Таблица мощности стальных радиаторов отопления: как рассчитать панельные радиаторы по площади, мощность, теплоотдача, как подобрать, таблица

Содержание

как рассчитать панельные радиаторы по площади, мощность, теплоотдача, как подобрать, таблица

Содержание:

Приступая к обустройству отопительной системы, необходимо вначале определить, какой именно объем тепловых потерь нуждается в компенсации. Ориентируясь на эту величину, проводится расчет стальных радиаторов и поиск наиболее оптимальных мест для их расположения.


Расчет по площади

Это самый простой вариант определения более-менее точного количества необходимого для обогрева тепла. При расчете основной отправной точкой выступает площадь квартиры или дома, где осуществляется организация отопления.

Значение площади каждого помещения имеется в плане квартиры, а для вычисления конкретных значений по расходу тепла на помощь приходит СНиП:

  • Для средней климатической зоны норма для жилого помещения определена, как 70-100 Вт/1 м2.
  • Если температура в регионе опускается ниже -60 градусов, уровень обогрева каждого 1 м2 необходимо увеличить до 150-220 Вт.

Для расчета панельных радиаторов отопления по площади, кроме приведенных норм, можно использовать калькулятор. В учет обязательно берут мощность каждого обогревающего прибора. Значительные перерасходы лучше не допускать, т.к. по мере увеличения итоговой мощности увеличивается также количество батарей в системе. В случае с центральным отоплением подобные ситуации не являются критичными: там каждая семья оплачивает только фиксированную стоимость.


Совсем другое дело в автономных отопительных системах, где последствием любого перерасхода является рост оплаты за объем теплоносителя и работу контура. Тратить лишние финансы непрактично, т.к. за полный отопительный сезон может набежать приличная сумма. Определив с помощью калькулятора, сколько точно нужно тепла на каждую комнату, легко узнать, сколько приобретать секций.

Для простоты на каждом отопительном приборе указывается объем выделяемого им тепла. Эти параметры обычно содержаться в сопроводительной документации. Арифметика здесь простая: после определения количества тепла полученную цифру нужно разделить на мощность батареи. Полученный после этих несложных операций результат и является числом секций, необходимых для восполнения утечек тепла в зимнее время.

Для наглядности лучше разобрать простой пример: допустим, что нужно всего 1600 Ватт, при площади каждой секции в 170 Ватт. Дальнейшие действия: производится деление общего значения 1600 на 170. Выходит, что приобретать нужно 9,5 секций. Округление можно осуществить в любую сторону, на усмотрение владельца дома. Если в помещении есть дополнительные источники тепла (например, кухонная плита), то округлять нужно в сторону уменьшения.


В противоположную сторону рассчитывают, если в комнате имеются балконы или просторные окна. То же самое касается угловых помещений, или если стены плохо утеплены. Расчет очень простой: главное при этом не забывать про высоту потолков, т.к. она не всегда стандартная.

Значение имеет также тип используемого для возведения здания строительного материала и вид оконных блоков. Поэтому данные расчета мощности стальных радиаторов отопления нужно воспринимать, как приблизительные. Калькулятор в этом отношении куда удобнее, т.к. в нем предусмотрены корректировки по стройматериалам и характеристикам помещений.

Как корректировать предварительные показатели

Приблизительные значения обязательно нуждаются в уточнении. Для получения более точного результата потребуется учет всех факторов.

Каждый из них может провоцировать увеличение или уменьшение теплопотерь:

  • Материал для стен.
  • Эффективность теплоизоляции.
  • Площадь оконных блоков и тип остекления.
  • Число наружных стен.


Качественные калькуляторы оснащены специальными коэффициентами, учитывающими данные факторы. Все, что потребуется для более точного выравнивание предварительных показателей теплопотерь – умножить их на эти коэффициенты.

Окна

Чаще всего именно эти конструкционные элементы становятся виновниками утечки от 14 до 30% тепла. Для более точного вычисления нужно учесть их размеры и уровень утепления. Это объясняет наличие двух расчетных коэффициентов.

Отношение площади окна к площади пола:

  • 10% — 0,8
  • 20% — 0,9
  • 30% — 1,0
  • 40% — 1,1
  • 50% — 1.2

Последняя цифра – это коэффициент.


Тип стеклопакетов:

  • Трехкамерные — 0.85.
  • Двухкамерные — на 1.0.
  • Деревянные двойные рамы — на 1.27 или на 1.3.

Рассматривая стены и кровлю, в учет берут тип материала и изоляции: поэтому коэффициентов получается также два.

Утепление:

  • Стена из кирпича обычной толщины берется за основу. Коэффициент равен единице.
  • При небольшой толщине коэффициент принимается за 1. 27.
  • Хорошо утепленные конструкции с толщиной теплоизоляции не менее 10 см: поправочное число 0.8.

Как рассчитываются стальные радиаторы

Стальные батареи панельного типа считаются новинкой в сфере отопительных бытовых приборов. Их особенностью являются более компактные габариты. Теплоотдача стальных радиаторов по сравнению с обычными секционными радиаторами батареями на порядок выше. В состав конструкции может входить несколько гофрированных металлических панелей(1,2 или 3 шт.). Под панелями понимаются пластины, сквозь которые теплоноситель поступает в систему. Перед тем, как рассчитать панельные радиаторы по мощности, нужно вооружиться информацией об основных разновидностях этих приборов.

Данные из таблицы мощности стальных радиаторов отопления:

  1. Трехпанельные. Массивность приборов объясняется наличием 3-х панелей, оснащенных оребрением. Маркируются 33.
  2. Двухпанельные. Число пластин сокращено до двух. Маркировка — 22.
  3. Двухпанельные плюс одна пластина (21).
  4. Однопанельные с одной пластиной. Отличаются небольшой мощностью, легким весом и компактными размерами (11).
  5. Только панель без оребрения (10).

Расчет мощности подобных приборов также проводится по площади, только отталкиваются не от квадратного метра, а от кубического.


Требования СНиП:

  • В домах из кирпича на 1 м3 требуется 34 Ватт.
  • В панельных зданиях на 1 м3 необходим 41 Ватт.

Держа во внимании эти нормы, можно произвести расчет любого помещения. Знание высоты потолков обязательно.

Пример расчета:

Панельное здание имеет габариты 3,2 на 3,5 метров, при высоте потолка 3 м. Для определения объема нужно перемножить 3,2, 3,5 и 3: в результате получается 33,6 м3. Эта цифра умножается на коэффициент для панельного дома (41). Итог — 1378 Вт. Чтобы получить максимально точное значение, применяют таблицу расчета стальных радиаторов отопления. В ней отображена информация по каждой климатической зоне и характеристикам объекта.

Что еще влияет

На каждом обогревающем приборе, вне зависимости от производителя, имеется указание на максимальную мощность.

Речь идет о следующих параметрах:

  1. Высокотемпературный режим. Теплоноситель способен разогреваться до +90 градусов.
  2. Режим обработки. Максимальное значение +70 градусов(90\70).

Как показывает практика, отопительные системы редко работают на максимуме.


Реальный температурный режим и мощность выглядят следующим образом:

Адекватный расчёт панельных радиаторов предусматривает наличие информации о температурных напорах контура отопления. Имеется в виду разницу между обогревающей батареей и температурой воздуха.

Температура прибора в этом случае принимается за среднее арифметическое подачи и обратки. Перед тем, как рассчитать стальные радиаторы отопления, необходимо уточнить тип подключения приборов.

Оно бывает:

  1. Односторонним. Достигает своего максимума при подаче сверху(97%).
  2. Двухсторонним. В этом случае также предпочтительнее верхняя коммутация (100%).

Задача по подбору стального радиатора, как правило, не вызывает особых сложностей. Куда труднее произвести необходимые расчетные мероприятия, требующие учета целого ряда факторов. Для удобства расчета мощности стальных радиаторов отопления были разработаны специальные калькуляторы, позволяющие получать точные результаты.


Расчет количества радиаторов отопления по площади помещения |Системы отопления

КОНСТРУКТИВНЫЕ ОСОБЕННОСТИ ПАНЕЛЬНЫХ РАДИАТОРОВ ОТОПЛЕНИЯ

Основным материалом для изготовления панельных радиаторов является сталь. Сталь, как высокотехнологичный материал обладает отличным набором свойств: прочность, ковкость, гибкость – всё это предает агрегатам из стали массу полезных свойств, а хорошая податливость сварке и высокая теплопроводность делают сталь идеальным материалом для радиаторов отопления.

 

Главной конструктивной единицей панельного радиатора является панель, которых, в зависимости от типа радиатора, может быть и одна, и две, и три.

 

Панель радиатора – это два сваренных между собой тонких стальных листа. Листы же до сварки проходят штамповку, где им предаётся профиль – это и есть каналы для циркуляции нагретой жидкости в панели радиатора. Панели, если их две и более, соединенные между собой трубками, с металлическим кожухом по бокам и декоративной верхней решеткой и есть готовый панельный радиатор отопления.

 

Для повышения теплоотдачи и скорости обогрева помещения, радиатор может оснащаться конвекционными ходами с внутренней стороны панелей в виде ребристого листа из более тонкой стали, что способствует перемещению воздушных масс в помещении и равномерному обогреву.

 

Как видно, технология изготовления данных агрегатов проста, что и объясняет их достаточно низкую стоимость.

 

Если производитель не экономит на качестве материала и для производства радиаторов использует качественную сталь, применяет современные технологичные методы нанесения защитного покрытия, то такой радиатор гарантированно и бесперебойно служит долгие годы.

 

В зависимости от количества панелей и конвекторов панельные радиаторы делятся на типы. Двухзначное число к маркировке панельного радиатора является обозначением его принадлежности к определенному типу, где первая цифра – это количество панелей, а вторая, соответственно, количество конвекторов.

ТИПЫ ПАНЕЛЬНЫХ РАДИАТОРОВ ОТОПЛЕНИЯ

Тип 10 – панельный радиатор, состоящий из одной панели без конвектора, кожухов и верхней решетки.

 

Тип 20 – панельный радиатор, состоящий из соединенных между собой патрубками двух панелей, без конвектора, кожухов и закрытый верхней решетки.

Тип 30 – панельный радиатор, состоящий из соединенных между собой патрубками трех панелей, без конвектора, кожухов и закрытый верхней решетки.

Тип 11 – панельный радиатор, состоящий из одной панели, одного конвектора, без кожухов и верхней решетки.

Тип 21 – панельный радиатор, состоящий из соединенных между собой патрубками двух панелей, одним конвектором, закрытый кожухом и верхней решеткой.

Тип 22 – панельный радиатор, состоящий из соединенных между собой патрубками двух панелей, двумя конвекторами, закрытый кожухом и верхней решеткой.

Тип 33 – панельный радиатор, состоящий из соединенных между собой патрубками трех панелей, тремя конвекторами, закрытый кожухом и верхней решеткой.

ПОДБОР ТРЕБУЕМОГО ПАНЕЛЬНОГО РАДИАТОРА, РАСЧЕТ ПО ПЛОЩАДИ ПОМЕЩЕНИЯ

Панельный радиатор является эффективным отопительным агрегатом и за счет большой нагреваемой площади имеет повышенную теплоотдачу. Панельные радиаторы имеют широкий диапазон размеров, как по вертикали, от 300 до 900 мм, так и по горизонтали, от 400 до 3000 мм.

 

В зависимости от размера и типа панельного радиатора меняется и его показатель теплоотдачи, то есть количество отдаваемого тепла радиатором в единицу времени, который измеряется в Ваттах (Вт). Каждый радиатор, помимо маркировки типа и габаритов имеет свой основной показатель – тепловую мощность.

 

Есть усредненные простейшие формулы расчета требуемой суммарной тепловой мощности для отопления помещений.

 

Первый способ, исходит из расчета в 100 Вт на 1 м² помещения. Для примера, если комната 15 м² то 100 х 15 = 1 500 Вт. Соответственно, нам необходим радиатор мощностью не ниже 1 500 Вт, к примеру подойдет панельный радиатор 500х800, тип 22 с мощностью 1 515 Вт.

 

Но существует множество внешних факторов и переменных, влияющих на сумму необходимой тепловой энергии для поддержания комфортной температуры в комнате.

 

Факторы влияния есть очевидные: высота потолков, количество окон, наличие наружной двери в комнате, теплоизоляция дома – пола, стен и потолков, метод подключения и расположение радиаторов отопления. Но не менее важными факторами будут и роза ветров, верхний и нижний температурные пороги в отапливаемое время года, даже ориентация стен по сторонам света.

 

В действительности сложно учесть все эти факторы для точного расчета требуемой тепловой мощности и для бытового расчета приняты некоторые правила:

 

— наличие окна в помещении + 100 Вт;

— наличие наружной двери + 200;

— суммарное влияние всех неучтенных факторов + 20% к полученной сумме требуемой тепловой мощности.

 

Во второй формуле будем исходить из расчета в 40 Вт на 1 м³ и учета вышеизложенных правил.

К примеру, комната 3 на 6 метров и высотой потолков 3,2 метров, двумя окнами, одно шириной 900 мм, второе — 1200 мм и внешней дверью:

 

(3 х 6 х 3,2 х 40 + (100 х 2) + 200) + 20% = 3 245 Вт

 

Итого, 3 245 Вт тепловой энергии радиаторов требуется для обогрева нашей комнаты.

            3 245 / 2 окна и получаем среднюю тепловую мощность на один радиатор, равную 1 622 Вт

Конечно, можно установить под каждое окно в комнате по одному радиатору Airfel 500×900, тип 22 с тепловой мощностью 1704, но для достижения максимального эффекта необходимо учесть и размеры оконных проёмов.

 

Касаемо установки самих радиаторов, необходимо следовать некоторым правилам. Например, при наличии окон в комнате, как во втором примете, радиаторы нужно устанавливать на стене под окнами, чтобы конвекционный поток нагретого воздуха создавал тепловой щит. Также радиатор должен быть равен минимум 80% от ширины оконного проема.

 

А теперь, воспользовавшись таблицей отдаваемой тепловой мощности и учитывая количество окон в комнате и их ширину проемов, подберем панельный радиатор, отвечающий нашим требованиям:

ТАБЛИЦА ТЕПЛООТДАЧИ ПАНЕЛЬНЫХ РАДИАТОРОВ AIRFEL

Изучив таблицу теплоотдачи, рекомендовано в комнате из примера установить два отопительных радиатора, один — Airfel 500×800 mm с тепловой мощностью 1515 Вт под окном шириной 900 мм и второй — Airfel 500×1000 mm с тепловой мощностью 1894 Вт под окном шириной 1200 мм. Мощности подобранных радиаторов будет достаточно для отопления нашей комнаты, а оставшийся запас можно использовать во время резкого похолодания, тем самым избежать перепадов температуры в помещении.

ТАБЛИЦА ТЕПЛООТДАЧИ ПАНЕЛЬНЫХ РАДИАТОРОВ PRADO

виды и расчет по таблицам

Стальные панельные радиаторы — конкурент привычных отопительных приборов секционного типа. Они привлекательны тем, что по сравнению со всеми секционными моделями при меньших габаритах имеют более высокий коэффициент теплоотдачи. Состоят из панелей, в которых по сформированным ходам, движется теплоноситель. Панелей может быть несколько: одна, две или три. Вторая составляющая — пластины гофрированного металла, которые называют оребрением. Вот за счет этих пластин и достигается высокий уровень теплоотдачи этих устройств.

Стальные панельные радиаторы имеют разные размеры и мощность

Для получения разной тепловой мощности панели и оребрение комбинируют в нескольких вариантах. Каждый вариант имеет разную мощность. Чтобы правильно подобрать размер и мощность нужно знать, что каждый из них собой представляет. По строению стальные панельные батареи бывают следующих типов:

  • Тип 33 — трехпанельный. Самый мощный класс, но и самый габаритный. Имеет три панели, к которым подсоединены три пластины оребрения (потому и обозначается 33).
  • Тип 22 — двухпанельный с двумя пластинами оребрения.
  • Тип 21. Две панели и между ними одна пластина с гофрированным металлом. Эти отопительные приборы при равных размерах имеют меньшую мощность по сравнению с типом 22.
  • Тип 11. Однопанельные стальные радиаторы с одной пластиной оребрения. Имеют еще меньшую тепловую мощность, но и меньший вес и габариты.
  • Тип 10. В этом типе имеется только одна панель с теплоносителем. Это самые маломощные и легкие модели.

Все эти типы могут иметь разную высоту и длину. Очевидно, что мощность панельных радиаторов зависит как от типа, так и от габаритов. Так как рассчитать этот параметр самостоятельно невозможно, то каждый производитель составляет таблицы, в которых заносит результаты испытаний. По этим таблицам и подбираются радиаторы для каждого помещения.

Типы стальных панельных радиаторов

Определяем мощность

Мощность стальных панельных радиаторов нужно определять исходя из теплопотерь помещения, в котором они будут устанавливаться. Для квартир, расположенных в стандартных домах, можно исходить из норм СНиПа, которые нормируют требуемое количество тепла на 1м3 обогреваемой площади:

  • Помещения в зданиях из кирпича требую 34Вт на 1м3.
  • Для панельных домов на 1м3 уходит 41Вт.

Исходя из этих норм, определяете, какое количество тепла требуется для обогрева каждой из комнат.

Например, помещение в панельном доме 3,2м*3,5м, высота потолков 3м. Рассчитаем объем 3,2*3,5*3=33,6м3. Умножив на норму по СНиП  для панельных домов получаем: 33,6*41=1377,6Вт.

Нормы СНиПа указаны для средней климатической зоны. Для остальных имеются соответствующие коэффициенты в зависимости от средних температур зимой:

  • -10оС и выше — 0,7
  • -15оС — 0,9
  • -20оС — 1,1
  • -25оС — 1,3
  • -30оС — 1,5

Нужна коррекция потерь тепла и в зависимости от количества наружных стен, ведь понятно, что чем больше таких стен, тем больше тепла через них уходит. Потому учитываем и их: если одна стена выходит наружу, коэффициент 1,1, если две — умножаем на 1,2, если три, то увеличиваем на 1,3.

Чтобы правильно определить мощность панельного радиатора, нужно рассчитать теплопотери помещения

Внесем корректировки для нашего примера. Пусть средние зимние температуры по региону -25оС, имеется две наружных стены. Получается: 1378Вт*1,3*1,2=2149,68Вт, округляем 2150Вт.

Требуется еще учесть тип материала, кровли, какие помещения находятся сверху или снизу и т.д. Какие для этого существуют коэффициенты, смотрите в статье «Как рассчитать количество секций радиаторов»

А для примера воспользуемся этой цифрой. При условии, что утепление у дома и окон среднее, найденная цифра достаточно точна.

Расчет радиаторов Kermi

Перед определением мощности нужно определиться с маркой стальных панельных батарей. Естественно, доверять можно лидерам. Практически вне конкуренции сегодня немецкие стальные радиаторы Kermi. Вот и рассчитаем мощность по таблицам этого производителя.

Пусть решили установить одну из новых моделей Kermi Therm X2 Plan. По таблице, в которой указаны мощности всех имеющихся моделей, находим подходящие значения. Точного совпадения искать не стоит, ищите значение, которое чуть больше, чем рассчитанное (в теплотехнике лучше иметь хоть небольшой запас «на всякий случай»). В таблице подходящие для нашего случая варианты отмечены красными квадратиками. Пусть для нас более приемлема высота 505мм (указана вверху таблицы). Больше других привлекают менее длинные (1005мм) панельные радиаторы 33 типа. Если нужны еще более короткие, можно обратить внимание на модели с высотой 605мм.

Таблица расчета тепловой мощности стальных радиаторов Kermi (кликните для увеличения размера)

Пересчет мощности панельных радиаторов в зависимости от температурного режима

Но значения в данной таблице справедливы для системы с параметрами 75/65/20 (температура подачи 70оС, обратки 65оС, в помещении поддерживается 20оС). По этим значениям рассчитывается дельта температур: (75+65)/2-20=50оС.

Если параметры вашей системы другие, необходим перерасчет. Для подобных случаев в «Керми» составили таблицу с корректирующими коэффициентами.

Таблица пересчета в зависимости от температур системы отопления (кликните для увеличения размера)

Пусть предполагается низкотемпературная система с параметрами 60/50/22 (температура подачи 60оС, обратки 50оС, в помещении поддерживается 22оС). Считаем дельту температур: (60+50)/2-22=33оС. Находим в таблице строку с температурой проводимой воды, потом с температурой отводимой воды и доходим до значения температуры в помещении (22оС в нашем случае). В этой клетке стоит коэффициент 1,73 (отмечен зеленым цветом).

На него умножаем рассчитанное количество теплопотерь для нашего помещения: 2150Вт*1,73=3719,5Вт. Теперь ищем подходящие варианты в таблице мощностей для этого случая (отмечены зеленым). Выбор скромнее, но и радиаторы требуются гораздо мощнее.

Вот вся методика определения мощности панельных радиаторов. По ней вы сможете подобрать стальные панельные батареи для любой комнаты и любой системы.

Возможно, вам будет интересно почитать о том, как рассчитать мощность котла и о том, как определить диаметр труб для отопления.

Итоги

Для расчета мощности панельных радиаторов необходимо знать теплопотери помещения, фирму, изделия которой вы хотите купить, и параметры вашей системы отопления (температуру подачи, обратки и температуру в комнате). По этим данным по таблицам мощностей можно определить модели, которые удовлетворяют вашим условиям. Потом из этих вариантов выбрать тот, который больше подходит по параметрам (высота/длина/глубина). Вот и вся методика.

Подробный расчет мощности радиаторов отопления

Проблема отопления в наших широтах стоит значительно острее, чем в Европе с ее мягким климатом и теплыми зимами. В России значительная часть территории находится под властью зимы до 9 месяцев в году. Поэтому очень важно уделить достаточное внимание выбору систем отопления и расчету мощности радиаторов отопления.

В отличии от теплых полов, где учитывается только площадь, расчет мощности радиаторов отопления производится по иной схеме. В этом случае следует учитывать также высоту потолков, то есть общий объем помещения, в котором планируется установка или замена системы отопления. Бояться не стоит. В конечном итоге весь расчет строится на элементарных формулах, совладать с которыми не составит труда. Радиаторы будут обогревать помещение благодаря конвекции, то есть циркуляции воздуха в комнате. Нагретый воздух поднимается вверх и вытесняет холодный. В этой статье Вы получите самый простой расчет мощности радиаторов отопления.

Пример расчета мощности батарей отопления

Возьмем помещение площадью 15 квадратных метров и с потолками высотой 3 метра.Объем воздуха, который предстоит нагреть в отопительной системе составит:

 V=15x3=45 метров кубических

Далее считаем мощность, которая потребуется для обогрева помещения заданного объема. В нашем случае — 45 кубических метров. Для этого необходимо умножить объем помещения на мощность, необходимую для обогрева одного кубического метра воздуха в заданном регионе. Для Азии, Кавказа это 45 вт, для средней полосы 50 вт, для севера около 60 вт. В качестве примера возьмем мощность 45 вт и тогда получим:

45×45=2025 вт — мощность, необходимая для обогрева помещения с кубатурой 45 метров

Выбор радиатора исходя из расчета

Стальные радиаторы

Оставим за скобками сравнение радиаторов отопления и отметим только нюансы, о которых необходимо иметь представление при выборе радиатора для вашей системы отопления.

В случае расчета мощности стальных радиаторов отопления все просто. Есть необходимая мощность для уже известного помещения — 2025 вт. Смотрим по таблице и ищем стальные батареи, выдающие необходимое число Вт. Такие таблицы несложно найти на сайтах производителей и продавцов подобных товаров. Обратите внимание на температурные режимы, при которых будет эксплуатироваться система отопления. Оптимально использовать батарею в режиме 70/50 С.

В таблице указывается тип радиатора. Возьмем тип 22, как один из самых популярных и вполне достойных по своим потребительским качествам. Отлично подходит радиатор размером 600×1400. Мощность радиатора отопления составит 2015 Вт. Лучше брать немного с запасом.

Алюминиевые и биметаллические радиаторы

Алюминиевые и биметаллические радиаторы зачастую продаются секциями. Мощность в таблицах и каталогах указывается для одной секции. Необходимо разделить мощность, необходимую для обогрева заданного помещения на мощность одной секции такого радиатора, например:

2025/150 = 14 (округлили до целых)

Получили необходимое число секций для помещения объемом 45 кубических метров.

Не переборщите!

14-15 секций для одного радиатора — это максимум. Ставить радиаторы по 20 и больше секций неэффективно. В таком случае следует разбивать число секций напополам и устанавливать 2 радиатора по 10 секций. Например, 1 радиатор поставить возле окна, а другой возле входа в комнату или на противоположной стене.

Со стальными радиаторами так же. Если комната достаточно велика и радиатор выходит слишком большой — лучше поставьте два поменьше, но той же суммарной мощности.

Если в комнате того же объема 2 окна или более, то хорошим решением будет установка радиатора под каждым из окон. В случае с секционными радиаторами все довольно просто.

14/2=7 секций под каждым окном для комнаты того же объема

Радиаторы обычно продаются по 10 секций,  лучше взять четное число, например 8. Запас в 1 секцию лишним не будет в случае серьезных морозов. Мощность от этого особенно не изменится, однако инерция нагрева радиаторов уменьшится. Это может быть полезно, если в комнату часто проникает холодный воздух. Например, если это офисное помещение, в которое часто заходят клиенты. В таких случаях радиаторы будут нагревать воздух немного быстрее.

Что делать после расчета?

После расчета мощности радиаторов отопления всех комнат, необходимо будет выбрать трубопровод по диаметру, краны. Количество радиаторов, длину труб, количество кранов для радиаторов. Подсчитать объем всей системы и выбрать подходящий для нее котел.

Для человека дом часто ассоциируется с теплом и уютом. Чтобы дом был теплым, необходимо уделить должное внимание системе отопления. Современные производители используют новейшие технологии для производства элементов систем отопления. Однако, без грамотного планирования подобной системы, для определенных помещений эти технологии могут оказаться бесполезны.

В первую очередь необходимо понимать, для каких целей будет использоваться помещение. Какой температурный режим в нем желателен. В этом деле существует множество тонкостей, которые необходимо учитывать. Желательно сделать проект отопления с точным расчетом мощности радиаторов отопления и теплопотерь. Радиаторы отопления лучше устанавливать в той части комнаты, где холоднее всего. В вышеизложенном примере была рассмотрена установка батарей отопления возле окон. Это один из наиболее выгодных и эффективных вариантов размещения элементов отопительной системы.

Видео по расчету мощности батареи

Читайте так же:

Стальные радиаторы отопления расчет мощности таблица

Не секрет, что для комфорта в доме нужна система отопления, грамотно рассчитанная и надежно смонтированная. На сегодняшний день самой популярной является система из контуров труб и радиаторов отопления. Среди огромного множества моделей выгодно отличаются сейчас стальные батареи – они недорогие, легкие, привлекательные внешне и достаточно эффективны в обогреве.

Мощность стального радиатора – ключевой критерий выбора

Самый важный вопрос, ответ на который нужно найти перед покупкой радиаторов – какого размера он должен быть, какую он должен иметь мощность, чтобы поддерживать в помещении комфортную температуру.


А еще в сети есть множество онлайн-калькуляторов, где, введя исходные данные, Вы можете получить готовый результат необходимой тепло-мощности радиаторов. Но все же доверяй, но проверяй! Мы советуем Вам разобраться в схеме расчета лично, чтобы понимать алгоритм и владеть полной информацией.

При изначальном проектировании отопительной системы есть возможность обратиться к специалистам, которые совершат для Вас сложные и точные теплотехнические расчеты. Однако стоит это недешево, и, по большому счету, Вы можете произвести упрощенный расчет и самостоятельно.

Таблица расчета стальных радиаторов отопления + формула

Исходные данные, необходимые нам для расчетов – размеры отапливаемого помещения (длина, ширина и высота комнаты), особенности помещения (внешние стены, количество окон, наличие балкона и т.п.).

Формула для упрощенного расчета без учета особенностей помещения довольно проста и выглядит так:

                                                                P= V x 40,

где P – необходимая тепловая мощность радиатора (Вт),

V – объем комнаты (длина * ширина * высота) (м3),

40 – тепловая мощность, нужная для обогрева 1 м3 площади (Вт).

Полученный результат необходимо подкорректировать с учетом дополнительных факторов, влияющих на увеличение или уменьшение потерь тепла. Для каждого из возможных факторов рассчитаны коэффициенты корректировки (Кк), приведенные в подробной таблице:

Количество стен (с улицы, внешних)      Показатель


Кк (Коэффициент корректировки) 

Одна


1           

Две


1,2

Три


1,3           

Тип окон
Показатель


Кк  

Окна с деревянными рамами и двойным стеклом

1,27
Окна с однокамерными стеклопакетами 
—   
1
Окна с двойными стеклопакетами  


0,85

Географическая ориентация помещения
Показатель


Кк  

Комната в западной или южной части здания


1

Комната в восточной или северной части здания


1,1

 
Утепленность внешних стен
Показатель


Кк 

Утепленные поверхностными материалами стены

1
Стены с хорошим утеплением


0,85

Стены без утепления 


1,27

Высота потолков
Показатель

Кк 
до 2,7 м

1
2,7 — 3 м

1,05
до 3,5 м

1,1
Степень открытости батарей
Показатель


Кк 

Батарея под подоконником


1

Батарея в стенной нише


1,07

Батарея под декоративным кожухом


1,2

Тип помещения, расположенного над тем, для которого производится расчет
Показатель


Кк 

Неотапливаемое помещение

1
Утепленный чердак


0,9   

Отапливаемое помещение 


0,8

Коэффициент остекления помещения (площадь окон/площадь помещения)
Показатель

Кк 
До 0,1

0,8
От 0,11 до 0,2

0,9
От 0,21 до 0,3 

1
Тип подключения радиаторов  Показатель


Кк 

Подача воды сверху, труба-обратка – снизу, подключение по диагонали

1
Подача воды и труба-обратка снизу, двустороннее подключение

1,25
Подача воды сверху, труба-обратка снизу, одностороннее подключение; или нижнее одностороннее подключение того и другого


1,28

Если Вы учтете все приведенные в таблице факторы, Вы сможете получить довольно точный результат тепловой мощности, необходимой для обогрева Вашего помещения.

У производителей радиаторов тепловая мощность наряду с другими техническими характеристиками указана в сопроводительных документах. Воспользовавшись этими данными, Вы сможете подобрать стальной панельный радиатор, один или несколько, нужной Вам мощности.

Иногда производители указывают не мощность батареи, а расход теплоносителя. Не пугайтесь, мы поможем Вам и тут – 1 киловатт мощности соответствует расходу теплоносителя 1 л/ мин. Что касается объема теплоносителя, то для стальных панельных радиаторов он составляет 250 мл на каждые 10 сантиметров длины для типа 11 и 500 мл на 10 сантиметров для типа 22 (при высоте радиаторов 500 мм). 


Теперь Вы знаете, как рассчитать количество теплоносителя в стальном радиаторе и какие факторы нужно учитывать при выборе батарей. Будем рады, если с нашей помощью Вы научитесь рассчитывать мощность стальных радиаторов отопления, таблица, приведенная выше, поможет Вам в этом. А купить стальные радиаторы любой мощности Вы можете в магазине Инсталтрейд по отличной цене. 

Расчет радиаторов отопления по площади | Самоделки на все случаи жизни

От того, насколько правильно и грамотно был произведен расчет мощности стального радиатора, настолько же можно ожидать от него тепла.

В данном случае нужно учесть, чтобы совпали технические параметры отопительной системы и обогревателя.

Расчет по площади помещения

Чтобы теплоотдача стальных радиаторов была максимальной, можно воспользоваться расчетом их мощностей, исходя из размера комнаты.

Если взять в качестве примера помещение с площадью 15 м2 и потолками высотой 3 м, то, высчитав его объем (15х3=45) и умножив на количество требуемых Вт (по СНиП – 41 Вт/м3 для панельных домов и 34 Вт/ м3 для кирпичных), то получится, что потребляемая мощность равна 1845 Вт (панельное здание) или 1530 Вт (кирпичное).

После этого достаточно проследить, чтобы расчет мощности стальных радиаторов отопления (можно свериться с таблицей, которую предоставляет производитель) соответствовал полученным параметрам. Например, при покупке обогревателя типа 22 нужно отдать предпочтение конструкции, имеющей высоту 500 мм, а длину 900 мм, которой свойственна мощность 1851 Вт.

Стальные радиаторы отопления: расчет мощности (таблица)

Определение мощности с учетом теплопотерь

Кроме показателей, связанных с материалом, из которого построен многоквартирный дом и указанных в СНиП, в расчетах можно использовать температурные параметры воздуха на улице. Этот способ основан на учете теплопотерь в помещении.

Для каждой климатической зоны определен коэффициент в соответствии с холодными температурами:

  • при -10 ° C – 0.7;
  • — 15 ° C – 0.9;
  • при — 20 ° C – 1.1;
  • — 25 ° C – 1.3;
  • до — 30 ° C – 1.5.

Теплоотдача стальных радиаторов отопления (таблица предоставляется фирмой-производителем) должна быть определена с учетом количества наружных стен. Так если в комнате она одна, то результат, полученный при расчете стальных радиаторов отопления по площади, нужно умножить на коэффициент 1. 1, если их две или три, то он равен 1.2 или 1.3.

Например, если температура за окном – 25 ° C, то при расчете стального радиатора типа 22 и требуемой мощностью 1845 Вт (панельный дом) в помещении, где 2 наружные стены, получится следующий результат:

  • 1845х1.2х1.3 = 2878.2 Вт. Этому показателю соответствуют панельные конструкции 22-го типа 500 мм высоты и 1400 мм длины, имеющие мощность 2880 Вт.

Так подбираются панельные радиаторы отопления (расчет по площади с учетом коэффициента теплопотерь). Подобный подход к выбору мощности панельной батареи обеспечит максимально эффективную ее работу.

Чтобы было легче произвести расчет стальных радиаторов отопления по площади, калькулятор онлайн сделает это в считанные секунды, достаточно внести в него необходимые параметры.

Процентное увеличение мощности

Можно учитывать теплопотери не только по стенам, но и окнам.

Например, прежде чем выбирать стальной радиатор отопления, расчет по площади нужно увеличить на определенное количество процентов в зависимости от количества окон в помещении:

  1. При наличии двух наружных стен и одного окна показатель увеличивается на 20%.
  2. Если и окон, и стен, выходящих наружу по два, то прибавляется 30%.
  3. Когда стены внутренние, но окно выходит на север, то на 10%.
  4. Если квартира расположена внутри дома, а обогреватели закрыты решетками, то теплоотдача стальных панельных радиаторов должна быть увеличена на 15%.

Учет подобных нюансов перед установкой панельных батарей из стали позволяет правильно выбрать нужную модель. Это сэкономит средства на ее эксплуатации при максимальной теплоотдаче.

Поэтому не следует думать только о том, как подобрать стальные радиаторы отопления по площади помещения, но и учитывать его теплопотери и даже расположение окон. Такой комплексный подход позволяет учесть все факторы, влияющие на температуру в квартире или доме.

Как рассчитать количество батарей отопления для частного дома

Комфортные условия жизни в зимнее время всецело зависят от достаточности снабжения теплом жилых помещений. Если это новостройка, например, на дачном или приусадебном участке, то необходимо знать, как рассчитать радиаторы отопления для частного дома.

Как рассчитать радиаторы отопления для частного дома

Все операции сводятся к вычислению количества секций радиаторов и подчиняются четкому алгоритму, поэтому нет нужды быть квалифицированным специалистом – каждый человек сможет проделать довольно точное теплотехническое вычисление своего жилища.

Почему необходим точный расчет

Теплоотдача приборов теплоснабжения зависит от материала изготовления и площади отдельных секций. От правильных вычислений зависит не только тепло в доме, но также сбалансированность и экономичность системы в целом: недостаточное число установленных секций радиаторов не обеспечит должное тепло в комнате, а излишнее количество секций ударит по карману.

Виды радиаторов отопления

Для вычислений необходимо определиться с типом батарей и системы теплоснабжения. К примеру, расчет алюминиевых радиаторов теплоснабжения для частного дома отличается от других элементов системы. Радиаторы бывают чугунными, стальными, алюминиевыми, алюминиевыми анодированными и биметаллическими:

  • Наиболее известны чугунные батареи, так называемые «гармошки». Они долговечны, стойки к коррозии, обладают мощностью секций 160 Вт при высоте 50 см и температуре воды 70 градусов. Существенный недостаток этих приборов – неприглядный внешний вид, но современные производители выпускают гладкие и достаточно эстетичные чугунные батареи, сохраняя все преимущества материала и делая их конкурентоспособными.

Чугунные батареи отопления

  • Алюминиевые радиаторы по тепловой мощности превосходят чугунные изделия, они прочны, обладают легким собственным весом, что дает преимущество при монтаже. Единственный недостаток подверженность к кислородной коррозии. Для его устранения взято на вооружение производство анодированных радиаторов из алюминия.

Алюминиевые радиаторы отопления

  • Стальные приборы не обладают достаточной тепловой мощностью, не подлежат разборке и увеличению секций при необходимости, подвержены коррозии, поэтому не пользуются популярностью.

  • Биметаллические радиаторы отопления – это сочетание стальных и алюминиевых деталей. Теплоносителями и крепежными деталями в них являются стальные трубы и резьбовые соединения, покрытые алюминиевым кожухом. Недостаток – довольно высокая стоимость.

По типу системы теплоснабжения различают однотрубное и двухтрубное подключение элементов отопления. В многоэтажных жилых домах в основном применена однотрубная схема системы теплоснабжения. Недостатком здесь является довольно значительная разница температуры входящей и исходящей воды на разных концах системы, что свидетельствует о неравномерности распределения тепловой энергии по приборам батареям.

Однотрубная и двухтрубная система отопления

Для равномерного распределения тепловой энергии в частных домах можно применять двухтрубную систему теплоснабжения, когда горячая вода подается по одной трубе, а охлажденная выводится по другой.

Кроме этого, точное вычисление количества батарей отопления в частном доме зависит от схемы подключения приборов, высоты потолка, площади оконных проемов, количества наружных стен, типа помещения, закрытости приборов декоративными панелями и от других факторов.

Помните! Необходимо правильно рассчитать требуемое число радиаторов отопления в частном доме, чтобы гарантировать достаточное количество тепла в помещении и обеспечить экономию финансовых средств.

Таблица для расчета количества секций батареи

Виды расчетов отопления для частного дома

Вид расчета радиаторов отопления для частного дома зависит от поставленной цели, то есть насколько точно вы хотите рассчитать батареи отопления для частного дома. Различают упрощенный и точный методы, а также по площади и по объему рассчитываемого пространства.

По упрощенному или предварительному методу подсчеты сводятся к умножению площади помещения на 100 Вт: стандартную величину достаточной тепловой энергии на метр в квадрате, при этом формула подсчета примет следующий вид:

Q – потребная мощность тепла;

S – расчетная площадь комнаты;

Вычисление нужного числа секций разборных радиаторов ведется по формуле:

N – требуемое количество секций;

Qx – удельная мощность секции по паспорту изделия.

Так как эти формулы для высоты комнаты – 2,7 м, для других величин требуется вводить коэффициенты поправки. Вычисления сводятся к определению количества тепла на 1 м3 объема помещения. Упрощенная формула выглядит так:

H – высота комнаты от пола до потолка;

Qy – средний показатель тепловой мощности в зависимости от вида ограждения, для кирпичных стен равен 34 Вт/м3, для панельных стен – 41 Вт/м3.

Эти формулы не могут гарантировать комфортные условия. Поэтому требуются точные вычисления, учитывающие все сопутствующие особенности здания.

Точный расчет приборов отопления

Наиболее точная формула необходимой тепловой мощности выглядит следующим образом:

Q = S*100*(K1*К2*…*Kn-1*Kn), где

K1, K2 … Kn – коэффициенты, зависящие от различных условий.

Какие условия влияют на микроклимат в помещении? Для точного расчета учитывается до 10 показателей.

K1 – показатель, зависящий от числа наружных стен, чем больше поверхности соприкасается с внешней средой, тем больше потери тепловой энергии:

  • при одной наружной стене показатель равен единице;
  • если две наружные стены — 1,2;
  • если три внешние стены — 1,3;
  • если все четыре стены наружные (т. е. здание однокомнатное) — 1,4.

К2 – учитывает ориентацию здания: считается, что комнаты хорошо прогреваются, если расположены в южном и западном направлении, здесь К2 = 1,0, и наоборот недостаточно – когда окна выходят на север или восток – К2 = 1,1. С этим можно поспорить: в восточном направлении помещение все же прогревается по утрам, поэтому целесообразнее применить коэффициент 1,05.

Расчитываем, насколько сильно должна греть батарея

К3 – показатель утепления наружных стен, зависит от материала и степени термоизоляции:

  • для наружных стен в два кирпича, а также при использовании утеплителя для не утепленных стен показатель равен единице;
  • для неутепленных стен – К3 = 1,27;
  • при утеплении жилища на основании теплотехнических расчетов по СНиП – К3 = 0,85.

К4 – коэффициент, учитывающий самые низкие температуры холодного периода года для конкретного региона:

  • до 35 °С К4 = 1,5;
  • от 25 °С до 35 °С К4 = 1,3;
  • до 20 °С К4 = 1,1;
  • до 15 °С К4 = 0,9;
  • до 10 °С К4 = 0,7.

Расчет радиаторов отопления по площади

К5 – зависит от высоты помещения от пола до потолка. В качестве стандартной высоты принята h = 2,7 м с показателем равной единице. Если высота комнаты отличается от стандартной, вводится поправочный коэффициент:

  • 2,8-3,0 м – К5 = 1,05;
  • 3,1-3,5 м – К5 = 1,1;
  • 3,6-4,0 м – К5 = 1,15;
  • более 4 м – К5 = 1,2.

К6 – показатель, учитывающий характер помещения, находящегося сверху. Полы жилых зданий всегда утепляются, комнаты сверху могут быть отапливаемыми или холодными, а это неизбежно повлияет на микроклимат рассчитываемого пространства:

  • для холодного чердака, а также если помещение сверху не отапливается, показатель будет равен единице;
  • при утепленном чердаке или кровле – К6 = 0,9;
  • если сверху расположено отапливаемая комната – К6 = 0,8.

К7 – показатель, учитывающий тип оконных блоков. Конструкция окна существенным образом влияет на потери тепла. При этом величина коэффициента К7 определяется следующим образом:

  • так как окна из дерева с двойным остеклением недостаточно защищают комнату, показатель самый высокий К7 = 1,27;
  • стеклопакеты обладают отличными свойствами защиты от теплопотерь, при однокамерном стеклопакете из двух стекол К7 равен единице;
  • улучшенный однокамерный стеклопакет с аргоновым заполнением или двойной стеклопакет, состоящий из трех стекол К7 = 0,85.

Однотрубная и двухтрубная система отопления

К8 – коэффициент, зависящий от площади остекления оконных проемов. Теплопотери зависят от количества и площади установленных окон. Соотношение площади окон к площади комнаты должно быть урегулировано таким образом, чтобы коэффициент имел низшие значения. В зависимости от отношения площади окон к площади помещения определяется искомый показатель:

  • менее 0,1 – К8 = 0,8;
  • от 0,11 до 0,2 – К8 = 0,9;
  • от 0,21 до 0,3 – К8 = 1,0;
  • от 0,31 до 0,4 – К8 = 1,1;
  • от 0,41 до 0,5 – К8 = 1,2.

Схемы подключения отопительных приборов

К9 – учитывает схему подключения приборов. В зависимости от способа подключения горячей и вывода холодной воды зависит отдача тепла. Этот фактор необходимо учитывать при установке и определении требуемой площади приборов теплоснабжения. С учетом схемы подключения:

  • при диагональном расположении труб подача горячей воды осуществляется сверху, обратка – снизу с другой стороны батареи, а показатель равен единице;
  • при подключении подачи и обратки с одной стороны и сверху, и снизу одной секции К9 = 1,03;
  • примыкание труб с двух сторон подразумевает и подачу, и обратку снизу, при этом коэффициент К9 = 1,13;
  • вариант диагонального подключения, когда подача производится снизу, обратка сверху К9 = 1,25;
  • вариант одностороннего подключения с подачей снизу, обраткой сверху и одностороннее нижнее подключение К9 = 1,28.

Потеря теплоотдачи из-за установки экрана радиатора

К10 – коэффициент, зависящий от степени закрытости приборов декорирующими панелями. Открытость приборов для свободного обмена теплом с пространством помещения имеет немаловажное значение, так как создание искусственных барьеров снижает теплоотдачу батарей.

Имеющиеся или искусственно созданные преграды могут изрядно понизить отдачу батареи из-за ухудшения обмена теплом с комнатой. В зависимости от этих условий коэффициент равен:

  • при открытом расположении радиатора на стене со всех сторон 0,9;
  • если прибор прикрыт сверху единице;
  • когда радиаторы прикрыты сверху ниши стены1,07;
  • если прибор прикрыт подоконником и декоративным элементом 1,12;
  • когда радиаторы полностью прикрыты декоративным кожухом 1,2.

Правила установки радиаторов отопления.

Кроме этого, существуют специальные нормы расположения приборов отопления, которые необходимо соблюдать. То есть батарею располагать не менее, чем на:

  • 10 см от низа подоконника;
  • 12 см от пола;
  • 2 см от поверхности наружной стены.

Подставляя все необходимые показатели, можно получить достаточно точное значение требуемой тепловой мощности помещения. Путем разделения полученных результатов на паспортные данные отдачи тепла одной секции выбранного прибора и, округлив до целого числа, получаем количество требуемых секций. Теперь можно, не опасаясь последствий, подобрать и установить необходимое оборудование с нужной тепловой отдачей.

Установка батареи отопления в доме

Способы упрощения расчетов

Несмотря на кажущуюся простоту формулы, на самом деле практический расчет не так прост, особенно если количество рассчитываемых комнат велико. Упростить расчеты поможет применение специальных калькуляторов, размещаемых на сайтах некоторых производителей. Достаточно ввести все необходимые данные в соответствующие поля, после чего можно получить точный результат. Можно воспользоваться и табличным методом, так как алгоритм вычисления достаточно прост и однообразен.

Расчет радиаторов отопления – как не прогадать с количеством секций?

С выбором радиаторов отопления сегодня никаких проблем. Тут тебе и чугунные, и алюминиевые, и биметаллические – выбирай, какие хочешь. Однако сам факт покупки дорогих радиаторов особенной конструкции – еще не гарантия того, что в вашем доме будет тепло. В этом случае играет роль и качество, и количество. Давайте разберемся, как правильно рассчитать радиаторы отопления.

Расчет всему голова – отталкиваемся от площади

Неправильный расчет количества радиаторов может привести не только к недостатку тепла в помещении, но и к чересчур большим счетам за отопление и слишком высокой температуре в комнатах. Расчет следует производить как во время самой первой установки радиаторов, так и при замене старой системы, где, казалось бы, с количеством секций давно все понятно, поскольку теплоотдача радиаторов может существенно отличаться.

Разные помещения – разные расчеты. Например, для квартиры в многоэтажном доме можно обойтись самыми простыми формулами или же расспросить соседей об их опыте отопления. В большом частном доме простые формулы не помогут – нужно будет учесть множество факторов, которые в городских квартирах попросту отсутствуют, например, степень утепления дома.

Самое главное – не доверяйте цифрам, озвученным наобум всевозможными «консультантами», которые на глаз (даже не видя помещения!) называют вам количество секций для отопления. Как правило, оно значительно завышено, из-за чего вы будете постоянно переплачивать за лишнее тепло, которое буквально будет уходить в открытую форточку. Рекомендуем использовать несколько способов расчета количества радиаторов.

Простые формулы – для квартиры

Жители многоэтажных домов могут использовать достаточно простые способы расчетов, которые совершенно не подходят для частного дома. Самый простой расчет радиаторов отопления не блещет высокой точностью, однако он подойдет для квартир со стандартными потолками не выше 2.6 м. Учтите, что для каждой комнаты проводится отдельный расчет количества секций.

За основу берется утверждение, что на отопление квадратного метра комнаты нужно 100 Вт тепловой мощности радиатора. Соответственно, для того, чтобы вычислить количество тепла, необходимое для комнаты, умножаем ее площадь на 100 Вт. Так, для комнаты площадью 25 м 2 необходимо приобрести секции с совокупной мощностью 2500 Вт или 2,5 кВт. Производители всегда указывают теплоотдачу секций на упаковке, например, 150 Вт. Наверняка вы уже поняли, что делать дальше: 2500/150 = 16,6 секций

Результат округляем в большую сторону, впрочем, для кухни можно округлить и в меньшую – помимо батарей, там еще будет нагревать воздух плитка, чайник.

Также следует учесть возможные потери тепла в зависимости от расположения комнаты. Например, если это помещение, расположенное на углу здания, то тепловую мощность батарей можно смело увеличивать на 20 % (17 *1,2 = 20,4 секций), такое же количество секций понадобится и для комнаты с балконом. Учтите, что если вы намерены запрятать радиаторы в нишу или скрыть их за красивым экраном, то вы автоматически теряете до 20 % тепловой мощности, которую придется компенсировать количеством секций.

Расчеты от объема – что говорит СНиП?

Более точное количество секций можно высчитать, учитывая высоту потолков – этот способ особенно актуален для квартир с нестандартной высотой комнат, а также для частного дома в качестве предварительного расчета. В этом случае мы определим тепловую мощность, исходя из объема помещения. Согласно нормам СНиП, для обогрева одного кубического метра жилой площади в стандартном многоэтажном доме необходим 41 Вт тепловой энергии. Это нормативное значение необходимо умножить на общий объем, который можно получить, перемножим высоту комнаты на ее площадь.

Например, объем комнаты площадью 25 м 2 ­ с потолками 2,8 м составляет 70 м 3 . Эту цифру умножаем на стандартные 41 Вт и получаем 2870 Вт. Дальше действуем, как и в предыдущем примере – делим общее количество Вт на теплоотдачу одной секции. Так, если теплоотдача равна 150 Вт, то количество секций – приблизительно 19 (2870/150 = 19,1). К слову, ориентируйтесь на минимальные показатели теплоотдачи радиаторов, ведь температура носителя в трубах редко когда в наших реалиях соответствует требованиям СНиП. То есть, если в техпаспорте радиатора указаны рамки от 150 до 250 Вт, то по умолчанию берем меньшую цифру. Если вы сами отвечаете за отопление частного дома, то берите среднее значение.

Точные цифры для частных домов – учитываем все нюансы

Частные дома и большие современные квартиры никак не попадают под стандартные расчеты – слишком много нюансов нужно учесть. В этих случаях можно применить самый точный способ расчета, в котором эти нюансы как раз и учитываются. Собственно, формула сама по себе весьма простая – с такой справится и школьник, главное – правильно подобрать все коэффициенты, которые учитывают особенности дома или квартиры, влияющие на возможность сохранять или терять тепловую энергию. Итак, вот наша точная формула:

  • КТ = N*S*K 1 *K 2 *K 3 *K 4 *K 5 *K 6 *K 7
  • КТ – это количество тепловой мощности в Вт, которое нам необходимо для отопления конкретной комнаты;
  • N – 100 Вт/кв.м, стандартное количество тепла на метр квадратный, к которому мы и будем применять понижающие или повышающие коэффициенты;
  • S – площадь помещения, для которого мы будем рассчитывать количество секций.

Следующие коэффициенты имеют как свойство повышать количество тепловой энергии, так и понижать, в зависимости от условий комнаты.

  • K 1 – учитываем характер остекления окон. Если это окна с обычным двойным остеклением, коэффициент равен 1,27. Окна с двойным стеклопакетом – 1,0, с тройным – 0,85.
  • K 2 – учитываем качество теплоизоляции стен. Для холодных неутепленных стен этот коэффициент равен по умолчанию 1,27, для нормальной теплоизоляции (кладка в два кирпича) – 1,0, для хорошо утепленных стен – 0,85.
  • K 3 – учитываем среднюю температуру воздуха в пик зимних холодов. Так, для -10 °С коэффициент равен 0,7. На каждые -5 °С добавляем к коэффициенту 0,2. Так, для -25 °С коэффициент будет равен 1,3.
  • K 4 – принимаем во внимание соотношение пола и площади окон. Начиная с 10 % (коэффициент равен 0,8) на каждые следующие 10 % добавляем 0,1 к коэффициенту. Так, для соотношения 40 % коэффициент будет равен 1,1 (0,8 (10%) +0,1 (20%)+0,1(30%)+0,1(40%)).
  • K 5 – понижающий коэффициент, корректирующий количество тепловой энергии с учетом типа помещения, расположенного выше. За единицу берем холодный чердак, если чердак отапливаемый – 0,9, если над комнатой отапливаемое жилое помещение – 0,8.
  • K 6 – корректируем результат в сторону увеличения с учетом количества стен, контактирующих с окружающей атмосферой. Если 1 стена – коэффициент равен 1,1, если две – 1,2 и так далее до 1,4.
  • K 7 – и последний коэффициент, корректирующий расчеты относительно высоты потолков. За единицу берется высота 2,5, и на каждые полметра высоты прибавляется 0.05 к коэффициенту Таким образом, для 3 метров коэффициент – 1,05, для 4 – 1,15.

Благодаря этому расчету, вы получите количество тепловой энергии, которая необходима для поддержания комфортной среды обитания в частном доме или нестандартной квартире. Остается только разделить готовый результат на значение теплоотдачи выбранных вами радиаторов, чтобы определить количество секций.

Расчет количества радиаторов отопления по площади и объему помещения

При замене батарей или переходе на индивидуальное отопление в квартире встает вопрос о том, как рассчитать количество радиаторов отопления и число секций приборов. Если мощность батарей окажется недостаточной, в холодное время года в квартире будет прохладно. Избыточное количество секций не только ведет к ненужным переплатам – при системе отопления с однотрубной разводкой жильцы нижних этажей останутся без тепла. Рассчитать оптимальную мощность и количество радиаторов можно, опираясь на площадь или объем комнаты, учитывая при этом особенности помещения и специфику разных видов батарей.

Расчет по площади

Наиболее распространенной и простой методикой является способ расчета мощности приборов, требуемой для обогрева, по площади обогреваемого помещения. Согласно усредненной норме, на отопление 1 кв. метр площади требуется 100 Вт тепловой мощности. В качестве примера рассмотрим комнату, имеющую площадь 15 кв. метров. Согласно данному методу, для ее обогрева потребуется 1500 Вт тепловой энергии.

При использовании данной методики нужно учесть несколько важных моментов:

  • норма в 100 Вт на 1 кв. метр площади относится к средней климатической полосе, в южных регионах для обогрева 1 кв. метра помещения требуется меньшая мощность – от 60 до 90 Вт;
  • для областей с суровым климатом и очень холодной зимой на обогрев 1 кв. метра требуется от 150 до 200 Вт;
  • метод подходит для помещений со стандартной высотой потолков, не превышающей 3 метра;
  • способ не учитывает потери тепла, которые будут зависеть от расположения квартиры, количества окон, качества утепления, материала стен.

Методика расчета по объему помещения

Способ расчетов с учетом объема потолка будет более точным: он учитывает высоту потолков в квартире и материал, из которого сделаны наружные стены. Последовательность вычислений будет следующей:

  1. Определяется объем помещения, для этого площадь комнаты умножается на высоту потолка. Для комнаты площадью 15 кв. м. и высотой потолка 2,7 м он будет равен 40,5 кубометрам.
  2. В зависимости от материала стен на обогрев одного кубометра воздуха тратится разное количество энергии. По нормам СНиП для квартиры в кирпичном доме этот показатель равен 34 Вт, для панельного дома – 41 Вт. Значит, полученный объем нужно умножить на 34 или на 41 Вт. Тогда для кирпичного здания на обогрев комнаты в 15 квадратов потребуется 1377 Вт (40,5*34), для панельного – 1660, 5 Вт (40,5*41).

Корректировка результатов

Любой из выбранных способов покажет лишь приблизительный результат, если не будут учитываться все факторы, влияющие на уменьшение или увеличение теплопотерь. Для точного расчета необходимо полученное значение мощности радиаторов умножить на приведенные ниже коэффициенты, среди которых нужно выбрать подходящие.

В зависимости от размеров окон и качества утепления через них помещение может терять 15–35% тепла. Значит, для вычислений мы будем использовать два связанных с окнами коэффициента.

Соотношение площади окон и пола в комнате:

  • для окна с трехкамерным стеклопакетом или двухкамерным с аргоном – 0,85;
  • для окна с обычным двухкамерным стеклопакетом – 1,0;
  • для рам с обычным двойным остеклением – 1,27.

Стены и потолок

Потери тепла зависят от количества наружных стен, качества теплоизоляции и от того, какое помещение расположено над квартирой. Для учета этих факторов будет использоваться еще 3 коэффициента.

Число наружных стен:

  • нет наружных стен, потери тепла отсутствуют – коэффициент 1,0;
  • одна наружная стена – 1,1;
  • две – 1,2;
  • три – 1,3.
  • нормальная теплоизоляция (стена толщиной в 2 кирпича или слой утеплителя) – 1,0;
  • высокая степень теплоизоляции – 0,8;
  • низкая – 1,27.

Учет типа вышерасположенного помещения:

  • отапливаемая квартира – 0,8;
  • отапливаемый чердак – 0,9;
  • холодный чердак – 1,0.

Высота потолков

Если вы пользовались способом расчета по площади для комнаты с нестандартной высотой стен, то для уточнения результата придется ее учесть. Коэффициент можно узнать следующим образом: имеющуюся высоту потолка разделить на стандартную высоту, которая равна 2,7 метра. Таким образом мы получим следующие цифры:

  • 2,5 метра – коэффициент 0,9;
  • 3,0 метра – 1,1;
  • 3,5 метра – 1,3;
  • 4,0 метра – 1,5;
  • 4,5 метра – 1,7.

Климатические условия

Последний коэффициент учитывает температуру воздуха на улице в зимнее время. Отталкиваться будем от средней температуры в наиболее холодную неделю года.

Расчет количества секций радиаторов

После того как нам стала известна мощность, требуемая для обогрева помещения, мы можем произвести расчет батарей отопления.

Для того чтобы рассчитать количество секций радиатора, нужно поделить рассчитанную общую мощность на мощность одной секции прибора. Для проведения вычислений можно пользоваться среднестатистическими показателями для разных типов радиаторов со стандартным осевым расстоянием, равным 50 см:

  • для чугунных батарей примерная мощность одной секции составляет 160 Вт;
  • для биметаллических – 180 Вт;
  • для алюминиевых – 200 Вт.

Справка: осевое расстояние радиатора – это высота между центрами отверстий, через которые подается и отводится теплоноситель.

Для примера определим требуемое число секций биметаллического радиатора для комнаты площадью 15 кв. м. Предположим, что вы считали мощность простейшим способом по площади помещения. Делим требуемые для ее обогрева 1500 Вт мощности на 180 Вт. Полученное число 8,3 округляем – необходимое число секций биметаллического радиатора равно 8.

Важно! Если вы решили выбрать батареи нестандартного размера, узнайте мощность одной секции из паспорта прибора.

Зависимость от температурного режима системы отопления

Мощность радиаторов указывается для системы с высокотемпературным тепловым режимом. Если система отопления вашего дома работает в среднетемпературном или низкотемпературном тепловом режиме, для подбора батарей с нужным количеством секций придется произвести дополнительные расчеты.

Для начала определим тепловой напор системы, который представляет собой разницу между средней температурой воздуха и батарей. За температуру приборов отопления берется среднее арифметическое от значений температуры подачи и отвода теплоносителя.

  1. Высокотемпературный режим: 90/70/20 (температура подачи — 90 °C, обратки —70 °C, за среднюю температуру в помещении принимается значение 20 °C). Тепловой напор рассчитаем так: (90 + 70) / 2 – 20 = 60 °С;
  2. Среднетемпературный: 75/65/20, тепловой напор – 50 °С.
  3. Низкотемпературный: 55/45/20, тепловой напор – 30 °С.

Чтобы узнать, сколько секций батареи вам понадобится для систем с тепловым напором 50 и 30, нужно умножить общую мощность на паспортный напор радиатора, а затем разделить на имеющийся тепловой напор. Для комнаты 15 кв.м. потребуется 15 секций алюминиевых радиаторов, 17 – биметаллических и 19 – чугунных батарей.

Для отопительной системы с низкотемпературным режимом вам потребуется в 2 раза больше секций.

Расчет радиаторов отопления: по площади, по объему

Domiotoplenie > Радиаторы > Расчет радиаторов отопления: по площади, по объему

Как рассчитать количество секций радиаторов отопления

Для того чтобы отопление дома или квартиры было эффективным и одновременно экономичным, необходимо сделать подбор и расчет радиаторов отопления для каждой комнаты в отдельности. Если при этом учесть их индивидуальные параметры, то жить в таком доме будет максимально комфортно. Для такого расчета разработано несколько методик, которые мы сейчас и рассмотрим.

Для чего необходим расчет

Прежде всего необходимо определиться, для чего необходим точный расчет количества секций радиаторов отопления. Как правило, он преследует две конкретные цели:

  • экономическая выгода;
  • комфортный уровень температуры в помещении.

Независимо от того, какой энергоноситель применяется для отопления, его излишний расход дает не только чересчур высокую температуру в доме, но и ведет к увеличению расходов. Поэтому правильный подбор и расчет секций радиаторов отопления дает возможность сэкономить на отоплении.

От комфортной температуры в помещении зависит здоровье и благополучие вас и ваших близких

Финансовый вопрос важен, но куда более существенным фактором является гарантия комфортной температуры. Не будет большой бедой повышенная температура в комнатах – можно чаще и больше проветривать, выпуская тепло на улицу. Куда хуже будет в том случае, если количество секций меньше требуемого – низкая температура куда более некомфортна для организма и может привести к хроническим простудным заболеваниям.

Расчет по площади

Количество тепла, необходимое для обогрева помещения, этот способ вычисляет, отталкиваясь от его площади. Для этого необходимо умножить площадь помещения на нормативную величину:

  • для южной климатической зоны с мягкими зимами – 60 Ватт на квадратный метр;
  • для центральных областей с умеренными зимними температурами – 100 Ватт на квадратный метр;
  • для северных районов (выше 60 градусов северной широты) – 150-200 Ватт на метр.

Как видно, чем холоднее зимы в вашей местности, тем большее количество тепла потребуется на его отопление. Для комнаты в 20 квадратных метров в южных районах потребуется 60*20=1200 Ватт тепловой энергии, в центральных – 100*20=2000 Ватт, а в северных – 200*20=4000 Ватт тепла.

Вычислив требуемое количества тепла, можно подсчитать, сколько необходимо секций батареи для установки.

Мощность каждого отопительного прибора указывается в его техническом паспорте.

Если разделить потребное количество тепла на эту паспортную мощность, то получится количество секций, которое необходимо установить в помещении.

Пример технического паспорта на радиатор

Например, пусть мощность одной секции равна 170 Ватт. Тогда для взятой нами комнаты в 20 квадратных метров расчеты будут таковы:

  • для южных районов – 1200/170=7,1;
  • для центральных – 1600/170=9,4;
  • для северных – 2000/170=11,8.

Результаты получились дробными, поэтому их необходимо округлить до ближайшего большего целого значения:

  • для южных районов 8;
  • для центральных 10;
  • для северных 12.

Расчет очень прост, но при внимательном подходе видны его недостатки. Не учитываются множество факторов, значительно влияющих на качество отопления. Поэтому для получения точного результата расчет по площади потребуется уточнить. Об этом поговорим чуть ниже.

Расчет по объему

Подбор радиаторов отопления по площади не единственный упрощенный метод расчета. Расчет по объему учитывает, кроме площади, высоту потолков помещения, ведь чем они выше, тем большее количество тепловой энергии придется потратить на его отопление.

Расчет по объему учитывает, кроме площади, высоту потолков помещения

Методика расчетов похожа на предыдущую – узнаем объем помещения и умножаем на нормативный коэффициент:

  • для кирпичного дома – на 34 Ватта;
  • для панельного – на 41 Ватт.

Рассчитаем радиаторы отопления для той же комнаты в 20 квадратных метров и высотой потолка 2,7 метра. Ее объем составляет 20*2,7=54 кубических метра:

  • Кирпичный дом. Тепло, необходимое для отопления, составляет 54*34=1836 Ватт. Если брать тот же радиатор с мощностью секции 170 Ватт, то потребуется 1836/170=10,8 или, округленно, 11 секций.
  • Панельный. Тепло, необходимое для отопления, составляет 54*41=2214 Ватт. Если брать те же секции мощностью 170 Ватт, то их потребуется 2214/170=13 штук.

Разница, как видите, существенная: 11 секций и 13 секций.

Корректировка результата

Чтобы скорректировать проведенный подбор радиаторов отопления по площади или объему, необходимо учесть множество дополнительных факторов, влияющих на отопление дома.

Для точного подсчета количества секций радиаторов, которое потребуются, чтобы обеспечить отопление помещения, необходимо учитывать все его теплопотери:

  • на окна приходится от 15-25% всех потерь;
  • на стены – 20-30%;
  • на вентиляцию – 30-40%;
  • на потолки и крышу – 10-20%;
  • на пол – 5-10%.

Для их учета разработаны коэффициенты, на которые необходимо умножить расчетное количество тепла, полученное в предыдущих методах.

Высота потолков

Чем выше высота потолков, тем больше тепла требуется для обогрева комнаты

Чем выше высота потолков, тем больше тепла требуется для обогрева комнаты. Для учета этого фактора используются следующие коэффициенты:

  • 2,5 метра – 1;
  • 3 метра – 1,05;
  • 3,5 метра – 1,1;
  • 4 метра – 1,15.

Величина потерь через окна складывается из двух факторов:

  • площадь остекления;
  • качество стеклопакета.

Величина потерь через окна складывается из площади остекления и качества стеклопакетов

Поэтому для расчета используются два коэффициента:

  1. отношение площади остекления к площади пола:
    • 60% – 1,3;
    • 50% – 1,2;
    • 40% – 1,1;
    • 30% – 1,0;
    • 20% – 0,9;
    • 10% – 0,8.
  2. стеклопакеты:
    • деревянные двойные рамы – 1,27;
    • двухкамерный стеклопакет – 1,0;
    • трехкамерный стеклопакет – 0,85;

Стены и крыша

Потери через стены зависят от их материала, толщины, качества утепления и других величин.

Для учета качества теплоизоляции используются следующие коэффициенты:

  • плохая теплоизоляция – 1,27;
  • стены из кирпича в два ряда (норма) – 1,0:
  • хорошая теплоизоляция – 0,8.

Потери через стены зависят от их материала, толщины и качества утепления

Тот факт, граничит ли комната с наружным воздухом, учитывает следующий коэффициент:

  • три наружных стены – 1,3
  • две – 1,2;
  • одна – 1,1;
  • внутреннее помещение без наружных стен – 1,0.

Также на теплопотери влияет, какое помещение находится над рассчитываемым помещением – отапливаемое или нет:

На теплопотери влияет, какое помещение находится над рассчитываемым помещением

  • неотапливаемый чердак – 1,0;
  • отапливаемый чердак – 0,9;
  • сверху находится жилое отапливаемое помещение – 0,7.

Климатические факторы

Для учета места проживания можно ввести коэффициент, учитывающий температуру самой холодной недели в зимние месяцы

Для учета места проживания можно ввести коэффициент, учитывающий температуру самой холодной недели в зимние месяцы:

  • -30 градусов — 1,5;
  • -25 градусов — 1,3;
  • -20 градусов — 1,1;
  • -15 градусов — 0,9;
  • -10 градусов и выше — 0,7.

Учитывая все эти показатели, можно более точно вычислить размер батарей, необходимых для отопления конкретного помещения. Но есть еще ряд тонкостей, которые необходимо учитывать.

Расчет различных типов радиаторов

Производители, как правило, указывают в документах на радиаторы отопления величину их тепловой мощности. Если же таких данных нет, то для упрощения расчетов можно использовать усредненные значения. Так, наиболее часто используемые секции с расстоянием между осями 50 сантиметров имеют следующие мощности:

  • чугунные – 150 Ватт;
  • биметаллические – 185 Ватт;
  • алюминиевые – 190 Ватт.

Если же радиатор имеет другое межосевое расстояние, то эти цифры необходимо скорректировать.

С уменьшением межосевого расстояния радиатора уменьшается и теплоотдача.

Для этого надо вычислить соотношение высот и на эту величину умножить указанное значение теплоотдачи.

Корректировка по типу системы отопления

Паспортная мощность радиаторов указывается из расчета использования его при максимальной температуре теплоносителя: подача 90 градусов, обратка – 70 градусов. При правильном расчете количества секций температура в комнате при этом должна быть около 20 градусов.

При правильном расчете количества секций температура в комнате должна быть около 20 градусов

Обозначается такой показатель следующим образом — 90/70/20. Но такой режим работы у домашней системы может быть только в самые сильные морозы. Гораздо чаще отопление работает в режиме 70/65/20 или даже 55/45/20. Ясно, что предыдущий результат расчета необходимо скорректировать.

Для корректировки необходимо использовать показатель, называемый температурным напором системы. Он вычисляется как разница между средней арифметической температурой в линиях подачи и обратки и температурой воздуха в комнате.

Результат умножения этого показателя на количество радиаторов должен оставаться постоянным для любого состояния системы.

Посчитаем температурный напор для двух режимов системы:

  • высокотемпературный 90/70/20 – (90+70)/2 – 20=60 градусов;
  • низкотемпературный 55/45/20 – (55+45)/2 – 20=30 градусов.

Видно, что для того, чтобы отопление было одинаковым, во втором случае необходимо вдвое больше секций: 60/30=2.

С помощью этого показателя можно также рассчитать количество секций батарей отопления для поддержания температуры, отличной от 20 градусов. Например, в прихожей достаточно температуры в 12 градусов. Тогда температурный напор в ней будет составлять (90+70)/2-12=68 градусов. Находим отношение 60/68=0,88. То есть, чтобы обеспечить температуру в помещении, площадь которого 20 квадратных метров, в 20 градусов, по нашим расчетам требовалось 11 секций, а для температуры в 12 градусов достаточно 11*0,88=9,68, то есть 10 секций.

Зависимость мощности радиаторов от подключения и места расположения

Теплоотдача радиаторов зависит не только от перечисленных ранее факторов, но и от того, каким способом батареи подключены к системе отопления. Максимальная 100% теплоотдача достигается только при диагональном подключении. При прочих способах она существенно уменьшается:

  • одностороннее с верхней подачей – 97%;
  • двустороннее нижнее подключение – 88%;
  • диагональное с нижней подачей – 80%;
  • одностороннее с нижней подачей – 78%.

Радиатор снижает эффективность своей работы в зависимости и от места расположения:

Сплошной экран снижает эффективность работы радиатора на 20-25%

  • частичное перекрытие батареи подоконником – на 3-5%;
  • полное перекрытие подоконником – на 7-8%;
  • сетчатый экран снижает эффективность на 7-8%;
  • сплошной экран – 20-25%.

Заключение

Расчет количества радиаторов отопления по площади или объему помещения проводится быстро и несложно. Его уточнение с использованием всех факторов, влияющих на потребляемую тепловую мощность, требует большего времени и внимания. Но результат того стоит – точное определение количества отопительных приборов обеспечит зимой комфортную атмосферу в доме.

особенности алюминиевых, стальных батарей, таблица, видео и фото

Мощность радиатора отопления является именно тем параметром, который определяет, насколько эффективно устройство будет нагревать окружающий его воздух. Планируя реконструкцию отопительной системы, нам необходимо освоить методику расчета производительности подобных изделий, так как ни избыток, ни недостаток мощности недопустимы.

Чтобы обеспечить дом теплом, нужно выбирать обогреватели с оптимальной теплоотдачей

Теплоотдача батарей

Принцип функционирования радиатора

Прежде чем приступать к вычислению эксплуатационных параметров, нам нужно понять, как работает отопительная батарея, и какую величину нам нужно рассчитать для оценки ее эффективности.

Радиатор (неважно, водяной или электрический с масляным теплоносителем) функционирует по достаточно простому принципу:

  • Внутри устройства находятся резервуары, по которым циркулирует нагретый теплоноситель. Горячее вещество поднимается вверх, остывшее – опускается вниз, потому жидкость постоянно находится в движении.

Распределение теплоносителя внутри устройства

Обратите внимание!
У электрических устройств нагрев происходит в самом радиаторе, у водяных – в котле или печи, но в данном случае различия будут несущественными.

  • При движении теплоноситель контактирует со стенками резервуаров, отдавая им часть своего тепла. При этом – чем длительнее время контакта и чем больше разница температур, тем больше тепла отдает жидкость.
  • Нагреваясь изнутри, стенки, в свою очередь, передают тепловую энергию в окружающую среду, нагревая воздух.
  • Для повышения эффективности теплопередачи радиаторы отопления делают в форме ребер, увеличивая площадь поверхности, контактирующей с воздухом. Иногда на поверхности закрепляют дополнительные металлические пластины – они тоже служат для ускорения теплообмена.

Конвекция тепловых потоков в помещении

Обратите внимание!
Наличие теплообменных ребер стимулирует конвекцию – движение горячего воздуха между пластинами.
Таким образом, совмещаются два принципа обогрева: радиаторный и конвекторный.

Мощность радиаторов – стальных, чугунных, алюминиевых, биметаллических и т.д. – определяется тем, сколько тепла они могут отдать в окружающую среду за единицу времени. В паспортах к отопительным батареям этот параметр чаще всего прописывают.

Подбор оптимальной теплоотдачи устройства очень важен:

  • В системах централизованного отопления избыточная теплоотдача приводит к перегреву помещения. В итоге нам приходится нести расходы либо на дополнительное проветривание, либо на установку термоклапанов – сам же микроклимат при этом серьезно ухудшается.
  • Если же производительности установленных устройств будет недостаточно, то они будут вынуждены работать на пределе своих возможностей. С одной стороны, это существенно снижает ресурс изделия, а с другой – приводит к периодическому «недотопу», когда температура в помещении ощутимо снижается, несмотря на все старания водогрейного котла.

При недостатке мощности в помещении будет холодно даже при работе системы на пределе возможностей

  • Кроме того, при сильной нагрузке аппарат может банально выйти из строя. Это в первую очередь касается электрических моделей, потому мощность масляного радиатора нужно подбирать с запасом примерно в 20-25%.

Факторы, влияющие на теплоотдачу

Если проанализировать информацию от производителей и экспертов, то можно увидеть, что, например, мощность алюминиевых радиаторов отопления значительно превышает аналогичный показатель у чугунных моделей старого типа.

Это обусловлено различиями в конструкции и в материале:

  • Во-первых, чем больше внутренний объем батареи, тем больше теплоносителя в нее поступает, и тем больше энергии она отдаст. Поэтому вполне логично, что крупное устройство будет греть эффективнее, чем компактное (при прочих равных условиях, естественно). Цена тоже будет отличаться, и не только за счет разницы в стоимости использованного для производства батареи материала.

Внутренняя полость алюминиевого радиатора

  • Во-вторых, производительность зависит от температуры поступающего теплоносителя: чем горячее будет вода, тем больше тепла из нее получится извлечь.
  • В-третьих, чем лучше материал проводит тепло, тем выше будет его теплоотдача. Наименее эффективными по этому показателю являются изделия из чугуна, а за лидирующие позиции конкурируют медные, алюминиевые и биметаллические модели.

Обратите внимание!
В среднем мощность одной секции алюминиевого радиатора выше, чем аналогичный показатель для биметаллических (алюминий + сталь или алюминий + медь) конструкций.
Однако на практике имеют значение и нюансы технологии производства, так что эта зависимость не является буквальной.

Фото отдельной секции

Для сравнения ниже приводится таблица мощности радиаторов разного типа. Более подробные сведения о тепловой эффективности некоторых моделей отопительных батарей вы можете найти на схемах, приведенных в статье.

Тип радиатораТеплоотдача одной секции, ВтОбъем теплоносителя в одной секции, л
Алюминиевый, межосевое расстояние 500 мм1830,27
Алюминиевый, межосевое расстояние 350 мм1390,19
Биметаллический, межосевое расстояние 500 мм2040,2
Биметаллический, межосевое расстояние 350 мм1360,18
Чугунный, межосевое расстояние 500 мм1601,45
Чугунный, межосевое расстояние 300 мм1101,1

Нужно отметить, что мощность стальных радиаторов отопления, которые имеют панельную структуру, указывается из расчета на все изделие в целом, в то время как для секционных конструкций инструкция часто содержит два значения: теплоотдача секции и этот же параметр для всего радиатора.

Таблица мощности стальных радиаторов отопления: цифры приведены для изделий компании Kermi 11, 22 и 33 типа.

Расчет потребляемой мощности

Методики расчета

Для подбора батарей по мощности нам в первую очередь нужно рассчитать, какое количество тепла потребляет помещение.

Сделать это можно несколькими способами, так что здесь мы опишем наиболее эффективный:

  • Для начала нам нужно вычислить объем комнаты, умножив ее площадь на высоту.
  • Затем определяем базовую потребность в тепле, умножая объем на нормативный коэффициент в 41 Вт.

Обратите внимание!
Это значение справедливо для европейской части РФ.
В южных и северных районах действуют свои нормативы, поскольку климат там существенно отличается.

  • Полученную величину нужно скорректировать для компенсации теплопотерь. Для этого прибавляем по 100 Вт на одно окно и около 200 Вт на входную дверь.
  • Есть и другой подход к компенсации теплопотерь: так, при наличии одного окна и одной внешней стены увеличиваем теплопотребление на 20%, двух окон и двух внешних стен – на 30%, при использовании экранов для радиаторов – еще на 25%.

Поправки на теплопотери

Далее полученную цифру используем для вычисления требуемого количества обогревателей. Для этого делим ее на мощность одной секции радиатора отопления и округляем результат до целого числа.

Вычисление количества секций на простом примере

Итак, попробуем разобраться, как же на практике можно выполнить вычисление своими руками.

Исходные данные таковы:

Алюминиевое изделие с межосевым расстоянием 500 мм

  • Площадь комнаты – 16 м2.
  • Высота потолка – 3,5 м.
  • Одно окно, одна наружная стена.
  • Планируется установка секционных батарей с межосевым расстоянием 500 мм (мощность секции алюминиевого радиатора – 139 Вт).
  • Экраны устанавливаться не будут.

Методика расчета следующая:

  • Определяем объем: 16 х 3,5 = 56м3.
  • Рассчитываем потребность в тепле: 56 х 41 = 2296 Вт.
  • Вводим поправку на наличие окон и наружных стен: 2296 + 2296х0,2 = 2755,2 Вт.
  • Рассчитываем количество секций: 2755,2 / 139 = 19,8.

Чем больше помещение, тем больше точек обогрева должно быть

Соответственно, нам нужно установить не менее 20 секций алюминиевого радиатора. В идеале же нужно приобрести две панели по 10 ребер, расположив их на противоположных стенах для более равномерного обогрева – тогда мощности отопительной системы будет достаточно, чтобы поддерживать в этой комнате оптимальный микроклимат.

Заключение

Зная площадь помещения и вычислив мощность радиатора на 1 м2, мы сможем подобрать отопительные приборы, необходимые для обеспечения комфортной температуры в жилище. Конечно, всегда можно установить батареи с запасом по производительности, регулируя их работу вручную или автоматически, но все же и здесь без вычислений не обойтись. Более подробно ознакомиться с методикой определения теплоотдачи батарей вы сможете, просмотрев видео в этой статье.

Выходная мощность радиатора

— SimplifyDIY

Измерьте ширину и высоту своего радиатора, затем используйте соответствующую таблицу ниже, чтобы определить выходную мощность в ваттах.

  • 1 киловатт (кВт) = 1000 Вт.
  • 1 Вт составляет прибл. 3,4 БТЕ / час или
  • 1000 БТЕ / час = 293 Вт.


Одиночная панель

Одиночная панель 900

1800

Длина

мм

600

900

1200

1500

футов

2

3

4

5

6

20 Высота
9020

300 мм (12 дюймов)

450 мм (18 дюймов)

600 мм (24 дюйма)

750 мм (30 дюймов)

260

390

520

650

780

380

760

760

900

490

735

980

1125

1470

580

870132

580

8701 9325 900 9325 900 900

1740


Одиночная панель с ребрами

Одиночная панель с ребрами
Длина

мм

600

900

1200

1500

1800

футов

2

3

0

4

0

4

5

6

Высота

300 мм (12 дюймов)

450 мм (18 дюймов)

24 дюйма)

750 мм (30 дюймов)

370

555

740

925

925

5 60

840

1120

1400

1680

720

1080

1440

1440

900 900

860

1290

1720

2150

2580


Двойная панель

Длина

мм

600

900

1200

1500

1800

футов 90 004

2

3

4

5

6

Высота
ins )

450 мм (18 дюймов)

600 мм (24 дюйма)

750 мм (30 дюймов)

9002 900

400

800

1000

1200

560

840

1120

1400

1680

1050

1400

1750

2100

860

1290

1720

2150

9329 9323 900 900 900 900

Двойная панель с ребрами

Двойная панель с ребрами 9008 7
Длина

мм

600

900

1200

1500

1800

футов

2

3

4

5

6

Высота

300 мм (12 дюймов)

450 мм (18 дюймов)

600 мм (24 дюйма)

750 мм 30ins)

580

870

1160

1450

1740

0

890

1720

2150

2580

1100

1650

2200

2750

3330

1 5 900

900

1920

2560

3200

3840


Двойная панель с двойными ребрами

Двойная панель с двойными ребрами
Длина

мм

600

900

1200

1500

1800

футов

900

3

4

5

6

Высота 9 0102

450 мм (18 дюймов)

300 мм (12 дюймов)

600 мм (24 дюйма)

750 мм (30 дюймов)

901 901

760

3

1140 9000

05

1900

2280

1040

1560

2080

2600

3120

3120

2680

3350

4020

1600

2400

3200

4000

4800


Дополнительная информация и полезные ссылки




Теплоемкость и удельная теплоемкость

  • Определите теплоемкость.
  • Определите удельную теплоемкость.
  • Выполните расчеты с учетом удельной теплоемкости.

Какой бассейн прогреется быстрее?

Если плавательный бассейн и болот, заполненные водой с одинаковой температурой, будут подвергаться одинаковому подаче тепловой энергии, то в детском бассейне температура наверняка повысится быстрее, чем в плавательном бассейне. Теплоемкость объекта зависит как от его массы, так и от его химического состава. Из-за своей гораздо большей массы плавательный бассейн с водой имеет большую теплоемкость, чем ведро с водой.

Теплоемкость и удельная теплоемкость

Различные вещества по-разному реагируют на тепло. Если металлический стул стоит на ярком солнце в жаркий день, он может стать довольно горячим на ощупь. Вода с одинаковой массой на одном и том же солнце не станет почти такой же горячей. Мы бы сказали, что вода имеет высокую теплоемкость (количество тепла, необходимое для повышения температуры объекта на 1 ° C). Вода очень устойчива к изменениям температуры, в то время как металлы в целом нет.Удельная теплоемкость вещества — это количество энергии, необходимое для повышения температуры 1 грамма вещества на 1 ° C. В таблице ниже приведены значения удельной теплоты некоторых распространенных веществ. Символ удельной теплоемкости: c p , с индексом p, указывающим на то, что удельная теплоемкость измеряется при постоянном давлении. Единицами измерения удельной теплоемкости могут быть джоули на грамм на градус (Дж / г ° C) или калории на грамм на градус (кал / г ° C). В этом тексте для удельной теплоемкости будет использоваться Дж / г ° C.

Удельная теплоемкость некоторых распространенных веществ
Вещество Удельная теплоемкость (Дж / г ° C)
Вода (л) 4,18
Вода (и) 2,06
Вода (г) 1,87
Аммиак (г) 2,09
Этанол (л) 2,44
Алюминий (и) 0.897
Углерод, графит (ы) 0,709
Медь (и) 0,385
Золото 0,129
Утюг (ы) 0,449
Выводы 0,129
Ртуть (л) 0,140
Серебро 0,233

Обратите внимание, что вода имеет очень высокую удельную теплоемкость по сравнению с большинством других веществ.Вода обычно используется в качестве охлаждающей жидкости для оборудования, поскольку она способна поглощать большое количество тепла (см. , Таблицу выше). Прибрежный климат намного более умеренный, чем внутренний климат из-за наличия океана. Вода в озерах или океанах поглощает тепло из воздуха в жаркие дни и отдает его обратно в воздух в прохладные дни.

Рисунок 17,5

Эта электростанция в Западной Вирджинии, как и многие другие, расположена рядом с большим озером, поэтому воду из озера можно использовать в качестве охлаждающей жидкости.Прохладная вода из озера закачивается в растение, а более теплая вода выкачивается из растения и возвращается в озеро.

Сводка
  • Определены теплоемкость и удельная теплоемкость.
Практика

Вопросы

Посмотрите видео и ответьте на вопросы ниже

  1. Что было на первом воздушном шаре?
  2. Что было в аэростате отправки?
  3. Почему не лопнул первый воздушный шар?
  4. Почему лопнул второй воздушный шар?
Обзор

Вопросы

  1. Что такое тепловая мощность?
  2. Что такое удельная теплоемкость?
  3. У вас есть 10-граммовый кусок алюминия и 10-граммовый кусок золота, лежащие на солнце.Какой металл сначала нагреется на десять градусов?
  4. У вас есть 20-граммовый кусок алюминия и 40-граммовый кусок алюминия, лежащие на солнце. Какая часть первой встанет на десять градусов?
  • heat capacity: Количество тепла, необходимое для повышения температуры объекта на 1 ° C.
  • удельная теплоемкость: Количество энергии, необходимое для повышения температуры 1 грамма вещества на 1 ° C.

Список литературы

  1. Бассейн: Пользователь: Mhsb / Wikimedia Commons; Детский бассейн: Пользователь: Aarchiba / Википедия.Бассейн: http://commons.wikimedia.org/wiki/File:Freshwater_swimming_pool.jpg; Детский бассейн: http://commons.wikimedia.org/wiki/File:Wading-pool.jpg.
  2. Пользователь: Raeky / Wikimedia Commons. http://commons.wikimedia.org/wiki/File:Mount_Storm_Power_Plant,_Areial.jpg.

[/ hidden-answer

Чугунный радиатор Калькулятор БТЕ

UKAA, мы стремимся подобрать для вас подходящие чугунные радиаторы.Важно, чтобы вы выбрали правильный радиатор для желаемой комнаты, поэтому мы сделали выбор намного проще с помощью нашего простого калькулятора BTU для чугунных радиаторов.

Для поддержания тепла в каждой комнате вашего дома потребуется определенное количество тепла. Тепловая мощность радиатора, необходимая для помещения, может быть выражена в британских тепловых единицах (БТЕ) ​​или ваттах. Все типы чугунных радиаторов излучают разное количество тепла в зависимости от их размера и мощности радиатора.Если вы подумываете о покупке радиатора, первое, что нужно сделать, — это рассчитать количество БТЕ, которое требуется для каждой комнаты. Лучше всего это сделать с помощью калькулятора мощности радиатора.

Наш калькулятор БТЕ для радиаторов разработан для обеспечения того, чтобы ваши радиаторы в достаточной степени обогревали комнату, в которой они установлены.

Определение размера чугунного радиатора с помощью калькулятора BTU

Для расчета формулы BTU для вашей комнаты вам потребуется:

  1. Введите ширину, длину и высоту помещения
  • Выберите тип номера:
    • Гостиная / Столовая / Ванная
    • Спальня
    • Кухня / общая зона
  • Ответьте на три дополнительных функции:
    • Ваш номер выходит на север?
    • Есть ли в вашей комнате дверь патио?
    • Есть ли в вашей комнате двойное остекление?

    Теперь, когда вы рассчитали требования к помещению, вы можете определить, сколько «секций» вашего радиатора требуется, чтобы обеспечить правильную мощность радиатора.

    Большинство онлайн-калькуляторов БТЕ для радиаторов очень похожи, но главное, на что следует обращать внимание, это то, что радиаторы, которые вы покупаете, соответствуют британским стандартам. Если вы покупаете чугунные радиаторы, протестированные по BS EN442-1 и BS EN442-2, то можете быть уверены, что производительность радиатора гарантирована. Вы же не хотите покупать радиатор только для того, чтобы обнаружить, что в ваших комнатах недостаточно тепла!

    В UKAA мы продаем только радиаторы, прошедшие испытания по британскому стандарту, поэтому вы можете быть уверены в том, что покупаете высококачественный радиатор.

    Калькулятор тепловой мощности радиатора для помещений неудобной формы

    Просмотрите это простое пошаговое руководство по расчету BTU для помещения сложной формы. Если ваша комната не имеет формы квадрата / прямоугольника, мы рекомендуем выполнить измерения с помощью системы, представленной ниже, и разделить комнаты на секции, а затем вычислить необходимые БТЕ для каждой секции с помощью онлайн-калькулятора.

    Например:
    Участок 1 — длина 3 м x ширина 4 м x 2.8м высотой
    Секция 2 — длина 3,5 м, ширина 3,8 м, высота 2,8 м
    Секция 3 — длина 6 м, ширина 8 м, высота 2,8 м

    Это даст вам необходимые выходы, необходимые для каждой части комнаты. Затем вы можете добавить их вместе, чтобы получить общую потребность.

    Если в вашей комнате сводчатый потолок или сводчатый потолок, мы рекомендуем разделить потолок на две части, как показано ниже:

    • Измерьте высоту каждого потолка и рассматривайте каждую секцию как отдельную комнату e.грамм.

    Секция 1 — длина 4 м, ширина 3,5 м, высота 1,8 м (вам нужно будет измерить сводчатый потолок / сводчатый потолок в самой высокой точке)
    Секция 2 — длина 4 м, ширина 3,5 м, высота 2,4 м

    Затем вычислите выходную мощность, необходимую для каждой секции.

    Затем с разделом 1 — требования к верхнему / сводчатому потолку нужно будет уменьшить вдвое.Например, если секция 1 отработала до 4300 БТЕ, сократите ее вдвое — тогда для секции 1 потребуется 2150.

    Добавьте это число в раздел 2, это даст вам общий объем тепла, необходимый для достаточного обогрева помещения.

    Щелкните здесь, чтобы создать свои чугунные радиаторы на заказ

    Теперь вы знаете, как рассчитать BTU для ваших радиаторов, просмотрите нашу подборку чугунных радиаторов в Интернете.

    Модель

    Тип R2F | Коммерческие водяные радиаторы

    Общий:

    Предоставить стальные двухпанельные радиаторы указанной длины и расположения, а также мощности, стиля и принадлежностей в соответствии с графиком. Излучатель с двойной нагревательной панелью должен представлять собой цельносварную стальную конструкцию, состоящую из пары плоских панелей с водяными трубами, приваренных к коллекторам на каждом конце. С внутренней стороны каждой панели должны быть приварены стальные гофрированные ребра для увеличения конвективной мощности радиатора.Ребра должны начинаться на расстоянии не менее 3 дюймов от конца радиатора и иметь не менее 32 ребер на фут. Радиаторы должны иметь встроенную цельносварную перфорированную верхнюю решетку большого диаметра (минимум 0,09 дюйма), которая будет закрывать верх всех оребренных участков (для изогнутых радиаторов решетка отсутствует).

    Коллекторы должны включать все необходимые впускные, выпускные и вентиляционные соединения по мере необходимости. Стандартные присоединительные размеры — это коническая резьба 1/2 дюйма NPT для подающего и обратного трубопроводов и 1/8 дюйма для вентиляционного соединения.Внутренняя перегородка предусмотрена там, где требуется для правильного потока воды.

    Панели излучающего отопления должны быть доступны длиной от 2’-0 дюймов до 29’-6 дюймов с равным шагом в два дюйма без необходимости соединения. Излучение панели должно быть способно монтироваться на типичную конструкцию стеновой стойки без дополнительной блокировки или обвязки. Соответствующие кронштейны для настенного монтажа должны быть снабжены излучением.

    Панель радиационная должна быть произведена в США.

    АЛЬТЕРНАТИВ:

    Двухпанельные радиаторы (высотой до четырех труб) должны быть оснащены напольными опорами (ИЛИ консольными настенными кронштейнами) вместо настенных кронштейнов.

    Номинальное давление:

    Номинальное давление излучения должно быть следующим:

    СТАНДАРТ: рабочее давление — максимум 56 фунтов на квадратный дюйм, испытательное давление — максимум 74 фунта на квадратный дюйм

    ИЛИ

    MEDIUM: рабочее давление — максимум 85 фунтов на квадратный дюйм, испытательное давление — максимум 110 фунтов на квадратный дюйм

    ИЛИ

    ВЫСОКИЙ: рабочее давление-128 фунтов на квадратный дюйм максимум, испытательное давление 184 фунтов на квадратный дюйм максимум

    Радиационное расширение панели не должно превышать 1/64 дюйма на фут излучения при 215ºF.Установщик должен обеспечить соответствующую компенсацию расширения для каждого радиатора.

    Отделки:

    Излучение панели должно быть очищено и фосфатировано перед нанесением порошкового покрытия. Затем излучение окрашивается глянцевым порошковым покрытием с общей толщиной краски 2-3 мил (0,002–0,003 дюйма). Цвет должен быть выбран из стандартных цветов Runtal, или дополнительные цвета должны быть доступны в Дополнительная стоимость.

    Гарантия:

    На все радиаторы Runtal распространяется 5-летняя ограниченная гарантия

    Производитель:

    При соблюдении требований предоставьте плоские трубчатые панели излучения производства Runtal North America, Inc.

    ДОПОЛНИТЕЛЬНЫЕ ПРЕДМЕТЫ, КОТОРЫЕ МОГУТ БЫТЬ ДОБАВЛЕНЫ В СПЕЦИФИКАЦИЮ:

    Ребристые накладки на трубы, обработанные под радиаторы, должны быть обеспечены излучением.

    Изготовитель излучения должен обеспечить комбинированный запорный клапан / штуцер шириной менее двух дюймов для подачи и возврата к каждому панельному радиатору, который будет установлен другими пользователями на месте.

    При необходимости следует использовать соединители

    Runtal-Flex для компенсации расширения радиаторов.

    Модель Тип R2F
    Краткие характеристики


    R2F-3 с боковыми и вертикальными соединениями — показан только для примера

    Спецификация панельного радиатора

    1.

    Радиаторы изготовлены из холоднокатаной низкоуглеродистой стали, полностью сварные и состоят из коллекторных труб на каждом конце, соединенных плоскими овальными водяными трубками.

    2.

    Доступны три толщины трубы:

    Стандартное давление — мин. Толщина стенки 0,048 ″

    Среднее давление — мин. Толщина стенки 0,058 ″

    Высокое давление — мин. Толщина стенки 0,078 ″

    3.

    Коллекторные трубы радиатора имеют квадратную форму минимальной толщины стенки 0,109 ″ и включают все необходимые соединения подачи, возврата и выпуска воздуха.Внутренняя перегородка предоставляется по мере необходимости.

    4.

    Стандартные соединения трубопроводов представляют собой муфты с конической резьбой 1/2 ″ NPT, расположенные как в боковом, так и в вертикальном положении. Доступны дополнительные соединения 3/4 ″ NPT. Соединения для выпуска воздуха представляют собой гнезда с конической резьбой 1/8 ″ NPT.

    5. Доступны три рабочих давления:
    Стандартное давление — макс. 56 фунтов на кв. Дюйм (испытано при 74 фунтах на кв. Дюйм)
    Среднее давление — макс. 85 psi (испытано при 110 psi)
    Высокое давление — 128 фунт / кв. Дюйм макс. (Испытано при 184 фунт / кв. Дюйм)
    Радиаторы
    6. Расширение радиатора не превышает 0,016 дюйма на погонный фут при 215 ° F. Компенсация расширения должна быть обеспечена в трубопроводе по мере необходимости другими.
    7. Радиаторы очищаются и фосфатируются перед нанесением порошкового покрытия.
    8. Радиаторы окрашены глянцевым порошковым покрытием с общей толщиной краски от 2 до 3 мил (0,002 ″ -0,003 ″).
    9. Цвет финишной краски должен быть выбран из доступных стандартных или дополнительных цветов перед заказом.
    10. Кронштейны для настенного монтажа поставляются с радиаторами, если не указаны напольные стойки.
    11. Необходимая блокировка опоры стены для правильного монтажа радиатора должна быть произведена другими.
    12. производятся в США в размерах, мощности и количествах, указанных на планах и графиках.

    Обзор (PDF)

    Технические характеристики (PDF)

    Чугунные радиаторы дороже в эксплуатации?

    Чугунные радиаторы могут быть очень красивыми и доступны в большом количестве разной высоты, ширины, дизайна, эффектов окраски и, как таковые, обычно стоят больше, чем их современные стальные эквиваленты.Они также очень тяжелые, и каждая часть отлита вручную, поэтому характеристики могут немного отличаться. Неуверенные клиенты часто спрашивают нас, являются ли чугунные радиаторы более дорогими в эксплуатации из-за объема воды, который они могут удерживать и насколько они тяжелы.

    Простой ответ: они не дороже в эксплуатации, чем любые другие металлические радиаторы, например, из алюминия или стали, однако они не работают одинаково из-за различий в материалах и размерах, и эти различия должны быть иметь в виду перед покупкой и установкой их.

    Чугунный радиатор следует рассматривать как паковочную часть — если он выглядит уставшим, а краска тусклая, вы можете перекрасить его. Однако стальной радиатор, скорее всего, будет брошен, когда краска начнет отслаиваться и обесцвечиваться, поскольку он считается одноразовым. Чугунные радиаторы также должны повысить ценность и привлекательность вашего дома, так же как и любые качественные приспособления и аксессуары — они действительно являются инвестиционным вложением и даже будут стоить чего-то из вторых рук, если вы захотите позже их продать.

    Чугунный радиатор нагревается медленнее, чем его стальной эквивалент, но когда он нагревается, остается теплым дольше, что означает, что он идеально подходит для мест, где требуется низкое отопление большую часть времени, таких как отели, рестораны , пабы и дома. Это намного быстрее и требует меньше энергии для нагрева радиатора, если ему никогда не позволять полностью остыть.

    Если ваш чугунный радиатор находится в месте, где его не нужно включать в течение длительного времени, например в офисе на выходных, мы рекомендуем вам использовать термостатический радиаторный клапан и установить его на низкий уровень, не выходя из системы отопления. таким образом, чтобы поддерживать низкий уровень фонового тепла в здании, с возможностью повышения температуры на термостате, когда вам нужно дополнительное тепло.

    Использование чугунных радиаторов может означать меньший износ вашего котла, так как при падении температуры не потребуется так много времени, чтобы вернуться к температуре, установленной на термостате, как в стальной версии, где температура будет падать быстрее. . Котел не любит многократно выключаться на полную мощность, и чем тяжелее должен работать ваш котел, тем выше вероятность его поломки и необходимости в ремонте или замене. Если вы отсутствуете весь день и отопление не требуется, вы можете установить термостат на низкое значение, чтобы вашему котлу не приходилось работать слишком много, и вы не тратили впустую энергию.Вы также можете выключить котел на ночь, так как ваши чугунные радиаторы сохранят остаточное тепло и не будут полностью остывать в течение многих часов. Время от времени давая котлу перерыв, он продлит его жизнь.

    Основным фактором, определяющим, насколько дорого стоит тот или иной источник отопления, является количество потерь тепла из-за плохой теплоизоляции в здании и сквозняков в дверях и окнах. Защита от сквозняков и двойное остекление в сочетании с изоляцией на крыше и стенах помогут гарантировать минимальные потери тепла и эффективное использование счета за отопление.

    Как упоминалось ранее, чугунный радиатор более привлекателен, чем стальные версии, и имеет большую площадь поверхности при сравнении радиаторов аналогичного размера. Стальной радиатор из-за его непривлекательного внешнего вида может быть расположен там, где он спрятан за мебелью или крышкой радиатора. Чугунный радиатор — это красивый объект, который владелец с гордостью выставит на всеобщее обозрение и, следовательно, будет находиться на более видном месте. Таким образом, одно только это расположение означает, что он находится в лучшем месте в комнате, чтобы нагревать воздух вокруг тех, кто проводит время в комнате.

    Чугунный радиатор какого размера мне нужен?

    Чтобы определить, какого размера вам нужен чугунный радиатор, вы можете использовать калькулятор BTU для вашей комнаты, например этот. При этом будут учтены различные факторы, такие как высота потолка, тип конструкции стен, площадь окон, этаж, на котором находится ваша комната, и так далее, чтобы рассчитать, сколько БТЕ или Ватт вам нужно для обогрева комнаты. После того, как у вас есть показатель BTU, которого нужно придерживаться, вам нужно подумать о положении вашего радиатора. Если он находится под окном, это даст вам максимальную высоту.У вас также будет максимальная ширина в зависимости от положения радиатора, поскольку это будет зависеть от длины стен, дверных проемов, окон и т. Д. И если он находится в коридоре, вы также можете иметь значение максимальной глубины. Все эти факторы будут определять размер нужного вам чугунного радиатора. Всегда убедитесь, что вы покупаете чугунный радиатор, по крайней мере, с показателями BTU, указанными на калькуляторе BTU, поскольку радиаторы всегда можно выключить до значения ниже их максимального значения, когда они вам не нужны при полном нагреве, но не выше.

    Использование чугунных радиаторов может означать меньший износ вашего котла, так как при падении температуры не потребуется так много времени, чтобы вернуться к температуре, установленной на термостате, как в стальной версии, где температура будет падать быстрее. . Котел не любит многократно выключаться на полную мощность, и чем тяжелее должен работать ваш котел, тем выше вероятность его поломки и необходимости в ремонте или замене. Если вы отсутствуете весь день и отопление не требуется, вы можете установить термостат на низкое значение, чтобы вашему котлу не приходилось работать слишком много, и вы не тратили впустую энергию.Вы также можете выключить котел на ночь, так как ваши чугунные радиаторы сохранят остаточное тепло и не будут полностью остывать в течение многих часов. Время от времени давая котлу перерыв, он продлит его жизнь.

    Краткое изложение испытаний теплопередачи для радиатора большего размера

    В промышленности растет поиск лучших рабочих жидкостей для систем тепломассообмена, что обусловлено не только максимальным доходом, но и обеспечением теплоотдачи или химического разделения в экстремальных условиях.Добавление небольшого количества наночастиц, продукта, называемого наножидкостью, было начато в последнее десятилетие. В частности, исследователи использовали углеродные нанотрубки (УНТ) в обычных жидкостях в качестве предпочтительных наночастиц из-за того, что они обладают замечательной теплопроводностью по сравнению с другими наночастицами. Здесь мы представляем всесторонний и актуальный обзор этой невероятной жидкости, применяемой в различных системах теплопередачи (конвективных и кипящих) и массообменных системах, таких как теплообменники и сепараторы.Также обсуждаются другие критические параметры, связанные с практичностью наножидкостей УНТ, такие как мощность накачки и эффективность. Мы рассмотрели замечательный диапазон результатов некоторых исследований тепломассопереноса, которые сильно зависят от внутренних характеристик наножидкости УНТ и рабочих условий, таких как обработка УНТ, размер, концентрация, число Рейнольдса и так далее. Главный вывод, который можно сделать из этого обзора, заключается в значительно более высоком коэффициенте теплопередачи при меньшем падении давления или мощности накачки наножидкости УНТ по сравнению с другими наножидкостями, что подразумевает лучшие тепловые характеристики системы теплопередачи.Кроме того, концентрация УНТ является важным фактором для достижения оптимальной теплопередачи при кипении, в то время как характеристики массопереноса наножидкости УНТ умеренно хороши по сравнению с другими наножидкостями. Кроме того, обработка УНТ с использованием ковалентной функционализации имеет решающее значение для общей стабильности и характеристик наножидкости УНТ. Однако некоторые проблемы, которые препятствуют их широкому использованию, такие как возможная коррозия-эрозия в системах, отсутствие оценок рисков и высокая стоимость наножидкости УНТ, должны быть тщательно рассмотрены в будущих исследованиях.

    Удельная теплоемкость материалов

    Таблица удельной теплоемкости

    Удельная теплоемкость материалов от воды до урана указана ниже в алфавитном порядке.
    Ниже этой таблицы представлена ​​версия изображения для просмотра в автономном режиме.

    Материал Дж / кг · К БТЕ / фунт ° F Дж / кг. ° C кДж / кг. К
    Алюминий 887 0,212 887 0.887
    Асфальт 915 0,21854 915 0,915
    Кость 440 0,105 440 0,44
    Бор 1106 0,264 1106 1,106
    Латунь 920 0,220 920 0,92
    Кирпич 841 0.201 841 0,841
    Чугун 554 0,132 554 0,554
    Глина 878 0,210 878 0,878
    Уголь 1262 0,301 1262 1,262
    Кобальт 420 0,100 420 0,42
    Бетон 879 0.210 879 0,879
    Медь 385 0,092 385 0,385
    Стекло 792 0,189 792 0,792
    Золото 130 0,031 130 0,13
    Гранит 774 0,185 774 0,774
    Гипс 1090 0.260 1090 1.09
    Гелий 5192 1,240 5192 5,192
    Водород 14300 3,415 14300 14,3
    Лед 2090 0,499 2090 2,09
    Утюг 462 0,110 462 0,462
    Свинец 130 0.031 130 0,13
    Известняк 806 0,193 806 0,806
    Литий 3580 0,855 3580 3,58
    Магний 1024 0,245 1024 1.024
    Мрамор 832 0,199 832 0,832
    Меркурий 126 0.030 126 0,126
    Азот 1040 0,248 1040 1,04
    Дуб 2380 0,568 2380 2,38
    Кислород 919 0,219 919 0,919
    Платина 150 0,036 150 0,15
    Плутоний 140 0.033 140 0,14
    Кварцит 1100 0,263 1100 1,1
    Резина 2005 0,479 2005 2,005
    Соль 881 0,210 881 0,881
    Песок 780 0,186 780 0,78
    Песчаник 740 0.177 740 0,74
    Кремний 710 0,170 710 0,71
    Серебро 236 0,056 236 0,236
    Почва 1810 0,432 1810 1,81
    Нержавеющая сталь 316 468 0,112 468 0,468
    Пар 2094 0.500 2094 2,094
    Сера 706 0,169 706 0,706
    торий 118 0,028 118 0,118
    Олово 226 0,054 226 0,226
    Титан 521 0,124 521 0,521
    Вольфрам 133 0.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *