Схема твердотопливного котла длительного горения: Схема твердотопливного котла

Схема твердотопливного котла

Рассчитать стоимость отопления

Самым универсальным, доступным и недорогим способом обогрева помещения является отопление с помощью угля, торфяных брикетов, дров. Эта система отопления доступна даже в тех случаях, когда к дому не подведены коммуникации и электричество. Дрова, в отличие от жидкого топлива или газа всегда в пределах доступности, кроме того их можно заготовить самостоятельно.

Твердотопливные котлы пользуются постоянной популярностью благодаря постоянной доступности топлива и неизменной цене на оборудование. Котлы, которые работают на твердом топливе, полностью независимы от электрической сети, с помощью специального датчика, установленного на котле, происходит автоматический контроль уровня температуры. В тех случаях, когда температура чрезмерно повышается, датчик срабатывает и приостанавливает процесс горения путем закрытия заслонки. Заслонка приоткрывается в случае снижения температуры.

Два вида современных твердотопливных котлов различаются по способу горения.

Данный вид твердотопливного котла считается традиционным и имеет широкое применение. Он удобен для использования, практичен, очень эффективен, долговечен и устойчив к износу.
Схема твердотопливного котла длительного горения достаточно проста. Он представляет собой два разных по размеру цилиндра, соединенных между собой. Внутри большого цилиндра находится более маленький. Вода заполняет свободное пространство между ними. Топка находится внутри маленького цилиндра, в которую через решетку поступает воздух, обеспечивающий процесс горения.

Дрова, уголь и прочие горючие материалы служат топливом для этих котлов. Причем процесс сгорания организован так, что обеспечивает практически полное сгорание топлива и дает возможность экономично утилизировать сгоревшие остатки. Большим плюсом такого котла является длительная работа и КПД достигающий 85%.

Схема пиролизного твердотопливного котла

Вторым видом твердотопливных котлов являются пиролизные или газогенераторы. В этих котлах обеспечивается сгорание древесного газа, образуемого при высоких температурах из дров.  Схема твердотопливного котла обеспечивает высокий КПД и дает возможность автоматической регулировки мощности.

Схема твердотопливного котла данного вида состоит из двух камер, которые расположены друг над другом и форсунки, установленной между ними. В верхнюю камеру загружается топливо и в ней происходит процесс пиролиза. Форсунка служит для смешивания пиролизного газа с поступающим воздухом. Нагнетающий вентилятор изменяет интенсивность подачи воздуха, что дает возможность регулировать процесс горения, который осуществляется в нижней камере.

Похожие статьи

  • Эффективное отопление цеха
  • Отопление загородного дома своими руками
  • Мощность системы отопления: порядок расчета
  • Быстрый выбор инфракрасных обогревателей

Рассчитать стоимость отопления

Рекомендованные товары

  Авторизация   Регистрация   Напомнить пароль   Личный кабинет   Адреса доставки   Мои закладки   История заказов   Файлы для скачивания   Бонусные баллы   Возврат товара   История платежей   Подписка на новости   Периодические платежи

Схемы твердотопливных котлов

Современный рынок отопительного оборудования настолько широк, что сделать выбор нужного агрегата крайне сложно. Перед покупкой каждый желает ознакомиться с подробными характеристиками товаров, а наиболее щепетильные покупатели – с устройством и принципом работы. Общий принцип работы твердотопливных котлов одинаков, но схемы моделей могут различаться.

Классические модели

Такие варианты наиболее востребованы, они характеризуются невысокой стоимостью и простым устройством, и называются котлами прямого горения.


Различают классические котлы двух типов.

Работа конструкций первого типа основывается на естественной тяге, второго – на принудительной циркуляции воздуха.

Твердотопливные энергонезависимые котлы устроены достаточно примитивно.


Подача воздуха из помещения осуществляется через заслонку. Для регулировки подачи воздуха установлен специальный термостат, реагирующий на температуру в так называемой рубашке котла. В процессе сгорания топлива образуются газы, проходящие по трубам теплообменника. Вокруг труб циркулирует вода, нагревающаяся посредством отдачи тепла продуктов горения. Последние совершают 2-3 прохода по трубопроводу, после чего удаляются из печи с помощью присоединенного к ней дымохода. КПД таких котлов зависит от конкретного типа конструкции и объема используемого топлива и зачастую не превышает 70%.

Более эффективными считаются модели с принудительным нагнетанием воздуха.


Как видно на схеме твердотопливных котлов этого типа, их устройство во многом напоминает энергонезависимые модификации. Но главное отличие заключается в установленном вентиляторе-нагнетателе. Принудительная подача воздуха делает процесс горения более стабильным и эффективным, в следствие чего КПД возрастает до 75%.

Котлы длительного горения

КПД котлов длительного горения практически не отличается от аналогичного параметра классических моделей. Но они имеют весомое преимущество – здесь существенно увеличивается длительность горения топлива. Увеличенное время горения обусловлено габаритами топливной камеры, вмещающей в себя большее в сравнении с другими модификациями количество дров или другого твердого топлива. Наиболее распространенные схемы подразумевают расположение топки в нижней части котла, а топливо сгорает по принципу «снизу-вверх».

Конструкции длительного горения могут «похвастаться» нетрадиционным решением – процесс горения начинается сверху, а заканчивается внизу.


Модели очень удобны в эксплуатации, ведь в таком режиме работы одной загрузки дров хватает на обогрев помещения в течении 12-ти часов. В случае использования угля эксплуатация становится еще комфортнее – загружать топливо не придется целых двое суток!

Котлы пиролизные

Пиролизные котлы имеют более сложное устройство, но при этом славятся высоким КПД.


Как можно увидеть на представленной схеме, состоят они из двух камер, сообщающихся между собой. В первой (верхней) камере происходит сгорание дров, в результате чего образуются горючие газы. Воздух, поступающий к этой камере, нагнетается вентилятором. Далее полученные газы поступают во вторую камеру (обозначенную на схеме как камера дожигания). Воздух поступает сюда естественным образом (без нагнетателя) через специальный канал подачи. Камера дожигания соединена с дымоходом специальным газоотводом. Именно он и окружен теплоносителем – водой. Покидающий топку газ передает тепло воде, остывая в газоотводе.

Подобные агрегаты дороже их классических аналогов, но за счет высокого КПД (до 80%) считаются более экономичными.

Котлы на пеллетах

Подобное оборудование во многом выигрывает, оно очень эффективное и удобное в эксплуатации. Высокая стоимость таких теплогенераторов – пожалуй, единственный недостаток. При чем недешево стоит как сам агрегат, так и его установка. Их КПД близится к 85%, заслуживает внимания и удобство использования.


В зависимости от площади отапливаемого объекта, одной закладки топлива может хватить на длительный срок – от трех дней до недели. Такими характеристиками на сможет «похвастаться» ни одна из вышеописанных моделей котлов. Процесс сжигания топлива находится под контролем надежной автоматики, что существенно повышает производительность.

Загружаемые в топку пеллеты обязательно должны быть сухими – при использовании влажного топлива существенно снижается КПД агрегата.


Котлы на пеллетах напоминают газовые модели и снабжаются двумя типами горелок – ретортными и факельными.

Контуры для ГВС

Конструкционные особенности твердотопливных котлов делают их малопригодными в качестве прибора для подачи горячего водоснабжения. Несмотря на этом, в продаже встречаются котлы двухконтурные.

Второй контур представляет собой змеевик, который может быть расположен внутри рубашки. В некоторых моделях змеевик располагается внутри топливника.

На приведенной ниже схеме мы видим, что твердотопливный двухконтурный котел устроен гораздо сложнее его простых классических аналогов.


Такие модели практически не способны обеспечить все нужды в ГВС, они дороже энергонезависимых и пиролизных котлов.

Итоги

В начале обзора были рассмотрены самые простые модели, которые являются не только дешевыми, но и достаточно надежными. По мере усложнения, улучшения функциональность, оснащения автоматикой возрастает не только КПД приборов, но и стоимость.

Как правило, чем сложнее схема агрегата, тем более высокая цена непосредственной модели и ее установки. Кстати, монтаж и подключение отопительного оборудования лучше доверить профессионалам.

Стоит обратиться к специалистам и для проведения предварительных расчетов, чтобы убедиться в правильности своего выбора. Потому как котел немного сложнее, чем отопительная печь для дома.

Дорогие модели отличаются комфортной эксплуатацией и работой с минимальным участием человека. Они не требуют частой закладки топлива, я процессы горения находятся под контролем автоматической системы.

Перейти к выбору твердотопливного котла

энергий | Бесплатный полнотекстовый | Эксплуатационные испытания твердотопливного котла на различных видах топлива

1. Введение

Твердотопливные котлы играют ключевую роль в загрязнении окружающей среды в Европе. Хотя сжигание древесины хорошего качества можно рассматривать как экологически безопасный способ производства тепла, соответствующие показатели выбросов могут быть получены только при использовании комбинации высококачественных видов топлива, сжигаемых в котлах хорошего качества. В результате раздробленности экономических и инфраструктурных особенностей развития каждой страны использование современного топочного оборудования в незначительной степени характеризует производство тепла на основе большого количества твердотопливных котлов. Загрязнение атмосферного воздуха вызывает около 400 000 преждевременных смертей в год, а также еще большее число серьезных заболеваний в Европе [1,2]. Одним из основных источников загрязнения воздуха является бытовое потребление энергии. Наиболее часто используемыми источниками тепловой энергии являются сжигание газа, а также сжигание древесины. Распределение использования топлива без централизованного теплоснабжения показано в таблице 1.

С 1990-х годов и по настоящее время в индивидуальной зоне очень распространено комбинированное использование газа и твердого топлива. В дополнение к приведенной выше таблице, в пропорциях в Венгрии около 45% жилищ используют только природный газ, а 21% используют твердое топливо (дрова, уголь или их смесь). Комбинация газового отопления и твердотопливного котла используется в 15% квартир [3].

Домохозяйства, использующие твердое топливо, имеют высокую территориальную концентрацию, при этом следует отметить, что их размещение сильно зависит от социально-экономического и инфраструктурного развития данного региона. В 19районах более 50% жилищ отапливаются исключительно дровами. Еще в 22 районах 75% жилищ хотя бы частично отапливаются дровами. Хотя сжигание древесины является CO2-нейтральным сжиганием с использованием возобновляемых источников энергии, при ненадлежащих условиях оно приводит к значительным выбросам [2,4].

Для каждого твердотопливного прибора стандарт МСЗ ЕН 303-5 определяет четкие требования по КПД и выбросам (среди прочих требований), но выполнение этих параметров верно при определении, конкретных лабораторных условиях, профессиональной эксплуатации и, наконец, но не в последнюю очередь, обеспечиваются и выполняются строгие требования к качеству топлива. Из упомянутой выше социально-экономической и инфраструктурной зависимости следует, что выбросы от твердого топлива в основном зависят от работающего оборудования и качества сжигаемого в нем топлива. На основе датских данных за 2016 г. удельные выбросы твердых частиц при некоторых режимах отопления показаны на рис. 19.0005

На основании рисунка 1 видно, что приборы на твердом топливе, которые можно считать устаревшими, имеют выдающиеся значения выбросов. Для сравнения, старая дровяная печь в конце линии выбрасывает в 715 раз больше загрязняющих веществ, чем выбросы пыли PM2,5 от грузовика, которому более десяти лет; однако даже экологически безопасный пеллетный котел дает более чем в 22 раза больше [1,5].

Было проведено несколько международных исследований сжигания современных пеллет или древесной щепы для котлов бытового размера или номинальной мощностью до 50 кВт. На примере двух видов щепы на основе сосны показано, что увеличение коэффициента избытка воздуха снижает выброс загрязняющих веществ, но также снижает максимальную извлекаемую производительность [6]. При использовании пеллетного топлива извлекаемая мощность выше, и можно выполнить ряд требований согласно EN 14785 [7].

Принимая во внимание социально-экономическое и инфраструктурное развитие венгерских регионов, а также снижение необходимой нагрузки на окружающую среду, мы рассмотрели традиционный бытовой твердотопливный котел с ручной подачей топлива по извлекаемой мощности и загрязняющим веществам. выбросы.

2. Эксплуатационные характеристики

Даже в обычных устройствах количество первичного и вторичного воздуха для горения оказывает существенное влияние на процессы горения в котле [8]. В случае открытых отопительных приборов по МСЗ ЕН 303-5 требования согласно ЕН 14,597:

  • Оснащен регулятором температуры,

  • Оснащен предохранительным ограничителем температуры.

Защитный ограничитель температуры можно не устанавливать, если устройство нельзя отключить и избыточная тепловая энергия может рассеиваться в виде пара за счет соединения с атмосферой. Используемые в быту ручные дозирующие открытые отопительные приборы в большинстве случаев не подключаются к буферному баку отопления, а работают с вентилем регулирования температуры [9].]. Основная цель регулятора температуры – максимизировать температуру теплоносителя, производимого котлом. Во время работы клапан без вспомогательной энергии регулирует угол открытия заслонки управления тягой в зависимости от мощности, которая непрерывно изменяется во время стрельбы. Постоянное вмешательство оказывает существенное влияние на качество процесса горения в топке и, следовательно, на выброс вредных веществ.

В ходе наших лабораторных измерений были изучены рабочие характеристики твердотопливного котла, оборудованного терморегулятором, а также рабочие параметры, возникающие при сжигании различных топливных зарядов при определенных углах открытия заслонки регулирования тяги.

3. Процедура измерения

Перед фактическими измерениями в котле была сожжена загрузка для устранения ошибок холодного пуска, формирования подходящих углей и прогрева нашей системы до рабочей температуры [10]. Исследуемая нами система работала по схеме, показанной на рис. 2. После предварительного нагрева через дверцу топки, показанную на рисунке, равномерно загружалось 7,2 кг топлива. В ходе испытаний в каждом случае контролировалось полное время сгорания загруженного топлива. Измеряемые параметры приведены в таблице 2.

Были выполнены различные операции для случаев без рабочего регулятора тяги (регулятора температуры) и без регулятора тяги с различными настройками фиксированной заслонки тяги, а также было измерено влияние различных топливных нагрузок для случаев фиксированной подачи первичного воздуха.

В различных исследованиях измерений были выполнены случаи согласно Таблице 3. Чтобы четко определить открытие дверцы контроля тяги устройства, необходимо определить скорость потока, которую можно определить из отношения поперечного сечения свободного потока в результате открытия дверцы к номинальному поперечному сечению в свободном пространстве. , как показано на рис. 2. На рис. 3 показано схематическое расположение измерительной станции.

Общее геометрическое определение поперечного сечения безнапорного потока:

Из отношения поперечного сечения безнапорного потока к номинальному поперечному сечению можно определить расход для заслонки контроля тяги:

Где:

  • C Проект -Поток,

  • A CS -поперечное сечение свободного потока,

  • A N -КРОСОВНАЯ СЕЛАНА потока. A N = H -NANOMINAL FLOIN CROSSECE (A N = H n -NANOMINAL FILO. × л).

В случае испытуемого котла:

  • В = 14 см,

  • Д = 12 см.

4. Результаты измерений

Среди измеренных параметров по таблице 2 в число основных компонентов загрязняющих веществ, подлежащих учету, включено развитие выбросов оксида углерода, имеющее ключевое значение согласно стандарту МСЗ ЕН 303-5. осмотрел. В дополнение к эволюции выбросов наша важная цель состояла в том, чтобы получить максимально возможный выход энергии из устройства при одновременном снижении выбросов.

4.1. Оценка варианта 1

В случае 1, согласно таблице 3, сжигались сухие поленья влажностью не более 15 % при перемещении люка первичного воздуха котла устройством автоматического регулирования тяги. В соответствии с упомянутым выше стандартом МСЗ EN 303-5 для твердотопливного оборудования мощностью не более 50 кВт, оснащенного автоматическая система дозирования. Определенное объемное соотношение (частей на миллион) преобразуется в значение массового расхода (мг/м 3 ). Следующие значения применяются в качестве коэффициента пересчета для преобразования частей на миллион в мг/м 3 : f CO = 1,25 [9]. Выбросы окиси углерода необходимо проверять по среднему значению, выделяемому при полном сгорании. Тем не менее, стоит наблюдать за изменением выбросов CO в течение всего интервала сжигания, а также за значениями восстанавливаемой мощности, показанными на рис. 4 и рис. 5.

На рис. 4 и рис. 5 видно, что автоматическое регулирование тяги дверь постоянно снижает скорость потока параллельно с увеличением мощности (Q), и в то же время также увеличивается выброс CO. Как видно, на этапе строительного обжига Q увеличивается, а СО уменьшается. В этот интервал система приближается к идеальному процессу сгорания, но в то же время достигает установленной максимальной температуры, что вызывает закрытие регулятора тяги. Когда груз в топке поступает в секцию снижения, устройство управления начинает открывать дверку первичного воздуха для поддержания заданной на регуляторе тяги температуры. Минимальный расход почти 25 мин обусловлен тем, что для безопасной работы даже в случае полного отключения должно быть обеспечено минимальное количество воздуха для горения, что означает расход 0,093 в данном случае. Также можно заметить, что в начальной, развивающейся фазе горения мгновенные выбросы СО резко возрастают одновременно с закрытием дверцы регулятора тяги. За весь интервал времени обжига средний выброс СО составил 5973 ppm, что более чем на 1600 ppm выше допустимого стандартом предела.

4.2. Оценка случая 2

Из рисунка 6 ясно видно, что при постоянном высоком расходе процесс обжига происходит за короткое время, а за фазой развития следует фаза быстрого снижения. В случае промежуточного расхода время выгорания увеличилось почти на час, а фаза развития характеризовалась практически постоянной пиковой мощностью в течение 10 мин. Фаза спада растянулась во времени. При низком расходе время выгорания также удлиняется, но максимальная восстанавливаемая мощность оказывается значительно ниже значения предыдущего параметра настройки. По сравнению с восстанавливаемой мощностью, показанной на рис. 4, максимальная восстанавливаемая мощность также была выше. На рис. 7 показаны значения выбросов моноксида углерода для всей стадии горения при расходах, описанных выше.

Сплошная горизонтальная линия указывает допустимое значение выбросов CO согласно стандарту MSZ EN 303-5. Можно заметить, что при самом высоком расходе оборудование работает выше допустимого предела выбросов почти все время горения. Сопротивление воздухозаборника прибора в этом случае наименьшее, поэтому температура дымовых газов, а вместе с тем и тяга в дымоходе увеличиваются из-за повышения температуры топки. В результате комбинированного действия этих явлений количество воздуха для горения, поступающего в топку, превышает количество, необходимое для идеального сгорания, что приводит к ухудшению качества сгорания и, следовательно, к увеличению выбросов CO. При промежуточном положении заслонки регулирования тяги наблюдается монотонно возрастающее выделение СО в развивающейся фазе топки; однако после максимальной мощности и идеального сгорания при этой настройке образование CO резко падает и кратковременно превышает стандартный предел в фазе выгорания. При наименьшем расходе выброс CO принимает характер, аналогичный предыдущему заданному значению, но более высокие значения выброса угарного газа обычно наблюдаются в течение времени полного сгорания.

Средние значения выбросов CO, полученные для каждого расхода, приведены в таблице 4.

Таким образом, можно констатировать, что автоматическая регулировка тяги является наиболее неблагоприятной с точки зрения образования угарного газа, а тягорегулирующая заслонка с постоянным значение расхода 0,27 является наиболее благоприятным. В среднем может быть достигнуто сокращение выбросов CO более чем на 2600 ppm, что почти вдвое меньше допустимого среднего предела выбросов CO.

В случае, показанном на рис. 8, коэффициент избытка воздуха можно наблюдать при различной тяге и в случае дверцы регулятора тяги. При расходе 0,27 он сохраняется дольше всего, почти постоянное значение, для которого контроль также отражает другие параметры горения. В 0,09и 0,44 значения коэффициента избытка воздуха резко возрастают, отражая быстрое выгорание и повышение уровня кислорода на 21%.

4.3. Оценка случая 3

В случае 3 процедура была такой же, как и раньше. Для трех скоростей потока были получены значения выбросов монооксида углерода и выхода энергии, показанные на Рис. 9 и Рис. 10.

Можно заметить, что при сжигании брикетного топлива выбросы CO могут соответствовать максимально допустимому среднему предельному значению выброса моноксида углерода, указанному пунктирной линией, при любом заданном значении. В случае брикетов мы получили наименьшее значение эмиссии при расходе 0,27, что составляет почти половину значения по сравнению с сжиганием бревен. Однако в случае сжигания древесины средний выход энергии составляет 17,1 кВтч по сравнению с 14,5 кВтч, полученными для брикетов. Однако в случае брикетов в рабочем состоянии, относящемся к максимальному раскрытию, был получен более высокий выход энергии 16,1 кВт·ч при минимальном увеличении выбросов оксида углерода. Заметным отличием от сжигания бревен было то, что в случае предельного значения выбросов CO, которое соблюдается даже при самом низком расходе, мы достигли почти вдвое большего выхода энергии, чем в случае брикетов.

5. Резюме

В ходе наших исследований мы провели эксплуатационные испытания котла смешанного типа для использования в частных домах. В ходе испытаний была определена расходная характеристика заслонки регулирования тяги, с помощью которой измерялись рабочие параметры, возникающие при работе устройства при различных значениях уставки. Было исследовано семь отдельных случаев с двумя видами топлива. В первом случае анализировалось влияние дверцы контроля тяги, постоянно контролируемой ограничителем температуры, при топке поленом.

По результатам измерений можно констатировать, что этот тип регулирования оказывает неблагоприятное влияние на значения выбросов окиси углерода устройством и на выход рекуперируемой энергии, и поэтому не может рассматриваться как оптимальное решение с точки зрения охраны окружающей среды и энергопотребления.

Затем, в случае бревен и брикетов, были исследованы выход извлекаемой энергии и выброс моноксида углерода при трех различных постоянных скоростях потока. Мы обнаружили, что, за исключением одного случая, пределы выбросов CO, указанные в соответствующем стандарте для дверей с постоянным контролем тяги, могут быть соблюдены при более высоком выходе энергии, чем в случае с постоянным контролем тяги.

В случае сжигания бревен при всех испытанных настройках были достигнуты более высокие выбросы CO, чем в случае сжигания брикетов. При сжигании брикетов мы получаем самый высокий выход энергии при низком расходе и выбросах угарного газа в пределах предельного значения. Дальнейшей частью нашего исследования является влияние регулятора тяги на пыль, которая является одним из основных загрязнителей в твердотопливном оборудовании. Он технически более сложен из-за сложной реализации изокинетического отбора проб.

Вклад авторов

Все авторы прочитали и согласились с опубликованной версией рукописи.

Финансирование

Это исследование финансировалось Фондом NRDI (TKP2020 IES, Грант № BME-IE-MISC) на основании устава поддержки, изданного Управлением NRDI под эгидой Министерства инноваций и технологий.

Заявление Институционального контрольного совета

Неприменимо.

Заявление об информированном согласии

Неприменимо.

Заявление о доступности данных

Данные доступны по запросу ([email protected]).

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Ссылки

  1. Press-Kristensen, K. Загрязнение воздуха в результате сжигания топлива в жилых помещениях; Датский экологический совет: Копенгаген, Дания, 2016 г.; Текст: Kåre Press-Kristensen, макет: Koch & Falk; ISBN 978-87-92044-92-1. [Google Scholar]
  2. Нильсен, О.К.; Плейдруп, MS; Винтер, М.; Миккельсен, М.Х.; Нильсен, М.; Гилденкерн, С.; Фаузер, П.; Альбрекцен, Р.; Хьельгаард, К.; Бруун, Х.Г.; и другие. Ежегодный информационный отчет Дании по кадастрам выбросов ЕЭК ООН с базового года Протоколов до 2014 года; Научный отчет DCE — Датского центра окружающей среды и энергетики, Орхусский университет Фредериксборгвей: Роскилле, Дания, 2016 г. ; Том 399, стр. 457–498. [Google Scholar]
  3. Ауески, П.; Балинт, Б.; Фабиан, З .; Францен, Л.; Кинчес, А.; Патакине Шароши, З.; Патай, А.; Сабо, З .; Силагьи, Г.; Tóth, R. Környezeti helyzetkép, 2011; Központi Statisztikai Hivatal: Будапешт, Венгрия, 2012 г.; ISSN 1418 0878. [Google Scholar]
  4. Зофия, Б.А. A szociális tüzelőanyag-támogatás Magyarországon; Habitat for Humanity Magyarország: Будапешт, Венгрия, 2018 г.; стр. 3–26. [Google Scholar]
  5. Брэм, С.; Де Рюйк, Дж.; Лаврик, Д. Использование биомассы: анализ системных возмущений. заявл. Энергия 2009 , 86, 194–201. [Google Scholar] [CrossRef]
  6. Серрано, К.; Портеро, Х .; Монедеро, Э. Сжигание сосновой щепы в бытовом котле на биомассе мощностью 50 кВт. Топливо 2013 , 111, 564–573. [Google Scholar] [CrossRef]
  7. EN 14785. Отопительные приборы жилых помещений, работающие на древесных гранулах. Требования и методы испытаний; Европейский союз: Брюссель, Бельгия, 2016 г. [Google Scholar]
  8. Stolarski, MJ; Кржижаняк, М .; Варминьски, К.; Снег, М. Энергетическая, экономическая и экологическая оценка отопления семьи. Энергетическая сборка. 2013 , 66, 395–404. [Google Scholar] [CrossRef]
  9. MSZ EN 303-5 Стандартные отопительные котлы. Отопительные котлы на твердом топливе с ручной и автоматической топкой номинальной тепловой мощностью до 500 кВт. Терминология, требования, тестирование и маркировка; BSI: London, UK, 2012. [Google Scholar]
  10. Verma, V.K.; Брэм, С .; Делаттин, Ф.; Лаха, П.; Вандендал, И.; Хубин, А .; де Рюйк, Дж. Агропеллеты для бытовых котлов отопления: Стандартные лабораторные и реальные. заявл. Энергетика 2012 , 90, 17–23. [Google Scholar] [CrossRef]

Рисунок 1. Выбросы твердых частиц при различных методах отопления в Дании [1].

Рисунок 1. Выбросы твердых частиц при различных методах отопления в Дании [1].

Рисунок 2. Геометрическая параметризация дверцы контроля тяги (*: умножение).

Рисунок 2. Геометрическая параметризация дверцы контроля тяги (*: умножение).

Рис. 3. Схематичное расположение измерительной станции.

Рисунок 3. Схематичное расположение измерительной станции.

Рисунок 4. Развитие добротности при различных дебитах за весь период.

Рисунок 4. Развитие добротности при различных дебитах за весь период.

Рисунок 5. Развитие СО при разных расходах за весь период.

Рисунок 5. Развитие СО при разных расходах за весь период.

Рисунок 6. Эволюция выработанной мощности при различных постоянных расходах.

Рисунок 6. Эволюция выработанной мощности при различных постоянных расходах.

Рисунок 7. Эволюция выбросов CO для каждого расхода.

Рисунок 7. Эволюция выбросов CO для каждого расхода.

Рисунок 8. Фактор избытка воздуха при различных сквозняках.

Рис. 8. Фактор избытка воздуха при различных сквозняках.

Рисунок 9. Средние выбросы CO для различных видов топлива.

Рисунок 9. Средние выбросы CO для различных видов топлива.

Рисунок 10. Средний выход энергии для различных видов топлива.

Рис. 10. Средний выход энергии для различных видов топлива.

Таблица 1. Использование топлива в жилых домах в Венгрии (2011 г.).

Таблица 1. Использование топлива в жилых домах в Венгрии (2011 г.).

Fuel Number of Dwellings
(Thousands)
Proportion of Dwellings as a % of Total Inhabited Dwellings
Gas 2388 61. 96
Coal 113 2.93
Electricity 76 1.97
Oil fuel 1 0.03
Wood 1470 38.14
Solar energy 5 0.13
Geothermal energy 3 0.08
Pellets 2 0. 05
Other renewable 3 0.08
Other fuel 4 0.10
All inhabited dwellings 3854 100.00

Таблица 2. Измеряемые параметры.

Таблица 2. Измеряемые параметры.

Sign of Measured Parameter Unit Name of Measured Parameter
O 2 % Oxygen content of flue gas
CO 2 % Содержание диоксида углерода в дымовых газах
CO ppm Carbon monoxide content of flue gas
NOx ppm Nitrogen oxide content of flue gas
SO 2 ppm Sulfur dioxide content of flue gas
Δp chimney PA DRACK DRACK
T FG ° C Температура сжигания
. 0287
qA % Combustion product loss
m víz L/min Heating medium mass flow
t fw °C Flow temperature
t r °C Температура обратной среды

Таблица 3. Рассмотрены дела.

Таблица 3. Рассмотрены дела.

Fuel Mass Primary Air Control Door Operation Notation
Wood 7. 2 kg with draft controller 1st case
C draft = 0.093 2nd case
C draft = 0.275
C draft = 0.440
Briquette 7 kg C Проект = 0,093 3 -й случай
C Проект = 0,275
C . Средний выброс CO.

Таблица 4. Средний выброс CO.

Операция CO AVG Средняя разница CO MAX
(PPM)
(PPM) (PPM) (PPM)
(PPM)
(PPM)
(PPM)
(PPM)0284
Проект кртл. 5973.03 1606.96
C draft = 0.09 4017.14 −348.93
C draft = 0.27 3368.54 −997.53
C draft = 0.44 4879.00 512.93

Примечание издателя.


© 2021 авторами. Лицензиат MDPI, Базель, Швейцария. Эта статья находится в открытом доступе и распространяется на условиях лицензии Creative Commons Attribution (CC BY) (https://creativecommons.org/licenses/by/4.0/).

Твердотопливный котел | Газификационные котлы Woodco Ирландия

Перейти к содержимому

Дровяной газификационный котел Blaze Comfort (15-30 кВт)

Дровяные газификационные котлы Blaze Comfort предназначены для трехсторонней подачи воздуха: возможность эффективного сжигания нескольких видов топлива и влажная древесина. Он имеет систему определения объема остаточного топлива, комфорт оператора и экономию топлива. Котел имеет наклонное дно, что означает, что нет необходимости удалять золу из загрузочной камеры, что требует меньше работы. Имеет гибкую дымоходную трубу, небольшое пространство для хранения, правостороннее исполнение: компактность и простое подключение к дымоходу. Котлы Blaze Comfort имеют компактную тепловую камеру, что продлит срок их службы.

Механические турбулизаторы (опция): удобство оператора и экономия топлива благодаря чистому теплообменнику

Горизонтальная дверь: эффективная загрузка сыпучих видов топлива дно загрузочной камеры) обеспечивает отличную управляемость производительностью: экономия объема уравнительных (накопительных) баков.

Стандартные характеристики твердотопливного котла Blaze Comfort