампа накаливания которую можно использовать в патроне данного светильника 60 Вт. Обусловлено это тем, что большинство патронов современных светильников изготавливаются из различного рода пластмассовых композиций, которые ограничены по температуре нагрева.
Лампы накаливания и галогенные лампы преобразуют электрическую энергию не только в видимый световой поток (около 60 %), но еще и в тепловую энергию (порядка 40%), поэтому в нормальном эксплуатационном режиме происходит достаточно сильный нагрев стеклянного корпуса и металлического цоколя лампы. На практике максимально разрешенная лампа под воздействием тепла издает неприятный запах горелой пластмассы, поэтому не желательно использовать максимальный номинал.
Исходя из конструктивных характеристик нашей люстры делаем выбор из ламп не подверженные сильному нагреву:
- светодиодные лампы, холодного и теплого света (вариант подороже)
- компактные люминесцентные лампы холодного и теплого света (более дешевый вариант)
Для нашего примера мы выбрали светодиодные лампы, теплого света (3000 К), характеристики данных ламп приведены в таблице №13. Максимально близкими к расчетному значению (1246 Лм) будет лампа мощностью 12 Вт – 1170 Лм.
Итог: Согласно расчетам, чтобы выполнить освещение комнаты площадью 19,25 метров пяти рожковой люстрой нам потребуется 5 светодиодных ламп мощностью 12 Вт, световым потоком 1170 Лм.
Суммарная потребляемая мощность люстры составит 12 * 5 = 60 Вт.
Суммарный световой поток 1170 * 5 = 5850 Лм.
Расчет освещенности
Рассмотрим три наиболее часто используемые осветительные системы с люминесцентными лампами.
1). Светильники с отражателями и экранирующей решеткой из анодированного алюминия. Оптическая схема светильника показана на Рис. 1. Световой поток нижней полусферы ламп непосредственно направлен на освещаемую поверхность, а для направления светового потока верхней полусферы ламп используется отражатель. Это наиболее распространенная конструкция светильников для офисных помещений, встраиваемых в подвесные потолки.
Рис.1 Оптическая схема светильника с отражателем
Графики зависимостей коэффициентов использования светового потока светильника от индекса помещения при разных коэффициентах отражения показаны на Рис.2.
Рис. 2 Коэффициенты использования светильника с отражателем
2). Светильники отраженного света, в которых световой поток как нижней, так и верхней полусфер ламп попадает на освещаемую поверхность после отражения от отражателей светильника. Оптическая схема светильника показана на Рис. 3. Данный светильник так же предназначен для подвесных потолков. Они имеют низкие значения коэффициентов использования за счет потерь светового потока в конструктивных элементах светильника, но по показателям ослепленности они значительно превосходят другие типы осветительных приборов.
Рис. 3 Оптическая схема светильника отраженного света
Графики коэффициентов использования для таких светильников показаны на Рис. 4
Рис. 4 Коэффициенты использования светильника отраженного света
3). Светильники прямого и отраженного света, в которых световой поток нижней полусферы ламп направлен на освещаемую поверхность, а верхней полусферы – на потолок. В таких светильниках можно добиться коэффициентов использования светового потока, близких к 1, при большой отражающей способности потолка. Оптическая схема светильника показана на Рис. 5. Данный осветительный прибор относится к классу подвесных светильников.
Рис. 5 Оптическая схема светильника прямого и отраженного света
Графики коэффициентов использования представлены на Рис. 6.
Рис. 6 Коэффициенты использования светильника прямого и отраженного света
Чаще задача заключается в нахождении количества светильников N, обеспечивающих требуемую освещенность. Для этого выражение (1) представим в виде:
N= Eср S k/U n Фл (3),
В выражении (3) использована средняя освещенность, но нормируется минимальная освещенность Eн в помещении, поэтому в выражение (3) добавим коэффициент z=Eср/Emin, который можно принять равным 1,1 при количестве светильников более 4 в помещениях с отношением длины к ширине менее 3; 1,2 при количестве светильников 2 – 4 и 1,4 при использовании одного светильника в помещении, либо в помещениях с большим отношением длины к ширине (в длинных коридорах).
N= Eн S k z/U n Фл (4),
При проектировании освещения всегда необходимо контролировать суммарную мощность использованных источников света и удельную мощность, измеряемую как отношение суммы мощностей всех ламп к площади освещаемого помещения:
Руд=Рсумм/S, Вт/м2 (5),
Для однотипных помещений иногда расчет освещенности выполняют по величине удельной мощности, хотя точность такого расчета, как правило, не высока.
При использовании светильников с пускорегулирующей аппаратурой (ПРА), мощность, потребляемая светильниками от электрической сети, всегда будет больше, чем суммарная мощность ламп вследствие потерь в ПРА.
При проведении вычислений удобно пользоваться электронными таблицами Excel. Для расчетов необходимо использовать формулы 2, 4 и 5. Применение электронных таблиц позволяет оперативно выполнить расчеты при использовании различных светильников.
В приложенном к статье файле «Примеры расчета освещенности» представлены результаты вычислений освещенности при использовании светильников, содержащих четыре люминесцентных лампы с улучшенной цветопередачей мощностью 18 Вт, которые имеют длину 600 мм, диаметр 26 мм, цоколь G13 и световой поток 1350 лм. Расчеты выполнены для помещений площадью 24 м2, 40 м2, 80 м2, 150 м2 и 300 м2. Рассмотрен вариант помещений со светлыми поверхностями (коэффициенты отражения потолка, стен и пола 80, 50 и 30 %) и темными (коэффициенты отражения потолка, стен и пола 30, 30 и 10 %). Результаты вычислений показаны на рисунках 7, 8 и 9. Данный файл можно скачать и пользоваться им для своих расчетов, вводя в его поля свои данные. Что бы файл случайно не «испортить», его желательно хранить в отдельной папке, а для выполнения расчетов копировать в другую папку.
Рис. 7 Результаты вычисления освещенности – светильники с отражателем
Рис. 8 Результаты вычисления освещенности – светильники отраженного света
Рис. 9 Результаты вычисления освещенности – светильники прямого и отраженного света
Как видно из представленных результатов вычислений, по энергоэффективности светильники прямого и отраженного света превосходят светильники с отражателями только в помещениях со светлыми поверхностями, имеющих площадь не менее 50 – 80 м2. Хотя их часто используют для освещения небольших кабинетов ввиду их оригинального дизайна.
Светильники отраженного света чаще используют для освещения помещений с нормированной освещенностью не более 300 лк.
При проектировании освещения иногда необходимо учитывать устанавливаемую в помещениях мебель, так как она коренным образом может повлиять на отражающую способность стен, и, как правило, снизить освещенность в помещении.
В больших помещениях светильники необходимо располагать максимально равномерно по потолку, если нет необходимости осуществлять их привязку к проходам и оборудованию. В каждом конкретном случае индивидуально выбирают места установки осветительных приборов.
17 июля 2013 г.
К ОГЛАВЛЕНИЮ (Все статьи сайта)
К разделу СВЕТИЛЬНИКИ
Быстрый расчет освещения в помещении
Как всего за 2 шага рассчитать необходимую освещенность помещения.
Для начала напомним, что освещенность измеряется в люксах (Лк), а величина светового потока в люменах (Лм). Чтобы быстро и правильно выбрать светильники и их количество воспользуйтесь следующей формулой:
СП (световой поток) = А х Б х В
где:
А — нормативное значение освещенности помещения (см. Таблицу) или воспользуйтесь документом;
Б — площадь помещения (комнаты) в м. кв.;
В — коэффициент высоты потолка (до 2,7 м — 1,0; 2,7-3,0 м — 1,2; 3,0-3,5 м — 1,5; 3,5-4,0 — 2,0)
Получившееся значение — это общий световой поток, необходимый на данное помещение. Теперь легко определить количество выбранных осветительных приборов.
Специалисты нашей компании подготовят для вас точный расчет освещения.
Некоторые нормативные значения освещенности, согласно СНиП:
Тип офисных помещений | Норма освещенности согласно СНиП, Лк | Типы жилых помещений | Норма освещенности согласно СНиП, Лк |
---|---|---|---|
Офис общего назначения с использованием компьютеров | 300 | Жилая комната, кухня | 150 |
Офис в котором осуществляются чертежные работы | 500 | Детская комната | 200 |
Зал для конференция, переговорная комната | 200 | Ванная комната, санузел, душевая, квартирные коридоры и холлы | 50 |
Экскалатор, лестница | 50-100 | Гардеробная | 75 |
Холл, коридор | 50-75 | Кабинет, библиотека | 300 |
Архив | 75 | Лестница | 20 |
Подсобные помещения, кладовая | 50 | Сауна, бассейн | 100 |
СНиПы разрабатывались в советские времена, когда о комфорте и здоровье граждан не очень заботились. Поэтому добавьте небольшой коэффициент запаса в расчет вашей освещенности (светового потока).
Также помните о том, что поверхности имеют свойство отражать свет. Чем светлее поверхность – тем больше света она отражает и освещает помещение дополнительно. Если преобладают темные тона, то стоит увеличить значение светового потока, так как темные поверхности помещения поглощают большое количество света.
Вернуться к спискуВ этой статье я хочу поделиться методом расчёта освещения, который будет показан на примере моей кухни, где установлены точечные светодиодные светильники.
Содержание статьи:Введение. Основные формулы
Для начала немного информации для общего развития. Освещённость поверхности – величина, равная отношению светового потока, падающего на малый участок поверхности, к площади этой поверхности. Освещённость измеряется в люксах (лк) Ниже приведена формула:
- E – освещённость, лк
- Ф – световой поток, измеряется в люменах, лм
- S – площадь поверхности, кв. м
Тогда из данной формулы несложно выразить световой поток:
Именно на основании вышеуказанной формулы и будет производиться дальнейший расчёт.
Для расчёта количества светильников нам необходимо преобразовать формулу, чтобы учесть необходимые параметры. Вот как будет выглядеть нужная нам формула:
Мы видим, что в новой формуле добавились новые параметры, но и старые при этом сохранились:
- ФN в отличие от Ф – это световой поток от одного светильника, лм.
- N – количество светильников, шт.
- К, Z и η – коэффициенты, но о них немного позже.
То есть по данной формуле мы можем рассчитать световой поток одного светодиодного светильника, а затем выбрать его марку.
Световой поток измеряется в люменах (лм), но не всегда указывается на упаковке лампы, так что в некоторых случаях придётся искать информацию на сайте изготовителя, а также вы можете воспользоваться таблицей №1, в которой указан ориентировочный световой поток лампы в зависимости от её мощности
Определяемся с целью расчёта
Нам нужно определиться, что мы хотим рассчитать:
- Мощность светильника, зная при этом количество, которое вы хотите поставить
- Количество светильников, зная марку и характеристики конкретного светильника
Для решения первой задачи используем вышеуказанную формулу.
Для решения второй задачи выражаем N через остальные параметры:
Задача №1 — расчёт мощности светильника
Я столкнулся c первой задачей. То есть я решил, каким образом будут располагаться светильники и для осуществления моей задумки, я расположил девять светильников в виде буквы «П»:
Соответственно мне необходимо было определить, каким световым потоком должен обладать светильник, чтобы обеспечить требуемую освещённость на кухне, а по световому потоку выбрать марку и модель светильника.
Для расчёта требуемого количества светильников нам необходимо знать нормативную освещённость, которая устанавливается СНиП 23-05-95* — «Искусственное и естественное освещение». Согласно данного СНиПа для кухни Ен=150 лк
Площадь моей кухни равна 5 кв.м, S=5
Количество светильников: N=9
Теперь осталось разобраться с коэффициентами:
К – коэффициент запаса, также как и нормативная освещённость принимается по СНиП 23-05-95 (для жилых помещений 1,4 – 1,5), я принял К=1,4
Z – коэффициент неравномерности, принимается в зависимости от типа ламп и находится в пределах 1,0-1,2, для светодиодных светильников допускается принять Z=1,0
η – коэффициент использования светового потока, зависит от индекса помещения, отражающих поверхностей и типа ламп. Вообще данный коэффициент принимается по специальным таблицам, их можно найти на сайтах производителей ламп. На данный момент, я смог найти таблицы только для люминесцентных и ртутных ламп, всё-таки светодиодные лампы только набирают обороты, и информации для расчётов практически нет, но при всём этом, одну из таких таблиц активно используют сайты, продающие светодиодное оборудование: вот один из них — http://diode-system.com/kak-rasschitat-kolichestvo-svetilnikov.html А если используют профессионалы, то почему бы не воспользоваться и нам?
Таблица коэффициентов использования светового потока:
Теперь нужно понять, как ей пользоваться. Мы видим, что коэффициент использования светового потока зависит от индекса помещения и от коэффициентов отражения поверхностей потолка, стен и пола. Для коэффициентов отражения приведены наиболее распространённые варианты. Например: схема 0,7-0,5-0,3 (четвёртый столбик таблицы) соответствует помещению с белым потолком, светлыми обоями, и напольным покрытием, которое темнее обоев (это наиболее распространённый вариант)
Примерные коэффициенты отражения приведены в таблице ниже:
Согласно таблицы, для моей кухни подойдёт схема 0,7-0,5-0,3
Теперь рассчитаем индекс помещения — i. Этот параметр напрямую зависит от габаритов помещения и высоты рабочей поверхности. Если рабочей поверхностью считают стол, то обычно hраб=0,8 м. Для кухни рабочей поверхностью является: стол, плита, столешница, мойка, а они, как правило, имеют высоту 0,8-1,0 м, поэтому я принимаю hраб=0,8 м
Теперь рассчитаем расчётную высоту. Расчётная высота – это расстояние от светильника до рабочей поверхности, в моём случае светильники точечные встраиваемые, то есть расчётная высота будет измеряться от плоскости потолка до рабочей поверхности:
Сам индекс помещения рассчитывается по формуле:
a и b – соответственно ширина и длина помещения.
Округляем индекс помещения в большую сторону из ряда: 0,6; 0,8; 1,00; 1,25 и т.д. (смотрите второй столбец таблицы). Соответственно я принимаю 0,8
Теперь у нас есть все данные, чтобы определить коэффициент использования светового потока, пользуемся таблицей и получаем, что η = 0,39
И так, подставляем все данные в формулу для определения светового потока одного светильника:
То есть световой поток одного светильника будет равен 299 люмен. Это ориентировочно светодиодные светильники мощностью 3,5-4 Вт (см. таблицу ниже)
То есть для моей кухни подойдёт 9 светодиодных ламп мощностью 3,5 — 4 Вт (≈ 299 лм). Заходим в интернет и находим светильники соответствующей мощности, на всякий случай смотрим такой параметр, как световой поток (чтобы он был не менее нашего расчётного).
Вот, что удалось найти сразу:
Самое главное не ошибитесь с типом лампы, её цоколем и патроном. В своих точечных светильниках я использовал лампы с типоразмером MR16 и цоколем GU-5.3
Задача №2 — расчёт количества светильников
Обратная задача. Как я уже говорил выше, может стоять другая задача, вы определились со светодиодными лампами, они вас устраивают по цене, вы знаете их характеристики, а вам нужно рассчитать кол-во таких ламп, чтобы обеспечить требуемую освещённость в помещении, тогда используйте формулу:
Только теперь вместо количества светильников, нам нужно подставить световой поток одного светильника.
Например, у вас в магазине появились дешёвые светодиодные лампы мощностью 3 Вт, световой поток которых 215 лм (лампа с такими параметрами действительно существует) и вы решили их приобрести. Пользуемся вышеуказанной формулой, все параметры остаются прежними:
Я думаю, что в данном случае можно округлить в меньшую сторону, то есть принять 12 ламп, чтобы расположить светильники в три ряда по четыре штуки.Воу-Воу-Воу, ребята! Полегче! Люксы, формулы… Люди не представляют. что это такое. )))
Но и мне без люксов не обойтись ))
Смотрите, выглядит это так.
Начнём с того, что Люкс — это уровень освещённости. Чем выше число — тем светлее в помещении.
Для каждого помещения — есть определённые нормативы.
Например для коридора — нужно 150Лк, а для офиса — 300Лк (европейские нормы 500Лк), для чертёжных кабинетов — от 700Лк, для магазинов — Пятёрочка в своих требованиях прописывает 600Лк.
Теперь подумайте, сколько света Вам реально нужно.
Предположим, что у Вас — офис и Вам вполне достаточно 400Лк.
Теперь смотрим высоту потолка. Скорее всего у Вас — около 3м.
Теперь смотрим площадь помещения. Предположим у Вас 7*4м. Это 28кв.м.
Стандартный офисный светильник средней ценовой категории при мощности 36Вт даёт световой поток 3600Лм
Т.к. у Вас нет программы для рассчёта освещённости — я посчитаю сам. У меня выходит, что для получения 100Лк на 1кв.м. с высоты 3м на уровне 0,8м от пола (уровень рабочего стола) мне потребуется примерно 2Вт. Теперь у нас есть нужные цифры.
Считаем:
28Кв.м*2Вт=56Вт на офис, чтобы получить 100Лк.
Но мы помним, что нам надо 400Лк
56Вт*4= 224Вт
Мы помним, что среднестатистический светильник имеет мощность 36Вт
224Вт/36Вт=6.22 светильника. Округляем до 6.
Т.к. помещение у нас вытянутое (7*4м) — у нас будет раскладка 3*2 светильника.
Для других помещений и нормативов можете уже пересчитать самостоятельно. 2Вт на кв.м на 100Лк действует только для высоты 2,8-3,2м и светоотдаче светильника 100Лм/Вт
Расчёт выполнен профессионалом, не пытайтесь повторить самостоятельно ))))
Позволю себе ссылку на типовые решенияосвещения для различных задач: Типовые решения
Световой поток (Φ v ) — это энергия в единицу времени (dQ / dt), излучаемая источником на видимых длинах волн. Более конкретно, это энергия, излучаемая на длинах волн, чувствительных к человеческому глазу, от примерно 330 нм до 780 нм. Таким образом, световой поток является средневзвешенным значением лучистого потока в видимом спектре. Это средневзвешенное значение, потому что человеческий глаз не одинаково реагирует на все видимые длины волн. Чувствительность глаза достигает пика при 555 нм и падает примерно до 10 -4 при 380 и 750 нм. Это составляет диапазон чувствительности дневного света, или фотопическое зрение. Ночная чувствительность глаза, называемая скотопическим зрением, смещается в сторону синего конца видимого, достигает максимума при 507 нм и падает до 10 -4 при 340 и 670 нм. Этот весовой коэффициент, или световая эффективность (V λ ), позволяет преобразовать лучистый поток в световой поток на любой длине волны.В фотопической области пику при 555 нм назначают значение конверсии 683 люмен на ватт. Просвет является единицей светового потока и определяется в терминах канделы, базовой единицы СИ, такой как метр или секунда. 1 люмен определяется как 1/4 кандела, базовая единица СИ для силы света.Поскольку глаз не видит все длины волн одинаково хорошо, кривая эффективности является очень важным способом определения светового потока от источника. Световой поток от монохроматического источника, излучающего свет на одной длине волны, определить проще всего. Φ v = Φ * V λ * (683 лм / Вт) Например, лазерная указка мощностью 5 мВт на длине волны 680 нм дает 0,005 Вт * 0,017 * 683 лм / Вт = 0,058 лмВ то время как лазерная указка 5 мВт на 630 нм производит 0,005 Вт * 0,265 * 683 лм / Вт = 0,905 лм, значительно больший световой поток.Определение светового потока от источника, излучающего спектр, является более трудным. Необходимо определить спектральное распределение мощности для конкретного источника.Как только это будет сделано, необходимо рассчитать световой поток на каждой длине волны или с регулярными интервалами для непрерывных спектров. Сложение потока на каждой длине волны дает общий поток, создаваемый источником в видимом спектре. С некоторыми источниками сделать это проще, чем с другими. Стандартная лампа накаливания создает непрерывный спектр в видимом диапазоне, и для определения светового потока необходимо использовать различные интервалы. Однако для таких источников, как ртутная лампа, это немного проще.Меркурий излучает свет преимущественно в линейном спектре. Он излучает поток излучения на 6 основных длинах волн. Это облегчает определение светового потока этой лампы в сравнении с лампой накаливания. Как правило, нет необходимости определять световой поток для себя. Это обычно дается для лампы на основе лабораторных испытаний в процессе производства. Например, световой поток для лампы накаливания мощностью 100 Вт составляет приблизительно 1700 лм. Мы можем использовать эту информацию для экстраполяции на аналогичные лампы.Таким образом, средняя световая отдача для лампы накаливания составляет около 17 лм / Вт. Теперь мы можем использовать это как приближение для аналогичных источников накаливания при различной мощности. Часто производитель указывает «исходные люмены» в своих данных для лампы. Это световой поток для этой лампы. Это перечислено таким образом, потому что, поскольку лампа стареет, ее распределение мощности немного сдвигается и больше не излучает точно на тех длинах волн, которые она делала в то время, когда она была новой. Тем не менее, для любых целей и целей «начальные люмены» могут использоваться для светового потока для любого необходимого расчета. | Index Концепции фотометрии Концепции видения |
световой поток — calculator.org
Что такое световой поток?
Световой поток — это мера воспринимаемой силы света или интенсивности света. Поскольку световой поток является мерой свойства в воспринимаемом смысле, он корректируется с учетом того факта, что человеческий глаз чувствителен ко многим разным длинам волн света и по-разному. Световой поток способен учитывать эту чувствительность, взвешивая мощность на каждой длине волны света с помощью функции яркости, которая представляет, как человеческий глаз реагирует на различные длины волн.Другими словами, поскольку человеческий глаз не имеет одинакового отклика на все длины волн света, мы должны взвесить наши расчеты светового потока в нашем понимании того, как глаз реагирует на разных длинах волн видимого света.
Чтобы определить общий световой поток от данного источника, мы делаем взвешенную сумму мощности для всех длин волн света в пределах полосы света, видимой человеческому глазу. Поскольку световой поток зависит только от восприятия света человеком, всеми остальными длинами волн за пределами видимой полосы можно пренебречь.Единицами СИ для светового потока являются люмены, где люмен определяется как сила света одной канделы в телесном угле одного стерадиана.
Световой поток часто используется для сравнения мощности освещения лампочек. Это особенно важно при сравнении эффективности различных технологий освещения, таких как сравнение ламп с низким энергопотреблением с лампами накаливания, которые они заменяют. Это также важно при проектировании систем освещения для офисов, общественных мест или домов.
Световой поток часто путают или связывают с лучистым потоком. Важно подчеркнуть, что хотя лучистый поток является мерой общей мощности излучаемого света, лучистый поток не регулируется с учетом чувствительности человеческого глаза через уравнение светимости и поэтому не является тем же. Однако существует концепция, известная как световая эффективность, которая представляет собой отношение общего светового потока к лучистому потоку. Кто-то может рассчитать световую эффективность, чтобы определить, производит ли какой-либо источник света нужный тип света в нужном количестве для освещения пространства.
Функция яркости, как описано выше, будет определять световой поток по отношению к данной длине волны света, основываясь на свидетельстве того, как человеческий глаз реагирует на различные длины волны света. Математически это взвешенный интеграл от спектрального распределения мощности излучения (или мощности на единицу длины волны). Весовая функция известна как функция яркости y (λ), которая безразмерна, а где λ — длина волны света. Границами интеграла являются верхний и нижний пределы видимой части спектра.
Существует также разница между фотопической и скотопической функциями светимости. Человеческий глаз реагирует на свет не только в зависимости от его длины волны, но и в зависимости от его интенсивности. При нормальных условиях освещения функция фотопической яркости лучше всего описывает реакцию человеческого глаза на свет, тогда как функция скотопии лучше работает в условиях слабого освещения. Причина этого связана с дизайном глаза, для которого выбрана природа. При слабом освещении сетчатка в глазу переключится с опосредованной чувствительности света с колбочками к использованию палочек вместо этого, и это приведет к смещению в сторону фиолетового цвета (с пиком около 507 нанометров для молодых глаз).
Добавьте эту страницу в ваш браузер, используя Ctrl и d или одну из следующих служб: (открывается в новом окне) ,люмен в люкс (лк). Перевод калькулятора
.Световой поток в люменах (лм) к освещенности в люксах (лк) калькулятор и как рассчитать.
Введите световой поток в люменах, выберите тип единицы площади, введите радиус в метрах для сферического источника света или площади поверхности
квадратных метров для любого источника света и нажмите кнопку Рассчитать , чтобы получить освещенность в люксах:
Люкс в люмен калькулятор ►
люмен в люкс формула расчета
Расчет с площадью в квадратных футах
Освещенность E v в люксах (лк) равна 10.Световой поток в 76391 раз больше Φ В в люменах (лм), разделенных на площадь поверхности A в квадратных футах (футы 2 ):
E В (лк) = 10,76391 × Φ В (лм) / A (фут 2 )
Освещенность E v в люксах (люкс) равна 10,76391 кратному световому потоку Φ V в люменах (лм), разделенных в 4 раза на пи в квадрате радиуса сферы r в футах (футах):
E v (lx) = 10.76391 × Φ В (лм) / (4/ r (футы) 2 )
Расчет с площадью в квадратных метрах
Освещенность E В в люксах (лк) равна световому потоку Φ В в люменах (лм), деленная на площадь поверхности A в квадратных метрах (м 2 ):
E В (лк) = Φ В (лм) / A (м 2 )
Освещенность E v в люксах (лк) равна световой поток Φ V в люменах (лм), деленных в 4 раза на пи в квадрате радиуса сферы r в метрах (м):
E В (лк) = Φ В (лм) / (4⋅⋅⋅ r 2 (м 2 ) )
люмен в люкс расчет ►
См. Также
,Преобразователь силы света и светового потока
Сила света и преобразователь светового потокаВведение
Много лет назад, когда лампы накаливания широко использовались и были почти стандартным источником света для повседневного использования, выбор подходящей лампы был довольно просто: один «только» должен был выбрать наиболее подходящую мощность для предполагаемое применение. Сегодня все гораздо сложнее: есть стандартные лампы накаливания, галогенные лампы, компактные люминесцентные лампы, люминесцентные лампы и светодиоды лампы разных видов.Все эти лампы имеют различную эффективность и делают модели освещения выбор намного сложнее.
Если посмотреть на мощность лампы в Ваттах, это не говорит о световой поток Для преодоления этой проблемы сила света I V (выраженная в канделах) и световой поток F (измеряется в люменах) лучший выбор, но, к сожалению, только несколько человек привыкли к этим единицам и их значение иногда неверно истолковывается.Производители ламп часто указывают одну из этих цифр на упаковке, но редко и то и другое, поэтому сравнивая лампу мощностью 1000 лм с другой производить 250 кд не просто: будут ли они освещаться такая же яркость? Цель этого калькулятора — помочь преобразовать люмены в канделы для выбрав подходящий источник света.
Эта компактная люминесцентная лампа потребляет 20 Вт электроэнергии и
производит (номинальный) световой поток 1’300 лм.
Предполагая всенаправленную диаграмму направленности (угол конуса 360 °), с
калькулятор, представленный ниже, вы можете оценить интенсивность света около
103 кд.Вы также можете рассчитать эффективность лампы 65 лм / Вт.
(нажмите, чтобы увеличить)
Эта светодиодная лампа потребляет 4 Вт электроэнергии и выдает (номинальную)
сила света 350 кд в конусе под полным углом 36 °.
С помощью калькулятора, представленного ниже, вы можете оценить световой поток около
108 лм.
Вы можете рассчитать эффективность лампы 27 лм / Вт.
(нажмите, чтобы увеличить)
Почему фотометрические единицы?
В физике используется радиометрических единиц: например, данное излучение (источник света) излучает мощность P (измеряется в ваттах) и мы можем легко рассчитать интенсивность излучения J (измеряется в Вт / стер) или Излучение E (измерено в Вт / м 2 ), если мы хотим знать количество энергии, излучаемой в заданном направлении (телесный угол) или по заданному поверхность соответственно.
Но когда мы говорим об видимом свете, мы должны учитывать чувствительность человеческого глаза, потому что ощущение яркости зависит от цвета (спектра) света. Поэтому фотометрических единиц являются предпочтительными.
Фотометрическим эквивалентом мощности излучения является световой поток (или сила света) F (измеряется в люменах). Чем сила света I v (выражена в канделах) соответствует световому потоку в заданном телесном угле Ω (1 кд = 1 лм / стер), а освещенность E v (измеряется в люксах) соответствует световому потоку на заданная площадь (1 лк = 1 лм / м 2 ).
Радиометрические единицы | Фотометрические единицы |
Мощность излучения P Вт [Вт] | Световой поток F Люмен [лм] |
Интенсивность излучения J Вт на стерадиан [Вт / стерил] | Сила света I v Candelas [cd = lm / ster] |
Облучение E Вт на квадратный метр [Вт / м 2 ] | Освещенность E v Люкс [лк = лм / м 2 ] |
Сила света против светового потока
В фотометрии световой поток является мерой общего воспринимаемого сила света в то время как сила света является мерой воспринимаемого мощность, излучаемая источником света в определенном направлении на единицу твердого тела угол.Это означает, что максимальная сила света зависит от общей силы света. поток источника света, но и на его диаграмме направленности (способ света источник излучает во всех направлениях).
Общий световой поток представляет собой сумму всего потока, испускаемого во всех
направления, независимо от того, какую диаграмму направленности имеет источник света.
Сила света — это световой поток в данном телесном угле.
Здесь два примера различной силы света в двух произвольных конусах,
Предположим, что диаграмма направленности этой лампы неоднородна.
Итак, один и тот же источник света излучает тот же световой поток (те же люмены) может производить различную силу света (разные канделы) в соответствии с его способность концентрировать свет. Если вы поставите объектив перед лампой, чтобы сконцентрировать свет в одном направлении, сила света в этом направлении будет увеличиваться, а общая световой поток остается прежним. Чем выше способность концентрировать свет в одном направлении, тем терка сила света.
Эти два светодиода имеют одинаковую микросхему с одинаковым световым потоком
0.2 лм при токе 30 мА.
У того, что слева, есть линза, которая концентрирует свет в узком конусе.
15 °, в то время как один справа имеет другой объектив, концентрирующий
свет в конусе 30 °.
В результате сила света составляет 3,7 кд для светодиода слева
и 0,9 кд для справа. (нажмите, чтобы увеличить)
Те же 2 светодиода, выступающие на экране на расстоянии около 5 см.
Обратите внимание, что светодиод слева создает меньшее и более яркое пятно.К сожалению, в этом HDR-изображении разница в яркости едва
видимый. (нажмите, чтобы увеличить)
Точное преобразование между силой света и световым потоком
Для точного расчета общего светового потока F нам нужно принять во внимание диаграмму направленности I (θ) света источник. Без диаграммы направленности преобразование невозможно. Точные числовые данные диаграммы направленности очень редко доступны, но если у вас есть шанс получить таблицу с хорошим графиком диаграммы направленности, бесплатная программа, такая как Engauge Digitizer, может быть использована для преобразования сюжета в числовые значения.Почти все источники света имеют симметричную диаграмму направленности, поэтому мы Используйте только данные от 0 ° до 180 ° (от 0 до π), и мы предполагаем, что это будет оставайтесь прежними, если устройство поворачивается вокруг своей оптической оси.
Зная I (θ) , мы можем вычислить эквивалентный телесный угол Ом (в стерадианах):
Чтобы вычислить этот интеграл, вам нужна численная вычислительная программа, такая как MATLAB, бесплатный Scilab или, возможно, даже электронная таблица. В любом случае, это недоступно для простого калькулятора JavaScript, такого как один вы найдете на этих страницах.
Обратите внимание, что I (θ) должен быть нормализован по амплитуде до вычисление вышеуказанного интеграла, означающего, что Макс. (I (θ)) = 1 .
Ом представляет телесный угол, передающий постоянную и равномерную поток равен потоку, передаваемому I (θ) в 4π стерадианах (вся поверхность сферы).
На самом деле это должен быть двойной интеграл в θ и φ охватывая всю сферу вокруг источника света, но из-за симметричная диаграмма направленности большинства источников света, интеграл в φ можно упростить до коэффициента 2π.
Теперь легко рассчитать световой поток F в люменах:
Где I v — максимальная сила света, измеренная в кандела (кд).
Простой преобразователь силы света / потока
Очень часто диаграмма излучения лампы неизвестна, но если мы знаем ширина луча (расходимость луча) 2θ , который является углом конуса свет излучается, мы можем сделать приблизительный расчет.Это приближение, потому что оно предполагает, что вся сила равномерно распределяется внутри этого конуса, и что никакая сила не излучается снаружи. Ширина луча обычно задается как полный угол конуса 2θ , который равен двойной угол конуса θ между осью и конусом.
На этом рисунке вы можете видеть в синем
угол конуса θ и в
красный конус полный
угол 2θ .
В этом приближении мы предполагаем, что весь поток равномерно распределен в указанный конус и что снаружи нет излучения.Это, конечно, не очень точно. Имейте в виду, что реальные цифры могут значительно отличаться, но это лучшее, что вы можете получить только с углом конуса. Но обычно порядок величины правильный. Преимущество состоит в том, что преобразование теперь легко и может быть сделано с Карманный калькулятор или этот конвертер JavaScript.
Зная ширину луча 2θ , мы можем легко вычислить соответствующий телесный угол Ω в стерадианах с:
Чем мы можем использовать то же уравнение, что и раньше, для преобразования между светящимися Поток F и максимальная сила света I v :
Следующий калькулятор сделает математику за вас:
Мобильная версия доступна здесь, если вы нужно делать конверсии при покупке ламп…
Введите все известные данные в калькулятор ниже и оставьте поля для рассчитать пустым, чем нажать кнопку «рассчитать», чтобы вычислить и заполнить бланки. Не все комбинации возможны; если недостаточно данных доступно; всплывающее окно коробка предупредит вас. Убедитесь, что неизвестные поля полностью пусты: пробел не будет работай.
А как насчет мощности излучения?
Теперь, когда мы знаем световой поток F , можем ли мы рассчитать мощность излучения P или наоборот? Ну, в теории да, но это не так просто, потому что вам нужно знать Спектр P (λ) излучаемого света для расчета соответствующий коэффициент пересчета.Иногда производители предоставляют вам хороший спектр спектра, в противном случае вам нужно измерять его с помощью оптического спектрометра (и если у вас есть, вы, вероятно, не нужны объяснения на этой странице). Без точных спектральных данных невозможно конвертировать из F в P .
Предполагая, что вы знаете P (λ) (измерено, оцифровано из графика предоставлено производителем), первое, что вам нужно сделать, это нормализовать его на поверхности (поверхность под кривой должна быть равна единице):
Опять же, это недоступно для этого калькулятора JavaScript, и вам нужно мощная численная вычислительная программа.
Убедившись, что P (λ) нормализовано, вы можете рассчитать коэффициент преобразования радианта в световой поток η в :
Где В (λ) является стандартом функция светимости (фотопическое зрение), и вы должны интегрировать для весь видимый спектр (скажем, от λ мин. = От 380 нм до λ макс. = 770 нм) или не менее часть, где P (λ) отлична от нуля.
Зная η против , теперь можно конвертировать между лучистый и световой поток при следующем соотношении:
Обратите внимание, что η против выражено в лм / Вт, но не эффективность лампы, это просто мера видимости света для человеческого глаза. Эффективность лампы, также выраженная в лм / Вт, также учитывает потери в лампе.
Другими словами, если у вас есть точные спектральные данные и подходящие числовые вычислительное программное обеспечение вы можете сделать это, но все же вам нужно много мотивации преодолеть эти два препятствия.И вам не нужно просто купить лампочку …
Лампа световой отдачи
Световая эффективность лампы — это соотношение произведенной светимости. Поток и используемая электрическая мощность и выражается в люменах на ватт (лм / Вт), чем выше, тем лучше. Это зависит главным образом от технологии лампы: старые лампы накаливания имеют очень низкий эффективность, галогенные лампы делают немного лучше, люминесцентные лампы и светодиоды имеют лучшая эффективность (для белого света) сегодня (2013).
Обратите внимание, что используемая электрическая мощность отличается от (и всегда выше, чем) мощность излучения обсуждается ранее. Чтобы рассчитать эффективность лампы, не нужно рассчитывать или знать лучистая сила.
Эта старая лампа накаливания потребляет 75 Вт электроэнергии и
производит (номинальный) световой поток 950 лм.
Предполагая всенаправленную диаграмму направленности (угол конуса 360 °), с
калькулятор, представленный выше, вы можете оценить интенсивность света около
76 кд.Вы также можете рассчитать эффективность лампы 13 лм / Вт.
(нажмите, чтобы увеличить)
Лампы накаливания, независимо от того, являются ли они галогенными или нет, имеют лучшую эффективность для большие силы, потому что горячее нить генерирует больше видимого света. Таким образом, одна лампочка мощностью 75 Вт с ее 13 лм / Вт более эффективна чем две лампочки 40 Вт с только 10 лм / Вт.
Цветные лампы накаливания имеют очень низкую эффективность, потому что большинство свет фильтруется цветным стеклом, оставляя только одну порцию спектр.С другой стороны, цветные газоразрядные лампы или светодиоды имеют очень высокую эффективность потому что испускается только требуемый цвет и не идет на компромисс получить белый свет. По этой причине во многих странах уличные фонари желтого цвета: натриевые лампы имеют очень хорошую световую отдачу, но дают уродливый желтый свет.
Для белых ламп, как правило, наиболее эффективные газоразрядные или светодиодные лампы производит холодный (голубоватый) свет и не очень хорошо передает цвета; это может изменить в будущем.
Наконец, прозрачные лампы имеют лучшую эффективность, чем диффузные, но иногда мешает смотреть. Добавление рассеивателя к прозрачной лампе, конечно, снизит его эффективность.
Следующая таблица суммирует обычную световую эффективность обыкновенного белого домашние светильники:
Тип лампы: | Световая эффективность: |
Стандартные лампы накаливания | 8 … 15 лм / Вт |
Лампы накаливания галогенные | 15…20 лм / Вт |
Компактные люминесцентные лампы | 30 … 60 лм / Вт |
Люминесцентные лампы | 60 … 110 лм / Вт |
Современные светодиодные светильники | 60 … 100 лм / Вт |
Почти для всех типов ламп, кроме светодиодов, световая отдача больше или Менее стабильный на протяжении многих лет, и никаких больших сюрпризов. Для светодиодов эффективность постоянно улучшается: десять лет назад эффективность Светодиодные лампы были сопоставимы с галогенными лампами, первые эффективные светодиоды имели очень низкие уровни мощности и были практически бесполезны.Сегодня (в 2013 году) можно купить хорошие светодиодные лампы с повышенной эффективностью 100 лм / Вт в местном универсальном магазине, и эта цифра все еще растет.
Заключение
Две основные фотометрические концепции, световой поток и сила света имеют был кратко описан и простой приблизительный калькулятор для преобразования между два доступны на этой странице. Чем некоторые аспекты преобразования между лучистым и световым потоком имеют было объяснено, но, к сожалению, не существует простого способа преобразования между их.Наконец световой эффект лампы был обсужден. Цель состоит в том, чтобы помочь сравнить лампы или источники света в целом по завершении технические данные отсутствуют.
Библиография и дальнейшее чтение
[1] | Уоррен Дж. Смит. Современная Оптическая Техника — Проектирование Оптических Систем. 3 , издание , McGraw-Hill, 2000, Глава 8 |
[2] | А.Дешлер, Г. Кампоново. Elettrotecnica. Эдизиони Касагранде, Беллинцона, 1974, Капитолий 11. |
,