Сколько воды в 1 секции алюминиевой батареи: Объем секции алюминиевого радиатора – зачем нужно знать

Содержание

Объем секции алюминиевого радиатора – зачем нужно знать

Радиатор Elsotherm

Сегодня алюминиевые радиаторы очень часто подключаются как в действующие коммуникационные системы отопления, централизованные или автономные, так и в новые. Для того чтобы в помещении хватало тепла, изначально перед установкой, нужно определиться с размерами батарей, мощностью насоса, местами их монтажа. Здесь при выборе немаловажную роль играет показатель объема секций алюминиевых радиаторов. Он напрямую связан как с подбором составляющих элементов, так и с расчетом количества теплоносителя необходимого для заполнения всей системы отопления.

Технические аспекты алюминиевых батарей

Для обустройства автономной системы отопления необходимо не только выполнить монтажные работы в соответствии с действующими нормативами, но и правильно выбрать алюминиевые радиаторы. Это возможно сделать только после тщательного изучения и анализа их свойств, конструктивных особенностей, технических характеристик.

Классификация и конструктивные особенности

Производители современного отопительного оборудования изготавливают секции алюминиевых радиаторов не из чистого алюминия, а из его сплава с кремниевыми добавками. Это позволяет изделиям придать устойчивость к коррозии, большую прочность и продлить срок их службы.

Сегодня торговая сеть предлагает широкий ассортимент алюминиевых радиаторов, отличающихся по своему внешнему виду, которые представленными такими изделиями как:

  • панельные;
  • трубчатые.

По конструктивному решению отдельно взятой секции, которые бывают:

  • Цельными или литыми.
  • Экструзионными или составленными из трех отдельных элементов, внутренне закрепленных между собой болтами с поролоновыми или силиконовыми прокладками.

Также различают батареи и по габаритам.

Стандартных размеров с шириной в пределах 40 см и высотой, равной 58 см.

Низкие, высотой до 15 см, что дает возможность устанавливать их на очень ограниченных пространствах. В последнее время производители выпускают алюминиевые радиаторы этой серии «плинтусного» исполнения с высотой от 2 до 4см.

Высокие или вертикальные. При небольшой ширине, такие радиаторы в высоту могут доходить до двух или трех метров. Такое рабочее расположение по высоте, помогает достаточно эффективно обогреть большие объемы воздуха в помещении. Кроме этого, такое оригинальное исполнение радиаторов выполняет дополнительно и декоративную функцию.

Срок службы современных алюминиевых радиаторов определяется качеством исходного материала и не зависит от количества составляющих его элементов, их размеров и внутреннего объема. Производитель гарантирует их стабильную работу при правильной эксплуатации до 20 лет.

Основные рабочие характеристики

Сравнительные характеристики

Технические характеристики и конструктивные решения алюминиевых радиаторов разрабатываются для обеспечения ими удобного и надежного нагрева помещений. Основными составляющими, характеризующими их технические свойства и эксплуатационные возможности являются такие факторы.

Рабочее давление. Современные алюминиевые радиаторы рассчитаны на показатели давления теплоносителя в системе отопления от 6 до 25 атмосфер. Для гарантии этих показателей в заводских условиях каждая батарея тестируется при давлении в 30 атмосфер. Этот факт дает возможность устанавливать это теплотехническое оборудование в любую систему отопления, где исключается возможность образования гидроударов.

Мощность. Этот показатель характеризует термодинамический процесс передачи тепла с поверхности батареи отопления в окружающую среду. Он указывает, какое количество тепла в ваттах может произвести прибор в единицу времени.

Кстати, теплоотдача от алюминиевых радиаторов происходит способом конвекции и теплового излучения в соотношении 50 на 50. Числовое значение параметра теплоотдачи каждой секции указывается в паспорте прибора.

При расчете необходимого для установки количества батарей, их мощность играет первостепенную роль. Максимальная теплоотдача одной секции отопительного алюминиевого радиатора довольно велика и доходит до 230 Ватт. Такой внушительный показатель объясняется высокой способностью алюминия к теплопередаче.

Влияние подключения на теплоотдачу

Объем секции. Этот показатель характеризует количество теплоносителя, который присутствует в секции радиатора в рабочем состоянии. Он зависит от габаритных размеров радиатора и его внутренней конструкции. Для каждого типа и вида радиаторов эта величина различна.

Объем секции является важной технической характеристикой алюминиевого радиатора и обязательно указывается в сопроводительном паспорте на каждое изделие от производителя.

Благодаря конструктивным особенностям для заполнения алюминиевого радиатора необходимо использовать меньший объем теплоносителя в сравнении с чугунным прибором такой же мощности.

Это значит, что для его нагрева нужно затратить меньше энергии, чем для чугунного аналога.

Температурный диапазон нагрева теплоносителя в алюминиевых батареях превышает 100 градусов.

В качестве справки, стандартная секция алюминиевого радиатора высотой 350–1000 мм, глубиной 110–140 мм, с толщиной стенок от 2 до 3 мм, имеет объем теплоносителя 0,35– 0,5 литра, и способна нагреть площадь в 0,4–0,6 квадратного метра.

Объем секции и расход теплоносителя

Сегодня не все автономные отопительные системы заполняются водой. Это обуславливается двумя факторами.

Размер секции
  1. Возникновение ситуации, когда хозяевам необходимо надолго оставить дом без отопления, так как в связи с длительным отсутствием отпадает необходимость в обогреве помещений.
  2.  Вода имеет свойство замерзать уже при нулевой температуре. При замерзании вода, расширяясь, превращается в лед,то есть переходит из одного физического состояния в другое. Во время этого процесса высвобождаются и меняются межмолекулярные связи воды, в результате развивается огромное усилие, которое разрывает радиаторы и трубы из любого металла.

Чтобы не произошло подобных ситуаций, для заполнения системы отопления вместо воды используют другой теплоноситель, лишенный проблемы замерзания. Это могут быть такие бытовые антифризы, как:

  • этиленгликоль;
  • солевой раствор;
  • глицериновый состав;
  • пищевой спирт;
  • нефтяное масло.

Благодаря специальным добавкам, которые вводятся в эти компоненты, составы теплоносителей сохраняют свое агрегатное состояние в жидком виде даже при отрицательных температурах.

Расчет теплоносителя

Определение объема расхода теплоносителя необходимого для автономной системы отопления требует точного расчета. Для простого способа узнать, сколько нужно антифриза, чтобы заполнить отопительную систему, существуют разнообразные расчетные таблицы.

Объем воды в одной секции

Для базовых расчетов можно воспользоваться той информацией, которая изложена в тематических справочниках:

  • Стандартная секция алюминиевой батареи содержит 0,45 литра теплоносителя.
  • Погонный метр 15-миллиметровой трубы содержит 0,177 литра, а труба диаметром в 32 мм – 0,8 литра теплоносителя.

Информацию о характеристике подпиточного насоса и расширительного бака можно взять из паспортных данных этого оборудования.

Общий объем системы отопления будет равен совокупному объему всех отопительных приборов:

  • радиаторов;
  • трубопроводов;
  • теплообменника котла;
  • расширительного бака.

Уточненная формула основного расчета корректируется с учетом коэффициента расширения теплоносителя. Для воды это 4%, для этиленгликоля ─ 4,4%.

Заключение

При проектировании системы автономного отопления у многих возникает вопрос, сколько литров теплоносителя вмещает одна секция алюминиевой батареи. Этот нужно для того, чтобы рассчитать расход газа, электричества и определиться, сколько нужно приобрести антифриза, если в системе не используется вода.

Сколько воды в одной секции алюминиевого радиатора: способы расчета объема

В наше время замена старых чугунных батарей на новые модели стала не данью моде, а жизненной необходимостью. Опасение за безопасность отопительной системы и попытки снизить стоимость коммунальных услуг привели к тому, что все больше потребителей останавливают свой выбор на алюминиевых радиаторах, которые отличаются от других видов обогревателей, как техническими характеристиками, так и ценой. Одним из важных параметров является объем радиатора отопления.

Параметры алюминиевых радиаторов

Технические характеристики батарей отопления – это первое, на что обращает внимание потребитель перед покупкой. Самыми важными показателями действительно качественного изделия являются:

  • Уровень теплоотдачи одной секции, так как от него зависит:
  • Во-первых, сколько элементов потребуется для обогрева одной комнаты.
  • Во-вторых, насколько тепло будет в комнате благодаря радиатору.
  • В-третьих, каким станет микроклимат в помещении.
  • Устойчивость к гидроударам и рабочее давление алюминиевого радиатора.
  • Стоимость готового изделия.

Объем одной секции алюминиевого радиатора указывает на его мощность и во многом зависит от того, каким способом он был изготовлен.

Если батарея была сделана методом литья, то такой цельносварный секционный элемент обладает высокой прочностью и устойчивостью к перепадам давления. Подобное изделие стоит несколько дороже, и по цене можно понять, произведено оно на отечественных мощностях или импортное. Как правило, вторые дороже, но и процент брака у них крайне низкий.

Если алюминиевая батарея была изготовлена методом прессования, то ее детали соединялись при помощи клея, что делает ее уязвимой. Такому радиатору нестрашна коррозия, но повышенное давление может вывести его из строя.

Емкость одной секции алюминиевого радиатора, не зависимо от того каким методом он был произведен, практически одинаковая, но то, что литая модель прочнее и долговечнее, быстрее нагревается и ее можно регулировать по размеру, ставит их на первое место по продажам.

Виды теплоносителей

Как правило, вопрос о том, какой теплоноситель используется в централизованной системе отопления, не задается, так как там всегда по теплопроводу течет вода. Другое дело автономный обогрев, где можно выбрать оптимальный вариант для конкретного дома с учетом климата региона, где он построен.

  • Антифриз для отопительных систем уже много лет применяется для обогрева загородных домов и прекрасно проявил себя. Его лучшие качества (способность не замерзать при температуре до -70 градусов) особенно хороши в зданиях, где нет постоянного проживания людей. Дачники могут закрыть дом, приезжать несколько раз месяц, чтобы прогревать его, и не переживать, что с их отопительной системой что-то случится.
  • Спиртсодержащие теплоносители имеют сходные с антифризом свойства, только способны не замерзать при -30 градусах. Их использование не желательно в жилых домах, так как подобные жидкости содержат в составе этиловый спирт, который не только легко воспламеняется, но и опасен для человека.
  • Вода в автономных системах обогрева хороша исключительно там, где алюминиевые радиаторы находятся под присмотром, то есть люди постоянно проживают в квартире или частном доме. У нее есть один показатель, который не «нравится» алюминию – способность вызывать у металлов коррозию. Если производится слив носителя из системы на летний период, то к началу нового сезона батареи могут дать течь из-за коррозии, «съевшей» металл. Жильцам следует оставлять теплоноситель в системе, чтобы этого не произошло.

Вязкость у всех трех теплоносителей разная, а производители, указывая объем алюминиевого радиатора, подразумевают, что в нем будет вода. Покупая подобное устройство для отопительной системы, например, на антифризе, следует соотнести его характеристики с вместимостью батареи.

Почему важен объем радиатора

Расчет, сколько литров в одной секции алюминиевого радиатора важен по нескольким причинам:

  • Когда устройство монтируется на настенные кронштейны, следует предусмотреть не только его вес, но и теплоносителя внутри. Рассчитать, сколько весит вода легко, сверившись с техпаспортом изделия. Если в нем заявлено, что объем, например, секции алюминиевого радиатора с межосевым расстоянием 500 равен 0.27 л, то воды в нем помещается 270 мл.
  • Знание объема батареи позволит подобрать котел нужной мощности. Особенно это важно, когда теплоносителем является антифриз. Обладая достаточно высокой вязкостью, ему требуется хороший «толкач», иначе медленное продвижение носителя по системе сделает ее работу не эффективной.
  • Выбор расширительного бака, на котором многие потребители экономят при установке алюминиевых батарей, так же зависит от количества теплоносителя в отопительной системе. Он берет на себя любые перепады давления, чем «спасает жизнь», как обогревателям, так и трубам. Вода, нагреваясь, увеличивается в объеме на 4%, и если не предоставить ей дополнительного места для этого, то разрыв цельности системы, это только вопрос времени.
  • От объема радиатора иногда зависит способ движения теплоносителя по сети. Например, батареи с большой вместимостью хорошо подойдут для естественного типа циркуляции.

Учитывая, на какое количество факторов влияет объем батарей отопления, этот параметр следует учитывать при выборе изделий из алюминия.

Расчет объема алюминиевого радиатора

Определить вместительность батареи отопления можно двумя способами:

  1. При помощи расчетов. Для этого потребуется таблица, в которой указано, сколько воды вмещается в алюминиевом радиаторе отопления. Подобная информация должна присутствовать в документах изделия или иметься у продавца. В ней указывается не только межосевое расстояние, но и масса, и объем устройства. Например, алюминиевому радиатору с расстоянием 350 мм между верхним и нижним коллектором для одной секции потребуется 0.19 л воды.
  2. Самым универсальным является измерение объема радиатора при помощи наполнения его водой. Для этого потребуется:
  • Поставить заглушки на нижние отверстия и начать набирать воду.
  • Когда жидкость начнет выливаться из верхнего отверстия, на него ставится заглушка.
  • Набирать воду в наливное отверстие до тех пор, пока радиатор полностью не заполниться.
  • Подсчитать, сколько литров жидкости было залито в батарею.

Это, хотя и весьма трудоемкий способ, но самый надежный и точный, так как производители могут завышать или занижать параметры своих изделий в технической документации.

Подбирая тип радиатора, следует обращать внимание на разницу в параметрах отечественных и зарубежных производителей. Некоторые показатели могут выглядеть весьма привлекательно, но не подходить для централизованной советской отопительной системы. Так же нужно заранее продумать, какой теплоноситель в сети будет использоваться, и произвести расчеты с указанием его вязкости.

Подводя итоги, можно сказать, что объем алюминиевого радиатора – это важный параметр, который нужно учитывать, чтобы в дальнейшем система работала по-настоящему эффективно.

Полезное видео

Характеристики алюминиевых и биметаллических радиаторов

Мощность радиаторов отопления биметаллических и алюминиевых

Тепловая мощность (или теплоотдача) измеряется в ваттах. От нее зависит то, насколько хорошо оборудование будет греть при идентичных условиях. Также ее учитывают при расчете количества секций.

Мощность 1 секции зависит от материала изготовления, высоты прибора и емкости теплоносителя. Все эти характеристики обязательно указываются в техническом паспорте оборудования, который прилагается к товару.

Мощность 1 секции биметаллического радиатора высотой 500 мм варьируется от 170 до 210 ВТ от 100 до 190 ВТ теплоэнергии, для приборов высотой 350 мм - 120-140 Вт, а для 300 мм – от 100 до 145 Вт теплоэнергии. Специалисты, занимающиеся монтажом отопительных систем в свою очередь, рекомендуют брать за основу нижний критерий или даже еще ниже, так как известны случаи завышения характеристик выпускаемого оборудования производителями. Чтобы избежать ошибок в расчетах и достичь нужной мощности рекомендуется учитывать этот факт.

Также в расчет необходимо брать место монтажа. Если радиатор монтируется под окном или рядом с ним, то необходимо увеличить количество секции, так как вместо 120-150 Вт тепловой энергии от прибора высотой 350 мм в реалии получим всего 100-120 Вт.

Мощность 1 секции в алюминиевом радиаторе Profi 500 по данным производителя находится в пределах 180-230 Вт. Для оборудования высотой в 350 мм этот показатель варьируется от 120 до 160 Вт. У моделей разных производителей мощность разная, стандартов здесь нет.

Рабочее давление

Это важная характеристика оборудования, она показывает, при каком рабочем давлении разрешается эксплуатировать радиатор. В продаже есть алюминиевые радиаторы двух видов: выдерживающие до 16 атмосфер и классические, рассчитанные выдерживать до 6 атмосфер. В зависимости от этих характеристик выбираются радиаторы для эксплуатации в частных отопительных системах или для подключения к тепловым магистралям высокого давления.

В домах с автономной системой отопления среднее значение давления не более 10 атмосфер. В системах, подключенных к центральным сетям отопления рабочее давление выше, оно достигает 15 атмосфер. Если система отопления подключена к тепловым магистралям, то это значение может быть еще выше и достигать отметки 30 атмосфер. Эти данные нужно учитывать при выборе радиаторов.

У каждого вида радиатора свое разрешенное рабочее давление. У биметаллических моделей варьируется от 16 до 49 атмосфер. Точные технические характеристики смотрите в техническом паспорте прибора или выясняйте у консультанта магазина. В сопровождающей товар документации также содержится информация об испытании оборудования под опрессовочным давлением. Это значение в 1,5 раза превышает рабочее давление.

При выборе оборудования учитывают, что в системе отопления централизованного типа стандартное давление не превышает 15 атмосфер, а в индивидуальных автономных системах оно не более 10 атмосфер. Также нужно знать, что биметаллические радиаторы выдерживают гидроудары до 6 МПа, а алюминиевые всего 4,8 МПа. Исходя из этих характеристик, специалисты рекомендуют алюминиевые приборы использовать в автономных отопительных системах, чтобы они дольше служили, а биметаллические – для подключения к центральному отоплению.

Предельная температура и объем теплоносителя

Радиаторы биметаллического типа выдерживают воду температурой до 90 градусов по Цельсию. А алюминиевые – температуру теплоносителя до 110 градусов С. Объем теплоносителя рассчитывается путем умножения количества секций на емкость одной из них. Он зависит от высоты прибора и толщины оболочки. Для алюминиевых секций это значение – 250-460 мл.

Емкость секций биметаллического отопительного оборудования меньше, чем у алюминиевого. Стандартные значения в среднем следующие: для батареи с межосевым расстоянием 200 мм емкость канала теплоносителя – 0,1-0.16 литров. Для приборов с расстоянием между осями в 350-мм – 0,15-0,2 литра.

Продукция каждого производителя отличается параметрами и техническими характеристиками, это относится к любому типу отопителей. Например, в алюминиевом радиаторе Profi 500 - это всего 0,28 литра, а на 10-секционный радиатор уйдет 2,8 литра. 

Какой радиатор выбрать?

Подведем итоги, биметаллический радиатор рекомендуется устанавливать в городские квартиры, офисы, производственные и промышленные помещения, которые подключены к центральным системам отопления с высоким рабочим давлением. Если у вас собственный коттедж, частный дом или даже резиденция с отдельным котлом отопления, то рекомендуется приобретать алюминиевые радиаторы.

При выборе обращаем внимание не только на рабочее давление и мощность, но и на размеры оборудования. Для стандартных подоконников выбирают модели высотой 500 мм, расстояние до подоконника должно быть около 10-15 см. В ином случае устанавливаем радиаторы высотой 350 мм. Другой немаловажной для потребителя характеристикой является цена оборудования. Алюминиевые приборы стоят дешевле на 15-20 %, чем биметаллические.


Сколько литров в батарее | Строительный блог

При проектировании системы отопления многие задаются вопросом — а сколько литров помещается в одной секции батареи? Для чего это нужно? ДА все просто, чем больше жидкости в батареях тем дольше их нужно нагревать – топить, и тем больше уходит газа – электричества. Да и мощность котла это не последняя характеристика. Также многие из нас с вами заливают не обычную воду, а антифриз, им то как раз и нужно знать вместимость и труб и радиаторов отопления. Так или иначе знание вместимости батареи (одной секции), это нужное знание, всегда пригодится …

Конечно, мы краем затрагивали вместимость батарей в статье – алюминиевые или чугунные радиаторы. Но сегодня разложив се по полочкам.

Сколько литров в алюминиевой батарее

Сейчас самые популярные радиаторы. Конечно вместимость одной секции может разниться в два раза, все зависит от высоты и размера. Однако вместимость одной секции самой маленькой алюминиевой батареи равно 0,3 литра. Вместимость самой большой секции радиатора доходит до 1 литра (а точнее 0,930 литра). Как видите весьма экономично. Таким образом если у вас 10 секций – то самое малое количество воды это 3 литра (если стоят маленькие радиаторы) и почти 10 литров (если стоят большие радиаторы).  Алюминиевая батарея отапливает помещение эффективно благодаря своему строению, у нее уже учитывается куда будет поступать холодный воздух, а откуда будет выходить уже нагретый (наверное все замечали много рисок и ребер).

Сколько литров в чугунной батарее

Чугунные радиаторы, немного сдали (пользуются не таким спросом), однако это также популярный вид батарей. Отопление дома или квартиры чугунными радиаторами также эффективно и вот почему. Вместимость одной секции чугунной батареи равно 5 литров (это стандартный радиатор чугунный марки МС-140А). Такие радиаторы стоят во многих советских и после советских домах. Так как радиатор вмещает 5 литров, то и отдача тепла у него большая, а значит он будет эффективно отапливать комнату – помещение. В 10 чугунных радиаторах помещается 50 литров воды. У чугунных радиаторов не так много рисок и ребер, наверное это ему и не нужно.

Если хотите красиво украсить свой чугунный радиатор, советую почитать ВОТ ЭТУ СТАТЬЮ.

НА сегодня у меня все, читайте наш ремонтный блог.

Объем воды в радиаторе отопления


Сколько литров в батарее

  • Разместил Admin
  • Дата: 16 августа 2014 в 10:29

При проектировании системы отопления многие задаются вопросом — а сколько литров помещается в одной секции батареи? Для чего это нужно? ДА все просто, чем больше жидкости в батареях тем дольше их нужно нагревать – топить, и тем больше уходит газа – электричества. Да и мощность котла это не последняя характеристика. Также многие из нас с вами заливают не обычную воду, а антифриз, им то как раз и нужно знать вместимость и труб и радиаторов отопления. Так или иначе знание вместимости батареи (одной секции), это нужное знание, всегда пригодится …

Конечно, мы краем затрагивали вместимость батарей в статье – алюминиевые или чугунные радиаторы. Но сегодня разложив се по полочкам.

Сколько литров в алюминиевой батарее

Сейчас самые популярные радиаторы. Конечно вместимость одной секции может разниться в два раза, все зависит от высоты и размера. Однако вместимость одной секции самой маленькой алюминиевой батареи равно 0,3 литра. Вместимость самой большой секции радиатора доходит до 1 литра (а точнее 0,930 литра). Как видите весьма экономично. Таким образом если у вас 10 секций – то самое малое количество воды это 3 литра (если стоят маленькие радиаторы) и почти 10 литров (если стоят большие радиаторы).  Алюминиевая батарея отапливает помещение эффективно благодаря своему строению, у нее уже учитывается куда будет поступать холодный воздух, а откуда будет выходить уже нагретый (наверное все замечали много рисок и ребер).

Сколько литров в чугунной батарее

Чугунные радиаторы, немного сдали (пользуются не таким спросом), однако это также популярный вид батарей. Отопление дома или квартиры чугунными радиаторами также эффективно и вот почему. Вместимость одной секции чугунной батареи равно 5 литров (это стандартный радиатор чугунный марки МС-140А). Такие радиаторы стоят во многих советских и после советских домах. Так как радиатор вмещает 5 литров, то и отдача тепла у него большая, а значит он будет эффективно отапливать комнату – помещение. В 10 чугунных радиаторах помещается 50 литров воды. У чугунных радиаторов не так много рисок и ребер, наверное это ему и не нужно.

Если хотите красиво украсить свой чугунный радиатор, советую почитать ВОТ ЭТУ СТАТЬЮ.

НА сегодня у меня все, читайте наш ремонтный блог.

Рейтинг: (Нет голосов) Loading...

remo-blog.ru

Какой объем воды в чугунном радиаторе отопления?

Все типы радиаторов отопления - биметаллические, чугунные, алюминиевые, стальные

  • Пожаловаться на это сообщение
  • Ответить с цитатой

Гость » 04 май 2012, 13:55

При расчете нужно установить существующий объем чугунной батареи отопления. Нужно установить, сколько литров теплоносителя уйдет в радиатор, а сколько будет циркулировать по системе. Насколько я знаю, минимальный объем воды в пластинчатых стальных радиаторах, но их применить нельзя в данном случае, ввиду особой неподходящей системы отопления.

Гость  
  • Пожаловаться на это сообщение
  • Ответить с цитатой

Бибикин Иван » 24 май 2012, 07:51

Считайте все как в предыдущем посте, только еще могу добавить, что у каждой чугунной батареи внутренний объем все-такие отличается. Лучше принимать с запасом. Это связано с различной технологией изготовления на различных заводах. Где то объем получается больше, где то меньше, но в среднем можно принимать его равным 1.4-1.6л.

Мы переезжаем жить на необитаемый остров! С нами?! - https://www.neobitaemyi.ru/

Бибикин Иван   Сообщения: 1664Зарегистрирован: 16 май 2012, 14:10Откуда: Москва
  • Пожаловаться на это сообщение
  • Ответить с цитатой

Oscar » 25 ноя 2012, 20:50

Выкладываю еще раз таблицу емкости и тепловой мощности некоторых приборов.Подсчет емкости системы нужен в первую очередь для определения емкости дополнительного расширительного бака, в закрытую систему он необходим примерно в 10% от емкости всей системы (больше можно, меньше - нет), а также для корректировки мощности котла при расчете теплопотерь.

Вложения объем воды.jpg (59.26 Кб) Просмотров: 25116

Тема поднималась пользователем Anonymous 25 ноя 2012, 20:50.

Oscar   Сообщения: 316Зарегистрирован: 16 авг 2012, 18:52

Вернуться в Радиаторы отопления

Кто сейчас на конференции

Зарегистрированные пользователи: нет зарегистрированных пользователей

koborudovanie.ru

Какой объем воды в чугунном радиаторе отопления?

Все типы радиаторов отопления - биметаллические, чугунные, алюминиевые, стальные

  • Пожаловаться на это сообщение
  • Ответить с цитатой

Гость » 10 май 2012, 10:30

Доброго времени суток. Говорят, что лучше применять радиаторы с малым количеством теплоносителя в батареи, так как это эффективнее и лучше. Но малое количество только в непривычных радиаторах, типа стальных пластинчатых. Я бы хотел использовать в новом доме обычные чугунные батареи, они проверены временем и подходят под наши системы. Для расчета нужно полное количество заливаемого теплоносителя, так как планируется использовать антифриз. Каков внутренний объем чугунного радиатора отопления?

Гость  
  • Пожаловаться на это сообщение
  • Ответить с цитатой

Бибикин Иван » 24 май 2012, 08:05

Радиаторы с самым небольшим количеством циркулирующей воды внутри - это вакуумные. В них чуть менее 2-х стаканов содержится. Но почему то такие не получили широкого распространения, наверное потому, что в случае аварии они не смогут долго продолжать нагревать помещение, а пока аварию устранят пройдет не один час, в то время пока зимой может быть и -35С.

Мы переезжаем жить на необитаемый остров! С нами?! - https://www.neobitaemyi.ru/

Бибикин Иван   Сообщения: 1664Зарегистрирован: 16 май 2012, 14:10Откуда: Москва
  • Пожаловаться на это сообщение
  • Ответить с цитатой

Oscar » 22 авг 2012, 15:19

Подходят под наши системы. Логично. Чугун подходит под чугун . Малоемкие радиаторы типа стальных панельных, алюминиевых и биметаллических подходят под использование с настенными одно- и двухконтурными котлами, особенно в паре с выносным температурным датчиком. А чугунные батареи с их высокой инерционностью, подходят под напольные котлы, особенно при работе на естественной циркуляции. Емкость чугуняки от 1,3 до 1,8 литра, в зависимости от модели. Oscar   Сообщения: 316Зарегистрирован: 16 авг 2012, 18:52
  • Пожаловаться на это сообщение
  • Ответить с цитатой

Serg_i_K » 25 ноя 2012, 20:04

Все уже давно придумано до нас . Смотрите таблицу, помимо объема воды в трубах различного диаметра, присутствует и мощность некоторых популярных типов радиаторов. Вложения объем воды.jpg (59.26 Кб) Просмотров: 25741

Тема поднималась пользователем Anonymous 25 ноя 2012, 20:04.

Строительные материалы, инструменты, полный набор, комплектация объектов, доставка - Лунинец, район, тел. Velcom (029) 6484008, МТС (033) 6806008, Личное Сообщение.

Serg_i_K   Сообщения: 575Зарегистрирован: 29 июл 2012, 17:48Откуда: Гомель, Лунинец

Вернуться в Радиаторы отопления

Кто сейчас на конференции

Зарегистрированные пользователи: нет зарегистрированных пользователей

koborudovanie.ru

Как посчитать, сколько воды в стальном радиаторе KORADO, SANICA

 И неважно, проводите вы установку или полную реконструкцию системы, провести некие расчеты просто необходимо.Каждому  желающему купить бойлер, нужно знать, какого объема бак отопительного устройства будет целесообразным?

Общий объем бака отопительного оборудования сумма объемов каждого составляющего системы.

Расчет для панельного радиатора из стали:

•          Тип 11  требует на  10 см самого устройства по 0,25 л жидкости.

•          Тип 22 – на 10 см радиатора приходится  0,5 л жидкости.

Секционные радиаторы

Все радиаторы классифицируют следующим образом:

•          Оборудование из стали, на секцию припадает в среднем 0,45-0,5 л.

•          Биметаллический вариант, на секцию приходится 0,3-0, 35 л жидкости.

•          Для чугунных моделей радиаторов на секцию припадает около 1 л -  в новых моделях, которые буквально только что появились на рынке, и до 2 л - в старых версиях радиаторов.

Как видите, сделать самостоятельно выбор, а затем подсчитать нужные параметры – сложное задание, решением которого должен человек, который в этом разбираются.

с уважением, технология.com.ua

xn--c1adkkjgb1a2a0i.com.ua

Теплоотдача алюминиевых радиаторов: подробный расчет

Правильно рассчитав теплоотдачу с учетом всех факторов, оказывающих на нее влияние, можно обеспечить нужную температуру помещения и правильную циркуляцию воздуха, которая положительно отразится на настроении и здоровье, находящихся в ней людей.

От чего зависит теплоотдача алюминиевого радиатора

Виды алюминиевых радиаторов:

  • Стальные – у них низкие технические характеристики, почти уже не представлены на современном рынке и не пользуются спросом. 
  • Чугунные по-прежнему высоко оценивают по критериям надежности. Долговечны, многие новые модели эстетично представлены с элементами художественного литья. Такие батареи впишутся в любой дизайн, нет необходимости скрывать их неэстетический вид за экранами.
  • Алюминиевые – на данный момент самый востребованный вид по техническим характеристикам и ценовой доступности. Отличаются высокой эффективностью и имеют ряд преимуществ.
  • Биметаллические – новое поколение, появились совсем недавно, но уже активно пользуются потребительским спросом. Благодаря качеству и составу из двух металлов являются самыми мощными по эффективности.

Не стоит выбирать батарею только по параметрам тепловой мощности. В различных теплосетях показатели рабочего давления будут отличаться, в частных домах давление хладагента около — 2-3 Бар, в квартирах при централизованной системе составляет 5-15 Бар и разнится от этажности. 

Скачки давления системы отопления могут повредить неправильно выбранный радиатор, поэтому сравнение стоит провести с учетом прочности отопительного устройства. 

Важные характеристики, учитываемые при подборе:

  • Мощность при выработке тепла;
  • Допустимые параметры давления;
  • Внутренний объем емкости радиатора;
  • Масса батареи.

Вес радиатора и объем емкости должны учитываться при установке в частных домах. Зная количество воды, проходящее через систему отопления, легко произвести расчет расхода тепловой энергии во время нагревания. 

Масса прибора повлияет на выбор крепежа и способа его крепления к стене. В зависимости от материала, из которого она сделана. Например, если стена выполнена из шлакоблоков или бетона, а масса батареи из-за количества секций большая, то и крюк должен быть в состоянии удержать ее вес. 

Достоинства алюминиевых радиаторов:

  • большая площадь изделия, обеспечивающая лучший теплообмен;
  • небольшая масса и легкий вес;
  • высокая теплоотдача;
  • соперничают по прочности со стальными и чугунными батареями;
  • не нуждаются в покраске и соответствуют современному дизайну интерьеров;
  • быстро нагреваются, чем существенно экономят топливо.

Производят батареи из алюминия с помощью литья каждой секции и, как заявляет производитель, выдерживают давление в 15-20 атмосфер. Радиаторы со склеенными в процессе производства секциями — экструдированные — выдерживают нагрузку до 40 атмосфер, но не отличаются прочностью, особенно в местах присоединения.

Секций можно добавить любое количество, они легко присоединяются, но при центральной системе отопления не стоит формировать слишком сложные конструкции. 

Теплоотдача одной секции способна отапливать 1,2 куб. м пространства –  примерно 120 Вт при температуре 45-50 °C. Сэкономить на электроэнергии позволяет наличие регулятора теплопотока, который изначально предусмотрен в комплектации производителя.

При монтаже не допускается использование медных или стальных комплектующих и труб, это может спровоцировать коррозию. 

Увеличить КПД уже смонтированы батарей можно с простых методов — прочистки или перекраски батарей в темные цвета. До 25 процентов увеличит теплоотдачу установка экрана позади радиатора, можно приобрести готовый вариант экрана или же воспользоваться фольгой.

Еще один эффективный вариант — изготовление металлического кожуха, который будет отдавать тепло, полученное при нагреве, даже с уже выключенным отоплением. Мощность батарей можно увеличить, добавив количество секций, результат – повышение теплоотдачи минимум на 10 процентов.

При всех этих положительных параметрах и высоком качестве у алюминиевых батарей низкая цена, что обуславливает положительные отзывы и спрос среди потребителей.

Расчет теплоотдачи радиатора из алюминия

Для расчета теплоотдачи нужно узнать необходимую мощность для обогрева помещения. Затраченное тепло определяют: размер тепла на обогрев 1 м3 помещения составляет 35-40 Вт/м3 это значение умножается на охват помещения.

Внимание! Расчеты приблизительные и служат для примерного ориентирования при выборе радиатора из алюминия.

При расчете используются, указанные в техпаспорте радиатора из алюминия, параметры для расчета теплоотдачи для 1 секции: если фактическая мощность секции при DT = 70, то при температуре помещения 19-20ºС вырабатывается тепло при внутренней температуре батареи 110 ºС, а в обратке 70 ºС. 

Ориентируясь на эти данные, видно, что теплоотдача одной секции алюминиевого радиатора с межосевым размером 500 мм и прежней температуре – 200 Вт. Температуры такого уровня обычно не используются, из-за этого мощность отдачи будет меньше.

Аналогичен расчет теплоотдачи алюминиевых радиаторов с межосевым размером 350 мм на квадратный метр помещения.

Узнать приближенное к реальному значение теплового поток можно, посчитав DT:

DT = ((Тº поступающей воды + Тº в обратке) / 2) – Тº комнаты

Число, полученное в результате формулы расчета показателей теплоотдачи алюминиевых радиаторов отопления, умножается на коэффициент, приведенный в таблице ниже.

Следуя формуле, где температура помещения 18 ºС, добавив данные теплоносителя, решение будет ((70 + 60) / 2) – 18 = 49,5. Где результат умножается на поправочный коэффициент 0,65, умножаемый на тепловой поток 204 х 0.65 = 132.6 Вт. По данному результату собирается необходимое количество секций. 

Недостатки алюминиевых радиаторов

Ограничения к материалу, с которым могут соединяться алюминиевые радиаторы, требовательность к компонентам теплоносителя и однотипность в размерах — их главные недостатки. Проблемы, связанные с возникновением коррозии, можно предотвратить применением оксидной пленки и обработке противокоррозиными агентами во время установки.

Этот вид батарей плохо переносит гидроудары центральной отопительной системы, поэтому рекомендуется к установке в частных домах, а не квартирах.

Чтобы не ошибиться с выбором отопительной системы, стоит воспользоваться консультацией специалиста или нашими примерами расчетов и таблицей. 

У алюминиевых батарей много положительных качеств, а также ряд недостатков. Спрос к ним не угасает, благодаря цене и высокому уровню теплоотдачи. При покупке стоит отдать предпочтении отечественным производителям, они учитывают при производстве качество воды, которая повлияет на срок эксплуатации.  

На нашем сайте представлен большой выбор качественных алюминиевых радиаторов, посмотрите!

Правила расчета количества секций алюминиевого радиатора отопления

Что такое алюминиевый радиатор

Строго говоря, алюминиевый радиатор бывает двух типов:

  • собственно, алюминиевые;
  • биметаллические, из стали и алюминия.

Конструктивно такой радиатор представляет собой трубу, собранную в подобие гармошки, по которой течет горячая вода. К трубе присоединены плоские элементы, которые нагреваются теплоносителем и нагревают воздух в помещении.

Описание преимуществ и недостатков каждого типа радиаторов выходит за рамки настоящей статьи, однако можно указать на несколько немаловажных факторов. В отличие от традиционных чугунных, алюминиевые батареи отапливают в первую очередь за счет конвекции: нагретый воздух устремляется вверх, а его место занимает свежая порция холодного. За счет этого процесса получается нагреть помещение гораздо быстрее.

К этому стоит добавить небольшой вес и легкость монтажа алюминиевых изделий, а также их относительную дешевизну.

Сущность метода

Сам метод заключается в подборе оптимального радиатора, который будет обладать достаточной мощностью, чтобы прогреть помещение. Для этого необходимо лишь знать указанную в паспорте заводом-изготовителем теплоту, выдаваемую одной секцией.

Расчет по квадратам

Согласно санитарным нормам, для обогрева одного квадратного метра жилого дома требуется 100 Вт тепловой энергии. Соответственно, для того, чтобы узнать, сколько необходимо секций алюминиевого радиатора, нужно умножить площадь помещения на это значение – таким образом, можно узнать, сколько тепла в ваттах нужно для отопления всего дома или квартиры. После этого результат делят на производительность одной секции и округляют итог в большую сторону.

Формула для расчета алюминиевых секций по квадратным метрам:

N = (100 * S)/Qc, где

  • N – необходимое количество секций, шт;
  • 100 – требуемая теплота для обогрева 1 м2;
  • S – площадь помещения в м2, которую находят умножением длины комнаты на ее ширину;
  • Qс – производительность, выдаваемая одной секции радиатора.

К примеру, дана комната размерами 3,5 х 4 м. Ее площадь будет составлять S = 3,5 * 4 = 14 м2. Стандартная теплоотдача одной секции из алюминия – 190 Вт. Таким образом, чтобы обогреть это помещение, необходимо:

N = (100 * 14) / 190 = 7,34 ≈ 8 секций.

Основной недостаток расчета количества секций алюминиевого радиатора отопления на квадраты – он не учитывает высоту комнаты, так как рассчитан на стандартную высоту 2,7 м. Его результат будет близок к истине в типовых панельных домах, но не подойдет для частных домов или нестандартных квартир.

Расчет по кубам

Чтобы в какой-то мере восполнить существенный пробел предыдущего способа вычисления, разработан метод подбора секций по объему помещения. Чтобы его вычислить, достаточно умножить площадь комнаты на ее высоту.

Для обогрева 1 м3 панельного дома согласно все тех же норм, необходимо затратить 41 Вт тепловой энергии (для кирпичного – 35 Вт). Формула несколько видоизменяется по сравнению с приведенной выше:

N = (41*V)/Qc, где

  • V – объем помещения.

Чтобы сравнить оба метода, возьмем ту же комнату с высотой потолков 2,7 м, количество теплоты, выделяемое одной секцией, остается тем же:

N = (41 * 14 * 2,7) / 190 = 8,156 ≈ 9 секций.

Что касается расчета количества секций алюминиевого радиатора отопления в кирпичном доме, то для этого достаточно изменить в формуле значение норматива с 41 Вт на 35 Вт.

Как видно, разные методы для одного помещения дают разные результаты. Они будут разниться тем больше, чем обширнее комната. Кроме того, они не учитывают множество существенных моментов: климат, расположение относительно солнца, способ подключения и тепловые потери.

Чтобы максимально точно узнать, сколько же нужно секций для обогрева, необходимо ввести поправочные коэффициенты, которые и будут описывать эти нюансы.

Уточненный расчет

Формула для этого метода берется, как для расчета по квадратам, но с дополнениями:

N = (100 * S *R1 * R2 * R3 * R4 * R5 * R6 * R7 *R8 * R9 * R10)/Qc

  • R1 – количество наружных стен, то есть те, за которыми уже улица. Для обычной комнаты она будет 1, с торца здания – 2, а для частного дома из одной комнаты – 4. Коэффициент для каждого случая можно узнать из таблицы:

Количество наружных стен

Значение К1

1

1

2

1,2

3

1,3

4

1,4

  • R2 учитывает, на какую сторону выходят окна. И хотя для южного и северного направления они разные, принято принимать его значение равным 1,05.
  • R3 описывает, как тепло теряется через стены. Чем больше этот коэффициент, тем быстрее остывает дом. Если стены утеплены, его берут равным 0,85, стандартные стены толщиной в два кирпича – 1, а для неутепленных стен – 1,27.
  • R4 зависит от климатической зоны, точнее, от минимальной отрицательной температуры зимой.

Минимальная температура зимой, 0С

Значение R4

-35

1,5

-25 до -35

1,3

- 20 и меньше

1,1

-15 и менее

0,9

-10 и менее

0,7

  • R5 зависит от высоты помещения.

Высота потолка, м

Значение R5

2,7

1,0

2,8 – 3,0

1,05

3,1 – 3,5

1,1

3,6 – 4,0

1,15

Больше 4,0

1,2

  • R6 учитывает потери тепла через крышу. Если это частный дом с неотапливаемым чердаком, то он равен 1,0, если утеплен, то 0,9. В случае, если сверху находится отапливаемая комната, то R5 принимают равным 0,7.
  • Тепло уходит из комнаты и через окна, для учета этого немаловажного фактора и существует R7. Самые ненадежные с этой точки зрения – деревянные, и в этом случае коэффициент будет равным 1,27. Далее следуют пластиковые окна с одинарным стеклопакетом – 1,0, а замыкают с двойным стеклопакетом – 1,27.
  • Тепло уходит через окна тем сильнее, чем они больше. Именно этот фактор и учитывает коэффициент R8. Чтобы его узнать, необходимо вычислить общую площадь поверхности окон в комнате и разделить полученный результат на площадь помещения. Далее можно свериться с таблицей.

Площадь окон / площадь комнаты

Значение R8

Меньше 0,1

0,8

0,11 – 0,2

0,9

0,21 – 0,3

1,0

0,31 – 0,4

1,1

0,41 – 0,5

1,2

  • С тепловыми потерями на этом закончено. Осталось учесть планируемую схему подключения радиатора через коэффициент R9. Говоря иными словами, теплоотдача алюминиевой батареи будет зависеть от того, как именно через него будет проходить горячая вода.

Диагональная схема подключения самая эффективная, для нее коэффициент R9 принимает значение 1,0

 

Боковая схема подключения чуть хуже по тепловой отдаче, поэтому в этом случае R9 будет 1,03

 

При нижней схеме подключения теплоотдача будет происходить гораздо хуже, в связи с чем здесь коэффициент R9 равен 1,13

 

  •  R10 учитывает эффективность процесса конвекции. Чем больше препятствий воздуху на его пути к радиатору и от радиатора, тем медленнее будет происходить нагрев помещения. Если батарея ничем не закрыта, то он равен 0,9. Наглухо закрытая батарея дает значение R10 1,2, если же есть подоконник и панель сверху – 1,12.

Понятие теплового напора

Когда вычислен точный объем тепла, необходимый для обогрева, нелишне будет обратить более пристально внимание на заявленную мощность секции.

Дело в том, что заводы, как правило, указывают максимальное значение этого показателя при разности температур горячей воды и воздуха помещения в 70 0С. Если желаемая температура в доме – около 25 0С, то поступающая горячая вода должна быть разогрета до 100 0С.

Естественно, что в большинстве тепловых сетей максимальная температура теплоносителя составляет около 65 – 75 0С, что подводит к закономерному вопросу: какова будет выдаваемое одной секцией количество теплоты в данных условиях?

К счастью, есть специальная таблица, благодаря которой можно легко ответить на этот вопрос. Достаточно умножить коэффициент из соответствующей строчки на тепловую производительность секции, указанной в паспорте радиатора отопления.

Тепловой напор, 0С

Поправочный коэффициент

Тепловой напор, 0С

Поправочный коэффициент

Тепловой напор, 0С

Поправочный коэффициент

40

0,48

52

0,68

64

0,89

41

0,50

0,70

65

0,91

42

0,51

54

0,71

66

0,9З

0,5З

55

0,8З

67

0,94

44

0,55

56

0,75

68

0,96

45

0,56

57

0,77

69

0,98

46

0,58

58

0,78

70

1,0

47

0,60

59

0,80

71

1,02

48

0,61

60

0,82

72

1,04

49

0,6З

61

0,84

1,06

50

0,65

62

0,85

74

1,07

51

0,66

0,87

75

1,09

Как становится понятно, расчет количества секций алюминиевых радиаторов отопления в деревянном или блочном доме разнится несильно, главное вооружиться карандашом и калькулятором. Остальное – чистая математика.

В нашем интернет-магазине большой выбор алюминиевых радиаторов ведущих производителей, посмотрите!

Алюминиевый воздушный аккумулятор - Институт чистой энергии

Схема многоячеечной сваи с использованием медной фольги на пенополистироле, который используется в качестве изолятора между слоями.

Обзор:

Студенты строят первичную ячейку из алюминиевой фольги, соленой воды и медной проволоки.

PDF

Основной вопрос:

Как мы можем собирать электроны из металла, когда он окисляется, чтобы производить полезную электрическую энергию?

Фон:

В этой батарее используется окисление алюминия на аноде и восстановление кислорода на катоде с образованием гальванического элемента.В этом процессе алюминий полностью расходуется на производство гидроксида алюминия. Металлический воздушный аккумулятор имеет очень привлекательную плотность энергии, поскольку часть реагентов поступает из воздуха. Они были разработаны для источников питания дальнего действия для электромобилей. Например, перезаряжаемые литий-ионные батареи можно использовать в городе, а алюминиевые воздушные батареи - на расстояние 1000 миль. Затем аккумулятор заменяют, и гидроксид алюминия повторно обрабатывают для получения восстановленного металлического алюминия.В некотором смысле энергия для этой батареи поступает от электричества, потребляемого в процессе рафинирования алюминия.

Полуреакция анодного окисления: Al + 3OH - → Al (OH) 3 + 3e - −2,31 В.

Модель ячейки-мешочка имеет слои, состоящие из алюминия, войлока с углем, медной ленты и изолятора, сделанного из пищевых лотков из пенополистирола.


Набор модельных монетных ячеек состоит из небольших чашек Петри с алюминиевыми и медными проводниками вокруг угольного анода.

Полуреакция катодного восстановления составляет O 2 + 2H 2 O + 4e - → 4OH - +0,40 В.

Вычисленное уравнение: 4Al + 3O 2 + 6H 2 O → 4Al (OH) 3 + 2.71 V.

(Реакция улучшается, если она проводится в щелочном растворе, который поставляет избыточные ионы OH - . С электролитом гидроксида калия 1,2 В получается с солью 0,7 В на элемент. Будьте очень осторожны, экспериментируя с электролитами KOH или NaOH, использовать перчатки и защитные очки)

Исследования связи:

Исследователи пытаются найти новый химический состав батарей, в которых используются материалы с большим содержанием земли, которые безопасны и надежны, а также имеют высокую плотность энергии.Хотя этот элемент не является перезаряжаемым, он может сыграть роль в электромобилях.

Стандарты NGSS:

HS-PS3-3. Спроектируйте, создайте и доработайте устройство, которое работает с заданными ограничениями для преобразования одной формы энергии в другую.
МС-ПС1-2 Анализируйте и интерпретируйте данные о свойствах веществ до и после взаимодействия веществ, чтобы определить, произошла ли химическая реакция.

Классы: 7-12

Время: 1 час

Материалы:

  • Лист алюминиевый - пластина для пирога или фольга
  • Бумажное полотенце или акварель
  • Древесный уголь Брикет или активированный уголь, измельченный до порошка
  • .Лента из медной фольги 5 ”с токопроводящим клеем
  • Соленая вода (насыщенная) с небольшим содержанием карбоната натрия (стиральная сода)
  • Контейнер из пенопласта
  • Клипсы

Процедура:

Конструкция ячейки с чашкой

Отдельные алюминиевые ячейки помещаются в старые флаконы для таблеток и соединяются последовательно.

В этом формате используются алюминиевые ячейки в форме рулона, которые размещаются в отдельных чашках с резервуарами для электролита. Электролит попадает в уголь в центре и медленно испаряется, позволяя воздуху проникать внутрь.

  1. Вырежьте квадрат 6 дюймов из алюминиевой фольги, пластины или алюминиевой банки. Отшлифуйте банку, чтобы удалить краску и пластиковый барьер с внутренней стороны.
  2. Положите алюминий на мягкую поверхность и проделайте в нем отверстия, чтобы воздух мог проникнуть внутрь.
  3. Добавьте 6-дюймовый квадрат бумажного полотенца поверх алюминия.
  4. Добавьте насыпь молотого брикета или активированного угля толщиной ½ дюйма примерно по консистенции кукурузной муки. Вы можете обернуть уголь бумагой и растолочь молотком, чтобы разбить комочки.
  5. Поместите медную полоску в центр насыпи так, чтобы она не касалась дна и выступала на 2 дюйма сверху.
  6. Сложите бумажное полотенце поверх стопки угля внизу, чтобы она не выпала позже.
  7. Оберните алюминий так, чтобы медный электрод находился в центре насыпи древесного угля и не касался алюминия. Свяжите трубку крутым галстуком или куском проволоки. Верх трубки должен быть открыт с оголенными углем и медной проволокой.
  8. Поместите аккумулятор в пластиковый стаканчик.
  9. Залейте насыщенный солевой электролит в угольную сердцевину до тех пор, пока у вас не останется около 1 дюйма на дне чашки.
  10. Подключите зажимы к центральному медному проводу и к верхней части алюминиевой трубки, а затем к электросчетчику.
  11. Соедините несколько чашеобразных ячеек вместе, проведя медный вывод одного с алюминиевым выводом другого. Измерьте напряжение на конце цепи при вставке каждой ячейки. Когда вы достигнете 2-3 вольт, вы сможете зажечь светодиод.

Учителя Института лидерства в возобновляемых источниках энергии в Пьюджет-Саунд создают алюминиевые воздушные батареи.Фото Бонневильского экологического фонда

Тонкая батарея сэндвич-конструкции

Этот формат больше похож на батарею, но его сложнее собрать и он не проработает так долго, потому что высыхает электролит. Он предлагает несколько интересных задач проектирования, чтобы рассмотреть, как сделать технологию практичной.

  1. Вырежьте квадраты пенопласта размером 1 дюйм из противней для мяса, алюминиевой фольги, пластин или алюминиевых банок, которые были отшлифованы. Поместите алюминиевый квадрат поверх квадрата из пенопласта.
  2. Отрежьте полоску из медной фольги или ленты длиной 1,4 x 5 дюймов. Оберните его вокруг квадрата из пенополистирола так, чтобы липкая сторона охватывала нижнюю часть пенополистирола и соприкасалась с краем алюминиевого квадрата наверху
  3. Отрежьте фильтровальную бумагу или бумажное полотенце толщиной 1 дюйм и поместите это в середину алюминиевого квадрата, стараясь не выступать за край.
  4. Измельчите древесный уголь, чтобы получить порошок среднего размера, например кукурузную муку. Посыпьте бумажное полотенце тонким слоем.Это составляет одну ячейку, которая должна производить около 0,7 вольт с соленым электролитом.
  5. Сгруппируйте несколько ячеек вместе. На дне воды есть длинная алюминиевая полоса, которая выступает в качестве контакта. Сверху есть квадрат из пенопласта и длинная медная полоска в качестве проводника. Аккуратно свяжите стопку резинкой.
  6. Подсоедините медную фольгу вверху и алюминиевую фольгу внизу с помощью зажимов к светодиоду и / или электросчетчику. Смочите открытые бумажные полотенца на каждой ячейке раствором солевого электролита до тех пор, пока он не перестанет впитывать больше.

Первое испытание = алюминиевая фольга, бумажное полотенце, уголь, медь и электролит из соленой воды. Кредит: BEF

.

Вопросы проектирования для изучения

  • Какого напряжения и силы тока вы можете достичь?
  • Какое минимальное напряжение требуется для зажигания светодиода?
  • Как можно увеличить доступность кислорода к клетке?
  • Есть ли предел последовательного напряжения, которого может достичь цепь этих батарей?
  • Как pH и концентрация раствора электролита влияют на ток?
  • Можно ли «разбудить» клетку через несколько дней, если она перестает производить?
  • Каковы преимущества использования проточного или циркулирующего электролита?

Ресурсы

      1. Википедия http: // en.wikipedia.org/wiki/Aluminium%E2%80%93air_battery
      2. Открытый проект: создание высокопроизводительной, но простой бытовой аккумуляторной батареи
        • Пинг И. Фурлан, Томас Крупа, Хумза Накив и Кайл Андерсон
        • Журнал химического образования 2013 90 (10), 1341-1345
      1. Содействие инновациям посредством активного обучения, вдохновленного Багдадской батареей
        • Сюй Лу и Франклин Анариба
        • Журнал химического образования 2014 91 (11), 1929-1933
      2. Алюминий-Воздушный аккумулятор
        • Модесто Тамес и Джули Х.Yu
        • Журнал химического образования 2007 84 (12), 1936A
      3. Батарея Phinergy с Arconic
        • https://www.arconic.com/global/en/what-we-do/aluminium-air-battery.asp

    Вы также можете поэкспериментировать с другими типами электрохимических ячеек, используя в качестве электролитов различные металлы и бытовую химию.

    Ячейка электрохимическая

    Аккумулятор от бытовой химии (дисплей)


    Дополнительные уроки чистой энергии

Алюминиево-воздушная батарея: химия и электричество

Батареи преобразуют химическую энергию в электрическую.У них есть два электрода, называемые катодом и анодом, где протекают химические реакции, в которых либо используются, либо производятся электроны. Электроды соединены раствором, называемым электролитом, через который ионы могут перемещаться, замыкая электрическую цепь. В этой деятельности соль обеспечивает ионы, которые могут перемещаться через влажное бумажное полотенце и передавать заряд.

Для выработки электроэнергии эта батарея использует окисление алюминия на аноде, которое высвобождает электроны, и восстановление кислорода на катоде, которое использует электроны.Движение электронов по внешней цепи генерирует электрический ток, который можно использовать для питания простых устройств. Схема батареи и уравнения для половинных и общих реакций приведены ниже:

Уравнения для половинных и общих реакций:

анод: Al (тв.) + 3OH - (водн.) → Al (OH) 3 (т.) + 3e -
катод: O 2 (г) + 2H 2 O (л) + 4e - → 4OH - (водн.)
общий: 4Al (т) + 3O 2 (г) + 6H 2 O (л) → 4Al (OH) 3 (т)

Алюминиевая фольга обеспечивает доступный запас алюминия.Активированный уголь, который в основном состоит из угля, может проводить электричество и не реагирует. Он обеспечивает высокопористую поверхность, подверженную воздействию кислорода воздуха. У одного грамма активированного угля может быть больше внутренней поверхности, чем у всей баскетбольной площадки! Эта поверхность обеспечивает большое количество мест, с которыми кислород может связываться и участвовать в катодной реакции.

Эта большая реакционная зона позволяет простой алюминиево-воздушной батарее генерировать 1 вольт (1 В) и 100 миллиампер (100 мА).Этой мощности достаточно для работы небольшого электрического устройства, а также обеспечивает безопасный и простой способ сделать мощную батарею дома или в школе.

Al-H2O алюминиево-водно-энергетические модули | L3Harris ™ Fast. Вперед.

L3Harris разработал новую технологию производства энергии алюминий-вода (Al-H2O) для подводной энергетики. Электрохимическая система, изобретенная и запатентованная нашими основателями в Массачусетском технологическом институте, обеспечивает безопасное, масштабируемое и нетоксичное накопление энергии с чрезвычайно высокой плотностью энергии, обещая увеличение в 2-10 раз долговечности беспилотных подводных аппаратов (БПА) и датчиков, навигации, мощности и т. Д. или узлы связи, работающие на морском дне или в толще воды.Эти системы идеальны для обеспечения морских беспилотных систем выносливостью и мощностью для выполнения «грязных, унылых и опасных» задач, таких как разминирование или обследование трубопроводов, тем самым защищая человеческие жизни и сводя к минимуму затраты на обслуживание, обслуживание и рабочую силу. связанные с эксплуатацией судов, самолетов или других дорогостоящих активов.

На графике показаны плотности энергии Al-H2O L3Harris на уровне системы в сравнении с различными технологиями накопления энергии для использования на море. На рисунке показаны два распространенных сценария проектирования подводных систем: где требуется нейтральная плавучесть (например,g., в БПА), а там, где его нет (например, датчики и системы океанического дна). Плотности энергии на уровне системы нейтрально плавучих систем L3Harris помогает их способность использовать водород, побочный продукт наших элементов, в качестве среды компенсации плавучести ».

Энергетические модули

конкурентоспособны по стоимости с альтернативными химическими модулями энергии с аналогичными плотностями энергии и использовать простую конструкцию с небольшим количеством движущихся частей, масштабируемую и модульную для соответствия требованиям миссии и форме факторы многих клиентов с минимальной настройкой.

Недорогая перезаряжаемая алюминий-ионная батарея без дендритов с превосходными характеристиками

Водные алюминиево-ионные аккумуляторные батареи (AAIB) привлекли большое внимание из-за их высокой теоретической емкости, высокой объемной плотности энергии и низкой цены. Однако не так много полных водных аккумуляторов было успешно разработано из-за низкого стандартного восстановительного потенциала Al 3+ (-1,68 В по сравнению со стандартным водородным электродом , ниже, чем H + ) в водных растворах. .В этом исследовании мы выделяем недорогой водный электролит «вода в соли» (AlCl 3 · 6H 2 O), который может расширить окно электрохимической стабильности AAIB примерно до 4 В. Мы предлагаем полностью алюминиево-ионный аккумулятор (AIB), использующий такой водный электролит. Его емкость достигла 165 мА ч. -1 при 500 мА г -1 (3C), и он продемонстрировал кулоновский КПД более 95% последовательно в течение 1000 циклов. Кроме того, разработанная нами водно-ионная аккумуляторная батарея является недорогой (стоимость электролита составляет примерно 2% от стоимости традиционного электролита для алюминиево-ионных аккумуляторов) и не содержит дендритов в отрицательном электроде на протяжении всех испытаний.

У вас есть доступ к этой статье

Подождите, пока мы загрузим ваш контент... Что-то пошло не так. Попробуй еще раз?

«пьющих» морскую воду батарей для подводных аппаратов дальнего действия | MIT News

Дроны большого радиуса действия помогают им выполнять важные задачи в небе.Сейчас дочернее предприятие MIT Open Water Power (OWP) нацелено на значительное расширение ассортимента беспилотных подводных аппаратов (БПА), помогая им лучше работать в ряде приложений под водой.

Недавно приобретенная крупной технологической фирмой L3 Technologies, OWP разработала новую систему питания алюминий-вода, которая более безопасна и долговечна, и которая дает БПА десятикратное увеличение дальности действия по сравнению с традиционными литий-ионными батареями, используемыми для тех же приложений.

Энергосистемы могут найти широкий спектр применений, в том числе помогать БПА глубже и на более длительные периоды времени погружаться в пучину океана для исследования обломков кораблей, картографирования дна океана и проведения исследований.Они также могут быть использованы для дальних поисков нефти в море и в различных военных целях.

С приобретением OWP теперь стремится ускорить разработку своих энергетических систем не только для БПА, но и для различных систем мониторинга дна океана, систем гидролокаторов и других устройств для морских исследований.

OWP в настоящее время работает с ВМС США над заменой батарей в акустических датчиках, предназначенных для обнаружения подводных лодок противника. Этим летом стартап запустит пилотную версию Riptide Autonomous Solutions, которая будет использовать БПА для подводных съемок.В настоящее время UUV Riptide преодолевают примерно 100 морских миль за один проход, но компания надеется, что OWP сможет увеличить это расстояние до 1000 морских миль.

«Все, что люди хотят делать под водой, должно стать намного проще», - говорит соавтор Иэн Сэлмон Маккей '12, SM '13, который стал соучредителем OWP вместе с коллегой, выпускником факультета машиностроения Томасом Милнсом, PhD '13 и Руаридом Макдональдом '12. , SM '14, который в этом году получит докторскую степень в области ядерной техники. «Мы отправляемся покорять океаны».

«Питьевая» морская вода для выработки энергии

В большинстве БПА используются литиевые батареи, с которыми возникает несколько проблем.Во-первых, они, как известно, воспламеняются, поэтому батареи размера UUV, как правило, не могут быть доставлены по воздуху. Кроме того, их плотность энергии ограничена, что означает, что дорогостоящие сервисные суда сопровождают БПА в море, подзаряжая батареи по мере необходимости. А батареи нужно помещать в дорогостоящие металлические сосуды под давлением. Короче говоря, они довольно недолговечные и небезопасные.

Напротив, энергосистема OWP безопаснее, дешевле и долговечнее. Он состоит из легированного алюминия, катода, легированного комбинацией элементов (в первую очередь никеля), и щелочного электролита, расположенного между электродами.

Когда НПА, оборудованный системой питания, помещается в океан, морская вода втягивается в батарею и разделяется на катоде на гидроксид-анионы и газообразный водород. Анионы гидроксида взаимодействуют с алюминиевым анодом, создавая гидроксид алюминия и высвобождая электроны. Эти электроны возвращаются к катоду, отдавая энергию цепи по пути, чтобы начать цикл заново. И гидроксид алюминия, и газообразный водород выбрасываются как безвредные отходы.

Компоненты активируются только при заливке водой.Как только алюминиевый анод подвергнется коррозии, его можно будет заменить с небольшими затратами.

Думайте о системе питания как о подводном двигателе, где вода является окислителем, питающим химические реакции, а не воздухом, используемым автомобильными двигателями, говорит Маккей. «Наша энергосистема может пить морскую воду и выбрасывать отходы», - говорит он. «Но этот выхлоп не вреден по сравнению с выхлопом наземных двигателей».

Благодаря системе питания на основе алюминия, БПА могут запускаться с берега и не нуждаются в служебных судах, что открывает новые возможности и снижает затраты.При разведке нефти, например, НПА, которые в настоящее время используются для разведки в Мексиканском заливе, должны прилегать к берегу, охватывая лишь несколько трубопроводных объектов. Беспилотные летательные аппараты с приводом от OWP могут преодолеть сотни миль и вернуться, прежде чем потребуется новая энергосистема, охватывающая все доступные активы трубопроводов.

Рассмотрим также авиакатастрофу Malaysian Airlines в 2014 году, когда БПА были задействованы для поиска участков, недоступных для оборудования на других судах, говорит Маккей. «При поиске обломков значительная часть бюджета мощности для подобных миссий используется для спуска на глубину и подъема обратно на поверхность, поэтому время их работы на морском дне очень ограничено», - говорит он.«Наша энергосистема улучшит это».

Разработка дизайна

Технология OWP началась как побочный проект соучредителей, который был модифицирован в двух классах MIT и лаборатории. В 2011 году Маккей присоединился к 2.013 / 2.014 (Проектирование / разработка инженерных систем), преподаваемому профессором машиностроения Массачусетского технологического института Дугласом Хартом, опытным предпринимателем в области аппаратного обеспечения, который стал соучредителем компаний Brontes Technologies и Lantos Technologies. Милнс, который ранее был системным инженером в Brontes и соучредителем Viztu Technologies, был ассистентом Харта.

Классу было поручено разработать альтернативный источник питания для БПА. Маккей сделал ставку на энергоемкий, но сложный элемент: алюминий. Одна из основных проблем с алюминиевыми батареями заключается в том, что определенные химические факторы затрудняют передачу электронов цепи. Кроме того, продукт реакции, гидроксид алюминия, прилипает к поверхности электрода, препятствуя дальнейшей реакции. Продолжая работу в 10.625 (Электрохимическое преобразование и хранение энергии), которую преподавал профессор материаловедения Ян Шао-Хорн, профессор W.М. Кек Профессор энергетики, Маккей смог преодолеть первую проблему, сделав анод из легированного алюминия, богатого галлием, который успешно отдавал электроны, но очень быстро корродировал.

Увидев потенциал в батарее, Милнс присоединился к Маккею в дальнейшей разработке батареи в качестве побочного проекта. Две компании ненадолго перенесли операции в лабораторию Эвелин Ван, профессора машиностроения Гейл Э. Кендалл. Там они начали разработку электролитов и сплавов, которые ингибируют процессы паразитарной коррозии и предотвращают образование слоя гидроксида алюминия на аноде.

Открытие магазина в Greentown Labs в Сомервилле, штат Массачусетс, в 2013 году, где в компании все еще работает около 10 сотрудников, OWP доработала конструкцию энергосистемы. Сегодня эта энергосистема использует насос для циркуляции электролита, собирая нежелательный гидроксид алюминия на анод и сбрасывая его в специальную ловушку для осаждения. При насыщении ловушки с отходами автоматически выбрасываются и заменяются. Электролит предотвращает рост морских организмов внутри энергосистемы.

Маккей, ныне главный научный сотрудник OWP, говорит, что своим успехом стартап во многом обязан инновационной атмосфере Массачусетского технологического института, где многие из его профессоров с готовностью предлагали технические и предпринимательские советы и позволяли ему работать над внешкольными проектами.

«Требуется деревня», - говорит Маккей. «Эти классы и эта лаборатория - вот где оформилась идея. Люди в Массачусетском технологическом институте занимались наукой ради науки, но все прекрасно осознавали возможность вывода технологий на рынок.Люди всегда вели прекрасные разговоры на тему «А что, если?» - у меня, вероятно, было от трех до четырех разных идей для стартапов на разных стадиях развития в любой момент времени, как и у всех моих друзей. Это была среда, которая поощряла игровой обмен идеями и побуждала людей браться за побочные проекты с учетом реальных призов ».

Алюминиево-ионный аккумулятор с высокой кулоновской эффективностью, в котором используется аналог ионной жидкости AlCl3-мочевина.

Значение

Чтобы уменьшить зависимость человечества от ископаемых видов топлива, необходимо реализовать хранилище возобновляемой энергии в масштабе сети.Для этого требуются дешевые, высокоскоростные и долговечные механизмы хранения энергии. В этой работе представлена ​​разработка алюминиево-ионной батареи, использующей в качестве анода и катода соответственно алюминий и графит с избытком земли, а также электролит-аналог ионной жидкости, состоящий из AlCl 3 и мочевины, который является очень дешевым и экологически чистым. Батарея демонстрирует кулоновский КПД ∼99,7% и значительную емкость с катодной емкостью 73 мА г -1 при 100 мА г -1 (1.4 С).

Abstract

В последние годы впечатляющие достижения в области использования возобновляемых источников энергии привели к острому спросу на дополнительные технологии хранения энергии. Здесь разработана алюминиевая батарея с высокой кулоновской эффективностью (∼99,7%), в которой используется богатый землей алюминий в качестве анода, графит в качестве катода и дешевый ионно-жидкий аналог электролита, изготовленный из смеси AlCl 3 и мочевины в 1,3-литровом растворе. : 1 молярное соотношение. Батарея показывает плато разрядного напряжения около 1.9 и 1,5 В (средний разряд = 1,73 В), что дало удельную емкость катода ~ 73 мА · ч · г -1 при плотности тока 100 мА · г -1 (~ 1,4 ° C). Была легко продемонстрирована высокая кулоновская эффективность в диапазоне скоростей заряда – разряда и стабильность в течение ~ 150–200 циклов. Рамановская спектроскопия in situ ясно показала интеркаляцию / деинтеркаляцию хлоралюминат-аниона графита (положительный электрод) во время заряда-разряда и предположила образование соединения интеркаляции графита на стадии 2 при полной зарядке.Рамановская спектроскопия и ЯМР предполагают существование катионов AlCl 4 -, Al 2 Cl 7 - и катионов [AlCl 2 · (мочевина) n ] + в AlCl 3 / электролит мочевина при избытке AlCl 3 . Таким образом, осаждение алюминия происходило двумя путями, один с участием анионов Al 2 Cl 7 -, а другой с участием катионов [AlCl 2 · (мочевина) n ] + .Эта батарея - многообещающая перспектива для будущего высокопроизводительного и недорогого накопителя энергии.

Дешевые, высокоскоростные (быстрая зарядка / разрядка) аккумуляторные батареи с длительным сроком службы срочно необходимы для хранения возобновляемой энергии в масштабе энергосистемы, поскольку становится все более важным заменить ископаемое топливо (1). Литий-ионные батареи (LIB) дороги и имеют ограниченный срок службы, что делает их неидеальными для хранения энергии в масштабе сети. Кроме того, для использования в сети необходима высокоскоростная способность, при которой LIB становятся все более опасными из-за воспламеняемости используемых электролитов.Батареи на основе алюминия представляют собой жизнеспособную альтернативу из-за трехэлектронных окислительно-восстановительных свойств алюминия (потенциал для батарей большой емкости), стабильности в металлическом состоянии и очень высокого естественного содержания. Кроме того, разработка этих аккумуляторов на основе негорючих электролитов с низкой токсичностью имеет решающее значение для минимизации угрозы безопасности и воздействия на окружающую среду. По этой причине ионные жидкости (ИЖ) были исследованы на предмет аккумулирования энергии из-за их низкого давления пара и широких электрохимических окон, к сожалению, с оговоркой о высокой стоимости в большинстве случаев.Новый класс ионных жидкостей, называемых аналогами ионных жидкостей (ILA) или так называемыми глубокими эвтектическими растворителями, обычно образующихся из смеси сильно кислого галогенида металла Льюиса и основного лиганда Льюиса, привлек значительное внимание благодаря их сопоставимым электрохимическим свойствам. и физические свойства при сниженной стоимости и минимальном воздействии на окружающую среду (2). Abood et al. впервые описал ILA, полученный из смеси AlCl 3 и амидного лиганда, донора кислорода (мочевина или ацетамид), в котором ионы образовывались в результате гетеролитического расщепления AlCl 3 (единица Al 2 Cl 6 ). ) давая анионы AlCl 4 - и катионы [AlCl 2 · (лиганд) n ] + , причем последние, как было показано, ответственны за восстановительное осаждение алюминия (3).С тех пор было показано, что многочисленные различные основные лиганды Льюиса образуют ILA при смешивании с AlCl 3 , которые способны к эффективному осаждению алюминия (4⇓ – 6).

Недавно наша группа разработала систему вторичных алюминиевых батарей, основанную на обратимом осаждении / удалении алюминия на отрицательном алюминиевом электроде и обратимой интеркаляции / деинтеркаляции хлоралюминатных анионов на графитовом положительном электроде в негорючем хлоралюминате 1-этил-3-метилимидазолия. (EMIC-AlCl 3 ) Электролит ИЖ (7, 8).Соотношение AlCl 3 / EMIC = 1,3 моль использовалось таким образом, чтобы Al 2 Cl 7 - присутствовал в (кислотном) электролите для облегчения осаждения алюминия (9). Во время зарядки Al 2 Cl 7 восстанавливается с осаждением металлического алюминия, а ионы AlCl 4 интеркалируют (для сохранения нейтральности) в графит по мере окисления углерода. Во время разряда эта батарея показала катодную удельную емкость ∼70 мАч g −1 с кулоновской эффективностью (CE) 97–98% и сверхвысокой скоростью заряда / разряда (до 5000 мА · г −1 ) для более 7000 циклов.Однако есть возможности для улучшения, поскольку область параметров для алюминиевой батареи остается в значительной степени неизученной. Трехэлектронные окислительно-восстановительные свойства алюминия обеспечивают теоретическую удельную анодную емкость 2980 мАч / г, поэтому существует потенциал для гораздо более высокой общей емкости (и удельной энергии) батареи за счет исследования новых материалов катода и электролита (10⇓⇓ –13). Более того, несмотря на то, что 97–98% CE этой батареи выше, чем у большинства водных аккумуляторных систем, все еще есть возможности для улучшения.Современные LIB соответствуют 99,98% CE (14, 15), эталон, которому должны соответствовать альтернативные аккумуляторные системы. Еще одно соображение заключается в том, что в нашем существующем электролите алюминиевых аккумуляторов используется хлорид 1-этил-3-метилимидазолия (EMIC), что относительно дорого. Немедленно возможные новые электролиты для этой системы могут включать любые, которые способны к обратимому осаждению / растворению алюминия. В этой работе мы исследуем производительность перезаряжаемой алюминиевой батареи с использованием электролита ILA на основе мочевины, превосходного соединения с точки зрения стоимости (в ~ 50 раз дешевле, чем EMIC) и экологичности.

Результаты и обсуждение

Циклическая вольтамперометрия и гальваностатический заряд / разряд алюминиевой батареи.

Катод батареи был сконструирован с использованием графитового порошка / полимерного связующего, наклеенного на бумажную подложку из углеродного волокна, а анод представлял собой отдельно стоящую алюминиевую фольгу высокой чистоты. AlCl 3 / электролит мочевина поддерживали ниже 40 ° C во время перемешивания, чтобы избежать разложения электролита. Остаточные примеси HCl удаляли добавлением алюминиевой фольги при нагревании и вакууме с последующим добавлением дихлорида этилалюминия ( SI Materials and Methods ).На рис. 1 показана циклическая вольтамперограмма (ЦВА) алюминиевого и графитового электродов в электролите AlCl 3 / мочевина (моль) = 1,3; найденное нами соотношение дает батарею с максимальной емкостью с хорошей стабильностью при работе на велосипеде. Мы наблюдали несколько пиков окисления графита в диапазоне 1,6–2,0 В (относительно Al), в то время как еще один четко выраженный пик появился при ∼2,05 В (рис. 1 A ). Эти процессы, а также соответствующие события восстановления на отрицательной развертке легко коррелировали с гальваностатической кривой заряда-разряда (рис.1 C ) для батареи с загрузкой активного графитового материала ∼5 мг / см -2 . Окислительно-восстановительные процессы в значительной степени обратимы, но несколько кинетически затруднены, показывая относительно широкие пики (рис. 1 A ), скорее всего, в результате высокой вязкости электролита (3). Осаждение / растворение алюминия (рис. 1 B ) также было довольно обратимым, но для стабилизации требовалось некоторое время цикла (рис. S1). На основе реакции отделения / растворения алюминия и интеркалирования хлоралюминат-аниона в графит предложены и схематически показаны аккумуляторные механизмы на рис.1 D .

Рис. 1.

CV графитового и алюминиевого электродов в электролите AlCl 3 / мочевина = 1,3 (моль). ( A ) Интеркаляция / деинтеркаляция графита (1 мВ с -1 ) с указанием соответствующих основных характеристик кривой заряда / разряда батареи. ( B ) Осаждение и зачистка алюминия (0,5 мВ с -1 ) с использованием установки с тремя алюминиевыми электродами. Данные были записаны в течение пятого цикла, и обычно требовалось несколько циклов для достижения стабильной формы кривой CV (рис.S1). Обратите внимание, что наши тесты CV были выполнены в конфигурации с ячейкой-мешком, с рабочим и противоэлектродом, разделенными стекловолоконной бумагой (которая была насыщена электролитом), так что эти тесты будут представлять собой схему батареи, которую мы использовали. ( C ) Кривая гальваностатического заряда / разряда с использованием AlCl 3 / мочевина = 1,3 электролита при 100 мА г -1 (цикл 20). ( D ) Схема зарядки аккумулятора (осаждение Al и интеркаляция анионов в графите).

Рис. S1.

Изменение плотности тока осаждения / снятия алюминия для первых двух циклов CV с использованием 1.3 = AlCl 3 / мочевина (моль) при скорости сканирования 1 мВ с -1 . Обычно требуется несколько циклов для достижения стабильной формы кривой CV для Al-электрода.

На рис. 2 показаны данные гальваностатического заряда-разряда для алюминиево-графитового элемента с использованием электролита ILA AlCl 3 / мочевина. Первоначальный цикл при 100 мА g -1 потребовал ~ 5-10 циклов для стабилизации емкости и CE, что предполагает побочные реакции в течение этого времени. CE во время первого цикла постоянно составлял около 90%, а затем (в течение первых 5–10 циклов) увеличивался выше 100% до достижения стабильной емкости (в этот момент CE стабилизировался на уровне ∼99.7%) (рис.2 А ). Явление CE> 100% неизвестно для электролитной системы EMIC-AlCl 3 (7) и, следовательно, может включать побочные реакции с катионными частицами алюминия или несвязанной мочевиной, что требует дальнейшего изучения. Закрашенная в рамку область на рис. 2 A (увеличена на рис. 2 B ) демонстрирует емкость при различной скорости заряда-разряда с использованием двух различных значений напряжения отсечки (2,2 и 2,15 В, выбранных на основе рисунка 1 A CV результаты), после чего цикл при 100 мА g -1 был возобновлен до ~ 180 циклов.В течение этого времени наблюдался небольшой спад CE, но он оставался> 99%. Несмотря на небольшое снижение кулоновского КПД, энергоэффективность немного увеличилась при циклическом режиме (из-за увеличения КПД по напряжению), давая значения 87,8% и 90,0% при удельных токах 100 мА г -1 или 50 мА г -1 , соответственно. Влияние скорости на гальваностатические кривые заряда-разряда показано на рис. 2 C , и разумные емкости ∼75 мАч g -1 , 73 мАч g -1 и 64 мАч g -1 были получены при 50 мА г -1 (0.67 C), 100 мА g -1 (1,4 C) и 200 мА g -1 (3,1 C) удельные токи соответственно.

Рис. 2.

Характеристики ионно-алюминиевого аккумулятора в электролите AlCl 3 / мочевина = 1,3. ( A ) Тест стабильности (после изменения скорости заряда – разряда) до ∼180 циклов (удельный ток 100 мА g –1 и верхняя / нижняя отсечка 2,2 В / 1 В). ( B ) Область в штучной упаковке для A (циклы 1–80) с различной скоростью заряда / разряда. Циклические области серого цвета изображают 2.2-вольтовая верхняя отсечка; область белого цвета изображает верхнюю границу напряжения 2,15 В. Нижнее пороговое значение составляет 1 В для всех регионов. ( C ) Кривые гальваностатического заряда-разряда для 50, 100 и 200 мА g -1 , верхняя / нижняя отсечка 2,2 В / 1 В.

Рамановская спектроскопия in situ.

Эксперименты по рамановскому рассеянию in situ во время зарядки / разрядки ( SI Materials and Methods ) были выполнены для исследования изменений в структуре графита во время работы батареи. На рис.3 представлены спектры (рис.3 A и C ), записанные во время заряда / разряда со скоростью 50 мА г -1 коррелировали с соответствующими участками кривых гальваностатического заряда / разряда (рис. 3 B и D ). Данные были записаны в 81-м цикле заряда-разряда батареи, без очевидного увеличения D-полосы, связанной с дефектом графита (рис. S2), что свидетельствует о высокой структурной целостности графита за счет циклов интеркаляции / деинтеркаляции хлоралюмината. Сразу после начала процесса зарядки нижнего плато полоса G чистого графита (1584 см -1 ) разделилась на ∼20 см -1 .Это расщепление произошло в результате перегруппировки положительных зарядов на пограничных слоях графита во время интеркаляции. Граничные слои, прилегающие к интеркалянтным слоям, испытали больше положительных зарядов, что привело к большому синему сдвигу полосы E 2g для этих слоев, что привело к появлению двух разных пиков E 2g в целом, внутреннего (i) и внешнего (b) ( Рис.3 A , Врезка ; спектры красные) (16, 17). Основываясь на соотношении интенсивностей этих двух пиков, стадия интеркаляции ( n > 2) в этот момент времени может быть рассчитана на основе следующего уравнения: IiIb = σiσb (n − 2) 2, где σi / σb - отношение сечений комбинационного рассеяния света, принятое равным единице (16).Это начальное расщепление, таким образом, указывает на образование разбавленного интеркалирующего соединения стадии 4–5, и по мере продолжения зарядки два пика постоянно смещаются в синий цвет с увеличением потенциала / емкости батареи. Полоса E 2g (b) затем претерпела небольшое расщепление (∼3 см −1 ) при 1.94–1.99 В (рис. 3 A , вставка, спектры зеленым цветом). В этот момент вычисленный номер стадии (n) составлял ~ 2,5. Вскоре после этого (при 2,03 В) полоса E 2g (i) полностью исчезла.Затем последовало увеличение интенсивности E 2g (b) примерно вдвое, прежде чем произошло еще одно большое расщепление (1,619–1632 см, –1 ) в начале верхнего плато (∼2,097 В) (рис. 3 A). , спектры синего цвета). В полностью заряженном состоянии остался только один высокоинтенсивный пик при 1,632 см -1 , что свидетельствует об образовании соединения интеркаляции графита (GIC) стадии 1 или 2, поскольку ни E 2g (i) , ни E 2g ( б) присутствовало полосы (16).Предполагалось, что GIC 2-го уровня будет зависеть от емкости алюминиевой батареи.

Рис. 3.

Спектры комбинационного рассеяния света графитового электрода, записанные во время заряда ( A ) и разряда ( C ) при 50 мА g -1 . ( Вставки ) Увеличение спектров более низких напряжений, соответствующих полосе G графита E 2g → E 2g (i) + E 2g (b) расщепление (спектры в красном цвете, соответствующие области, заштрихованной красным). кривые заряда / разряда; спектры зеленого цвета, соответствующие участку кривых заряда / разряда, заштрихованному зеленым цветом).Черный спектр в каждом соответствует напряжению холостого хода = 1 В, полоса G = 1,584 см -1 . Спектры синего цвета (соответствующие верхнему плато, заштрихованные синим цветом на кривых заряда / разряда) представляют стадию 2 образования / деформации GIC. ( B ) Кривая гальваностатической зарядки (50 мА g -1 ), цвет согласован со спектрами комбинационного рассеяния света в A . ( D ) Кривая гальваностатического разряда (50 мА г -1 ), цвет согласован со спектрами комбинационного рассеяния света в C .

Рис. S2.

Рамановская спектроскопия in situ во время разряда (50 мА г -1 ), фокусировка на области D-полосы (1350 см, -1 ). Полоса D не определяется до или после разряда. Это был 81-й цикл клетки.

Последующий процесс разряда отражал процесс заряда, демонстрируя обратимость. Когда начался разряд верхнего плато (2,011 В), наблюдалось небольшое красное смещение на 1 см −1 . Затем эта полоса расщепляется (∼12 см −1 ) на полпути через верхнее плато (1.97 В), с новым пиком на 1619 см −1 . Пик -1 длиной 1,631 см продолжал полностью исчезать, а пик -1 длиной 1,619 см достигал максимума при ∼1,66 В, что означало окончание процесса разрядки / деформации верхнего плато 2-й ступени (рис. 3 C , спектры синего цвета). На полпути через нижнее плато напряжения (1,535 В) произошло второе большое расщепление, и исходный E 2g (i) начал снова появляться с уменьшающимся потенциалом (рис.3 C , Вставка ; спектры красным). Вскоре после повторного появления моды E 2g (i) произошло еще одно расщепление при 1,525–1,535 В, малом по величине (∼5 см −1 ), как это было видно во время процесса зарядки (рис. 3 C). , Врезка, спектры зеленым цветом). Это расщепление, вероятно, соответствовало одному из нескольких редокс-событий с более низким током в этой области, продемонстрированных CV (рис. 1 A ). Конечно, при разряде все полосы смещались в красную область.

Видообразование в электролите методом рамановской спектроскопии.

Затем мы исследовали состав нескольких электролитов AlCl 3 / мочевина. В электролите AlCl 3 / мочевина = 1,0 ILA было высказано предположение (3), что осаждение алюминия должно происходить из катионных частиц формы [AlCl 2 · (лиганд) n ] + , потому что Al 2 Cl 7 не присутствовал, и AlCl 4 не может быть уменьшен в соответствующем окне напряжения.Мы выполнили рамановские спектроскопические исследования пяти электролитов с AlCl 3 / мочевина в диапазоне 1,0–1,5 (рис. 4 A ). Рамановская спектроскопия ранее использовалась для выявления наличия хлоралюминат-анионов как в ИЖ (18⇓ – 20), так и в ИЛА (21, 22), при этом сдвиги комбинационного рассеяния кажутся довольно инвариантными как в ИЖ, так и в ИЛА с разными катионными частицами. Мы наблюдали характерные рамановские сдвиги для AlCl 4 - (311 см -1 ) и Al 2 Cl 7 - (347 см -1 ) для AlCl 3 / мочевина> 1 .0. Для электролита AlCl 3 / мочевина = 1,0 присутствовал только пик на 347 см -1 (AlCl 4 - ), что подтверждает отсутствие Al 2 Cl 7 - . Когда добавлялось больше AlCl 3 (увеличиваясь до соотношений 1,1, 1,3, 1,4, 1,5), пик при 310 см -1 (Al 2 Cl 7 - ) систематически усиливался относительно 347 см −1 , что свидетельствует о существовании Al 2 Cl 7 - .Кроме того, наблюдались менее интенсивные режимы Al 2 Cl 7 - , которые также увеличивались с увеличением содержания AlCl 3 (рис. 4 B ) (19).

Рис. 4.

Исследование состава электролита. ( A ) Рамановские спектры электролитов AlCl 3 / мочевина = 1,0, 1,1, 1,3, 1,4, 1,5, нормированные на пик при 347 см -1 (AlCl 4 -). ( B ) Увеличение A для выяснения низкоинтенсивных режимов Al 2 Cl 7 - (154, 310, 380, 428 см -1 ), 1.3, 1,4 = AlCl 3 / спектры электролита мочевины опущены для ясности. 27 Спектры ЯМР Al для ( C ) AlCl 3 / мочевина = 1,3 по сравнению с AlCl 3 / EMIC = 1,3 и ( D ) AlCl 3 / мочевина = 1,0 по сравнению с AlCl 3 / EMIC = 1.0. Назначения пиков, основанные на работе Coleman et al. (22).

Поскольку Al 2 Cl 7 - присутствует в нашем электролите AlCl 3 / мочевина = 1,3, используемом для алюминиевой батареи, осаждение алюминия, вероятно, происходит двумя путями (3, 9): Реакция отрицательного электрода: 4 Al2Cl7− + 3 e− → Al + 7 AlCl4 -, [1] Реакция отрицательного электрода: 2 [AlCl2 · (мочевина) 2] ++ 3 e− → Al + AlCl4− + 4 (мочевина), [2] где осаждение через катионные разновидности, вероятно, будут доминировать (Ур. 2 ). Во время осаждения алюминия катионные частицы будут мигрировать на алюминиевый электрод, тогда как анионные частицы будут мигрировать на графитовый электрод. Кроме того, осаждение Al из катиона (по формуле 2 ) генерирует свободную мочевину на поверхности алюминиевого электрода, которая, вероятно, вступит в реакцию с некоторым количеством Al 2 Cl 7 -. Уравнение 2 предполагает, что существует только четырехкоординатный катион, в котором две молекулы мочевины связаны с Al атомом кислорода в мочевине (3).Трехкоординатный катион маловероятен из-за отсутствия индуктивных заместителей у азота мочевины, которые могут позволить ему быть бидентатным, как это видно в случае производных ацетамида (21). Реакция интеркаляции графита остается такой же, как и в корпусе батареи EMIC-AlCl 3 Al, независимо от процесса удаления алюминия на аноде: Реакция положительного электрода: AlCl4− + Cx− e− → Cx + [AlCl4] -, [3] где x - количество атомов углерода на один интеркалированный анион ( x = 30 на основе емкости 75 мАч g -1 из данных гальваностатического разряда 50 мА g -1 ).Удельные энергии, рассчитанные с использованием формул. 1 и 2 составляли 45 Втч кг -1 и 76 Втч кг -1 соответственно. Эти значения представляют собой верхний предел удельной энергии, поскольку в расчетах не учитывается доля нейтральных частиц, которые обязательно будут сопровождать анионные и катионные частицы в этой жидкости, которая не является на 100% ионной.

Анализ относительных концентраций ионных частиц в электролите.

Мы проанализировали относительные концентрации ионов в электролите, а именно [Al 2 Cl 7 - ] / [AlCl 4 - ] и [AlCl 2 · (мочевина) 2 ] + / [Al 2 Cl 7 - ] с использованием отношения интенсивностей пиков комбинационного рассеяния Al 2 Cl 7 - и AlCl 4 - в электролит (рис.4 А ). Отношение сечений комбинационного рассеяния анионов Al 2 Cl 7 - и AlCl 4 - было получено для хлорида 1-бутил-3-метилимидазолия (BMIC) / AlCl 3. (20), и мы использовали это значение для оценки [Al 2 Cl 7 - ] / [AlCl 4 - ] = 0,6 и [AlCl 2 · (мочевина) 2 ] + / [Al 2 Cl 7 - ] = 2.6 (на основе нейтральности заряда) в электролите AlCl 3 / мочевина = 1,3. Это также предполагает, что для AlCl 3 / мочевина = 1,3 в осаждении алюминия будут преобладать катионные частицы, концентрация которых в 2,6 раза превышает концентрацию [Al 2 Cl 7 - ]. Следовательно, верхний предел удельной энергии реальной системы, основанной только на электрохимически активных материалах, будет ближе к 76 Втч кг -1 .

Мы провели спектроскопию ЯМР 27 Al и обнаружили частицы Al (23, 24), соответствующие хлоралюминат-анионам и координированному с мочевиной катиону в электролитах (рис.4 C и D ). Фиг. 4 C и D сравнивают спектры ЯМР 27 Al ИЛК с содержанием мочевины AlCl 3 и ИЖ AlCl 3 -EMIC при соответствующих молярных соотношениях. Спектр электролита AlCl 3 / EMIC = 1.0 показал единственный пик, соответствующий аниону AlCl 4 - (δ = 101,8 м.д.) (рис. 4 D ). Однако спектр электролита AlCl 3 / мочевина = 1,0 показал четыре резонанса: 52.7 частей на миллион ([AlCl 3 · (мочевина) 2 ]), 71,8 частей на миллион ([AlCl 2 · (мочевина) 2 ] + ), 88,0 частей на миллион ([AlCl 3 · (мочевина )]) и 101,5 ppm (AlCl 4 ) - расчеты, основанные на работе Coleman et al. (22). Резонанс при 52,7 м.д. был широким и низкой интенсивностью и четко показан на рис. S3. В электролите AlCl 3 / EMIC = 1,3 система полностью ионна с AlCl 4 - (δ = 101,8 ppm) и Al 2 Cl 7 - (δ = 96.7 ppm), являясь доминирующим видом при соотношении 1,3. В электролите AlCl 3 / мочевина = 1,3 спектр демонстрирует гораздо более широкую (вероятно, из-за химического обмена (22)) характеристику, чем у AlCl 3 / EMIC = 1,3, охватывая область, соответствующую анионному AlCl 4 , Al 2 Cl 7 и катионные частицы [AlCl 2 · (мочевина) 2 ] + , что соответствует наличию этих ионов в электролите (рис.4 С ). Деконволюция этого широкого резонанса была выполнена, чтобы попытаться количественно оценить различные виды, но из-за возникших трудностей результаты не рассматривались для обсуждения.

Рис. S3.

Алюминий ( 27 Al) Спектр ЯМР AlCl 3 / мочевина = 1.0. Увеличьте изображение при 52,7 ppm ([AlCl 3 · (мочевина) 2 ]), чтобы показать широкий резонанс низкой интенсивности.

SI Материалы и методы

Приготовление AlCl

3 -Мочевина ILA (1,3 = AlCl 3 -Мочевина моль) Аккумуляторный электролит.

Два грамма мочевины (VWR, 99,9% сверхчистой, тщательно высушенной для удаления воды) и 5,77 г безводного AlCl 3 (Fluka, ≥99%, кристаллизованный) добавляли небольшими порциями в стеклянный сцинтилляционный флакон объемом 20 мл под водой. постоянное магнитное перемешивание и термоэлектрическое охлаждение (∼5 ° C) для образования однородной жидкости. Добавляли алюминиевую фольгу (~ 1 г) и электролит нагревали до 60 ° C в вакууме в течение ~ 1 часа, после чего 3,2 г электролита удаляли в чистый сосуд и добавляли две капли EtAlCl 2 .После перемешивания в течение ~ 1 ч электролит еще раз помещали в вакуум до полного прекращения образования пузырьков.

Измерения ЯМР.

Используя спектрометр UI300 на 300 МГц, были зарегистрированы спектры ЯМР 27 Al (64 сканирования, время сбора данных 0,5 с) относительно 1,1 M Al (NO 3 ) 3 в D 2 O. Все спектры были записаны для чистых образцов без затвора, а температура была откалибрована по метанолу (± 1 ° C).

Рамановские измерения (ILA).

Чистые образцы 1,0, 1,1, 1,3, 1,4 и 1,5 = AlCl 3 / моль мочевины (без EtAlCl 2 ) помещали в прозрачный пластиковый пакет и снимали спектры (1,250–1800 см -1. ) с использованием лазера Ar + (532 нм) с длиной волны 0,8 см -1 .

Электрохимические измерения (включая конструкцию батареи).

Все ячейки были изготовлены в ламинированных алюминиевых футлярах для ячеек (MTI, EQ-alf-100-210). Алюминиевая фольга (Zhongzhoulvye Co., Ltd., 0.016 мм), никелевый язычок 3 мм (MTI, EQ-PLiB-NTA3), графитовый порошок (GP) (Ted Pella, 61–302 SP-1, натуральные хлопья), углеродная лента (Ted Pella, 16073), альгинат натрия ( Sigma), связующее (альгинат натрия), углеродная волокнистая бумага Mitsubishi (CFP) (30 г / м 2 ) и фильтровальная бумага из стекловолокна (Whatman GF / A).

Батареи.

Графитовые суспензии (95-5 = GP-Alg по массе) были приготовлены с использованием 950 мг GP, 50 мг связующего альгината натрия и 2–3 мл дистиллированной воды. После перемешивания в течение ночи ∼5 мг / см 2 (∼7.5 мг всего) загружали на CFP, и электрод прокаливали при 80 ° C в вакууме в течение ночи. Для изготовления ячейки-мешка в качестве токоприемника использовалась никелированная пластина, которую затем можно было запечатать при нагревании. Алюминиевая фольга была достаточно тонкой, чтобы обеспечить эффективную термосварку от полимерного покрытия на ячейке пакета, а для усиления уплотнения с внешней стороны пакета использовалась быстросохнущая эпоксидная смола. Все детали внутри пакета фиксировались углеродной лентой, которая подвергалась воздействию электролита. Частично собранный элемент сушили в течение ночи при 80 ° C под вакуумом и переносили в перчаточный ящик, где находились два слоя разделителя из стекловолоконной фильтровальной бумаги (предварительно высушенные при 250 ° C) и 1.Вводили 5 г 1,3 = AlCl 3 -мочевины на моль электролита.

Измерения гальваностатического заряда / разряда проводились вне перчаточного бокса.

CV.

Циклические измерения вольтамперометрии были выполнены на потенциостате / гальваностате модели CHI 760D (CH Instruments). Графитовые электроды были приготовлены на CFP с использованием графитовой суспензии, которая была разбавлена ​​примерно в 1000 раз таким образом, что осаждались количества суспензии в микрограммах (невозможно было точно взвесить). Алюминиевые электроды перед использованием промывали ацетоном и осторожно протирали кимвипом.Конфигурации мешочных ячеек использовались с тремя электродами, а один слой стекловолоконной бумаги использовался в качестве разделителя. EtAlCl 2 сочли ненужным для измерений CV.

Реакции растворения / осаждения алюминия анализировали с использованием трех алюминиевых электродов (рабочий ∼20 мм 2 , счетчик ∼3 см 2 , эталонный ∼1 см 2 ). Интеркаляция / деинтеркаляция анионов из графита была проанализирована в идентичной конфигурации, за исключением того, что на рабочем электроде из углепластика (~ 3 см 2 ) использовался ГП с микрограммовой нагрузкой.

Рамановские измерения на месте.

Рамановские ячейки in situ были сконструированы в мешочной ячейке с кварцевым окном для получения оптического доступа. Гальваностатический заряд / разряд выполнялся в течение ∼80 циклов при 100 мА g -1 , чтобы обеспечить нормальное поведение батареи, затем при 50 мА g -1 (∼0,66 C), в то время как спектры записывались (время сбора данных 2 с, пять сканирований) на каждое изменение на 0,01 В. Выбранные спектры были выбраны для рис. 3.

Заключение

Высокоэффективная батарея, которая стабильна в течение ~ 180 циклов и при различных скоростях заряда-разряда с использованием анода из Al, катода из графитового порошка и дешевого AlCl 3 / электролит, аналог ионной жидкости мочевины, был успешно создан.Интеркаляция / деинтеркаляция графита во время зарядки / разрядки была подтверждена in situ рамановскими экспериментами, и наблюдалась стадия 2 GIC. Обратимость процесса была подтверждена восстановлением полосы G при 1584 см -1 без наблюдаемого увеличения интенсивности D-полосы. Рамановская спектроскопия и ЯМР 27 Al электролита показали присутствие AlCl 4 - , [AlCl 2 · (мочевина) n ] + и Al 2 Cl 7 - ионных частиц в электролите.

Будущие перспективы алюминиевых батарей на основе электролита AlCl 3 / мочевина многообещающие и заслуживают дальнейшего изучения. Высокая кулоновская эффективность батареи предполагает длительную цикличность, но это (в идеале тысячи циклов) необходимо продемонстрировать. Изобилие земли и низкая стоимость компонентов этой батареи делают ее очень привлекательным вариантом для использования в больших масштабах, а ее относительно низкая удельная энергия (по сравнению с LIB) приемлема для немобильных накопителей энергии.Емкость этой батареи заметно менее впечатляющая, чем у аккумуляторной системы на основе EMIC, из-за более высокой вязкости и более низкой проводимости / ионности электролита, но должна иметь место для дальнейшего улучшения. Несмотря на то, что эта работа представляет собой удовлетворительный шаг вперед, исследование многочисленных комбинаций электролитов и электродных материалов остается широко открытым для дальнейшего развития алюминиевых батарей для достижения сверхвысокого соотношения удельная энергия / стоимость.

Благодарности

H.Д. благодарит за поддержку Министерство энергетики США DOE DE-SC0016165. Б.-Дж.Х. благодарит за поддержку Глобального плана сетевых талантов 3.0 (NTUST 104DI005) Министерства образования Тайваня. М.-К.Л. благодарит за поддержку проекта ученых Тайшань для молодых ученых провинции Шаньдун, Китай.

Сноски

  • Вклад авторов: M.A. и H.D. спланированное исследование; M.A., C.-J.P., Y.R., C.Y. и M.-C.L. проведенное исследование; M.A. предоставил новые реагенты / аналитические инструменты; М.A., B.-J.H. и H.D. проанализированные данные; и M.A. и H.D. написал газету.

  • Рецензенты: G.Z.C., Ноттингемский университет; и X.L., Тихоокеанская Северо-Западная национальная лаборатория.

  • Авторы заявляют об отсутствии конфликта интересов.

  • Эта статья содержит вспомогательную информацию на сайте www.pnas.org/lookup/suppl/doi:10.1073/pnas.1619795114/-/DCSupplemental.

Собирается ли алюминий произвести революцию в хранении энергии? Или его свойства просто соблазняют нас?

В октябре прошлого года крупная аккумуляторная компания обратилась ко мне с предложением сделать проект, связанный с батареями на основе алюминия.Они были знакомы с нашей работой по химии щелочного Zn-MnO 2 и литий-ионных аккумуляторов и думали, что некоторые из подходов, которые мы использовали для повышения плотности энергии в этих системах, могут быть применены к Al, как первичному (неперезаряжаемому), так и. вторичный (аккумуляторный). Будучи хорошими учеными и инженерами, я и мои ученики (Эхсан Фаег, Бенджамин Нг и Диллон Хейман) начали работать с соответствующей литературой с мыслями о том, чтобы найти для нас подходящую нишу, чтобы начать разработку некоторых новых концепций, связанных с Al.Хотя к нам приходили новые идеи, мы никогда не пытались заставить компанию их финансировать. Фактически, когда я посетил эту компанию пару месяцев спустя, я провел 2-часовой семинар (плюс вопросы и ответы), на котором аргументировалось, почему им вообще не следует инвестировать в Al. После дополнительной работы - постоянного сотрудничества с Эхсаном, Беном и Диллоном в течение следующих нескольких месяцев над анализом и написанием - эта презентация стала нашей статьей в Nature Energy [1]. Я чувствовал, что мы обязаны связаться с сообществом и рассказать всем, что мы нашли.

Я всегда гордился тем, что получил звание «Инженер». В некоторых кругах инженерия превратилась в «четырехбуквенное слово», если вы понимаете, о чем я. Я выбрал инженерию, потому что мне нравится делать реальные вещи, которые работают. Вот почему многие из наших лучших статей так ориентированы на приложения. Вот почему я люблю работать с индустрией - как над проектами, так и над консалтингом. Именно поэтому мне всегда очень любопытен финал с любой из технологий, над которыми мы работаем. Что мы пытаемся сделать? Что вообще возможно? Не только теоретически, но и практически.

Одна из вещей, которая была мне ясна, когда мы копались в литературе по Al и недавно финансируемых проектах, заключалась в том, что почти все (исследователи, финансовые агентства и т. Д.) Были опьянены обещаниями сверхвысокой емкости (2981 мАч / г). ) и плотности энергии (4140 Вт · ч / кг) для металлического Al. Это не ново. Ал был исследован как материал электрода батареи буквально 170 лет. Краткое изложение этой разработки показано на рисунке 1. Однако ни одна батарея не подошла даже близко к указанным выше значениям емкости и плотности энергии в лабораторной ячейке, не говоря уже о практической.И путь вперед совершенно неясен.

В водных батареях Al либо быстро корродирует, либо катастрофически пассивируется. В неводных элементах, например, с ионно-жидкими электролитами, используемыми в алюминиево-ионных батареях (AIB), комплексы Al в электролите и общая реакция не дают 3 электрона на атом Al, что предполагается в больших числах выше, но фактически получает только 3 электрона на каждые 8 ​​атомов алюминия. Большая часть дополнительного Al не является твердым веществом, а растворяется в электролите, что означает гораздо больший вес и объем, чем «теоретический».Кроме того, в этих AIB обычно используются графитовые катоды, которым требуется много атомов C на Al, что увеличивает массу. Комбинация массы электролита и массы катода (в дополнение к другим практическим вещам, таким как упаковка и т. Д.) Значительно снижает достижимую плотность энергии до значений, близких к 50 Втч / кг. И истинный предел, если учесть все практические компоненты, составляет всего около 80 Втч / кг. Хотя эти значения могут быть конкурентоспособными со свинцово-кислотными аккумуляторами, они вообще не могут конкурировать с литий-ионными аккумуляторами.И первичные химические соединения, которые существуют на основе алюминиевых воздушных батарей (AAB), также смогли достичь практической плотности энергии значительно ниже 100 Втч / кг, что намного ниже щелочных и LiFeS 2 первичных компонентов, которые мы уже можем купить в аптеке. Еще один аспект, в котором батареи на основе алюминия вышли из строя, - это срок их службы. Современные химические продукты имеют очень низкую долговременную стабильность при хранении и хранении.

Я надеюсь, что однажды кто-нибудь заставит меня съесть эти слова, но с того места, где я стою, батареи на основе алюминия - это просто мечта.Их свойства весьма заманчивы, но это только заставляет нас изо всех сил стараться не отпускать их. Поэтому в ближайшее время вы не увидите, как моя группа работает над ними. Мне трудно представить, как какой-либо из существующих подходов перейти из нашей лаборатории в ваш дом. Для меня, чтобы ошибаться, и это уже случалось раньше, для тех, кто будет настаивать в этой области, необходимо полностью переосмыслить химию, и, надеюсь, наша статья также побуждает их критически относиться ко всей клетке, а не только к привлекательности. одной из реакций.

Рис. 1. История развития алюминиевых батарей: (a) ссылка [2-3] (b) ссылка [4] (c) ссылка [5] (d) ссылка [6] (e) ссылка [7] (f ) ссылка [8] (g) ссылка [9] (h) ссылка [10] (i) ссылка [11] (j) ссылка [12] (k) ссылка [13]. Кредит: Ehsan Faegh

Список литературы

1. Faegh, E; Ng, B .; Хейман Д., Мастейн В.Е. Практическая оценка эффективности технологий алюминиевых батарей. Nature Energy, DOI: 10.1038 / s41560-020-00728-y.
2. Ричардс, Дж. У. Алюминий: его история, возникновение, свойства, металлургия и применение, включая его сплавы.HC Baird & Company: 1890.
3. Бенджамин П., Гальваническая ячейка: ее конструкция и ее емкость. Wiley: 1893.
4. Heise, G.W .; Шумахер, Э. А .; Кахун, Н., Сверхмощная хлор-деполяризованная клетка. Журнал Электрохимического Общества 1948, 94 (3), 99-105
5. Сарджент, Д. Э., Вольтовская ячейка. Google Patents: 1951
6. Заромб С. Использование и поведение алюминиевых анодов в щелочных первичных батареях. Журнал Электрохимического общества 1962, 109 (12), 1125-1130.
7. Gifford, P .; Палмизано Дж. Перезаряжаемый элемент алюминий / хлор, в котором используется электролит из расплавленной соли при комнатной температуре. Журнал Электрохимического Общества 1988, 135 (3), 650-654
8. Jayaprakash, N .; Das, S .; Арчер Л. Перезаряжаемый алюминиево-ионный аккумулятор. Chemical Communications 2011, 47 (47), 12610-12612
9. Lin, M.-C .; Гонг, М .; Лу, Б .; Wu, Y .; Wang, D.-Y .; Guan, M .; Angell, M .; Chen, C .; Yang, J .; Хван Б.-Дж., Сверхбыстрая перезаряжаемая алюминий-ионная батарея.Nature 2015, 520 (7547), 324
10. Song, Y .; Jiao, S .; Tu, J .; Wang, J .; Liu, Y .; Jiao, H .; Мао, X .; Guo, Z .; Фрай, Д. Дж., Перезаряжаемый ионно-алюминиевый аккумулятор с длительным сроком службы на основе расплавленных солей. Journal of Materials Chemistry A 2017, 5 (3), 1282-1291
11. Пино, М .; Chacón, J .; Fatás, E .; Окон, П., Характеристики коммерческих алюминиевых сплавов в качестве анодов в алюминиево-воздушных батареях с гелевым электролитом. Journal of Power Sources 2015, 299, 195-201
12. Гельман, Д .; Шварцев Б .; Валлуотер, И.; Kozokaro, S .; Фидельский, В .; Sagy, A .; Oz, A .; Балтянский, С .; Цур, Ю .; Эйн-Эли, Ю., Граница раздела алюминий-ионная жидкость, поддерживающая прочный алюмо-воздушный аккумулятор. Journal of Power Sources 2017, 364, 110-120
13. Wang, S .; Jiao, S .; Tian, ​​D .; Chen, H. S .; Jiao, H .; Tu, J .; Liu, Y .; Фанг, Д. Н., Новая сверхбыстрая многоионная аккумуляторная батарея. Дополнительные материалы 2017, 29 (16), 1606349

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *