Устройство надёжного запуска компрессора холодильника
Бытовая техника
Главная Радиолюбителю Бытовая техника
В статье [1] с таким же названием было опубликовано описание несложного устройства, обеспечивающего запуск холодильника при пониженном напряжении сети. Некоторым недостатком устройства является использование трансформатора питания. Автор, столкнувшись с той же проблемой на даче, решил сделать аналогичное устройство без трансформатора.
Схема предлагаемого устройства приведена на рис. 1. При срабатывании термореле холодильника замыкаются его контакты, обозначенные на схеме как S1. Выпрямленное диодным мостом VD1-VD4 напряжение сглаживает конденсатор С1 и через резисторы R2 и R3 заряжает конденсатор С2. Ток зарядки протекает через излучающий диод оптопары U1 и в моменты прохождения сетевого напряжения через нуль (это свойство оптопары) включает симистор VS1, который, в свою очередь, подаёт напряжение сети на пусковую обмотку компрессора холодильника.
Рис. 1. Схема предлагаемого устройства
При номинальном напряжении сети 230 В среднее (с учётом пульсаций) напряжение на конденсаторе С1 — около 300 В, поэтому ток зарядки конденсатора С2 — около 10 мА. При этом скорость его зарядки ΔU/Δt = I/C = 10·10-3/470·10-6 = 21 В/с. Примерно через 0,7 с после включения напряжение на конденсаторе С2 достигнет порога открывания тиристорного переключателя DA1, равного 15 В [2], он откроется и через резистор R4 и диод VD5 разрядит конденсатор С2. Ток через излучающий диод оптрона прекратится, си-мистор VS1 открываться не будет, и ток через пусковую обмотку также прекратится. Тиристорный переключатель DA1 останется во включённом состоянии, поскольку ток через него превышает ток удержания.
При понижении напряжения сети скорость зарядки конденсатора С2 уменьшается, время зарядки и, соответственно, продолжительность включённого состояния симистора VS1 увеличивается, что благоприятно сказывается на запуске компрессора. Сопротивления резисторов R2 и R3 рассчитаны для обеспечения необходимого для включения оптрона U1 тока 5 мА при минимальном напряжении сети.
Относительно небольшая ёмкость конденсатора С1 объясняется необходимостью его быстрой разрядки при кратковременных перерывах в подаче напряжения сети и работающем компрессоре. В этом случае при остановке компрессора требуется его повторный запуск, для чего ёмкость конденсатора С1 должна быть минимально возможной.
Устройство собрано на печатной плате из односторонне фольгированного стеклотекстолита толщиной 1,5 мм, чертёж которой показан на рис. 2, а общий вид — на рис. 3. В устройстве применены резисторы МЛТ, конденсатор С1 — К73-17 или импортный, С2 — К50-35. Оптрон U1 должен иметь ток включения не более 5 мА. Симистор VS1 — на напряжение не менее 400 В и ток 5 А. Х1 и Х2 — винтовые клеммники KLS2-128-5.00.
Рис. 2. Чертёж печатной платы
Рис. 3. Общий вид устройства
В корпусе переключателя КР1125КП3Б установлены два встречно включённых аналога динистора, но использован только один, подключённый к крайним выводам 1 и 3. Этот переключатель можно заменить на два последовательно включённых КР1125КП3А. Можно также использовать один прибор с индексом А, но потребуется установить конденсатор С2 ёмкостью 1000 мкФ на напряжение 16 В. Можно также использовать КР1125КП3В или КР1125КП2 с напряжением срабатывания 21 В, при этом ёмкость конденсатора С2 следует уменьшить до 220 мкФ, но номинальное напряжение должно быть не менее 35 В. При использовании динисторов других типов следует иметь в виду, что ток их удержания не должен превышать 5 мА. В принципе, взамен тиристорного переключателя DA1 можно установить стабилитрон на напряжение стабилизации 12…16 В. После зарядки конденсатора С2 до такого уровня рост напряжения на нём остановится, ток через него и светодиод оптрона прекратится и симистор VS1 выключится. Однако в этом случае разрядка конденсаторов С1 и С2 будет происходить довольно долго, поэтому после кратковременных перерывов в подаче сетевого напряжения устройство может не сработать. Несколько ускорить разрядку можно, зашунтировав конденсатор С2 резистором 1 кОм.
Плату необходимо поместить в корпус из изоляционного материала, в котором должны быть просверлены вентиляционные отверстия. Устройство можно установить в холодильник, не отключая штатный электромагнитный пускатель, который просто не будет успевать включаться при срабатывании устройства.
Литратура
1. Панкратьев Д. Устройство надёжного запуска компрессора холодильника. — Радио, 2001, № 3, с. 32.
2. Нефёдов А. Тиристорные переключатели серий КР1125КП2 и КР1125КП3. — Радио, 1998, № 5, с. 59-61.
Автор: П. Алёшин, г. Москва
Дата публикации: 19.06.2017
Мнения читателей
Нет комментариев. Ваш комментарий будет первый.
Вы можете оставить свой комментарий, мнение или вопрос по приведенному вышематериалу:
www.radioradar.net
принцип и схема работы холодильного оборудования разных типов
Домашний уют современного человека невозможно представить без холодильника. Он предназначен для длительного хранения продуктов. По подсчетам ученых, каждый член семьи открывает дверцу до 40 раз в сутки. Мы заглядываем вовнутрь даже не задумываясь, как работает наш холодильник.
В нашей статье мы подробно рассмотрим устройство и принцип действия различных холодильников.
Как устроен холодильник
Любой современный холодильник состоит из следующих основных агрегатов:
- Двигатель.
- Конденсатор.
- Испаритель.
- Капиллярная трубка.
- Осушительный фильтр.
- Докипатель.
Схема работы холодильника
Электродвигатель
Двигатель является основным узлом бытового прибора. Предназначен для циркуляции охлаждающей жидкости (фреона) по трубкам.
Двигатель состоит из двух агрегатов:
- электромотор;
- компрессор.
Электромотор преобразует электрический ток в механическую энергию. Агрегат состоит из двух частей – ротора и статора.
Корпус статора устроен из нескольких медных катушек. Ротор имеет вид стального вала. Ротор соединен с поршневой системой двигателя.
При подключении двигателя к сети питания в катушках возникает электромагнитная индукция. Она является причиной возникновения крутящего момента. Центробежная сила приводит ротор во вращательное движение.
А знаете ли Вы, что на долю холодильника приходится 10 % всей потребленной электроэнергии. Открытая дверца прибора увеличивает потребление электричества в несколько раз.
При вращении ротора двигателя происходит линейное перемещение поршня. Передняя стенка поршня сжимает и разряжает рабочую жидкость до рабочего состояния.
Положение двигателя холодильника
В современных охлаждающих установках электродвигатель находится внутри компрессора. Такое расположение преграждает газу путь для самопроизвольной утечки.
Для уменьшения вибраций двигатель находится на пружинистой металлической подвеске. Пружина может находится снаружи или внутри устройства. В современных агрегатах пружина находится внутри корпуса двигателя. Это позволяет эффективно гасить вибрации при работе аппарата.
Конденсатор
Представляет собой змеевидный трубопровод диаметром до 5 миллиметров. Предназначен для отвода тепла от рабочей жидкости в окружающую среду. Конденсатор располагается на задней наружной поверхности прибора.
Испаритель
Представляет систему тонких трубок. Предназначен для испарения рабочей жидкости и охлаждения окружающего пространства. Располагается внутри или снаружи морозильника.
Устройство компрессора
Капиллярная трубка
Предназначена для снижения давления газа. Имеет диаметр от 1,5 до 3 миллиметров. Расположена на участке между испарителем и конденсатором.
Фильтр-осушитель
Предназначен для очистки рабочего газа от влаги. Имеет вид медной трубки диаметром от 10 до 20 мм. Концы трубки вытянуты и герметично впаяны с капиллярную трубку и конденсатор.
Внимание! Фильтр-осушитель имеет односторонний принцип работы. Устройство не предназначено для работы на обратном режиме. При неправильной установке фильтра возможен выход установки из строя.
Внутри трубки находится цеолит – минеральный наполнитель с высокопористой структурой. На обоих концах трубки установлены заграждающие сетки.
Фильтр-осушитель
Со стороны конденсатора установлена металлическая сеточка с размерами ячеек до 2 мм. Со стороны капиллярной трубки установлена синтетическая сетка. Размеры ячеек такой сетки составляют десятые доли миллиметра.
Докипатель
Представляет собой металлическую емкость. Устанавливается на участке между испарителем и входом компрессора. Предназначен для доведения фреона до кипения с последующим испарением.
Служит защитой двигателя от попадания жидкости. Попадание рабочей жидкости может привести к выходу его из строя.
Как работает холодильник
Главный принцип работы любого холодильника основан на выполнении двух рабочих операций:
- Вывод тепловой энергии из устройства в окружающее пространство.
- Концентрация холода внутри корпуса прибора.
Для отбора тепла применяется хладагент под названием фреон. Это газообразное вещество на основе этана, фтора и хлора. Фреон обладает уникальной возможностью переходить из газообразного состояния в жидкое и обратно. Переход из одного состояние в другое происходит при изменении давления.
Работа системы охлаждения заключается в следующем. Компрессор засасывает фреон вовнутрь. Внутри устройства работает электромотор. Двигатель приводит в движение поршень. При движении поршня происходит сжатие газа.
Принципиальная схема работы холодильника
Процесс сжатия газа делится на два этапа. На первом этапе происходит возвратное движение поршня. При смещении поршня открывается впускной клапан. Через открытое отверстие фреон поступает в газовую камеру.
На втором этапе поршень смещается в обратном направлении. При обратном движении поршень сжимает газ. Сжатый фреон давит на пластину выходного клапана. В камере резко повышается давление. При увеличении давления происходит нагрев газа до температуры 100° C. Выпускной клапан открывается и выпускает газ наружу.
Нагретый фреон из камеры поступает во внешний теплообменник (конденсатор). По пути следования по конденсатору фреон отдает тепло наружу. В конечной точке конденсатора температура газа уменьшается до 55° C.
А знаете ли Вы, что самые первые холодильники в качестве хладагента использовали диоксид серы? Такие приборы были очень опасны по причине высокой вероятности разгерметизации системы.
В процессе теплопередачи происходит конденсация газа. Фреон из газообразного состояния превращается в жидкость.
Из конденсатора жидкий фреон поступает в фильтр-осушитель. Здесь происходит поглощение влаги специальным сорбентом. Из фильтра газообразный фреон поступает в капиллярную трубку.
Капиллярная трубка играет роль своеобразной пробки (препятствия). На входе в трубку давление газа понижается. Хладагент превращается в жидкость. Из капиллярной трубки фреон поступает на испаритель. При падении давления происходит испарение фреона. Вместе с давлением падает и температура газа. В момент поступления в испаритель температура фреона составляет – 23° С.
Фреон проходит по теплообменнику внутри холодильной камеры. Охлажденный газ снимает тепло с внутренней поверхности трубок испарителя. При отдаче тепла происходит охлаждение внутреннего пространства холодильной камеры.
После испарителя фреон засасывается в компрессор. Замкнутый цикл повторяется.
Основные типы охлаждающих систем
По принципу действия различают следующие типы холодильников:
- компрессионные;
- адсорбционные;
- термоэлектрические;
- пароэжекторные.
В компрессионных агрегатах движение хладагента осуществляется за счет изменения давления в системе. Регулирование давления рабочей жидкости осуществляет компрессор. Охладительные системы с компрессором являются самым распространенным типом охлаждающих устройств.
В абсорбционных установках движение хладагента происходит за счет его нагревания от нагревательной системы. В качестве рабочей смеси используется аммиак. Недостатком системы является высокая опасность и сложность обслуживания. Данный тип бытовых приборов является устаревшим и на сегодняшний день снят с производства.
А знаете ли Вы, что самый первый холодильник был выпущен американской компанией General Electric в далеком 1911 году. Устройство было выполнено из дерева. В качестве хладагента использовался диоксид серы.
Главный принцип действия термоэлектрических холодильников основан на поглощении тепла при взаимодействии двух проводников во время прохождения по ним электрического тока. Данный принцип известен как Эффект Пельтье. Достоинством аппарата является высокая надежность и долговечность. Недостатком является высокая стоимость полупроводниковых систем.
В пароэжекторных установках используется вода. Роль двигательной установки выполняет эжектор. Рабочая жидкость попадает в испаритель. Здесь происходит вскипание жидкости с образованием водяного пара. При теплообразовании температура воды резко снижается.
Охлажденная вода используется для охлаждения продуктов. Водяной пар отводится эжектором на конденсатор. В конденсаторе водяной пар охлаждается, превращается в конденсат и вновь поступает на испаритель. Достоинством таких установок является их простота устройства, безопасность, экологичность. Недостатком пароэжекторной системы является значительный расход воды и электроэнергии на ее нагрев.
Принцип работы абсорбционных холодильников
Работа абсорбционных устройств основана на циркуляции и испарении жидкого хладагента. В качестве хладагента применяется аммиак. Роль абсорбента (поглотителя) выполняет аммиачный раствор на водной основе.
Схема работы абсорбционного устройства
В охлаждающую систему аппарата добавляются водород и хромат натрия. Водород предназначен для регулирования давления системы. Хромат натрия защищает внутренние стенки трубок от коррозии.
А знаете ли Вы, что старые советские холодильники в качестве охлаждающей смеси используют фреон R12 на основе хлора. Главным недостатком является его разрушительное действие на озоновый слой Земли.
При подключении к сети питания в генераторе-кипятильнике происходит нагрев рабочей жидкости. Рабочей смесью выступает водный раствор аммиака. Раствор аммиака находится в специальном резервуаре.
Нагрев хладагента приводит к испарению аммиака. Пары аммиака поступают в конденсатор. Здесь аммиак конденсируется и превращается в жидкость.
Сжиженный аммиак поступает в испаритель. Отсюда жидкий аммиак смешивается с водородом. Разность давлений двух веществ приводит к испарению аммиака. Процесс испарения сопровождается выделением тепла и охлаждением аммиака до -4° С. Вместе с аммиаком происходит охлаждение испарителя.
Охлажденный испаритель забирает тепло окружающего пространства. После испарения аммиак поступает в адсорбер. В адсорбере находится чистая вода. Здесь аммиак смешивается с водой. Аммиачный раствор поступает в резервуар. Раствор аммиака из резервуара поступает в генератор-кипятильник и замкнутый цикл повторяется.
В качестве заменителя аммиака могут использоваться водные растворы ацетона, бромистого лития, ацетилена.
Достоинством абсорбционных приборов является бесшумность работы агрегатов.
Принцип работы саморазмораживающегося холодильника
Процесс разморозки в установках с саморазмораживающейся системой происходит автоматически.
Существуют два типа саморазмораживающихся систем:
- Капельная.
- Ветреная (No frost).
В аппаратах с капельной системой испаритель находится на задней стенке аппарата. Во время работы аппарата на задней стенке образуется иней. При оттаивании иней стекает по специальным желобам в нижнюю часть прибора. Нагретый до высокой температуры компрессор испаряет жидкость.
В установках с ветряной системой холодный воздух от испарителя на задней стенке задувается специальным вентилятором внутрь корпуса. Во время цикла оттаивания иней стекает по желобкам в специальное отверстие.
Промышленные холодильники
Промышленные аппараты отличаются от бытовых устройств мощностью установки и размерами охлаждающих камер. Мощность двигателя оборудования достигает нескольких десятков киловатт. Рабочая температура морозильных камер находится в диапазоне от + 5 до – 50° C.
А знаете ли Вы, что самый большой промышленный холодильник занимает 24 км2 площади. Находится этого гигант в Женеве (Швейцария) и служит для научных целей при работе адронного коллайдера.
Промышленные установки предназначены для охлаждения и глубокой заморозки большого количества продуктов. Объем морозильных камер составляет от 5 до 5000 тонн. Используются на заготовительных и перерабатывающих предприятиях.
Принцип работы инверторного холодильника
Инверторные компрессоры предназначены для аккумуляции и преобразования постоянного тока в переменный ток с напряжением 220 В. Принцип работы основан на возможности плавного регулирования оборотов вала двигателя.
Устройство инверторного двигателя
При включении инвертор быстро набирает необходимое число оборотов для создания необходимой температуры внутри корпуса. На момент достижения заданных параметров устройство переходит в режим ожидания. Как только температура внутри корпуса повышается, срабатывает датчик температуры и скорость оборотов двигателя увеличивается.
Устройство термостата холодильника
Терморегулятор предназначен для поддержания заданной температуры внутри системы. Устройство герметично впаяно с одного конца капиллярной трубки. Другим концом капиллярная трубка подсоединяется к испарителю.
Основным элементом устройства терморегулятора любого холодильника является термореле. Конструкция термореле состоит сильфона и силового рычага.
Устройство терморегулятора
Сильфоном называют гофрированную пружину, в кольцах которой находится фреон. В зависимости от температуры фреона, пружина сжимается или растягивается. При понижении температуры хладагента пружина сжимается.
А знаете ли Вы, что современные бытовые холодильники используют фреон R600a на основе изобутана. Этот хладагент не разрушает озоновый слой планеты и не вызывает парниковый эффект.
Под воздействием сжатия рычаг замыкает контакты и подключает компрессор к работе. При повышении температуры происходит растягивание пружины. Силовой рычаг размыкает цепь и мотор выключается.
Холодильник без электричества – правда или вымысел?
Житель Нигерии Мохаммед Ба Абба в 2003 году получил патент на холодильник без электричества. Устройство представляет собой глиняные горшки разной величины. Сосуды сложены друг в друга по принципу русской «матрешки».
Холодильник без электричества
Пространство между горшками заполняют влажным песком. В качестве крышки используется влажная ткань. Под действием жаркого воздуха влага из песка испаряется. Испарение воды приводит к снижению температуры внутри сосудов. Это позволяет длительное время хранить продукты на жарком климате без использования электроэнергии.
Знание устройства и принципа работы холодильника позволит выполнить несложный ремонт устройства своими руками. Если система настроена правильно, значит прибор будет работать долгие годы. При более сложных неисправностях следует обратиться к специалистам сервисных центров.
technosova.ru
Как прозвонить компрессор кондиционера и др. холодильной техники
В данной статье мы рассмотрим поиск неисправностей электрической части компрессоров. Очень часто при ремонте кондиционера грешат на компрессор, но в итоге дело может оказаться вовсе не в нём. Так как же правильно продиагностировать компрессор?
Как узнать сопротивление обмоток рассказано в этой статье.
Прозвонка компрессоров кондиционеров
Самый распространённый тип компрессоров в кондиционерах — однофазные компрессоры с пусковой обмоткой.
Чтобы получить доступ к контактам компрессора необходимо разобрать кондиционер так, чтобы был доступ к компрессору. Обычно контакты защищены крышкой, которая закручена винтом, найти её вы можете по проводам, которые подходят к компрессору. После снятия крышки вы увидите три контактных вывода на которые надеты клеммы с проводами.
Необходимо снять провода и мультиметром измерить сопротивление между выводами. Ставим переключатель прибора на функцию измерения сопротивления (обозначается буквой Ω). Если мультиметр показывает бесконечно большое сопротивление между выводом С и остальными, то это означает обрыв, в случае встроенной защиты нужно убедиться что компрессор не перегрет и не сработала защита, в противном случае, и если защита внешняя-компрессор неисправен. Если сопротивление стремится к нулю это означает короткое замыкание и компрессор также неисправен.
Точное значение сопротивлений зависит от мощности компресссора, точности вашего прибора и может колебаться в пределах, примерно, 1-20 Ом.
Как видно из схемы, сопротивление между выводами М и S должно равняться сумме сопротивлений между клеммами S и С и между М и C.
Как правило, рабочая обмотка (M-C) более мощная, поэтому её сопротивление меньше чем у пусковой (S-C).
В каждом компрессоре существует тепловая защита, но она может быть встроенная как на схеме, или находиться под крышкой, рядом с выводами компрессора.
Если она не встроенная, так называемая «таблетка», то её можно прозвонить отдельно и заменить в случае неисправности (она должна быть замкнута в нормальном состоянии, размыкается при достижении определённой температуры 90-120 °С ).
Сразу оговорюсь, что таким способом мы не сможем определить короткозамкнутые витки, для этого существуют другие приборы (но и они недостаточно стабильно определяют короткозамкнутые витки).
Измерение сопротивления изоляции мегомметром.
Обычным тестером проверить пробой изоляции не получится-он измеряет сопротивление используя низкое напряжение 3—9 В. Мегомметр позволяет измерять сопротивление более высоким напряжением 200-1000 В. Но всё равно предварительно необходимо «прозвонить» обмотки мультиметром, так как нельзя измерять сопротивление мегомметром при коротком замыкании обмотки на корпус.
На приборе можно выбрать напряжение которым будет измеряться сопротивление и время в течение которого будут тестироваться обмотки.
Измерять сопротивление необходимо между одним из трёх выводов на компрессоре и, например, медной трубкой выходящей из компрессора напряжением 250-500 В. Сопротивление должно находиться в пределах 7-10 МОм. Если нет, то также компрессор под замену.
Перед измерением внимательно изучите инструкцию к вашему прибору, используется высокое напряжение, поэтому при неправильном использовании можно получить удар электрическим током или вывести прибор из строя.
Прозвонка компрессора холодильника
В бытовых холодильниках применяются маломощные компрессоры, в которых пусковая обмотка подключается на несколько секунд через пусковое реле с помощью позистора или электромагнитного реле.
Схема с электромагнитным реле:
В этом случае, ток проходит последовательно через катушку реле и рабочую обмотку компрессора. Пусковой ток всегда больше рабочего, используя этот принцип, реле рассчитано так, что пусковой ток замыкает контакты реле и подключает пусковую обмотку компрессора, который запускается. При этом ток, текущий по рабочей обмотке и обмотке реле снижается, контакты размыкаются, отключая стартовую обмотку.
В составе реле также установлено термореле, которое отключает питание компрессора при его перегреве.
Схема с позистором:
На схеме позистор обозначен значком температуры t0 , а термореле цифрой 6.
Принцип действия такой: при комнатной температуре позистор имеет низкое сопротивление и напрямую подаёт напряжение на пусковую обмотку S. Через него протекает ток, который разогревает его, при нагревании внутреннее сопротивление позистора увеличивается, фактически отключая пусковую обмотку через несколько секунд после запуска компрессора. Остывает позистор только после отключения питания с компрессора и при последующем цикле включения снова подключает пусковую обмотку.
Проверка пуско-защитных реле холодильника
Выглядят пуско-защитные реле так:
Электромагнитное реле
Реле с позистором
Круглая чёрная «таблетка» с клеммами — это термореле, которое при нормальной температуре замкнуто, а размыкается только при сильном нагревании. Проверяется омметром — сопротивление должно стремиться к нулю, или в режиме «прозвонки» — должен быть звуковой сигнал при прикладывании щупов к клеммам.
То же самое относится и к позистору — в нормальном состоянии он замкнут. Находится он обычно внутри реле, между клеммами S и R компрессора. (На приведённом рисунке — это клеммы на белом основании).
Трёхфазные компрессоры и компрессоры инверторных кондиционеров.
У трёхфазных компрессоров и у инверторов сопротивление между обмотками должно быть одинаковое, так как у них нет пусковой обмотки, а в остальном методика выявления неисправностей такая же, как и для однофазного компрессора.
masterxoloda.ru
Холодильник с одним мотор компрессором
Уважаемые посетители сайта!!!
Среди Ваших вопросов встречаются вопросы по монтажным электросхемам холодильников. С Вами здесь вполне согласен, так как монтажные схемы дают более объективное представление об электрических схемах.
Поняв сущность изложенного, Вы уже свободно сможете читать схемы любых типов холодильников. Каждый из нас выбирает тип холодильника на свое усмотрение, где учитывается :
- семейное положение \бюджет семьи\;
- состав \количество\ семьи;
- площадь проживания.
Зачем к примеру приобретать большой холодильник если допустим гражданин приобретающий данный электроприбор проживает в 9 — 12 кв. метрах своей жилплощади. То есть получается, что мы зависимы от оказывающего влияния на нас различных факторов.
Приобретая холодильник, впоследствии у нас возникают проблемы — Как починить холодильник? Где найти электрическую либо монтажную схему на холодильник:
- Бирюса;
- Индезит;
- Самсунг;
- Веко;
- Атлант
и далее. В общем то не надо искать электрические схемы на тот или иной тип холодильника. Необходимо понять характер таких электрических соединений, как соединяются в электрической схеме холодильника:
- термостат;
- электролампа;
- выключатель лампы;
- теплозащитное реле
или к примеру: Как правильно соединяется мотор компрессор с теплозащитным реле?
Это является так сказать «сердцем» для проведения ремонта всех типов холодильников, — по электрической части. Итак, к делу друзья!!!
Перед нами две схемы холодильника:
- принципиальная электрическая схема
- монтажная электросхема.
Монтажные электросхемы холодильников
электросхема холодильника
монтажная электросхема холодильника
Две данные схемы абсолютно одинаковы в своем изложении. Как в принципиальной электрической схеме так и в монтажной электросхеме холодильника, — мы можем обратить свое внимание, что электрическая цепь состоит из двух линий:
- силовой, от которой питается мотор компрессор;
- осветительной, где электрическая цепь имеет соединения с выключателем света и электролампой.
Читаем электрическую схему холодильника:
Рабочая обмотка статора электродвигателя соединена последовательно через:
- электромагнитную катушку пускового реле ПР;
- защитное реле ЗР;
- контакты термостата.
Данная электрическая цепь \смотреть электрическую схему\ является силовой, так как подключена с электродвигателем и вторая электрическая цепь является осветительной.
Осветительная цепь состоит из двух элементов:
- электролампы;
- выключателя света.
Теперь, чтобы лучше освоить эту тему, перейдем к объяснению по монтажной электросхеме холодильника:
Конец пусковой обмотки ПО соединен с контактом пускового реле. Контакт пускового реле как мы видим находится в разомкнутом положении.
При разомкнутом положении контактов термостата \смотреть монтажную электросхему\ на рабочую обмотку статора электродвигателя поступает ток.
Контакты выключателя света замыкают электрическую цепь при открывании дверцы холодильника. Одновременно при включении холодильника, когда контакты:
- термостата;
- теплового реле
находятся в замкнутом положении, — происходит замыкание контактов пускового реле. После того как ротор электродвигателя набрал обороты — контакты пускового реле размыкаются, то есть электрическая цепь для данного участка разъединяется.
Это и есть сама сущность принципа работы пуско защитного реле, как Вы поняли после размыкания контактов пускового реле, — электродвигатель начинает работать с одной, рабочей обмоткой.
Получается здесь как бы следующее:
При замыкании контактов пускового реле, при включенной пусковой обмотке, через цепь:
- пускового реле;
- теплового реле,
— протекает суммарный ток обеих обмоток:
- рабочей;
- пусковой.
И что же может произойти при неисправности теплозащитного реле? При неисправности пускового реле, в том случае если контакты не примут исходное разомкнутое положение, — увеличится токовая нагрузка как для пусковой так и для рабочей обмоток статора электродвигателя.
То же самое и при неисправности теплового реле создастся токовая нагрузка на обе обмотки статора. В результате что может произойти? — Произойти может перегорание обмоток статора электродвигателя.
Холодильник aeg santo — в наглядном примере
холодильник aeg santo
рис.1
В примере, рассмотрим монтажную схему холодильника aeg santo, состоящую из:
- клеммной коробки;
- компрессора;
- термореле;
- термостата;
- выключателя;
- выключателя нагревательного элемента;
- лампы;
- вентилятора;
- конденсатора;
- нагревательного элемента.
Пояснение к схеме — холодильника
Прослеживаем соединения в схеме:
Контакты выключателя света 5 замыкаются при открывании дверцы холодильника, электролампа 7 при этом загорается. Выключатель нагревательного элемента 6 служит для включения нагревателя 10, при включении которого происходит разморозка морозильной камеры.
С замыканием контактов термостата 4 включается в электрическую цепь пускозащитное реле компрессора 2. Конденсатор 9 в электрической схеме соединен параллельно. Как и для других схем, данная схема состоит из:
- силовой;
- осветительной
линий. От силовой линии питается мотор компрессор, осветительная линия состоит из выключателя света и электролампы. Вентилятор 8 включается в схеме одновременно с замыканием контактов термостата 4. Металлические корпуса:
- термостата;
- вентилятора;
- компрессора,
как мы видим по схеме — заземлены.
В чем отличие приведенных монтажных электросхем холодильников в этой теме? Отличия в этих схемах состоят лишь в том, что в одни схемы дополнительно внесены:
- вентилятор;
- нагревательный элемент,
а в других схемах данные элементы отсутствуют. Так же следует отметить, что например для двухкамерных холодильников в электрические схемы внесены два мотор компрессора.
Тема, по мере Ваших задаваемых вопросов будет развиваться.
На этом пока все.
zapiski-elektrika.ru
Пускозащитное реле холодильника: конструкция и работа
Трехфазному двигателю наличие пусковой обмотки излишний элемент. Потребляя 380 вольт, врубается в сеть непосредственно, катушки статора сфазированы определенным образом. Требуется запуск от сети 230 вольт — умельцы начинают химичить. Появляются схемы звезды, треугольника, использующие конденсатор, обеспечивающий сдвиг напряжения на 90 градусов в произвольной обмотке относительно двух оставшихся. Первая выполняет роль пусковой, конденсатор должен отключаться, когда двигатель наберет обороты. Фактически из трехфазного мотора получается двухфазный. Конечно, можно сделать блок питания, выдающий три синусоиды, сдвинутые на 120 градусов друг относительно друга искусственным путем. Пускозащитное реле холодильника вторит принципами работы асинхронных двигателей, служит реализации функций, заложенных названием.
Запуск асинхронного двигателя однофазной сетью 230 вольт
Напряжение 380 вольт – три фазы по 230 вольт каждая, оба случая рассматривают действующее значение. Вызывающее на пассивном сопротивлении аналогичный тепловой эффект. Переменное напряжение непрерывно меняется, цифру усредняют по времени. Результат называют действующим (эффективным) значением величины.
Чтобы двигатель асинхронного типа работал правильно, поле статора должно вращаться. Легко обеспечить (доказано Николой Тесла): на три обмотки подать соответствующие фазы. Происходит векторное сложение полей. Результирующий вектор плавно вращается, увлекая ротор. КПД трехфазных двигателей сети 380 В максимальный из прочих разновидностей, типов включений. В промышленности применяется непривычный жилому дому вольтаж. Может жилец получить 380 В? Гипотетически – да. Профессиональный электрик найдет три фазы, сдвинутые друг относительно друга на нужный угол (120 градусов).
Многоэтажки питаются сетью 380 вольт. Квартира получает 1 фазу. Редкие исключения ограничиваются современными многоэтажками. Некоторые образчики бытовой техники (кухонные плиты) питаются двумя фазами. Мера обеспечивает снижение требований к электрической проводке квартиры.
Фаза одна. Вращение поля невозможно принципиально. Движение получают, складывая минимум два вектора. Приходится использовать услуги конденсатора, сдвигающего напряжение на 90 градусов. Фактически при схеме звезды или треугольника одна обмотка выполняет роль пусковой, заставляет поле вращаться. В дальнейшем величина меняется линейно, поскольку двигатель набрал обороты, инерции хватит сохранить вращательное движение. Переменное поле будет ритмично толкать ротор в нужном направлении. Плавность уступает результирующей сложения трех векторов, функционированию домашней бытовой техники хватает.
Почему квартиры лишены трехфазного напряжения. Работа с ним требует глубоких знаний, отличных практических навыков. 230 вольт любой домохозяйке поможет подвести розетку. Одна фаза и земля (нейтраль). Думать не надо. Формулировка утрирована, но близка смыслу реального положения дел. Теряем КПД, получаем взамен простоту.
Что делает пусковая обмотка. Двигатель не войдет в рабочий режим, создает второй вектор, который в первом приближении позволяет считать поле внутри двигателя вращающимся. Неровного круга сдвинуть, раскрутить ротор хватает. Обороты набраны, пусковая катушка должна быть отключена, толку минимум, энергия тратится немалая, снижая КПД устройства.
Принцип действия пускозащитного реле
Пусковую катушку нужно отключить, когда обороты набраны. В момент старта обмотки потребляют большой ток, эффект позволяет отследить момент перекоммутации. Пусковое реле холодильника выполняет защитные функции (не всегда). Опцию реализует разогрев чувствительного элемента электрическим током. Порог превышен — цепь разрывается, невзирая, достигнут нужный режим холодильника согласно показаниям термостата или нет. Придумано две схемы работы пускового реле (одновременно может быть защитным):
- «Таблетки» работают на основе материала, расширяемого нагревом. Изначально рабочий элемент холодный, пусковая обмотка потребляет ток, обеспечивая плавный пуск асинхронного двигателя. Постепенно температура таблетки поднимается, вызывая размыкание контакта, включенной остается рабочая катушка. Полагаем, для поддержания режима внутри реле установлен механизм предотвращения охлаждения таблетки. Дроссель рабочей обмотки, греющий элемент. Если таблеточное реле ломается, часто внутри можно услышать шорох рассыпавшегося порошка, изменяя положение корпуса прибора.
- Индукционные реле основаны на действии электромагнитов. При запуске ток большой и за счет этого сердечник прижимает контакты пусковой катушки. Со временем потребление двигателя падает. В результате сила тока уже не уравновесит пружину, контакты пусковой катушки размыкаются. Обратите внимание: важно сориентировать реле в пространстве правильно. Часто сердечник падает, увлекаемый действием силы тяготения. Зато и тестировать такие элементы гораздо проще: повертите из стороны в сторону, чтобы контакты пускового реле изменяли сопротивление от нуля до бесконечности.
С таблетками часто идут в одном корпусе тепловые реле на биметаллической пластине. Через него проходит ток рабочей катушки. Как только величина превысит порог срабатывания, то контакты размыкаются, останавливая компрессор. Схема реле холодильника биметаллического типа основана на нагреве чувствительного элемента. В этом нет ничего сложного! Две пластины приварены друг к другу плотно. Коэффициент расширения металлов в них различен. Когда происходит нагрев двойная пластина изгибается в сторону материала, который меньше удлиняется. Становится возможным срабатывание реле. Такая схема часто применяется бытовой техникой.
В индукционных реле часто используется нагревающаяся спираль. Здесь материал уже один. Но греет (!) биметаллическую пластину. Через спираль проходит ток рабочей катушки. Если ампераж слишком велик, то биметаллическая пластина разрывает контакты. У индукционного пускозащитного реле виды неисправностей следующие:
- перегорела спираль, в этом случае контакты не будут звониться в любом положении;
- заклинило сердечник, запуск двигателя не выполняется, или мотор глохнет через 5 – 10 секунд;
- нарушен режим работы пластины, холодильник отключается даже в нормальном режиме.
Хотим обратить внимание: тепловая защита полностью аварийная. В нормальном режиме работы срабатывать реле не должно. В то же время пусковая функция сопровождает холодильник в течение периода эксплуатации. Процесс переключения сопровождается легким щелчком. Пускозащитное реле в холодильнике часто слышим, когда прибор работает.
Конструкция пускозащитного реле
Пускозащитное реле напоминает внешним видом таблетку или неопределенной формы. Это такой маленький элемент, находящийся непосредственно возле черного бочкообразного корпуса компрессора. Не задумывались, почему такой цвет сажи выбран окраской сердца холодильника?
Ответ прост: черный поглощает тепло, но также хорошо и излучает. В какую сторону движется процесс, определяет направление перепада температур компрессора и окружающей среды. Когда мотор горячий, то черный корпус отдает тепло воздуху. Кроме того неподалеку присутствует вентилятор, создающий принудительное охлаждение компрессора.
Схема коммутации пускозащитного реле холодильника:
- Фаза 220 В.
- Земля.
- Пусковая обмотка асинхронного двигателя компрессора.
- Рабочая обмотка асинхронного двигателя компрессора.
- Земля.
Обычно узнать, что и куда подключается, можно по цвету проводов. В любом случае ремонт следует проводить осторожно. Землю компрессора проще узнать, если соскоблить чуть-чуть краски с корпуса, прозвонить три контакта. Но этот метод оставляется напоследок, когда остальные не помогли.
Индукционные пускозащитные реле ДХР крепятся на неподвижную раму и работают в паре с компрессорами ДХМ. После обозначения может идти цифра, которая одинакова у обоих устройств. Различие конструкций в рабочем напряжении и токах срабатывания и отпускания. Для ускорения разрыва цепи при перегреве за биметаллической пластиной расположен магнит. Если металл попадает в поле действия, то срабатывание системы ускоряется. Магнит служит и для того, чтобы удержать биметаллическую пластину с разомкнутым контактом чуть дольше, чем нужно для нормализации температуры. Это дополнительная защитная мера.
Индукционное реле компрессора холодильника РТП отличается тем, что может находиться и на проводе. Не обязательно крепить к раме. Работа ведется с компрессорами ДХМ 3 и 5. Отличие от ДХР в несколько меньшем токе срабатывания. Это позволит надежнее защитить компрессор. Ток отпускания такой же. Умельцы используют холодильные компрессоры, изготавливая аппараты высокого давления, ресиверы. Накачивают шины, используют пневматическое оборудование.
Прежде чем купить реле для холодильника, убедитесь, что изделие соответствует типу компрессора. Затем элемент необходимо правильно установить. Лучше брать именно ту марку, которая имелась до ремонта. Если реле холодильника Бирюса оснащена типом РТК, лучше такое и брать, несмотря на то, что для двигателя ДХМ подойдут также и РТП, и ДХР. Совместимость устройств помогут определить справочные таблицы. Указывают необходимые технические сведения.
vashtehnik.ru
Принцип работы холодильников. Причины неисправности холодильника
Уважаемые посетители!!!
При приобретении и дальнейшей эксплуатации холодильника, возникают различные вопросы по различным неисправностям, имеющим отношение с холодильным контуром, с неисправностью по электрической части и так далее. Считаю, что данная тема и последующие записи по холодильникам послужат для Вас хорошим практическим пособием.
холодильник Стинол с двумя мотор — компрессорами
Как починить холодильник? Ремонт холодильника своими руками (схема)
Чтобы иметь полное представление об электрических схемах холодильников, нам необходимо возвратиться в 70-е годы прошлого столетия, где в нашей отечественной технической литературе можно узнать было подробное описание всех видов холодильников тех лет.
В современных схемах мы можем наблюдать: термостат камеры холодного хранения с заземлением, переключатель компенсации температуры, нагреватель, реле защиты от перегрева, компрессор с заземлением, устройство защиты от сверх токов, контакт установленный на дверце и лампу. Устройство защиты от сверх токов представляет собой принцип действия электромагнита, при сверх токах стержень в обмотке притягивается к полюсам магнитопровода, контакт при этом размыкается, происходит разрыв в электрической цепи. При стабилизации тока возвратная пружина приводит стержень в исходное положение и контакт замыкает электрическую цепь.
конденсатор холодильника \змеевик\
Реле защиты от перегрева работает по принципу подвижности биметаллической пластины до определенного нагрева, температурный нагрев устанавливается в резисторе-нагревателе отдающему тепло биметаллической пластине, определенный нагрев резистора создает ток.
Из электротехники нам известно, что тем меньше в электрической цепи сопротивление,- тем больше сила тока, а значит резистор имеет свое определенное сопротивление на температурный режим. Итак пластина под воздействием тепла деформировалась,- контакт разомкнулся.
Температура нагрева пластины понизилась- пластина приняла исходное положение,- электрическая цепь замкнулась. Нагреватель выполнен в виде обыкновенной спирали накаливания. Компрессор установлен в холодильниках однофазный, с коротко замкнутым ротором. В схеме также имеется лампа, включенная в электрической схеме параллельно, с выведенным контактом на дверце холодильника, контакт замыкается при открывании дверцы.
Работа холодильного контура
Для холодильников напольного типа холодильный агрегат имеет нижнее расположение мотор — компрессора. Герметичный холодильный агрегат состоит в основном из:
- мотор — компрессора;
- конденсатора;
- испарителя
и представляет из себя циркулирующую замкнутую систему.
холодильный контур с двумя мотор — компрессорами
Для циркуляции используется хладагент \фреон\. При работе мотор — компрессора пары фреона всасываются из испарителя по всасывающей трубке в кожух мотор — компрессора и затем фреон поступает в цилиндр.
Далее, горячие пары фреона из цилиндра компрессора нагнетаются под давлением в конденсатор. Из за малого сечения капиллярной трубки — давление фреона в конденсаторе повышается. Хладагент конденсируется при высоком давлении и на конечных витках змеевика конденсатора накапливается фреон в жидком состоянии.
устройство холодильного агрегата
По капиллярной трубке из конденсатора фреон поступает в испаритель. Попадая в испаритель, жидкий фреон начинает кипеть, так как в испарителе создается низкое давление. Происходит поглощение тепла из окружающей среды, то есть из холодильной камеры.
Поглощенное тепло вместе с хладагентом обратно поступает через мотор — компрессор в конденсатор \змеевик\.
Электрическая схема холодильника
схема холодильника Стинол
Данная схема содержит следующие соединения:
- терморегулятор Th2;
- тепловое реле Rh2;
- компрессор CO1;
- пусковое защитное реле RA1,
— соединенных в электрической схеме последовательно. Параллельно в схеме соединены две лампочки:
- индикаторная лампа SL1;
- лампа освещения холодильной камеры L1
и кнопка освещения холодильной камеры IL1.
Причины неисправности холодильника
Причины не включения холодильника могут быть различны:
- отключен однополюсной автомат в групповом щитке,
- отключен автомат над электросчетчиком в квартире,
- нет контакта вилки с розеткой,
- не включен регулятор температуры в холодильнике,
- сработало реле защиты от перегрева холодильника и Вы тут же вновь включили холодильник.
терморегулятор холодильника Стинол
Неисправность терморегулятора сказывается на работе холодильника:
- длительность работы;
- продолжительное не включение;
- непрерывность работы.
Обычно таковой причиной неисправности терморегулятора холодильника является окисление контактов.
В случае поломки, неисправности терморегулятора — следует его разобрать и зачистить контакты биметаллической пластины.
При неисправности пускового реле, может выйти из строя:
- пусковая обмотка мотор — компрессора;
- рабочая обмотка мотор — компрессора,
— в зависимости от характера неисправности.
пускозащитное реле мотор — компрессора
электрическая схема пускового и защитного реле
Защитное реле является токовым предохранителем электродвигателя \мотор — компрессора\. Неисправность защитного реле приводит к выходу из строя электродвигателя либо отключение как такового \отключение электродвигателя без воздействия терморегулятора\.
Либо другими словами, при резком повышении силы тока \скачке напряжения\ в электрической сети и неисправности защитного реле, — перегорают обмотки статора электродвигателя.
Так же для холодильников типична такая неисправность как частое срабатывание защитного реле, что приводит к включениям и выключениям мотор — компрессора без участия терморегулятора.
Ремонт, с последующей установкой либо заменой мотор — компрессора для холодильного агрегата, представляет из себя более объемное выполнение работ. В целом, при проведении ремонта холодильного агрегата применяется пайка и сварка.
мотор — компрессор холодильника
Стальные и медные трубки соединяют между собой пайкой серебряным припоем.
припой серебряный ПСP 45
Крышку кожуха мотор — компрессора сваривают стальным электродом.
В зависимости от характера проводимых работ при ремонте холодильного агрегата, могут использоваться следующие виды соединений:
- пайка оловом;
- стыковая электросварка;
- электродуговая сварка;
- аргонодуговая сварка;
- пайка медью;
- пайка серебряным припоем.
Подобные работы, по проведению ремонта холодильного агрегата, требуют в отдельных случаях специализированных условий, то есть выполняются в мастерских помещениях.
горелка газовая для пайки медных труб
Испаритель и конденсатор \змеевик\ из алюминия, — соединяются с медными трубками через переходные медно — алюминиевые патрубки. Алюминиевая сторона патрубка приваривается к испарителю аргонодуговой сваркой. Медная сторона патрубка припаивается серебряным припоем.
медные и бронзовые фитинги под пайку
Аргонодуговая сварка выполняется специальной горелкой с применением присадочного материала. Свариваемые детали предварительно очищаются металлической щеткой и обезжириваются бензином.
При сварке кожуха мотор — компрессора, работу следует проводить как можно быстро, чтобы не перегреть крышку с контактами.
Для проведения стыковой электросварки отдельных деталей, вполне подойдет бытовой сварочный аппарат с питанием на 220В.
сварочный аппарат FUBAG TR 220
Место утечки фреона из холодильного агрегата определяется в условиях мастерской, — под давлением воздуха.
Следует также помнить, что при пониженном напряжении в электрической сети, контакты пускового реле в момент включения двигателя \мотор — компрессора\ могут не сомкнуться, — в следствии чего пусковая обмотка не будет подключена. Ротор по этой причине не сможет провернуться, а по рабочей обмотке будет протекать ток короткого замыкания. Электродвигатель в этом примере, — может сгореть.
Изложенная тема будет иметь дополнение.
На этом пока все.
zapiski-elektrika.ru