Схема светодиодной ленты: Устройство, подключение и питание светодиодной ленты – СамЭлектрик.ру

Содержание

Подключение светодиодной ленты к 220В по схеме

Прежде, чем я расскажу, как подключить светодиодную ленту к 220 Вольт, разделим их на 3 вида, с разным напряжением работы. Оно пишется на

  • 12В, самый популярный вариант;
  • 24B, принцип подключения такой же, как у 12V;
  • 220B, совершенно другая схема питания и подключения, не путайте.

Основные правила:

  1. соблюдаем полярность;
  2. не используем блоки питания с другим напряжением;
  3. во влажные помещения делаем герметичные соединения;
  4. не делаем последовательное длиной более 5 метров;
  5. отрезки длиной более 5 м. только параллельно.

Содержание

  • 1. Подключение ленты на 220 вольт
  • 2. Схема подключения ленты для дома на 12В и 24V
  • 3. Правильное подключение RGB
  • 4. Как припаять провода к светодиодной ленте
  • 5. Коннекторы, соединители, комплектующие

Подключение ленты на 220 вольт

Схема включения на 220В

От низковольтных отличается полярным питанием на 220V. Особенность является, что все светодиоды подключены последовательно поштучно или парами в одну длинную цепочку из 60 штук. Резать можно только кратно 50 или 100 см. Когда выходит из строя один диод, то потухнет сразу большой отрезок, равный размеру нарезки.

Этот недостаток компенсируется простотой и дешевизной,  цельный кусок  может достигать 70 метров, а у обычной на 12В только 5м.

Подключение светодиодной ленты на 220В требует особой осторожности, из-за высокого напряжения. Лучше лишний раз перепроверить, чем получить удар электрическим током.

Выпрямитель на 700W

Схема подключения ленты для дома на 12В и 24V

Существует два популярных вида, одноцветные и трехцветные светодиодные ленты RGB. Схемы правильного подсоединения к блоку питания своими руками очень простые и доступны практически всем.

Длина цельного отрезка ограничена 5 метрами из-за падения напряжения на конце. Везде пишут про это, но никто не приводит конкретных значений. Я измерил разницу в начале и конце на диодной ленте 3528, получилось 0,8В. на 5 м. Перед измерением предварительно прогрел её в течение часа, чтобы получить объективные данные. На более мощных со светодиодами SMD 5050 и 5630 это значение выше из-за большей силы тока, будет не хватать сечения медной фольги, из которого сделано основание. На конце мощность упадет на 16%, а световой поток на 6-7%. Чтобы компенсировать падение, можно подвести питание с каждого конца.

Последовательное соединение и удлинение

Если длина соединяемых последовательно элементов достигла 5м., то следующий пятиметровый (или меньше) потребует параллельное подключение. Для простоты соединения элементов между собой, сразу купите соединители в виде различных коннекторов и удлинителей. Их существует более 15 видов, соединение будет простое, как в конструкторе.

Правильное параллельное подсоединение к источнику питания на 12 вольт

Рассмотрим параллельное подключение светодиодной ленты своими руками, оно является единственно правильным при отрезке более 5 м. , другие варианты использовать категорически нельзя.

Небольшое видео, как подключить своими руками.

Правильное подключение RGB

Схема для RGB

Соединение RGB будет посложней, но при использовании специальных соединителей всё будет так же просто. Они позволяют обходиться без пайки. Паять не сложно, это может сделать любой, кто хоть раз в жизни держал паяльник.

Рассмотрим подключение светодиодной ленты к сети 220В по схеме для трехцветной RGB. Действует тоже самое правило, каждые 5 метров должны соединяться параллельно. Схема  отличается наличием блока управления, еще называемого контроллером. В зависимости от модификации у него будет дистанционное или обычное управление.

Последовательное соединение РГБ между собой до 5м.

Схема последовательного питания для удлинения трехцветной.

Использование RGB усилителя для  очень длинных светодиодных лент

При большой протяженности используется RGB усилитель, чтобы поддерживать управляющее напряжение на необходимом уровне. Это избавляет от прокладки магистральных многожильных проводов.

Видео инструкция, как подключить РГБ дома самостоятельно.

Как припаять провода к светодиодной ленте

..

Как закоренелый электронщик, я предпочитаю пайку светодиодной ленты, это самое надежное соединение. Вы можете использовать специальные коннекторы, которые не требуется припаивать. На мощных сила тока получается достаточно большой, соединение без пайки может нагреваться и окисляться.

После приобретения квартиры в новостройке мне пришлось делать стяжку пола и красить стены в 3 слоя. В квартире длительное время была большая влажность из-за большого количества воды используемых на пол и стены. Это проявлялось сильно, например кухонная соль в солонке из рассыпчатой образовывала камень. Электроника тоже не любит такие условия, контакты начинают киснуть. Длительное время не помогало проветривание, у меня не солнечная сторона, воздух холодный даже в жару. Новостройка не прогрета замерзал даже жарким летом.

Контактные площадки

Резать можно только между отрезками по 3 светодиода. Это место отмечено символом ножниц и расположено рядом с контактными площадками.

Видео урок, как припаять.

Коннекторы, соединители, комплектующие

Чтобы вам было легче разобраться в типах коннекторов, покажу ассортимент от производителя ЭРА. На фотке все основные виды.

Коннектор изнутри

Различные виды коннекторов

Устройство светодиодных лент

В этой статье мы рассмотрим светодиодные ленты, опишем их устройство, разновидности, сферу применения, их преимущества.

На рисунке 1 представлена светодиодная лента синего цвета свечения.

Светодиодные ленты благодаря своим качествам, безусловно относятся к перспективным световым источникам и по совокупности параметров  превосходят традиционные источники освещения.

Отметим их достоинства. Важнейшим достоинством светодиодных лент является очень широкая сфера применения: их можно использовать при оформлении рекламы, они идеально подходят для подсветки помещений (кухонь, комнат, ванн, торговых залов, офисов) и декоративной подсветки зданий.

LED-лента с успехом применяется для подсветки витрин, мебели и предметов декора, а так же для создания инсталляций. Возможно область применения ограничена лишь фантазией покупателя.

К другим достоинствам можно причислить:

  • Малые размеры и малый вес;
  • Низкое энергопотребление;
  • Большой срок службы — более 30 000 часов.
  • Высокая светоотдача;
  • Равномерность освещения;
  • Гибкость ленты, позволяющая крепить её на изогнутых поверхностях;
  • Не требует бережного обращения, к которому требовательны лампы со стеклянными колбами;
  • Безопасность использования за счет питания от источника с низким напряжением (обычно 12 вольт).
  • Клейкая основа ленты не требует  дополнительных элементов крепежа, тем самым монтаж ленты может провести человек без специального образования.

Рассмотрим, как устроена светодиодная лента (далее — лента).

Обобщенная конструкция ленты приведена на рисунке 2. В нижней части ленты расположены две токоведущие шины, к которым подключены группы светодиодов. Светодиоды размещены на диэлектрической подложке с электрическими проводниками. Каждая группа обычно включает в себя три последовательно соединенных светодиода и резистор, задающий ток. Электрическая схема ленты приведена на рисунке 3.

 

Рисунок 2. Устройство светодиодной ленты.

Группы светодиодов включены параллельно, поэтому выход из строя одной или нескольких групп не приведет к отключению ленты (в отличие от гирлянды, в которой лампочки или светодиоды соединены последовательно и отказ одной из них приводит к нарушению работы всей гирлянды).

Рисунок 3. Электрическая схема.

 

Внешняя сторона токоведущих шин покрыта самоклеящейся основой. Очень часто светодиодные ленты покрыты сверху силиконовым компаундом. Такое покрытие защищает её от воздействия окружающей среды.

На ленте имеются контактные площадки, к которым подсоединяют провода от блока питания. Лента подключается к блоку питания обычно с выходным напряжением 12 вольт.

При питании от источника с более низким напряжением, лента будет светиться не так ярко, а при напряжении 7 вольт, свечение диодов прекращается. Не следует превышать питающее напряжение, которое указано на упаковке. При повышенном напряжении лента может выйти из строя.

Ленты поставляются в бобинах, длинна светодиодной ленты обычно пять метров. Пользователь всегда может укоротить ленту при помощи ножниц до необходимых размеров. Обрезка ленты осуществляется по контактным площадкам (рисунок 4.), к которым при необходимости подпаиваются провода.

Рисунок 4. Стрелками показано, где следует отрезать ленту.

 

Ленты могут быть как одно- так и многоцветными (RGB светодиодные ленты). Распространенные цвета свечения однотонных лент – белый, синий, красный, зеленый, желтый. Подключение контроллера к RGB ленте позволяет плавно менять цвет и создавать световые эффекты.

Светодиоды на ленте могут быть расположены в два ряда (двухрядные ленты). Такая конструкция обеспечивает более равномерное освещение и высокую яркость.

Мощные светодиодные ленты при работе выделяют много тепла. Чтобы не перегреть светодиоды, такие ленты помещают на специальный профиль, являющийся радиатором.

22.11.2017

Схема подключения LED ленты | Ledcountry.ru

Подключение монохромной светодиодной ленты: три главных рекомендации, о которых нужно знать

При желании оформить интерьер посредством монохромной светодиодной ленты неизменно возникает вопрос о том, как ее выбрать, а также как подключить. Если с выбором изделия покупатель справляется довольно легко, то при подключении он в большинстве случаев сталкивается с распространенными ошибками.

Ниже рассмотрим три основных правила, которые помогут в подключении монохромной светодиодной ленты.

Первое правило: с чего начать?

Что нужно для подключения светодиодной ленты кроме самого осветительного элемента? Важный элемент — это блок питания. Грамотный подбор данной детали становится гарантией безопасной и долговременной работы вашей домашней подсветки. Как подобрать данный элемент? Главный фактор, на который вы должны обращать внимание — это его мощность. Подобранное техническое изделие должно обладать более высокой мощностью, чем осветительная лента, приблизительно на 25-30%. Исключительно в этом случае вы обеспечите нормальный функционал: как для самого блока, так и для диодов. Если блок подбирается по мощности, равной ленте, он будет функционировать на пределе. Такой эффект серьезно сказывается на длительность эксплуатация.

Второе правило: выбираем походящую поверхность для установки

Подключение монохромной ленты может быть выполнено практически на любую поверхность. Однако будет лучше, если вы осуществите монтаж на подложку из алюминия, которая сможет выполнять задачу проводника тепла.

  • В процессе функционирования осветительный прибор греется. Высокая температура может негативно сказаться на механизме диодов.
  • В процессе перегрева они начинают существенно тускнеть, их технические характеристики ухудшаются вплоть до полной неисправности.
  • Серьёзно уменьшается срок длительности эксплуатации ленты. Те изделия, которые могут работать до 10 лет, без использования подходящей поверхности проработают всего несколько месяцев.

Другое решение, которому вы можете отдать предпочтение — это маломощные ленты, которые не так требовательны к теплоотводу, например, модель 3528. Эта лента требует мощности всего 5 Вт.

Несмотря на то, что в некоторых случаях можно проигнорировать правила теплоотвода, существуют изделия, которые особенно в нём требовательны. Это модификации, которые производятся в силиконовом чехле. У них теплоотдача осуществляется только посредством подложки, снизу. В случае если вы установите такую ленту на пластмассовую или деревянную поверхность, охлаждения не будет, данное изделие испортится уже через 6-8 месяцев эксплуатации.

Третье правило: грамотный выбор схемы подключения светодиодной ленты к сети 220 вольт

Непосредственно перед подключением у человека возникает вопрос: как присоединить светодиодную ленту к сети 220В. Именно поэтому вам необходима покупка блока питания, который модифицирует переменный ток 220В в постоянный ток, требуемый ленте, например, 12-24В. При подключении важным правилом является соблюдение полярности. Нельзя путать плюс с минусом, отрицательный проводник имеет черный цвет, а положительный — красный. Присоединение проводников можно осуществлять с помощью спаивания контактов, либо посредством специализированных переходников. Ниже расположена стандартная простая схема.

Существует ситуация, когда необходимо осуществить подключение монохромной ленты нескольких отрезков. Они могут быть подключены к одному блоку питания параллельно. При этом ленты монтируются параллельно, длина отрезка должна составлять не больше пяти метров. Отрезать ленту можно с помощью разметки от производителя. Это величина, которая способна пропустить токовые ведущие дорожки. При увеличении длины, нагрузка значительно превысит возможную, что станет причиной выхода ленты из строя. Не рекомендуется соединять отрезки друг с другом последовательно. Подключение должно идти параллельно от блока питания к каждой ленте. Если сделать последовательное подключение двух лент к блоку питания, вторая лента будет более тусклой, а первая быстрее выйдет из строя.

Разные схемы подключения одноцветной ленты

Схемы подключения RGB ленты | Ledcountry.ru

Подключение RGB ленты: важные нюансы эксплуатации, элементы в системе, рекомендации по установке в домашних условиях

Если вы решили оформить домашний интерьер с помощью светодиодной ленты разных цветов, вам необходимо ответить на множество вопросов, например, по поводу подбора контроллера, прочих элементов в цепи, или как подключить светодиодную разноцветную ленту RGB. Почему при подключении данной модификации осветительного оборудования возникает так много сложностей? Потому что одноцветные модели присоединяются исключительно к блоку питания при подключении, а вот для многоцветных агрегатов потребуется дополнительное приобретение контроллера и усилителя. Ниже мы рассмотрим основные моменты, которые необходимо знать каждому покупателю, желающему осуществить отделку с помощью ленты RGB.

Основные элементы, необходимые для подключения RGB ленты светодиодной

Выполнить установку любой модели RGB-ленты самостоятельно возможно после того, как вы сможете определить, насколько она будет протяженной. Именно от этого параметра будет зависеть подходящее устройство для цепи оборудования и подбираться схема. Покупать контроллер требуется исходя от характеристик светового оборудования – они должны соответствовать. Если говорить об элементах системы, то вам потребуется приобрести:

  • Саму ленту RGB.
  • Контроллер, подходящий к разноцветной диодной ленте.
  • Блок питания.
  • Усилительный механизм.

Для чего нужен каждый из представленных элементов? Блок питания требуется для того чтобы преобразовывать стандартное напряжение 220 вольт в сети в напряжение, необходимое светодиодной полосе. Его уровень может составлять от 6 и выше вольт. Подключить контроллер к светодиодной ленте необходимо, чтобы осуществлять цветовое свечение диодов. Усилитель потребуется в том случае, если вы желаете осуществить подключение RGB ленты, длина которой будет больше, чем пять метров, одновременно.

Поэтапный алгоритм и схема подключения светодиодной ленты RGB

Если вы хотите самостоятельно подключить RGB светодиодную ленту, вам необходимо воспользоваться следующим алгоритмом:

  1. Подготовка поверхности. Локация, где предполагается размещение ленты, необходимо выровнять и обезжирить с помощью растворителя. Желательно, чтобы этот материал хорошо проводил тепло, чтобы лента не нагревалась слишком сильно. Если вы решили отдать предпочтение стальной или алюминиевой поверхности, рекомендуется уберечь ее электроизолятором.
  2. Монтировать ленту на поверхность. Для этого нужно просто ее приклеить. Одна из сторон изделия для освещения самоклеющаяся, поэтому вам потребуется ликвидировать защитную пленку и аккуратно наклеить изделие на подобранное место. Важно помнить: степень изгиба не должна быть больше 1,5-2 см. Иначе системе может быть нанесен непоправимый вред при эксплуатации, сильно уменьшится срок ее работы. Если вам требуется отрезать участок изделия, выполняйте работу по пунктиру, указанному компанией-производителем. Соединить два участка ленты между собой можно воспользовавшись паяльником либо коннектором.
  3. Соберите систему. Соедините RGB ленту с контроллером — сделать это также можно с помощью паяльника или коннектора, исходя из модели последнего. Проведите шнуры к блоку питания: плюсу соответствует алый цвет, а минусу – темный. Подключение шнуров к контролирующему механизму должно выполняться соответственно цветам, которые обозначаются в аббревиатуре.

Можно ли подключить RGB ленту без контроллера? Да, однако, в этом случае должен быть использован пульт дистанционного управления.

Схемы подключения

Подключаем светодиодную ленту на 12, 220В, схема подключения

Продолжим рассматривать практические аспекты использования светодиодных лент. Сегодня я рассмотрю разнообразные способы подключения светодиодных лент к источникам питания. Не редко приходится решать вопросы потребителей, которые хотят соединить LED ленту к компьютеру, USB шнурам, батарейкам, телефонам… Много разных «причуд» бывает у людей. Вот на этом и заострим внимание в этой статье. Попробую собрать воедино все, что только необходимо и интересует читателей. Поехали…

[contents]

Подключение светодиодных лент должно происходить только через специальные блоки питания. Благо их на полках магазинов огромное множество. От огромных до маленьких, от зеленых до красных). Сразу отвлекусь и предупрежу, что покупать блоки питания необходимо с запасом по мощности около 25 процентов. По цене это не сильно влияет, а вот в дальнейшем может пригодится.

Также для подключения может потребоваться контроллер, усилитель, диммер. Контроллер нам необходим для RGB лент, усилитель — если нужно соединить не один десяток метров ленты, диммер — для «игрушек» с силой света. Диммер можно устанавливать по желанию.

Как подключить светодиодную ленту к блоку питания


Подключать одноцветные (монохромные) ленты длиной до 5 метров необходимо через блок питания, преобразующего переменный 220В в постоянный 12В.

Необходимо соблюдать полярность и не перепутать «плюс» с «минусом». Хоть это и сложно. Положительный проводник имеет красный цвет. А минусовой — черный. Соединять проводники от блока питания можно через пайку к контактам ленты, либо при помощи коннекторов, коих в продаже большое количество разнообразных типов и форм.

Схема, которая расположена ниже очень часто применяется новичками. Не всегда нам хватает только 5 метров ленты. Периодически необходимо питать и больший метраж. Как правильно питать в таком случае я покажу ниже. А сейчас схема, которую не желательно использовать. Скажу больше — я считаю ее не правильной. В результате такого соединения резко сократится срок службы диодов и на конце отрезков светодиоды будут светиться в полнакала.

Параллельное подключение одноцветной светодиодной ленты через один и два блока питания


Правильное подключение двух и более отрезков ленты можно считать параллельное соединение. Сечение проводов в этом случае должно быть не менее 1,5 кв.мм и необходимо предусмотреть место расположения источника питания, т.к. в таком случае он будет большого размера, в результате того, что по мощности он рассчитывается на две ленты. Проводники подсоединяются параллельно выходу 12 В из блока. Схема похожа на 2-х блочную, по подобию.

При использовании двух блоков питания необходимо соединить провода параллельно сети 220 В. Такой способ позволяет применить инверторы маленького размера.

Подключение RGB многоцветной ленты с использованием контроллера


Контроллер — устройство, при помощи которого регулируется и яркость и цветность свечения ленты. Подключение контроллера происходит со строгим соблюдением полярности. Положительный проводник контроллера соединяем с плюсом ленты. Оставшиеся проводники, соответствующие определенным цветам подключаются к клеммам ленты.

Подключение параллельное RGB многоцветной ленты длиной более 5 метров


Параллельное подключение по подобию последовательного. Сечение жил также не должно быть меньше 1,5 мм.кв.

Подключение RGB ленты с применением усилителя, двух блоков и контроллера


Такая схема идеальна при подключении лент на светодиодах SMD 5050 и более мощных. На схеме видно расположение двух блоков питания, контроллер, усилитель. От одного блока мы запитываем контроллер, от второго усилитель. Второй «кусок» ленты подсоединяем к усилителю. Второй клеммный ряд усилителя остается пустой.

Подключение нескольких светодиодных монохромных одноцветных LED лент через блок, усилитель и диммер


Если Вам необходимо подключить более 10 м ленты ( 20м, 25м и т.д. ), то можно воспользоваться следующей схемой соединения.

Подключение одной ленты к блоку питания и диммеру


Диммер включается в цепь между блоком питания и лентой. Строго соблюдается полярность при соединении проводников от диммера к ленте.

Подключаем светодиодную ленту 12 В к блоку питания от компьютера


Часто у тех, кто занимается моддингом компьютеров возникает желание подключить светодиодную ленту к блоку питания от него. На первый взгляд это сложная задача. Но только на первый взгляд. На самом деле эта процедура не стоит выеденного яйца. И любой сможет справиться с этой задачей.

Для начала нам необходимо найти исправный блок питания и подготовить в нем 4-х контактный разъем. Выглядит он вот таким образом.

Для подключения нам нужны только желтый и черный провода. Черный — это минус, желтый — 12В. Для общей информации — красный +5В. Черный провод можно использовать любой. Это два минуса.

Подключения ленты 12 В к блоку можно провести двумя способами — либо использовать разъем «папа» и «мама», либо только проводами.

Мне больше предпочтителен был способ с использованием двух разъемов, так как разборные схемы меня больше устраивают.

В любом случае необходимо припаять проводники ( не забудьте пролудить ) к светодиодной ленте и концы соединить с одним из разъемов ( пустым ), который и вставляем в питающий.

Можно просто отрезать все разъемы и непосредственно провести соединение блока митания компьютера с LED лентой только проводами. Кому как нравится.

Такая схема подключения подойдет, если у Вас лента до 120 диодов на метр.

Схема подключения светодиодной ленты 24 В к блоку питания от компьютера


Если Вы решитесь подключить ленту на 24 В ( от 240 диодов на метр ), то необходимо взять вот такой разъем.

В компьютере нет «устройств» потребляющих 24 В. однако, в гребенке есть провод ( голубой ), на конце которого имеется напряжение -12В. В совокупности, взяв голубой и любой желтый провод ( +12 В не обязательно на этом разъеме ) мы и получим необходимые нам 24 В. Но здесь есть одно но… Необходимо смотреть на шильдик блока питания, в котором, напротив каждого цвета стоит ампераж. Как правило, на желтом проводнике он большой и может достигать значения более 16А. На голубом  же ( -12 В ) не более 1 А. Чаще 0,5А. Если Вы используете блок питания от компьютера как источник питания только ленты, то он вполне может потянуть метров пять ленты, т.к. не используются +5 и +3 В проводники. Можно получить и больший ампераж, но это все определяется экспериментальным путем.

И кстати, если Вы используете блок, который не подключен к материнской плате, то просто так его не включить. Необходимо вставить перемычку между проводами, как показано на картинке выше.

Видео как подключить светодиодную ленту


Схема подключения светодиодной ленты: инструкции — ЯнисСвет

Инструкция по подключению и монтажу ленты. Схемы подключения лент, правила безопасности и другая полезная информация:

Инструкция по применению светодиодной ленты.

Светодиодные ленты чаще всего применяются для декорирования помещений, создания привлекающих внимание рекламных вывесок и организации оригинальных световых композиций в интерьере.

Технические характеристики гибкой светодиодной ленты позволяют крепить ее не только на плоскую однородную поверхность, но и производить монтаж на конструкции практически любой формы. Помимо этого, крепеж ленты так же возможен по всему периметру помещения, включая углы, выступы и прочие неровности. Применение светодиодной ленты так же оправдано при необходимости декорирования участка нестандартного размера, либо для проведения работ, которые подразумевают самостоятельное изменение длины ленты.

Получение отрезка индивидуального размера достигается путем разъединения (обрезания) ленты на определенном участке.

Линии отреза регулируются производителем, на ленте они промаркированы специальными техническими отметками. Обычно линия отреза располагается между площадками для пайки, это облегчает последующую спайку ленты в случае неверного выбора необходимой длины. При этом Вы должны помнить, что лента имеет кратность резки. Для разных видов
ленты она разная.

Например, для ленты:

SMD 3528 — 60LED/м. кратность резки составляет 5 см (что соответствует 3 светодиодам).

SMD 3528 — 120 LED/ м. кратность резки составляет 2,5 см (что соответствует 3 светодиодам).

SMD 3528 — 240 LED/ м. кратность резки составляет 2, 5 см (что соответствует 6 светодиодам).

SMD 5050 — 30 LED/ м. кратность резки составляет 10 см (что соответствует 3 светодиодам).

SMD 5050 — 60 LED/ м. кратность резки составляет 5 см (что соответствует 3 светодиодам).

RGB 5050 — 30 LED/ м. кратность резки составляет 10 см (что соответствует 3 светодиодам).

RGB 5050 — 60 LED/ м. кратность резки составляет 5 см (что соответствует 3 светодиодам).

Для справки: время пайки не должно превышать 10 секунд.

Рекомендуемая температура для проведения паяльных работ: не более 260 °С.

Совет по подбору блока питания к светодиодной ленте.

Блок питания для светодиодных лент должен подбираться по следующим параметрам:

  • Напряжение питания ленты;
  • Мощность, потребляемая лентой;
  • Защищенность от влаги.

Чтобы посчитать мощность блока питания, обратимся к техническим характеристикам светодиодной ленты. Нам необходим такой показатель, как потребляемая мощность на метр ленты. Так как нам необходимо запитать 5 метров ленты (ДЛИНА=5 м), то мощность, потребляемая лентой, может быть найдена умножением длины ленты на мощность ленты (1 метра).

Если блок питания устанавливается во влажном помещении, таком как ванная комната, сауна или на улице, то необходимо применять влагозащищенный блок питания.

Подключение светодиодной ленты к блоку питания.

Для подключения блока питания Вам необходимо вывести напряжение 220 Вольт в том месте, где он будет расположен. Подключение блока питания к сети 220 В происходит двумя проводами (корич. -фаза; синий — ноль) к разъемам L (фаза) и N (ноль) указанных на блоке питания Подключение светодиодной ленты к блоку питания производится напрямую проводами расположенными на ленте.

Каждый провод на ленте имеет свое обозначение на токопроводящей дорожке «+» или «-». Подключение к блоку питания производится согласно полярности к двум контактам на блоке питания «+V» «-V».

Максимальное удаление светодиодной ленты от блока питания без потери освещенности не более 7 метров Дополнительная лента подключается параллельно отдельным проводом к блоку питания (суммарная мощность подключаемых лент не должна превышать мощность блока питания).

В блоке питания справа располагается регулятор яркости светодиодной ленты (деталь бело-голубого цвета).

Схема подключения одноцветной светодиодной ленты к блоку питания:

 

Токопроводящие дорожки первой ленты рассчитаны только на 5 метров,  иначе они сгорят!!!


Схема подключения одноцветной светодиодной ленты к блоку питания 15м:


Схема подключения более 5-ти метров RGB светодиодной ленты к блоку питания и контроллеру:

При подключении ленты более 5 м. КАТЕГОРИЧЕСКИ НЕ РЕКОМЕНДУЕТСЯ подключать к концу первого отрезка 5-ти метровой ленты начало второго куска. 

 

Схема подключения RGB светодиодной ленты с помощью усилителя:

Правила безопасности при монтаже светодиодной ленты

  • Поверхность светодиодной ленты и светодиоды на ней не должны подвергаться механическим воздействиям;
  • Монтаж и подключение светодиодной ленты должен выполняться только квалифицированным персоналом с соблюдением все требований электробезопасности;
  • Соблюдайте полярность;
  • Недопустимо подключать последовательно более 5 метров светодиодной ленты. Токопроводящие дорожки на светодиодной ленте могут не выдержать нагрузки. Рекомендуется применять параллельное подключение светодиодной ленты к источнику питания;
  • Правильно подбирайте источники питания светодиодной ленты. При выборе источника питания рекомендуется учитывать запас по мощности не менее 25%;
  • При установке светодиодной ленты на металлическую поверхность, между светодиодной лентой и поверхностью необходимо установить электроизоляционный материал.

Монтаж светодиодной ленты

Включая данную информацию, магазин светотехники предоставляет услуги «монтажа и подключения» светодиодных лент в Санкт-Петербурге.

Поверхность, на которую производится монтаж светодиодной ленты, должна быть сухой и обезжиренной. Необходимо обеспечить целостность поверхности во избежание повреждения установленной светодиодной ленты. Светодиодная лента с обратной стороны имеет самоклеящееся покрытие 3М. Перед установкой удалите защитный слой с обратной стороны ленты. После установки на место, прижмите ленту с небольшим усилием на несколько секунд. Дополнительные крепления и хомуты в обычных условиях не требуются. Благодаря этому монтаж светодиодной ленты происходит достаточно быстро и легко. При установке учитывайте, что минимальный радиус изгиба светодиодной ленты — 2 см.

Область применения

Компактные размеры, большая гамма цветов и малое потребление электроэнергии определили широкое применение светодиодной ленты. Подсветка интерьера домов и квартир (потолков, напольная, периметров помещений, арок и ниш), дизайн экстерьера (контуры зданий, фонтаны, бассейны, архитектурные элементы), рекламная подсветка, автомобильный дизайн, мебельное освещение — все это сферы, где можно применять и использовать светодиодные ленты.

Герметичные (влагозащищённые) светодиодные ленты используются для внешней подсветки зданий и сооружений и для сигнализации на дорогах (в том числе для размещения на транспортных средствах).

Схема подключения светодиодной ленты — Led-Eleganz.

ru

Схема подключения светодиодной ленты

Подключение электрических осветительных приборов требует определенных умений и максимальной концентрации внимания, ведь именно от этого будет зависеть долгая и безопасная работа устройства.

Конечно же столь ответственное дело лучше всего доверить мастеру, однако, некоторые устройства можно спокойно подключить и самостоятельно.

К таким устройствам относится и светодиодная лента, установка и подключение которой не требует профессиональных знаний. Следуя простым инструкциям ее вполне можно установить и самостоятельно.

Схема подключения одной светодиодной ленты

Стандартная длина светодиодной ленты составляет 5 метров.

Если именно такая длина вам и нужна, то схема подключения будет самой простой. От вас требуется лишь подключить ленту к блоку питания, а сам блок к стандартной эклектической сети.

При этом, если на блоке питания шнуры выведены наружу, то правильный способ подключения подскажут их цвета: красный – это плюс, синий – минус

Если же вы случайно перепутайте подключения и соедините плюс с минусом, то ничего страшного не произойдет – лента просто не будет гореть. В таком случае просто поменяйте местами проводники и снова подключите блок питания к сети.

Важно: Светодиодная лента является низковольтным устройством, и подключать ее напрямую к высоковольтной стандартной сети нельзя. Использование специального блока питания строго обязательно.

Схема подключения нескольких светодиодных лент

Иногда стандартной длины светодиодной ленты не хватает для реализации задуманной идеи. В таких случаях возникает необходимость подключения сразу нескольких устройств. И здесь необходимо учесть несколько особенностей.

При возможности следует избежать последовательного подключения второй ленты, так как она будет получать питание с пониженным напряжением, а первая лента будет подвержена перегревам, так как, по сути, будет проводить ток двойной интенсивности.

Значительно более профессиональным решением станет подключение второй ленты к выводам блока питания. При этом, в данном случае, блок должен обладать большей мощностью, чем при подключении одной ленты. Можно также использовать и два блока питания обычной мощности.

Если же вы собираетесь подключить вторую ленту не целиком, а лишь небольшую ее часть, то вполне можно обойтись всего одним адаптером питания и применить метод последовательного подключения. Свободный же конец ленты необходимо запаять или изолировать другим удобным способом.

Схема подключения светодиодных RGB лент

Если подключение одноцветных диодных лент не представляет особой сложности, то в случае с разноцветными RGB лентами ситуация чуть сложнее. Однако не стоит пугаться. От вас потребует лишь чуточку больше усилий и внимания, а в итоге вы получите просто великолепный результат.

Основным отличием светодиодной RGB ленты является наличие в схеме подключения еще одного дополнительного устройства – контроллера, который отвечает за возможность изменения цветов и интенсивности свечения.

Контроллер с одной стороны подключается к блоку питания, а с другой – к самой ленте. При этом здесь уже присутствуют 4 проводника (провода): «B» – синий цвет; «R» – красный цвет; «G» – зеленый цвет; «V+» – общий провод питания.

Закрепить каждый проводник можно как коннекторов так и простой пайкой. Если же вам необходимо подключить несколько диодных RGB лент, то возникает необходимость использования RGB усилителя. Именно к нему подключается вторая лента, а усилитель в свою очередь к первой основной ленте.

При этом следует учесть, что усилитель также питается от блока питания, а значит необходимо выбрать достаточно мощный адаптер или же подключить второе дополнительное устройство.

Вот собственно и все. Следуя этим простым правилам, вы без проблем сможете самостоятельно подключить светодиодную ленту и даже организовать обширную систему декоративной подсветки.

Светодиодная лента Внутренняя схема и информация о напряжении


В этой статье рассматривается внутренняя схема и принцип работы светодиодной ленты. Эта информация предназначена для обсуждения технических вопросов и не является необходимой для обычных пользователей, заинтересованных в регулярном использовании светодиодных лент.


Назад к основам — Напряжение светодиодного чипа


Указанное напряжение светодиодной ленты — например, 12В или 24В — в первую очередь определяется:

1) указанным напряжением используемых светодиодов и компонентов, а

2) конфигурацией светодиодов на светодиодной ленте.

Светодиоды обычно представляют собой устройства с напряжением 3 В. Это означает, что если между положительным и отрицательным концами светодиода будет приложена разница в 3 В, он загорится.


Что произойдет, если у вас будет несколько светодиодов в цепочке, один за другим (серией)? В этом случае напряжения отдельных светодиодов суммируются.

Следовательно, для 3 последовательно соединенных светодиодов потребуется прямое напряжение 9 В (3 В x 3 светодиода), а для 6 последовательно включенных светодиодов потребуется прямое напряжение 18 В (3 В x 6 светодиодов).



Помимо светодиодов, также необходим один или несколько токоограничивающих резисторов, чтобы гарантировать, что светодиодная лента не перейдет в режим перегрузки по току. Резистор также включен последовательно со светодиодами, и его значение сопротивления рассчитывается таким образом, чтобы он также потреблял примерно 3 вольта.

Итак, 3 последовательно соединенных светодиода требуют 9 вольт для светодиодов и 3 вольт для резистора, в результате чего мы получаем 12 вольт.

Для 6 последовательно соединенных светодиодов требуется 18 вольт для светодиодов и 3 вольта на резистор (x2), что доводит нас до 24 вольт.



Это «строительные блоки» для каждой группы светодиодов на светодиодной ленте. То, как он размещен на светодиодной ленте, можно визуализировать на нашем рисунке ниже:


Что происходит с параллельными светодиодами? Напряжение остается прежним, но ток распределяется поровну между каждой из параллельных цепей. Следовательно, если у вас есть 3 параллельные группы, каждая из которых потребляет 50 мА при 24 В, общая потребляемая мощность составит 150 мА, также при 24 В.


Эти два примера с 3 светодиодами и 6 светодиодами показывают, как сконфигурирована типичная светодиодная лента на 12 и 24 вольт.Поскольку в светодиодных лентах используются светодиодные устройства на 3 вольта, и они сконфигурированы так, чтобы иметь несколько параллельных цепочек из 3 или 6 светодиодов.


Необходимо ли вам подавать точно указанное напряжение?


Вам может быть интересно, означает ли 12 вольт ровно 12,0 вольт или 11,9 вольт все еще будут работать? Хорошая новость заключается в том, что мощность, подаваемая на светодиодную ленту, оставляет желать лучшего.

Ниже приведена диаграмма из таблицы данных светодиодов, показывающая, сколько тока будет проходить через светодиод в зависимости от напряжения.

Вы увидите, что, например, при 3,0 В этот конкретный светодиод потребляет около 120 мА. Если мы уменьшим напряжение до 2,9 В, светодиод будет потреблять немного меньше, всего около 80 мА. Если мы увеличим напряжение до 3,1 В, светодиод будет потреблять больше, примерно 160 мА.


Поскольку в светодиодной полосе 12 В имеется 3 последовательно соединенных светодиода и резистор, подача 11 В вместо 12 В немного похожа на уменьшение напряжения для каждого светодиода на 0,25 В.

Будут ли светодиоды работать при 2,75 В? Если мы обратимся к таблице выше, окажется, что потребляемый ток упадет со 120 мА на светодиод до примерно 40 мА.

Хотя это довольно значительное падение, светодиоды будут работать нормально, хотя и с гораздо более низким уровнем яркости.

Что, если бы мы подавали только 10 В на светодиодную ленту на 12 В? В этом случае мы уменьшаем напряжение на каждый светодиод на 0,5 В. Если обратиться к таблице, то при 2,5 В светодиоды почти не потребляют ток.

Скорее всего, на этом уровне напряжения вы увидите очень тусклую светодиодную ленту.

Все напряжения ниже номинального значения светодиодной ленты являются безопасными, так как вы всегда будете потреблять меньший ток и, следовательно, исключить любую возможность повреждения или перегрева.Но как насчет уровней напряжения более 12 В?

Давайте посмотрим, как подать напряжение 12,8 В на светодиодную ленту 12 В. Это увеличивает напряжение на светодиод на 0,20 В.

На наш светодиод теперь подается напряжение 3,2 В, при котором диаграмма показывает потребляемый ток 200 мА.


Так уж получилось, что максимальный ток производителя составляет 200 мА. Если установить более высокое значение, вы рискуете повредить светодиод.

И имейте в виду, что каждый светодиод будет иметь разные характеристики, и присущие производственные различия могут повлиять на фактические диапазоны напряжения, которые приемлемы для конкретной светодиодной ленты.

Мы показали, что для светодиодной ленты на 12 В она может переходить от темноты к перегрузке в узком диапазоне от 10 В до 12,8 В.

Хотя можно подавать напряжение, немного отличающееся от номинального, вы должны быть осторожны и точны, чтобы не повредить светодиоды.


Как насчет уменьшения яркости светодиодной ленты?


Один из способов уменьшить яркость светодиодной ленты — установить входное напряжение ниже номинального уровня, как мы видели выше.В действительности, однако, силовая электроника не очень хорошо снижает выходное напряжение таким образом.

Предпочтительным методом является использование так называемой ШИМ (широтно-импульсной модуляции), когда светодиоды включаются и выключаются с большой скоростью. Регулируя соотношение времени включения и выключения (рабочий цикл), можно отрегулировать видимую яркость светового потока светодиодной ленты.

Для светодиодной ленты 12 В это означает, что она всегда получает либо полное напряжение 12 В, либо 0 В, в зависимости от того, на какой части цикла ШИМ мы находимся.

Точно так же мы также знаем, что светодиод потребляет одинаковое количество тока, когда он находится в состоянии «включено», независимо от его рабочего цикла. Это дополнительное преимущество для светодиодных лент, цветовая температура которых должна оставаться постоянной даже при изменении яркости.


Итог


Одно из значительных преимуществ светодиодных лент — это простота, но универсальность: они сочетаются с простыми устройствами питания постоянного напряжения.

Иногда может быть полезно понять внутреннюю работу таких устройств, поскольку это может помочь нам понять некоторые из более тонких аспектов их работы, такие как регулировка яркости и изменения входного напряжения.

Введение в светодиодные ленты: 9 шагов (с изображениями)

Чтобы ваш проект светодиодной ленты ярко светился при соответствующей мощности, вам необходимо знать, какой ток потребляет ваш проект и какое рабочее напряжение.Зная эти две вещи, вы можете выбрать источник питания. Имейте в виду, что текущий розыгрыш может быть непростой задачей. Здесь мы возьмем информацию из таблицы и включим ее в несколько простых уравнений, чтобы получить максимальный ток , необходимый , поскольку информация из таблицы указывает на то, что светодиод горит при полной яркости .

Для расчета необходимого источника питания нам понадобится следующая информация:

  • длина полосы
  • количество светодиодов на метр
  • потребляемый ток на светодиод ИЛИ потребляемая мощность на светодиод
  • рабочее напряжение

Светодиодные ленты обычно питаются от 5 В, 12 В и 24 В.При расчете мощности также учитывается количество светодиодов на метр (л / мин). Полосы могут быть 30, 32, 60, 144 и более на метр.

Использование тока, потребляемого светодиодом

В качестве примера давайте посмотрим на таблицу данных для белой полосы . Мы видим, что рабочее напряжение составляет 12 В, что также должно быть нанесено трафаретной печатью на самой полосе на линии разреза каждого сегмента. То, что мы ищем, — это потребляемый ток , измеренный в миллиамперах (мА). Он говорит нам, что каждый сегмент, состоящий из 3 светодиодов, потребляет 60 мА.Чтобы упростить вычисления, потребляемый ток можно разделить на 3, в сумме по 20 мА на светодиод. Если используется один метр с 60 светодиодами на метр, у нас есть такая информация:

  • длина полосы = 1 метр.
  • количество светодиодов на метр = 60
  • потребляемый ток на светодиод = 20 мА

Уравнение:

(длина светодиодной ленты x светодиодов на метр x потребляемый ток светодиода)

Информация о подключении:

1 (метр) x 60 (л / мин ) x 20 мА = 1200 мА

1200 мА / 1000 = 1.2 ампера.

Использование потребляемой мощности на светодиод

Другой способ расчета потребляемого тока — использование энергопотребления на светодиод . Потребляемая мощность также может использоваться для определения потребляемого тока, если вместо этого известна потребляемая мощность, измеряемая в ваттах на светодиод. В таблице данных указано 0,72 Вт на 3 светодиода. Сначала разделите 0,72 / 3 = 0,24 Вт на светодиод

  • длина полосы = 1 метр
  • количество светодиодов на метр = 60
  • потребляемая мощность на светодиод =.24 Вт
  • рабочее напряжение = 12 В = 1,2

    Теперь мы знаем, что хотим использовать блок питания, который может обеспечить 1,2 А и 12 В . Имейте в виду, что ток, потребляемый светодиодом, находится на полной яркости. Если полоски затемнить через вывод ШИМ на Edison, он будет потреблять меньше тока.Максимальное количество денег по-прежнему является хорошим ориентиром, чтобы понять, достаточно ли у вас средств для начала.

    Срок службы батареи

    Срок службы батареи зависит от потребляемого тока, опять же, он будет колебаться, особенно с цифровыми полосами RGB, когда на них танцуют узоры и цвета. Потребляемый ток будет колебаться в зависимости от цвета и яркости светодиода. Способ точно определить текущее потребление — подключить его к мультиметру и посмотреть, как меняются токи за цикл схемы, принять к сведению и произвести некоторые вычисления.

    Еще один способ узнать время автономной работы с помощью динамического проекта, подключить аккумулятор на полную мощность и посмотреть, сколько времени потребуется, чтобы разрядиться.

    Помимо этого, общий расчет можно сделать, посмотрев на емкость батареи мАч. Давайте остановимся на белой полосе, в примере схемы используются 6 батареек AA. Аккумуляторы AA имеют примерно 1500 мАч, 8 батареек включены последовательно, поэтому ток остается неизменным — 1,5 А. Разделите это на текущий розыгрыш нашего проекта, который равен 1.2.

    1500 мАч / 1,2 А = 1,25 часа полной яркости

    Основы гибкой светодиодной ленты

    Типичная гибкая светодиодная лента питается от источника питания 12 В. Этого достаточно для последовательного питания нескольких светодиодов. Это более эффективно, чем соединение их всех параллельно, поскольку один и тот же ток может питать три светодиода, а не только один.

    Типичный гибкий полосовой светильник.

    Принципиальная схема ленты. Обратите внимание, что резка в неправильном месте приведет к тому, что один, два или три светодиода не будут работать.В этом примере два резистора для снижения напряжения используются на цепочку из 3 светодиодов — предположительно, чтобы распределить теплоотвод между двумя устройствами.

    Одноцветная полоса с видимой печатной схемой.

    Шины 12 В проходят по всей длине полосы.

    • В каждой секции последовательно соединены три светодиода с одним или двумя токоограничивающими резисторами.
    • Полоску можно разрезать в любом месте, отмеченном ножницами, без разрыва последовательной нити.

    Полосы можно подключать последовательно, но при питании с одного конца обратите внимание, что первая полоса должна будет проводить ток для всех светодиодов и может перегреться и выйти из строя.Кроме того, падение напряжения на линии вызовет падение напряжения. По этой причине лучше проложить провода от каждой полосы прямо к источнику питания.

    Соединения с полосами

    Провода можно аккуратно припаять к гибким светодиодным лентам. На фото показаны четыре провода, подключенные к полосе RGB.

    Самое дешевое решение — припаять провода питания непосредственно к гибкой светодиодной ленте. Медные контактные площадки и провода следует припаять лужением, а затем спаять вместе.Не перегревайте подушечки, иначе они оторвутся от гибкой подложки и, возможно, сломаются. Обратной стороной этого подхода является то, что все механические нагрузки будут приходиться на контактные площадки.

    В отличие от этого, разъемы, расположенные ниже, распространяют нагрузку на гибкую плату и являются съемными. Последний пункт может быть важен, если вам придется заменить полосу в неудобном месте.

    Соединитель столярный 8мм с проводом. Обратите внимание на пружинные контакты, нажимающие на медные площадки ленты. На полосе видны два углубления.Они вызваны выступами на корпусе зажима и обеспечивают некоторую механическую безопасность соединения. Провод разъема с зажимом (производства JKL) для одноцветной ленты.

    Предотвращение падения напряжения на полосе

    Общая проблема светодиодных лент большой длины заключается в том, что из-за того, что они обычно получают питание с одного конца, свет становится менее ярким из-за падения напряжения на полосе. Ближайшая к источнику питания полоса должна пропускать ток почти для всех светодиодов, и падение напряжения на гибких дорожках относительно велико.Ближайшие к источнику питания светодиоды получают полное напряжение, но оно падает — сначала резко — по мере того, как мы движемся по полосе. Поскольку ток уменьшается по мере удаления от источника, интенсивность остальных светодиодов относительно постоянна.

    Очень важно запитать схему с обоих концов. Это уменьшает падение напряжения вдвое, но все равно может быть заметный провал в центре.

    Проводка светодиодной ленты «ровное напряжение».

    При таком расположении светодиоды слева испытывают максимальное падение напряжения на положительной линии и отсутствие на отрицательной линии.Между тем, те, кто справа, испытывают наибольшее падение напряжения на отрицательном полюсе, а не на положительном, в то время как те, кто находится в центре, испытывают одинаковое падение напряжения на положительном и отрицательном полюсе.

    Полное руководство по светодиодным лентам

    Светодиодные ленты

    — это сбывшаяся мечта домашнего мастера. Поверьте мне, я был втянут в запой, просматривая многочасовые видеоролики светодиодных проектов более чем несколько раз.

    Несмотря на то, что я нашел массу действительно хороших идей (и потратил много времени впустую), я изо всех сил пытался найти одно место, где я мог бы получить всю информацию, необходимую для создания моего собственного проекта.

    Вот для чего это руководство.

    Это руководство поможет вам пройти путь от новичка до готового проекта.

    Я научу вас, как правильно выбрать и установить светодиодные ленты для вашего приложения. Я также научу вас выбирать и устанавливать соответствующие контроллеры и блоки питания в соответствии с вашими светодиодными лентами. Попутно я отвечу на общие вопросы и поделюсь своими знаниями.

    Наконец, в конце список продуктов, рекомендуемых мной для вашего проекта светодиодной ленты.


    Типы микросхем светодиодных лент

    Если вы покупаете светодиодные ленты, вы, вероятно, встретите всевозможные комбинации букв и цифр, которые должны описывать полосу, на которую вы смотрите.

    Что означают буквы?

    Буквы в описании относятся к цвету (ам) светодиодных чипов на ленте.

    Если буквы разделены знаком «+» или пробелом, это обычно означает, что это отдельные фишки.Если места нет, это обычно означает, что все они интегрированы в один чип.

    Когда светодиоды находятся на отдельных микросхемах, меньшее количество источников света можно разместить в полосе той же длины.

    RGB — красный, зеленый, синий

    Светодиод RGB содержит три диода (LED означает Light Emitting Diode) на одной микросхеме: по одному для каждого цвета. Каждый цвет подключается к собственному каналу. Регулируя мощность, подаваемую на каждый цвет (с помощью контроллера), можно создать любую комбинацию цветов.

    W — Белый

    Обычно одна буква «W» обозначает чистый белый цвет (6500K). Стандартных стандартов не существует, поэтому обязательно проверьте их еще раз.

    WW — теплый белый

    Теплый белый цвет обычно составляет 2700K, он похож на цвет лампы накаливания.

    CW — Холодный (или холодный) Белый

    Холодный белый цвет находится в диапазоне 6500K, но проверьте, чтобы убедиться.

    CCT — цветовая корреляционная температура

    CCT обычно означает, что полоса включает два канала белого цвета.Один теплый белый, а другой холодный белый. Регулируя мощность, подаваемую на каждый белый канал, полоса может производить любой белый свет, равный двум светодиодам или между ними. Светодиоды CCT могут быть как на одной микросхеме, так и на разных микросхемах.

    Примеры распространенных конфигураций светодиодных чипов:
    Этикетка Описание
    RGB Однократный трехканальный чип со светодиодами RGB
    RGBW Один четырехканальный чип с RGB и белыми светодиодами
    RGB + W Один 3-канальный чип со светодиодами RGB и отдельный одноканальный чип с белым светодиодом
    RGB + CCT Один 3-канальный чип со светодиодами RGB и отдельный 2-канальный чип со светодиодами холодного и теплого белого цветов
    RGBCCT Одиночный 5-канальный чип со светодиодами RGB, CW и WW

    Что означают цифры?

    Описание светодиодной ленты часто включает 4-значное число, например 5050 или 2835.Число обычно описывает размер чипа.

    Например, светодиодный чип 5050 имеет ширину 5,0 мм и высоту 5,0 мм. Точно так же чип 2835 имеет ширину 2,8 мм и высоту 3,5 мм.

    Если вы смотрите на полосу с цифровой адресацией, вы, скорее всего, увидите четырехзначное число (например, WS2812B или SK6812). Но в данном случае это никак не связано с размером чипа. Вместо этого номер — это имя встроенной микросхемы контроллера светодиодов.

    Источник
    Общие адресные контроллеры светодиодов:
    WS2811
    WS2812 ECO
    WS2812B
    WS2813

    Имеет ли значение размер?

    Хотя большинство микросхем одинакового размера имеют схожие характеристики, не все производители микросхем созданы равными.Следовательно, нет гарантии, что чипы одного размера от разных производителей будут иметь одинаковую производительность.

    Обычно более крупный чип ярче, но не обязательно. В конечном итоге общую яркость определяют несколько факторов, включая конструкцию микросхемы, потребляемую мощность и используемые материалы.

    Например, ниже представлена ​​таблица с основными характеристиками для трех различных микросхем производства Epistar (популярного производителя светодиодов).

    Светодиод Площадь поверхности кристалла Световой поток Потребляемая мощность
    2835 9.8 мм2 22-24 лм 0,2 W
    5054 27 мм2 45-55 0,5 W
    5630 16,8 мм2 50-60301 0,5 W

    Обратите внимание на то, что 5630 излучает больше света, чем 5054, даже несмотря на то, что у него меньшая площадь поверхности. Кроме того, ему удается выдавать больше света, сохраняя при этом то же количество энергии (более эффективно).

    Размер играет роль в определении того, сколько светодиодов может быть установлено на полосе:

    1.Узкая микросхема может быть прикреплена к полосе более близко друг к другу, создавая более равномерный свет.

    2. Большая микросхема потенциально может вместить несколько диодов на одной микросхеме. Это может обеспечить лучший интервал для многоцелевых (меняющих цвет) полос.

    Например, микросхема RGBCCT имеет всего 5 диодов на одной микросхеме. Один и тот же чип используется непрерывно по всей полосе. Каждая микросхема может создавать цвета и белый цвет.

    Сравните это с полосой RGB + CCT. Используются два разных чипа.Один создает цвета, а другой — белые. Они располагаются поочередно.

    Расстояние между светодиодами одного цвета на полосе RGB + CCT больше, чем на полосе RGBCCT. На практике больший зазор может сделать свет менее равномерным.


    Как правильно выбрать светодиодную ленту

    Существует бесконечное количество вариантов светодиодных лент, которые продаются в широком диапазоне цен. В чем разница между дешевым и дорогим? И что лучше всего подходит для вашего проекта?

    Яркость

    Яркость или светимость обычно измеряется в люменах.Что касается светодиодных лент, вас интересует вопрос, насколько яркая моя полоса на единицу длины? Таким образом, вместо общего количества люменов вам следует искать люмен на фут или люмен на метр.

    Вот несколько рекомендаций по выбору уровня яркости в зависимости от ситуации.

    Использование Рекомендуемый световой поток на фут
    Акцентное освещение / освещение настроения 150-350
    Подсветка под шкафом 175-525
    Рабочее освещение (закрытие) 275
    Рабочее освещение (дальнее) 350-700
    Непрямое освещение 375-575
    Замена люминесцентной лампы 500-950
    Стрипы Source

    Хорошая идея купить с дополнительной яркостью для вашего приложения.Затем установите диммер, чтобы уменьшить яркость до желаемого уровня.

    Использование диммера снизит рабочую температуру светодиодов, что продлит их срок службы.

    Более того, с возрастом светодиоды действительно теряют часть своей яркости. Если вы с самого начала немного увеличите размер светодиодов, у вас будет дополнительная яркость, чтобы компенсировать разницу по мере их старения.

    КПД

    Luminosity не всегда рассказывает всю историю. Вы можете получить больше яркости от любого светодиода, если пропустите через него достаточную мощность, но это не всегда хорошо.

    Производитель светодиодной ленты может увеличить заявленный световой поток за счет увеличения мощности светодиодов. Это заставит их сиять ярче, но также заставит их нагреваться и работать менее эффективно. Поскольку нагрев является основной причиной преждевременного выхода из строя светодиода, вполне вероятно, что сверхмощные светодиоды не прослужат так долго, как в противном случае.

    По этой причине уместно задать вопрос: сколько света он излучает по сравнению с потребляемой мощностью? Это соотношение называется световой отдачей.Это часто указывается в спецификациях продуктов. В противном случае вы можете рассчитать эффективность, разделив количество создаваемых люменов на то, сколько энергии он использует.

    Нужен ли мне

    для с высоким индексом цветопередачи?

    Индекс цветопередачи (CRI) — это показатель того, насколько точно искусственный источник света воспроизводит естественный свет. Сообщается как число от 0 до 100.

    CRI выше 80 приемлем для большинства приложений.

    CRI выше 90 считается высоким CRI и в основном используется в розничной торговле, искусстве, кино или фотографии.Некоторые из светодиодных лент самого высокого качества имеют индекс цветопередачи 97-99.

    Почему важен индекс цветопередачи?

    Объекты при освещении с низким индексом цветопередачи могут казаться тусклыми или резкими в зависимости от освещения и цвета. Цвета будут менее яркими, а общий световой эффект будет казаться менее ярким.

    Но почему?

    ПРИМЕЧАНИЕ. Ниже приводится техническое объяснение того, что делает светильник с высоким индексом цветопередачи. Вы можете пропустить его, если из-за занудства у вас потускнеют глаза.

    Свет, который мы видим, обычно не состоит из одной длины волны.Скорее, это набор волн, охватывающих видимый спектр. Цвет, которым кажется свет, является средним для включенных волн.

    Видимый световой спектр Источник

    Как показано на изображении выше, разные длины волн соответствуют тому, что мы видим как разные цвета. Цвет объекта будет определяться длиной волны света, который он отражает.

    Например, если солнце светит на объект, и мы видим красный цвет, это означает, что объект поглотил все длины волн света, кроме света в красном диапазоне длин волн.Этот свет отражается в наших глазах, заставляя нас видеть красный объект.

    Что произойдет, если вместо солнечного света мы посветим на яблоко светодиодной лампой?

    Что ж, если это стандартный недорогой светодиод, в результате, скорее всего, получится тусклое, оранжевое и вообще непривлекательное яблоко.

    Почему?

    Солнечный свет в полдень имеет коррелированную цветовую температуру (CCT) 5500-6000K. Вы можете подумать, что для имитации дневного света вам просто нужно купить светодиод с такой же CCT.Но все гораздо сложнее.

    Любой видимый свет можно разделить на части путем измерения мощности волн в заданном диапазоне длин волн. Это часто отображается в виде графика с использованием графика распределения спектральной мощности. Ниже представлен график распределения спектральной мощности дневного света.

    Source

    Типичный светодиод имеет график распределения спектральной мощности, который выглядит примерно так, как на изображении слева. Обратите внимание, что вокруг голубых и красных областей имеются существенные недостатки.Это приведет к тому, что объекты, включающие эти цвета, будут выглядеть «выключенными» при просмотре под этим светом.

    Светодиод с высоким индексом цветопередачи имеет более равномерное распределение спектральной мощности, как на изображении справа. Этот конкретный сделан YUJILEDS.

    Ниже тот же ЮДЖИЛЭД в сравнении с дневным светом (белая пунктирная линия).

    Светодиодный светильник может быть сконструирован для излучения CCT 6000K (для соответствия дневному свету). Но если спектральное распределение мощности не соответствует естественному освещению, объекты всегда будут выглядеть «не так», если смотреть на них под светом.

    Что лучше: 12 В или 24 В?

    Светодиодные ленты

    обычно доступны на 5, 12 или 24 В.

    Для аналоговых лент большинство людей выберет 12В или 24В. Как правило, 12 В идеально подходят для небольших установок, но для больших установок может быть лучше использовать 24 В.

    Для проектов с цифровыми полосами иногда может быть удобно использовать полосы на 5 В. Большинство цифровых контроллеров работают от 5 В, что позволяет управлять контроллером и полосками от одного источника питания.Кроме того, на полосах 5 В каждый отдельный светодиод может управляться независимо.

    Чем выше напряжение, тем дольше работает

    Полосы с более высоким напряжением, как правило, могут работать дольше, не страдая от последствий падения напряжения.

    Что такое падение напряжения?

    Падение напряжения приводит к тому, что светодиодные ленты теряют свою яркость по мере того, как полоса становится длиннее. Светодиоды в начале полосы (ближе всего к источнику питания) будут ярко светиться.В то время как светодиоды на конце полосы будут тусклыми.

    Пример падения напряжения

    Выше показан отличный пример последствий падения напряжения.

    Пару лет назад я установил непрямое освещение в своей гостиной. Я использовал полоски 12 В и сделал петлю по периметру комнаты, соединив три полоски по 5 м встык к одному источнику питания.

    Яркий свет слева — начало полос. Огни перемещаются по комнате и заканчиваются рядом с началом.Фонари с правой стороны страдают от падения напряжения и намного менее яркие.

    Почему это происходит?

    Любая длина провода имеет определенное электрическое сопротивление. Чем длиннее провод, тем больше сопротивление. Электрическое сопротивление вызывает падение напряжения, а падение напряжения заставляет светодиоды тускнеть.

    Следовательно, светодиоды в конце полосы всегда будут получать меньшее напряжение, чем светодиоды в начале. Если вы сделаете полоску достаточно длинной, падение напряжения станет достаточно значительным, чтобы вызвать видимую разницу в яркости.

    Как более высокое напряжение снижает влияние падения напряжения?

    Во-первых, вы должны иметь общее представление о том, как соединены все компоненты светодиодной ленты.

    Большинство отдельных светодиодных чипов работают от источника постоянного тока напряжением 3 В независимо от того, установлены ли они на полосе 12 В или 24 В. Фактически, тот же светодиодный чип, который работает на полосе 12 В, также может быть установлен на полосе 24 В. Разница в том, как спроектирована схема полоски.

    светодиодных чипов соединены последовательно в группы. Каждая группа содержит несколько светодиодных чипов и резистор. Общее падение напряжения на группе должно быть равно общему напряжению полосы (см. Диаграммы ниже).

    Затем каждая из групп соединяется параллельно и размещается по длине полосы.

    На данный момент обратите внимание (на диаграммах выше), что размер группы на полосе 24 В составляет 7 светодиодов по сравнению с 3 светодиодами на 12 В. Ниже я объясню, почему это важно.

    Каждый провод имеет определенное сопротивление проталкиванию электричества. Чем длиннее становится провод, тем больше сопротивление (и падение напряжения). В конце концов, он становится достаточно большим, чтобы влиять на яркость светодиода. Ниже приведен пример того, как это может произойти с полосой 12 В.

    Обратите внимание на диаграмму выше, что напряжение на светодиодах упало с 3,0 В до 2,75 В.

    Когда мы переключаемся на 24 В, происходят две вещи, которые уменьшают падение напряжения.

    1. Когда напряжение увеличивается вдвое (от 12 В до 24 В), ток уменьшается вдвое (закон Ома). Это приводит к уменьшению падения напряжения на длинном проводе вдвое. Таким образом, вместо падения на 1 В оно становится падением на 0,5 В.
    2. Эффект падения 0,5 В распределяется между 8 оставшимися компонентами схемы (по сравнению с 4 компонентами на 12 В).

    Обратите внимание, что напряжение на светодиодах упало только до 2,9375 В по сравнению с 2,75 В с полосой 12 В.

    Если у вас есть приложение, которое требует длинных полосок, это может быть хорошей идеей для полос на 24 В.Но даже полоски на 24 В имеют предел. Возможно, вам придется использовать другие методы (см. Раздел питания ниже), чтобы светодиоды не погасли в конце.

    Более низкое напряжение имеет более близкие линии разреза

    Как я уже упоминал, светодиодные ленты соединяются группами светодиодов. Размер группы зависит от напряжения полосы. На полосе 5 В будет только один светодиод на группу, на полосе 12 В — 3, а на полосе 24 В — 7.

    Линии отреза расположены между группами. Следовательно, чем меньше каждая группа светодиодов, тем ближе друг к другу могут быть линии разреза.

    Например, см. Схемы полос 12В и 24В ниже.

    Если в вашей установке много углов с небольшими промежутками между ними, полоса с более низким напряжением и более близкими линиями разреза может быть хорошим выбором. Это может помочь свести к минимуму «мертвые» зоны по углам.

    Чем выше напряжение, тем эффективнее

    Каждый раз, когда на резисторе появляется напряжение, это означает, что энергия преобразуется в тепло, а не в свет. Следовательно, резисторы на приведенных выше схемах необходимы, но они также являются источником бесполезной энергии.

    Сколько потрачено впустую?

    Расчет довольно прост. Все, что нам нужно сделать, это разделить величину напряжения на резисторе на общее напряжение:

    Полное напряжение ленты Напряжение на резисторе% Мощность, «потраченная впустую» на резисторы
    5 В 2 В 40%
    12 В 3 В 24В 12.5%

    Легко видеть, что полоски с более высоким напряжением страдают меньшими потерями энергии. Светодиоды потребляют настолько мало энергии, что для небольших установок это не имеет большого значения. Но для всего помещения или коммерческих установок разница в энергопотреблении может стать значительной.


    Какой толщины у меди?

    Гибкая полоса, на которой установлены светодиоды, на самом деле является печатной платой. Внутри полосы есть слой меди, который обеспечивает электрическую схему и основную часть рассеивания тепла.

    По этим причинам толщина медного слоя имеет значение.

    Более толстый слой меди означает, что электричество может проходить легче (меньшее электрическое сопротивление). Это снизит падение напряжения и обеспечит более длительную работу.

    Он также быстрее рассеивает тепло. Светодиоды будут оставаться более холодными, что в конечном итоге поможет продлить срок их службы.

    Количество меди в светодиодной ленте обычно измеряется в унциях на квадратный фут.Типичные значения для светодиодной ленты — от 1 до 4 унций. Более высокая мощность требует больше меди.

    К сожалению, очень немногие продавцы указывают это на странице информации о продукте. Если вы планируете небольшой проект с несколькими полосками по выгодной цене, я бы не стал особо беспокоиться об этом.

    Однако, если вы планируете большой проект с высококачественными полосами, стоит обратиться к производителю, если он не указан на странице спецификаций.


    Как установить светодиодные ленты

    Наилучший способ установки светодиодных лент — внутри алюминиевого канала.

    Каналы бывают угловыми или плоскими, с крышкой диффузора или прозрачной крышкой. Они бывают разной ширины, поэтому убедитесь, что канал подходит к полосе.

    Мягкие алюминиевые швеллеры можно разрезать ножовкой или электрической торцовочной пилой. Если вы используете торцовочную пилу, вам следует использовать лезвие с твердосплавным наконечником и большим количеством зубцов.

    После обрезки канал можно надежно закрепить винтами.

    Преимущества установки светодиодных лент внутри канала:

    1. Обеспечивает однородную поверхность для склеивания полоски, обеспечивая надежное и долговечное соединение.
    2. Алюминий действует как радиатор и помогает рассеивать тепло, продлевая срок службы светодиода.
    3. Пластиковая крышка рассеивает свет. Это сделает свет от светодиодов более равномерным.
    4. Чехол также поможет защитить полосу от пыли и повреждений.
    5. Если светодиодные ленты хорошо видны, чистые линии каналов помогают придать установке более изысканный вид.

    Несмотря на все преимущества канала, существуют установки, в которых дополнительная стоимость каналов не стоит того.

    Самая большая проблема, с которой вы столкнетесь при установке без канала, — это то, что клейкая лента не держится. Обычно это происходит изначально. Но иногда через неделю или месяц клей выходит из строя.

    Чтобы клей не рассыпался, я рекомендую наносить немного горячего клея через каждые пару футов.

    Как подключить светодиодные ленты

    Пайка — обычно самый надежный метод соединения двух светодиодных лент. Но это также отнимает много времени, требует специального оборудования и требует определенных навыков.

    Clips работают быстрее и не требуют каких-либо навыков. По этой причине я рекомендую использовать зажимы, если у вас будет легкий доступ к полосам (в большинстве случаев).

    Однако соединения, выполненные зажимами, не так прочны, как припой. Они уязвимы к коррозии и перемещению.

    Поэтому рекомендую использовать припой, если полосы могут испытать:

    1. Погода — любая установка на открытом воздухе или нагрев и охлаждение, которые могут вызвать конденсацию
    2. Движение — любой вид гибкого канала или места, которое может испытывать вибрацию
    3. Очень постоянное — заключено в эпоксидную смолу или другой аналог

    Как обращаться с углами

    Проблема с углами состоит в том, чтобы эффективно повернуть угол, не оставляя «небольшого промежутка» и не тратя слишком много времени на обрезку и соединение.

    Плавный изгиб

    Лучший способ, который я нашел для большинства своих инсталляций, — это просто сделать небольшой изгиб за углом.

    Для этого метода вам не нужно разрезать полосу или иметь какое-либо специальное соединительное оборудование. Вы можете делать изгибы, даже если компоненты полосы случайно упадут прямо на угол.

    Source

    Проведите полоску за угол и дайте полоске принять собственную форму. В результате получится небольшая петля в углу.

    Одна из проблем этого метода заключается в том, что со временем клей в углу может потянуться вверх.Чтобы этого не происходило, нанесите немного горячего клея на каждую сторону угла.

    Если вы устанавливаете полосы внутри канала, изгиб может не поместиться внутрь. Это особенно актуально для полосок с плотно упакованными компонентами. В этом случае я рекомендую разрезать полосу и использовать вместо нее угловые соединители.

    Угловой соединитель

    Также можно разрезать полоски по углам и соединить их соединителями. Однако светодиодные ленты необходимо разрезать по линиям их разреза.Поэтому, если промежуток между линиями разреза большой, вы можете получить небольшой промежуток без света в углу.

    Это тот случай, когда установка полосок в канал с диффузором будет полезна. Без диффузора у вас, скорее всего, останется тусклое или темное пятно.

    Можно купить жесткие пластиковые угловые соединители на 90 градусов, но я рекомендую тип с проводами. Гибкие провода можно отрегулировать под любым углом.

    Источник
    Метод складывания

    Вы, , можете попытаться сложить полоски, но я не рекомендую это делать.Печатные платы на большинстве светодиодных лент довольно гибкие. Убедитесь, что ваш изгиб не окажет нагрузки на участки с какими-либо компонентами. Одноцветные полоски низкой плотности лучше всего подходят для фальцовки, потому что для фальцовки доступно больше «чистой» области.

    Сначала согните полосу под прямым углом в направлении , противоположном направлению поворота .

    Затем сделайте второй сгиб, загнув загнутый конец обратно на себя.

    Удалить светодиодные ленты

    Когда светодиодная лента надежно приклеена к поверхности, может показаться, что удалить ее, не повредив полосу, практически невозможно.

    Не тяните за полосу и надейтесь на лучшее. Вы рискуете порвать полоску или повредить отдельные разъемы светодиодов.

    Вместо этого используйте мулине.

    Нет, не такая зубная нить! Зубная нить.

    Отрежьте кусок нити и протяните его под краем. Затем вращайте им взад и вперед по длине полосы.


    Питание светодиодных лент

    Светодиодные чипы

    питаются от постоянного тока. Поэтому нельзя включать светодиодную ленту непосредственно в розетку (переменный ток).Вместо этого вам понадобится источник питания для преобразования переменного тока от стены в постоянный ток, который может использовать светодиод.

    Как выбрать источник питания для светодиодов

    Эту область часто упускают из виду, особенно любители. Если вы собираетесь тратить деньги, вы, вероятно, захотите потратить их на суперяркие и качественные светодиоды. Таким образом, возникает соблазн удешевить блок питания. Но если вы потратите деньги заранее на хороший блок питания, то со временем сами себя окупят.

    Сколько мощности вам нужно?

    Во-первых, вам нужно знать, сколько энергии будут использовать ваши полоски, чтобы вы могли выбрать блок питания подходящего размера.

    Каждый поставщик должен указывать энергопотребление своих светодиодных лент. Он может быть указан как потребляемая мощность отдельного светодиодного чипа или как мощность на длину полосы. В любом случае, просто умножьте мощность на единицу длины на общую длину полосы, которую вы планируете использовать.

    Не волнуйтесь, нет необходимости получать абсолютно точный номер. Близко достаточно.

    После того, как вы оцените энергопотребление вашего стрипа, хорошее практическое правило — добавить еще 20% (мощность стрипа / 0.8). Затем выберите источник питания, который может обеспечить большее или равное этой величине.

    Дополнительная емкость продлевает срок службы источника питания. Как и в случае со светодиодами, частой причиной отказа источника питания является нагрев. А работа блока питания на полную мощность приведет к его нагреву.

    Напряжение питания должно соответствовать светодиодам

    Блок питания должен быть того же напряжения, что и светодиодная лента.

    Например, если вы попытаетесь использовать источник питания 24 В на полосе 12 В, светодиоды будут гореть очень ярко (с перегрузкой) в течение короткого периода времени.Вскоре они перегреются и перегорят.

    И наоборот, если вы попытаетесь использовать источник питания 12 В на полосе 24 В, светодиоды с недостаточным питанием вообще не загорятся.

    Водонепроницаемый или нет?

    Корпус блока питания обычно оценивается по системе защиты IP. Первая цифра в рейтинге IP — это защита от продаваемых предметов (например, пальцев, грязи, пыли). Второе число — защита от жидкости (например, капание, разбрызгивание, погружение).

    Гидроизоляция

    Если вам нужен водонепроницаемый блок питания, я рекомендую убедиться, что вы получаете IP67 или IP68.Ожидается, что они будут полностью погружными.

    Вы также можете найти блоки питания со степенью защиты IP65, которые продаются как водонепроницаемые. Они защищены от водяных брызг (например, сильного ливня, распылителя из шланга), но не от погружения.

    Разница в цене между IP65 и IP67-68 обычно незначительна, поэтому дополнительная защита того стоит.

    Защита от пыли

    Даже если вас не беспокоит вода, вам может понадобиться герметичный блок питания для защиты от пыли.

    Любой блок питания с рейтингом IP, который начинается с «IP6», будет защищен от пыли.

    Если источники питания открыты для воздуха, на внутренних компонентах может скапливаться пыль. Это способствует накоплению избыточного тепла, что может сократить срок службы источника питания.

    КПД блока питания

    Эффективность вашего блока питания может иметь большое значение для общего энергопотребления. Типичный КПД источников питания составляет от 70% до 90%.

    Например:

    Если у меня есть светодиодная лента, которая потребляет 100 Вт, блок питания с КПД 70% будет потреблять 100 Вт / 0,70 = 143 Вт электроэнергии.

    В то время как блок питания с КПД 90% потребляет только 100 Вт / 0,90 = 111 Вт.

    По большей части, если вы хотите большей эффективности от источника питания, за это нужно платить. Имеет ли смысл платить за повышение эффективности, как правило, зависит от размера вашего проекта.

    Установка блока питания

    Если вы планируете просто подключить питание светодиода к существующей розетке, вам не нужно беспокоиться о нарушении строительных норм.Пока вы не подключаетесь к электросети и не прокладываете провода внутри стен, вам все в порядке.

    Однако, если вы проводите большую установку, вам, вероятно, не нужно, чтобы провода свешивались повсюду. В этом случае для чистой установки обычно требуется несколько источников питания светодиодных драйверов и проложить провода через стены.

    Если вы хотите, чтобы он выглядел красиво и аккуратно, подумайте о том, чтобы разместить все блоки питания внутри корпуса. Подайте сетевое напряжение в корпус и подключите розетку внутри корпуса.Затем установите блоки питания и подключите их к розетке.

    DO купить блок питания класса 2. Если вы прокладываете провода внутри стен, это гарантирует, что вы не превысите требования к мощности. Блок питания класса 2 ограничен 60 Вт для 12 В и 96 Вт для 24 В.

    Один источник питания может превысить предел мощности, если он разделяет мощность на несколько выходов, пока каждый выход находится в пределах мощности.

    DO используйте проводку, соответствующую классу 2 (CL2), если вы собираетесь прокладывать провода внутри готовых стен.

    НЕ ПОДКЛЮЧАЙТЕ подключайте источник питания напрямую к сети. Вместо этого подключите вилку с 3 контактами к стороне входа (120 В) и вставьте ее в розетку.

    НЕ НУЖНО устанавливать блок питания внутри стены без съемной панели. Это само собой разумеется, но всегда есть тот парень . Источники питания действительно выходят из строя, и если они застревают в стене, это становится серьезной головной болью при обслуживании.

    Как запитать очень длинные полоски

    Если у вас достаточно длинная серия светодиодных лент, вы испытаете падение напряжения.Вы можете уменьшить эту проблему, используя полоски с более высоким напряжением (как описано выше), но это не решит проблему полностью. В конце концов, если пробег будет достаточно долгим, даже полоска на 24 В пострадает от падения напряжения.

    К счастью, есть способы без особых проблем расширить зону действия ваших полосок.

    Установите блок питания посередине

    Самый простой способ удвоить эффективную длину ваших полосок — это разместить мощность посередине двух полосок.Точно так же, если полоска образует петлю, вы можете подключить оба конца к источнику питания.

    Использовать впрыск мощности

    Конечно, иногда вы будете ограничены в том, где вы можете установить блок питания. В других случаях у вас будет такой длинный световой поток, что даже размещения мощности в центре будет недостаточно, чтобы избежать падения напряжения.

    В этих случаях вам придется проложить больше проводов к нужным местам. Это называется впрыском мощности.

    Ввод мощности может осуществляться с помощью одного или нескольких источников питания.Для аналоговых и цифровых лент это делается по-разному.

    Инъекция мощности для аналоговых светодиодных лент

    Аналоговые полоски не имеют встроенных микроконтроллеров, как цифровые полоски. Это означает, что необходимо установить какой-то контроллер напряжения между источником питания и полосой на всех соединениях .

    Один из вариантов — купить второй контроллер. По сути, это создаст вторую светодиодную ленту с отдельным питанием и отдельным управлением.Затем, если вы хотите, вы можете использовать программное обеспечение для автоматизации, чтобы убедиться, что два контроллера остаются синхронизированными.

    Однако есть более простое (и более дешевое) решение.

    Повторители сигналов

    Повторитель сигнала можно подключить в любом месте, где требуется подача мощности. Повторитель будет передавать сигнал, так что все светодиоды синхронизируются одним контроллером.

    Этот способ проще для домашней автоматизации, потому что к сети умного дома добавляется только один контроллер.

    Это также упрощает разводку для инжекции мощности. Все, что вам нужно сделать, это подключить питание к ретранслятору и подключить две полосы к ретранслятору.

    Повторитель может получать питание от того же источника питания, что и контроллер (см. Выше). Или он может питаться от отдельного источника питания (см. Ниже).

    При необходимости можно использовать несколько репитеров. Повторители потребляют собственное питание, что позволяет использовать один контроллер для полос любой длины.

    Инжекция мощности для цифровых светодиодных лент

    Для цифровых полосок напряжение каждого светодиода контролируется микроконтроллерами, установленными на полосе.Микроконтроллерам требуется полное напряжение от источника питания, поэтому подача мощности осуществляется путем подключения источника питания непосредственно к полосе.

    При использовании одинарного источника питания мощность может подаваться простым подключением проводов источника питания к проводам V + и V- везде, где требуется дополнительное питание.

    ПРИМЕЧАНИЕ : Не для всех адресных полос требуется провод «Clock», как показано на схемах. Требуется ли это, зависит от типа микроконтроллера, который использует полоска.

    Для с несколькими источниками питания методика такая же, за исключением того, что V + не подключается между источниками питания.

    ПРЕДУПРЕЖДЕНИЕ : Никогда не подключайте положительные провода между источниками питания. Это может привести к повреждению источников питания и потенциально вызвать возгорание.

    Как выбрать правильный размер провода

    Толстый провод имеет меньшее падение напряжения, чем тонкий провод. Поэтому, если вам нужно проложить провода на большие расстояния, чем толще, тем лучше.

    Однако толстая проволока дороже. Спрятаться труднее. А если вы пытаетесь протянуть проволоку сквозь стены, толстая и жесткая проволока может значительно усложнить вашу работу.

    Чтобы выбрать провод нужного размера, необходимо знать:

    1. Strip Voltage
    2. Current — Чтобы вычислить требуемый ток, разделите общую требуемую мощность на напряжение. Например, для полосы 12 В мощностью 100 Вт требуется 100 Вт / 12 В = 8,3 А.
    3. Длина провода
    4. Допустимая величина падения напряжения

    Затем введите значения в этот калькулятор.Отрегулируйте размер провода и пересчитайте, пока не получите приемлемое падение напряжения.

    Если вы будете прокладывать провода внутри готовых стен, проводка должна иметь маркировку, соответствующую классу 2.


    Как контролировать светодиодные ленты

    В этом разделе объясняется, как автоматизировать светодиодные ленты или управлять ими по беспроводной сети с помощью продуктов для умного дома.

    Всегда ли мне нужен контроллер?

    Если у вас есть одноцветная светодиодная лента, вам не обязательно нужен контроллер.Вы можете просто подключить его напрямую к источнику питания.

    Затем, если вы хотите превратить его в умный свет, вы можете подключить блок питания к умной розетке. Это работает, но очень просто.

    Однако, даже если вы не заботитесь об изменении цвета, большинство людей по крайней мере захотят иметь возможность затемнять. А для этого вам понадобится контроллер.

    Как затемнить светодиодные ленты

    Есть два распространенных способа затемнения светодиодных лент с помощью интеллектуального управления.

    Первый способ — использовать умный диммер переменного тока, установленный в стене. Для этого проводка идет от переключателя диммера к источнику питания и фарам.

    Плюсы / минусы этого метода:
    Con — Для работы необходим блок питания с регулируемой яркостью. Обычно они дороже обычных источников питания.
    Pro — Вы можете использовать любой стандартный диммер, включая интеллектуальные диммеры, такие как диммеры Lutron Caseta.
    Pro — Когда свет выключен, питание отключено.Это устраняет источник силы «вампира».
    Con — Работает только с одноцветными светодиодными лентами.

    Второй способ — использовать интеллектуальный контроллер. Здесь проводка идет от блока питания к контроллеру и фарам.

    Плюсы / минусы этого метода:

    Pro — Интеллектуальные контроллеры могут управлять полосами с несколькими цветами.
    Pro — Не требует источника питания с регулируемой яркостью.
    Con — Свет не подключен напрямую к настенному пульту управления.Чтобы иметь контроль на стене, потребуется установить один из этих дополнительных интеллектуальных переключателей в желаемом месте для связи с контроллером светодиодов.
    Con — Электропитание всегда включено, что приводит к источнику силы вампира.

    Я предпочитаю этот второй способ. Я большой поклонник света, меняющего цвет. Даже если он находится в области, где мне не нужен полный цвет, мне все равно нужна возможность сдвигать белый цвет. Я верю в использование циркадного освещения везде, где это возможно.

    Как управлять цветом светодиодной ленты

    Если ваши светодиодные ленты — это полосы, меняющие цвет, вам понадобится интеллектуальный контроллер.

    Убедитесь, что у вашего контроллера достаточно каналов. Если у вас есть полоса RGBW, вам понадобится контроллер с 5 выходными клеммами. Одна клемма — это напряжение питания (V +). Остальные четыре клеммы предназначены для каждого из светодиодов R, G, B и W.

    Использование контроллера со слишком большим количеством каналов — это нормально. Однако имейте в виду, что существует ограничение на то, сколько тока может проходить на каждом канале.

    Контроллер имеет ограничение на пропускаемый через него ток. Например, этот контроллер RGBGenie может обрабатывать до x ампер.

    В большинстве случаев падение напряжения вызовет проблемы задолго до того, как у вашего контроллера закончится емкость.

    Беспроводные протоколы

    Интеллектуальный светодиодный контроллер обменивается данными с вашим умным домом, используя какой-то беспроводной «язык» (протокол). У вас есть три основных протокола на выбор: WiFi, Zigbee или Z-Wave.

    Если у вас нет других вещей для умного дома, я рекомендую использовать контроллер Wi-Fi. Он не требует дополнительного концентратора (использует ваш WiFi-роутер) и обычно дешевле, чем два других варианта.

    Zigbee и Z-Wave — это беспроводные протоколы, разработанные специально для домашней автоматизации. С помощью одного из этих контроллеров вы можете подключить свой контроллер к интеллектуальному концентратору, например Samsung SmartThings, и ваши возможности автоматизации будут безграничными.

    Я предпочитаю протокол Zigbee для своих источников света, потому что он работает с концентратором Philips Hue.Хаб Hue очень надежен и имеет очень быстрое время реакции. Кроме того, у меня уже есть несколько ламп Philips Hue, поэтому моя ячеистая сеть Hue надежна.

    ПРИМЕЧАНИЕ. Если вы хотите, чтобы ваш контроллер был совместим с Hue, убедитесь, что это сертифицированный контроллер Zigbee 3.0.

    Где установить контроллер

    Контроллеры

    обычно намного меньше блоков питания, поэтому их легче спрятать.

    В большинстве случаев имеет смысл установить контроллер как можно ближе к полосам.

    При необходимости проложите толстый провод от источника питания к контроллеру, чтобы минимизировать падение напряжения. Затем переключитесь на провод более легкого калибра от контроллера к полосам.

    Как управлять цифровыми (адресными) светодиодными лентами

    Для аналоговых лент все светодиоды одного цвета подключены к одному каналу. Один контроллер может регулировать мощность каждого канала независимо, но не может регулировать светодиоды по отдельности.

    Цифровой контроль полосы сильно отличается от аналогового.Я далеко не специалист в настройке адресных элементов управления светодиодной лентой. Однако основные требования таковы:

    Чтобы использовать цифровое управление, вы должны сначала иметь цифровую светодиодную ленту (очевидно).

    Кроме того, вам понадобится компьютер (многие люди используют Arduino или Raspberry-Pi) для обработки кода и отправки сигнала на светодиодные микроконтроллеры, установленные на полосе.

    Наконец, вам также необходимо будет снабдить компьютер программой, которая сообщает микроконтроллерам, как включать свет.


    Рекомендуемые товары

    Выполните поиск в Google светодиодных лент, и вы увидите страницы результатов с бесчисленными поставщиками, продающими свои ленты и аксессуары.

    Их так много, что я не могу сказать, какие из них лучше. Но я могу сказать вам, какие из них я использовал, и работали ли они на меня.

    По мере того, как я продолжаю покупать и тестировать предметы, я буду обновлять этот список.

    Светодиодные ленты

    High CRI (Daylight White) — Светодиодная лента MARSWALL CRI 97+

    RGBW — БТФ-ОСВЕЩЕНИЕ 16.4ft RGBW Светодиодная лента 4 в 1

    Контроллеры светодиодов

    Wi-Fi

    Z-волна

    Работает с Hue — контроллер светодиодных лент GIDERWEL Zigbee RGBW

    Источники питания

    Класс 2 (CL2) — Блок питания 12 В 60 Вт

    Dimmable — Драйвер для светодиодов HitLights 12V 60W с регулируемой яркостью


    Последние мысли

    Когда я назвал это «Полное руководство по светодиодным лентам», я имел в виду именно это. Я хочу, чтобы это было самое масштабное и крутое руководство, которое поможет вам от нулевых знаний до готового проекта.

    Но, признаюсь, я не знаю всего, что нужно знать о светодиодных лентах, и это руководство не идеально. Итак, если у вас есть какие-либо советы или что-то, что я пропустил, дайте мне знать в комментариях ниже, и я добавлю их в руководство.

    Спасибо за чтение!

    Светодиодные полосы 12 В: питание и подключение

    Светодиодные ленты

    стали быстрым и эффективным решением для создания акцентного освещения вокруг вашего дома. Относительно недорогой вариант — это низковольтное светодиодное освещение на 12 вольт.Эти дискретные полосы иногда называют светодиодными ленточными лампами или гибкими светодиодными полосами, имея в виду легкость, с которой они образуют любую поверхность, обеспечивая мягкий, плавный акцентный свет. Низкое входное напряжение 12 В постоянного тока позволяет им работать с высокой скоростью, в то время как светодиоды 5050 обеспечивают охлаждение и безопасность для работы в ограниченном пространстве. Все это делает светодиодные ленты на 12 В идеальным выбором для освещения под шкафами, акцентного освещения, освещения книжных полок, рабочего освещения, освещения бухт и многого другого. Поскольку они питаются от 12 В постоянного тока, они также популярны в автомобилях и лодках.В этом посте мы рассмотрим, как убедиться, что вы правильно питаете светодиодные ленты, и различные способы их подключения, чтобы обеспечить наилучшую настройку светодиодного освещения.

    Основы гибких светодиодных лент 12 В

    Название говорит само за себя, эти полоски имеют гибкое линейное основание, на которое помещается 5050 светодиодов. 5050 — это как раз размер / тип светодиода. Это обычный размер светодиодных лент, они большие и яркие, но при этом отлично работают. 3528 — еще один распространенный тип светодиодов, используемых в светодиодных лентах, я бы избегал их, поскольку они намного меньше и тусклее.Любое больше, чем 5050, и освещение становится намного дороже и работает намного горячее, что приводит к необходимости использования радиатора и контроля температуры.

    Эти гибкие светодиодные ленты бывают натурального белого цвета: 3000K (теплый белый), 4000K (нейтральный белый) и 6500K (холодный белый). Цветные светодиодные ленты также доступны в красном, желтом, зеленом, синем и RGB (меняющем цвет) цвете. Дополнительные сведения об основах гибких лент на 12 В см. Здесь.

    У тех, кто выбирает белые светодиодные ленты, есть выбор между двумя различными плотностями.Плотность — это количество светодиодов на расстоянии вдоль полосы. Полосы стандартной плотности имеют 30 светодиодов на метр (150 на катушку), которые излучают около 540 люмен на метр. Полоса высокой плотности вдвое больше, чем 60 светодиодов на метр (300 на катушку) и дает 1080 люмен на метр! Тем, кто ищет самый яркий свет, который они могут получить для рабочего освещения, определенно следует выбрать высокую плотность, поскольку они значительно ярче. Однако для акцентного освещения обычно просто требуется мягкое свечение, поэтому вы можете использовать стандартную плотность, так как они имеют более низкую цену и не будут слишком сильными. ПРИМЕЧАНИЕ , что полоски высокой плотности будут работать при более высокой мощности, но мы рассмотрим питание ниже.

    Светодиодные ленты

    12 В поставляются в рулонах по 5 м (16,4 фута). Компания LEDSupply предлагает модели меньшей длины — 3, 6, 9 и 12 футов. Полоски можно легко обрезать до нужного размера, так как следы от разрезов вместе с площадками для пайки есть каждые 4 дюйма для стандартной плотности и каждые 2 дюйма для высокой плотности. Вот простой пример того, как отрезать нестандартную длину и добавить соединители, чтобы соединить полосы вместе.

    Легкие гибкие полоски легко крепятся, так как они имеют липкую ленту, которая будет приклеиваться к вашей поверхности, плоской или округлой. Они также покрыты силиконовым покрытием для защиты от воды. Использование светодиодных лент на 12 В сократит время установки и общую стоимость вашего проекта. Вероятно, две самые большие проблемы, с которыми сталкиваются люди, — это (1) незнание источника питания необходимой мощности или (2) способ соединения нескольких полосок вместе или обратно к одному источнику питания. Ниже мы рассмотрим некоторые передовые методы питания светодиодных лент.

    Питание светодиодных лент

    Для этих полос требуется постоянный вход 12 В постоянного тока. Единственное, что вам нужно знать при поиске источника питания для светодиодных лент, — это мощность. В приведенных ниже спецификациях указана мощность как для стандартных, так и для полосовых ламп высокой плотности. Это поможет вам легко определить мощность вашей системы, а затем выбрать подходящий источник питания.

    9033
    Длина (фут.) Длина (метры) 30 светодиодов на метр
    Мощность
    60 светодиодов на метр
    Мощность
    1 0,3048 2,4
    2 0,6096 4,8 9,6
    3 0,9144 7,2 14,4
    6 1,8288 128
    9 2,7432 22,05 33,6
    12 3,6576 22,05 33,6
    16,4 (полный

    Расчет мощности, пример №1: Итак, представьте, что у вас есть длина около 20 футов, которую вам нужно покрыть за один сплошной проход полосами стандартной плотности. Этого можно достичь, используя полную катушку, а затем добавив 4 дополнительных ножки с беззазорным соединителем.Используя приведенную выше таблицу, мы можем это найти.

    Мощность = Полная мощность рулона (стандартная) + 3 фута. Мощность + 1 фут. Мощность

    Мощность = 27 Вт + 7,2 + 2,4

    Мощность = 36,6 Вт

    Обычно вам нужно сделать небольшую подушку между вашей мощностью и номинальной мощностью источника питания. В этом приложении вы должны найти блок питания 12 В мощностью не менее 40 Вт.

    Расчет мощности, пример № 2: Возьмем, к примеру, вы хотите запустить 18 футов светодиодных лент высокой плотности для другого приложения.

    Мощность = полная катушка (высокая плотность) x 2 фута. Мощность

    Мощность = 40 + 9,6

    Мощность = 49,6 Вт

    Для этого приложения я бы остановился на блоке питания мощностью не менее 50 Вт. Помните, что мы хотим сделать блок питания более мягким, чтобы вы могли в большей безопасности выбрать блок питания на 60 Вт.

    Варианты источников питания для светодиодов

    Первый вариант — использовать подключаемый блок питания. Настенные или настольные блоки питания подключаются непосредственно к сетевой розетке и переключают линейное напряжение до 12 В постоянного тока для полос.Это удобно для небольших приложений или в местах, где у вас есть скрытая розетка, которая не мешает. Это, безусловно, упрощает электромонтаж, поскольку вы просто подключаете кабель и не подключаете провода напрямую к основным линиям.

    Это подводит нас ко второму варианту — проводному источнику питания, который подключается напрямую к линиям 120 В переменного тока, а затем выводит безопасное низкое напряжение постоянного тока на ваши полоски. Эти блоки питания обычно бывают более дискретных размеров, и их намного проще спрятать в стенах или где угодно.Блоки питания с открытой рамой в клетке обычно также попадают в эту категорию и очень полезны благодаря своим винтовым клеммным портам для простых подключений и множеству портов. Это определенно более профессиональный вид, чем просто подключение к стене, но для этого потребуется, чтобы основные линии были легко доступны для ваших источников света.

    Подключение светодиодных лент к источнику питания

    Подключить планки к источнику питания довольно просто, оно просто меняется в зависимости от вашего источника питания и тому подобного.Для тех, кто собирается со штекером в блоке питания, выходное соединение обычно представляет собой штекер 2,1 мм. К счастью, полные катушки с полосами поставляются с гнездовой вилкой 2,1 мм для бесшовного соединения, если у вас меньшая длина, вы можете использовать винтовые клеммные разъемы ниже.

    С проводными источниками питания все немного иначе, поскольку у них отключаются провода, а нет прямых вилок. Если на вашей планке есть гнездовой штекер 2,1 мм, то проще всего подключить винтовой клеммный разъем (2.1 штекер) к выходным проводам источника питания, чтобы можно было выполнить звуковое соединение. У вас также есть возможность отрезать коннектор от ленты и просто соединить провод с помощью припоя или гаек.

    Как подключить несколько планок к одному источнику питания

    Подключение нескольких лент к одному источнику создает петлю в проекте, поскольку обычно есть только одно подключение к источнику питания. Блоки питания с открытой рамой в клетке отлично подходят для использования нескольких полос, поскольку они имеют два канала с портами терминала, в каждый из которых может входить несколько полос.

    Если вам нужно использовать подключаемый модуль, то я бы посоветовал подключить оба соединения вашей ленты к разветвителю светодиодных лент, который затем будет плавно подключаться к вилке блока питания. Кабели-разветвители для светодиодных лент могут иметь до 4-х выходов, так что вы потенциально можете получить 4 полосы, работающие без проблем от одного подключения к источнику питания!

    При подключении лент вам просто нужно надежно соединить все провода ленты с выходными проводами источника питания.Это можно сделать с помощью гаек или подключить все ленты к общему положительному и отрицательному проводу, чтобы можно было выполнить однозначное соединение с проводным источником питания.

    Падение напряжения и как его избежать

    Очень важным фактором, который обычно упускают из виду с этими гибкими полосками, является эффект падения напряжения. В цепях постоянного тока напряжение будет постепенно уменьшаться по мере прохождения через провод (или светодиодную ленту). Проще говоря, с каждым футом провода доступное напряжение на каждой ноге падает по длине провода.Это повлияет на полоски стандартной плотности, которые хотят иметь длину более 32 футов, и полосы высокой плотности, которые хотят иметь длину, превышающую полную катушку (16,4 фута). Если вы проделаете большую длину, чем эта длина, полосы будут затронуты и не будут работать должным образом, поэтому вы не можете соединить полосы длиннее 32 для стандартной плотности и 16,4 для высокой плотности.

    Чтобы предотвратить падение напряжения, вам нужно разделить длинные отрезки светодиодных лент на более короткие. Более короткие отрезки можно затем подключить параллельно от источника питания.Есть несколько разных способов сделать это, давайте рассмотрим различные схемы подключения ниже.

    Электропроводка №1: несколько параллельных проходов полосовых огней

    Вы хотите установить непрерывную 60-футовую светодиодную ленту под барной стойкой для акцентного освещения. Поскольку самый длинный пробег, который вы можете сделать, составляет 32 фута, вам нужно будет разбить его как минимум на 2 отрезка. Чтобы сделать две равные части, вы должны пробежать две полосы по 30 футов каждая. Проведите первую полосу прямо от источника питания.Протяните параллельный набор проводов до точки, где заканчивается первая полоса, чтобы питать вторую полоску.

    Электропроводка №2: блок питания в среднем приближении

    Это отличный подход, если вы можете каким-то образом поместить источник питания в середину длинной полосы, которую вам нужно запустить. Таким образом, он сокращает лишние провода, так как вы можете разделить их пополам и просто провести обе полоски в противоположных направлениях прямо от источника.

    Электропроводка №3: ​​используйте несколько источников питания

    Иногда вместо прокладки длинных проводов и разделения проводов, идущих от источника питания, заказчики предпочитают использовать отдельные источники питания в разных областях.Это отлично работает, если вы можете подавать электроэнергию в определенных местах, которые вам понадобятся, но это сложная часть.

    Полезные детали для подключения светодиодных лент к источнику питания

    Это должно помочь вам в настройке светодиодных лент с правильной разводкой и источником питания. Как всегда, мы хотели оставить вам несколько полезных деталей, которые действительно упростят соединение лент вместе.

    Разветвители для светодиодных лент

    : эти светодиодные Y-образные соединители позволяют подключить один источник питания и подключить несколько светодиодных линий к нему с помощью простого подключения.Они доступны в вариантах RGB и одного цвета и доступны с двумя, тремя и четырьмя выходами.

    Винтовые клеммные разъемы: эти небольшие разъемы очень удобны, когда вам нужно выполнить надежное соединение между двумя наборами проводов. Просто привинтите провода к обоим концам и подключите их с легкостью. Также работает, когда вам нужно перейти от проводов к какой-либо вилке 2,1 или 2,5 мм.

    Разъемы для светодиодных лент

    EZ Clip: эти разъемы защелкиваются прямо на том конце ленты, где вы ее разрезаете.Возможны варианты зачистки или зачистки провода. Это позволяет легко подключать светодиодные ленты или добавлять зазоры внутри установки без необходимости пайки.

    Old Fashioned Way: Выломайте припой и проволоку и сделайте эти соединения, как мы делаем здесь.

    Описание серии

    и параллельных цепей

    Надеюсь, те, кто ищет практическую информацию об электрических схемах и подключении светодиодных компонентов, первыми нашли это руководство. Однако вполне вероятно, что вы уже читали здесь страницу Википедии о последовательных и параллельных схемах, возможно, несколько других результатов поиска Google по этому вопросу, но все еще неясны или вам нужна более конкретная информация, касающаяся светодиодов.За годы обучения, обучения и разъяснения клиентам концепции электронных схем мы собрали и подготовили всю критически важную информацию, которая поможет вам понять концепцию электрических цепей и их связь со светодиодами.

    Перво-наперво, не позволяйте, чтобы электрические схемы и компоненты проводки светодиодов казались устрашающими или сбивающими с толку — правильное подключение светодиодов может быть простым и понятным, если вы следите за этим постом. Давайте начнем с самого основного вопроса…

    Какой тип цепи мне следует использовать?
    Один лучше другого… Последовательный, Параллельный или Последовательный / Параллельный?

    Требования к освещению часто диктуют, какой тип схемы может использоваться, но если есть выбор, наиболее эффективным способом использования светодиодов высокой мощности является использование последовательной схемы с драйвером светодиодов постоянного тока.Последовательная схема помогает обеспечить одинаковое количество тока для каждого светодиода. Это означает, что каждый светодиод в цепи будет иметь одинаковую яркость и не позволит одному светодиоду потреблять больше тока, чем другому. Когда каждый светодиод получает одинаковый ток, это помогает устранить такие проблемы, как тепловой выход из строя.

    Не волнуйтесь, параллельная схема по-прежнему является жизнеспособным вариантом и часто используется; позже мы обрисуем этот тип схемы.

    Но сначала давайте рассмотрим схему серии :

    Часто называемый «гирляндным» или «замкнутым» током в последовательной цепи следует один путь от начала до конца, при этом анод (положительный) второго светодиода подключен к катоду (отрицательному) первого.На изображении справа показан пример: Для подключения последовательной цепи, подобной показанной, положительный выход драйвера подключается к положительному выводу первого светодиода, а от этого светодиода выполняется соединение от отрицательного к положительному полюсу второго. Светодиод и так далее, до последнего светодиода в цепи. Наконец, последнее соединение светодиода идет от отрицательного полюса светодиода к отрицательному выходу драйвера постоянного тока, создавая непрерывную петлю или гирляндную цепь.

    Вот несколько пунктов для справки о последовательной цепи:

    1. Одинаковый ток течет через каждый светодиод
    2. Полное напряжение цепи — это сумма напряжений на каждом светодиодах
    3. При выходе из строя одного светодиода вся цепь не будет работать
    4. Цепи серии
    5. проще подключать и устранять неисправности
    6. Различное напряжение на каждом светодиоде — это нормально

    Питание последовательной цепи:

    Концепция петли к настоящему времени не проблема, и вы определенно можете понять, как ее подключить, но как насчет питания последовательной цепи.

    Второй маркер выше гласит: «Общее напряжение цепи — это сумма напряжений на каждом светодиоде». Это означает, что вы должны подавать как минимум сумму прямых напряжений каждого светодиода. Давайте посмотрим на это, снова используя приведенную выше схему в качестве примера, и предположим, что светодиод представляет собой Cree XP-L, работающий от 1050 мА с прямым напряжением 2,95 В. Сумма трех из этих прямых напряжений светодиодов равна 8,85 В постоянного тока . Таким образом, теоретически 8,85 В — это минимальное необходимое входное напряжение для управления этой схемой.

    В начале мы упоминали об использовании драйвера светодиода с постоянным током, потому что эти силовые модули могут изменять свое выходное напряжение в соответствии с последовательной схемой. Поскольку светодиоды нагреваются, их прямое напряжение изменяется, поэтому важно использовать драйвер, который может изменять свое выходное напряжение, но сохранять тот же выходной ток. Чтобы получить более полное представление о драйверах светодиодов, загляните сюда. Но в целом важно убедиться, что ваше входное напряжение в драйвере может обеспечивать выходное напряжение, равное или превышающее 8.85V мы рассчитали выше. Некоторым драйверам требуется вводить немного больше, чтобы учесть питание внутренней схемы драйвера (драйвер BuckBlock требует накладных расходов 2 В), в то время как другие имеют функции повышения (FlexBlock), которые позволяют вводить меньше.

    Надеюсь, вы сможете найти драйвер, который сможет дополнить вашу светодиодную схему последовательно включенными диодами, однако существуют обстоятельства, которые могут сделать это невозможным. Иногда входного напряжения может быть недостаточно для питания нескольких последовательно включенных светодиодов, или, может быть, светодиодов слишком много для подключения последовательно, или вы просто хотите ограничить стоимость драйверов светодиодов.Какой бы ни была причина, вот как понять и настроить параллельную схему светодиодов.

    Параллельная цепь:

    Если последовательная схема получает одинаковый ток к каждому светодиоду, параллельная схема получает одинаковое напряжение на каждый светодиод, а общий ток на каждый светодиод представляет собой общий выходной ток драйвера, деленный на количество параллельных светодиодов.

    Опять же, не волнуйтесь, здесь мы увидим, как подключить параллельную светодиодную схему, и это должно помочь связать идеи воедино.

    В параллельной схеме все положительные соединения связаны вместе и обратно к положительному выходу драйвера светодиода, а все отрицательные соединения связаны вместе и обратно к отрицательному выходу драйвера.Давайте посмотрим на это на изображении справа.

    В примере, показанном с выходным драйвером 1000 мА, каждый светодиод будет получать 333 мА; общий выход драйвера (1000 мА), деленный на количество параллельных цепочек (3).

    Вот несколько пунктов для справки о параллельной цепи:

    1. Напряжение на каждом светодиоде одинаковое
    2. Полный ток — это сумма токов, протекающих через каждый светодиод
    3. Общий выходной ток распределяется через каждую параллельную цепочку
    4. Требуется точное напряжение в каждой параллельной цепочке, чтобы избежать перегрузки по току

    А теперь давайте немного повеселимся, объединим их вместе и наметим серию / параллельную цепь :

    Как следует из названия, последовательная / параллельная цепь объединяет элементы каждой цепи.Начнем с последовательной части схемы. Допустим, мы хотим запустить в общей сложности 9 светодиодов Cree XP-L при 700 мА каждый с напряжением 12 В постоянного тока ; прямое напряжение каждого светодиода при 700 мА составляет 2,98 В постоянного тока . Правило номер 2 из маркированного списка последовательной цепи доказывает, что 12 В постоянного тока недостаточно для последовательного включения всех 9 светодиодов (9 x 2,98 = 26,82 В, постоянного тока, ). Однако 12 В постоянного тока достаточно для работы трех последовательно соединенных (3 x 2,98 = 8,94 В постоянного тока ). И из правила № 3 параллельной схемы мы знаем, что общий выходной ток делится на количество параллельных цепочек.Итак, если бы мы использовали BuckBlock на 2100 мА и три параллельных ряда по 3 последовательно соединенных светодиода, то 2100 мА было бы разделено на три, и каждая серия получила бы 700 мА. На изображении в качестве примера показана эта установка.

    Если вы пытаетесь настроить светодиодную матрицу, этот инструмент планирования светодиодных схем поможет вам решить, какую схему использовать. На самом деле он дает вам несколько различных вариантов различных последовательных и последовательных / параллельных цепей, которые будут работать. Все, что вам нужно знать, это ваше входное напряжение, прямое напряжение светодиодов и количество светодиодов, которые вы хотите использовать.

    Падение нескольких светодиодных цепочек:

    При использовании параллельных и последовательных / параллельных цепей следует помнить о том, что если цепочка или светодиод перегорят, светодиод / цепочка будет отключена из цепи, так что дополнительная токовая нагрузка, которая шла на этот светодиод, затем будет отключена. распространяться среди остальных. Это не большая проблема для массивов большего размера, поскольку ток будет рассеиваться в меньших количествах, но как насчет схемы с двумя светодиодами на цепочку? Затем ток будет удвоен для оставшегося светодиода / цепочки, что может быть более высокой нагрузкой, чем светодиод может выдержать, что приведет к перегоранию и разрушению вашего светодиода! Обязательно помните об этом и постарайтесь создать такую ​​настройку, которая не испортит все ваши светодиоды, если один из них перегорит.

    Другая потенциальная проблема заключается в том, что даже когда светодиоды поступают из одной производственной партии (одного бункера), прямое напряжение все еще может иметь допуск 20%. Варьирование напряжений в отдельных цепочках приводит к тому, что ток не делится поровну. Когда одна струна потребляет больше тока, чем другая, перегруженные светодиоды нагреваются, и их прямое напряжение будет изменяться сильнее, что приведет к более неравномерному распределению тока; это называется тепловым разгоном. Мы видели, как многие схемы, настроенные таким образом, работают хорошо, но требуется осторожность.Для получения дополнительной информации об этой концепции и способах ее избежать (текущее зеркало) есть отличная статья на сайте LEDmagazine.com.

    Схема светодиодной ленты

    Как мы все знаем, светодиодная лента широко используется в нашей жизни, знаете ли вы схему светодиодной ленты? Давайте станем великим семейным инженером. Вы можете сделать самодельную светодиодную ленту, чтобы украсить свой дом.

    Существует три различных схемотехники: последовательная схема и параллельная схема, а также последовательно-параллельная схема.

    A. Преимущество последовательной цепи — постоянный ток, легко контролировать ток светодиода. Но недостатком является то, что при повреждении одного светодиода весь светодиод будет неярким, однако это не повлияет на срок службы других светодиодных лент.

    B. Преимущество параллельной схемы заключается в том, что какой бы светодиод не был поврежден, это не влияет на полезность другой светодиодной ленты. Недостатком является то, что если вы не добавите ограничивающий ток резистор, при повреждении одного светодиода это приведет к перегоранию других светодиодов.А поскольку напряжение возбуждения одного светодиода очень низкое, это приведет к тому, что большая часть напряжения станет бесполезной, поскольку ресурсы также являются своего рода пустой тратой.


    C. Последовательно-параллельная схема — это общая схема для подключения светодиодных лент, поскольку светодиоды используются последовательно с группой, а другие группы — параллельно.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *