У каких батарей теплоотдача лучше: Теплоотдача радиаторов отопления – сравнение и расчет мощности

Содержание

Теплоотдача радиаторов отопления – сравнение и расчет мощности

Реальная теплоотдача радиаторов отопления различных типов часто обсуждается на строительных форумах. Участники спорят, какие батареи лучше по тепловым характеристикам – чугунные, алюминиевые или стальные панели. Чтобы прояснить данный вопрос, предлагается выполнить расчет мощности разных отопительных приборов и провести сравнение радиаторов по теплоотдаче.

 Как правильно рассчитывается реальная теплоотдача батарей

Первым делом изучите технический паспорт батареи. В нем вы точно найдете интересующие параметры — тепловую мощность одной секции либо целого панельного радиатора определенного типоразмера. Не спешите восхищаться отличными показателями алюминиевых или биметаллических обогревателей, указанная в паспорте цифра — не окончательная и требует корректировки, для чего и нужно сделать расчет теплоотдачи.

Ошибочное суждение: мощность алюминиевых радиаторов самая высокая, ведь теплоотдача меди и алюминия – самая лучшая среди металлов. Теплопроводность алюминия действительно высока, но процесс теплообмена зависит от многих факторов. Нюанс второй: отопительные приборы делают из силумина – алюминиевого сплава с кремнием, чьи показатели заметно ниже.

Прописанная в паспорте отопительного прибора теплоотдача соответствует истине, когда разница между средней температурой теплоносителя (tподачи + tобратки)/2 и воздуха помещения равна 70 °С. Величина зовется температурным напором, обозначается Δt. Расчетная формула:

Подставим известное значение температурного напора и получим такое уравнение:

(tподачи + tобратки)/2 — tвоздуха = 70 °С

Справка. В документации изделий от различных фирм параметр Δt может обозначаться по-разному: dt, DT, а иногда просто пишется «при разнице температур 70 °С».

Какую теплоотдачу мы получим, если в документации на биметаллический радиатор написано: тепловая мощность одной секции равна 200 Вт при DT = 70 °С? Разобраться поможет та же формула, в нее подставляем значение комнатной температуры +22 °С и ведем расчет в обратном порядке:

(tподачи + tобратки) = (70 + 22) х 2 = 184 °С

Зная, что разность температур в подающем и обратном трубопроводах не должна превышать 20 °С, определяем их значения следующим образом:

  • tподачи = 184/2 + 10 = 102 °С;
  • tобратки = 184/2 – 10 = 82 °С.

Теперь видно, что 1 секция биметаллического радиатора из примера отдаст 200 Вт теплоты при условии, что вода в подающем трубопроводе нагреется до 102 °С, а температура воздуха в комнате – до +22 °С.

Первое условие невыполнимо, поскольку современные бытовые котлы нагреваются до 80 °С (максимум). Значит, радиаторная секция никогда не отдаст заявленные 200 Вт тепла. Да и температура теплоносителя в системе частного дома редко поднимается выше 70 °С, тогда DT = 38 °С, а не 70 градусов. То есть, реальная теплоотдача прибора вдвое ниже паспортной.

Порядок расчета теплоотдачи

Итак, реальная мощность батареи отопления гораздо меньше заявленной, но для ее подбора надо понимать, насколько. Для этого есть простой способ: применение понижающего коэффициента к паспортному значению тепловой мощности обогревателя. Ниже представлена таблица коэффициентов, на которые умножается заявленная теплоотдача радиатора в зависимости от настоящей величины DT:

Алгоритм расчета настоящей теплоотдачи отопительных приборов для ваших индивидуальных условий такой:

  1. Определить, какая должна быть температура в доме и воды в системе.
  2. Подставить эти значения в формулу и рассчитать свой температурный напор Δt.
  3. Найти в таблице коэффициент, соответствующий найденному DT.
  4. Умножить на него паспортную величину теплоотдачи батареи.
  5. Подсчитать число секций либо целых отопительных приборов для обогрева комнаты.

В приведенном примере тепловая мощность 1 секции биметаллического радиатора составит 200 Вт х 0.48 = 96 Вт. На обогрев помещения площадью 10 м² пойдет приблизительно 1000 Вт теплоты или 1000/96 = 10.4 ≈ 11 секций (округление делаем в большую сторону).

Представленная таблица и расчет теплоотдачи батарей надо использовать, когда в документации указана Δt, равная 70 °С. Но бывает, что фирмы–производители дают мощность радиатора для других условий, например, при Δt = 50 °С. Тогда пользоваться коэффициентами нельзя, проще набрать требуемое количество секций по паспортной характеристике, только взять их число с полуторным запасом.

Справка. Многие производители указывают значения теплоотдачи при таких условиях эксплуатации: tподачи = 90 °С, tобратки = 70 °С, tвоздуха = 20 °С, что как раз соответствует Δt = 50 °С.

Сравнение по тепловой мощности

Если вы внимательно изучили предыдущий раздел, то должны понимать, что на теплоотдачу очень влияют температуры воздуха и теплоносителя, а эти параметры мало зависят от самого радиатора. Но есть и третий фактор — площадь поверхности теплообмена, здесь конструкция и форма изделия играет большую роль. Четко сравнить стальной панельный обогреватель с чугунной батареей не выйдет, их поверхности слишком разные.

Трудновато сравнивать отдачу теплоты плоскими панелями и ребристыми поверхностями сложной конфигурации

Четвертый фактор, влияющий на теплоотдачу, — это материал, из коего изготовлен отопительный прибор. Сравните сами: 5 секций алюминиевого радиатора GLOBAL VOX высотой 600 мм отдадут 635 Вт при DT = 50 °С. Чугунная ретро батарея DIANA (GURATEC) на 5 секций такой же высоты передаст в комнату только 530 Вт при аналогичных условиях (Δt = 50 °С). Эти данные опубликованы на официальных сайтах производителей.

Примечание. Мощностные характеристики алюминиевых и биметаллических обогревателей мало отличаются, сравнивать их нет смысла.

Можно попытаться провести сравнение алюминия со стальным панельным радиатором, взяв ближайший типоразмер, подходящий по габаритам. Длина батареи из 5 алюминиевых секций GLOBAL высотой 600 мм составит примерно 400 мм, что соответствует стальной панели KERMI 600 х 400.

В таблице указана тепловая производительность 1 секции из алюминия и биметалла в зависимости от размеров и разницы температур Δt

Если даже взять трехрядную стальную панель (тип 30), получим 572 Вт при Δt = 50 °С против 635 Вт у 5-секционного алюминия. Еще учтите, что радиатор GLOBAL VOX гораздо тоньше, глубина прибора составляет 95 мм, а панели KERMI – почти 160 мм. То есть, высокая теплоотдача алюминиевых секций позволяет уменьшить габариты обогревателя.

В индивидуальной системе отопления частного дома батареи одинаковой мощности, сделанные из различных металлов, работать будут по-разному. Поэтому и сравнение довольно предсказуемо:

  1. Биметаллические и алюминиевые изделия быстро прогреваются и остывают. Отдавая больше теплоты за промежуток времени, они сильнее охлаждают воду, возвращаемую в систему.
  2. Стальные панельные радиаторы занимают среднюю позицию, так как передают тепло не настолько интенсивно. Зато они дешевле и проще в монтаже.
  3. Самые инертные и дорогие – это обогреватели из чугуна, им присущ долгий разогрев и остывание, из-за чего возникает небольшое запаздывание при автоматическом регулировании расхода теплоносителя термостатическими головками.

Вывод простой: неважно, из какого материала изготовлен радиатор. Главное, правильно подобрать батарею по мощности и дизайну, который устроит пользователя. А вообще, для сравнения не помешает ознакомиться со всеми нюансами работы того или иного прибора, а также где какой лучше устанавливать.

Сравнение по другим характеристикам

Об одной особенности работы батарей – инертности – уже упоминалось выше. Но чтобы сравнение радиаторов отопления выглядело объективным, кроме теплоотдачи следует учесть и другие важные параметры:

  • рабочее и максимальное давление теплоносителя;
  • количество вмещаемой воды;
  • масса.

Ограничение по рабочему давлению определяет, можно ли устанавливать отопительный прибор в многоэтажных зданиях, где высота подъема воды сетевыми насосами может достигать сотни метров. Параметр не играет роли для частных домов, где давление в системе невысокое, максимум 3 Бар.

Сравнение по вместительности радиаторов может дать представление об общем количестве воды в сети, которое придется нагревать. Ну а масса изделия важна при выборе места установки и способа крепления батареи.

В качестве примера ниже показана сравнительная таблица характеристик различных радиаторов отопления одинакового размера:

Примечание. В таблице за 1 единицу принят отопительный прибор из 5 секций, кроме стального, представляющего собой единую панель.

Заключение

Если провести сравнение изделий широкого круга производителей, то все равно выяснится, что по теплоотдаче и другим характеристикам первое место прочно удерживают алюминиевые радиаторы. Биметаллические выигрывают по рабочему давлению, но стоят дороже, покупать их не всегда целесообразно. Стальные батареи – это скорее бюджетный вариант, а вот чугунные, наоборот, — для ценителей. Если не учитывать цену советских чугунных «гармошек» МС140, то ретро радиаторы – самые дорогие из всех существующих.

стальные, алюминиевые, чугунные, биметаллические или медные?

В этой статье:

От радиатора требуется немногое: чтобы грел хорошо и был безопасен. Исходя из этих простых требований и выбирается прибор. В продаже имеется несколько видов радиаторов отопления, которые отличаются формой, материалом и техническими характеристиками. Геометрия и материал, из которого он изготовлен, влияют на его мощность (теплоотдачу). В паспорте производитель в обязательном порядке указывает, при каких величинах температуры и давления теплоносителя эксплуатация изделия отвечает требованиям безопасности.

Все эти параметры и являются главными критериями в решении вопроса, какие радиаторы отопления самые лучшие.

Особенно следует обратить внимание на рабочее и опрессовочное давление тем пользователям, жилье которых отапливается при помощи центрального отопления.

Кроме того, не все батареи способны долго выдерживать плохое качество теплоносителя.

Биметаллические

Биметаллическая батарея

Биметаллический радиатор – довольно неприхотливый прибор, способный выдержать давление теплоносителя в сети многоэтажных домов. Да и к качеству воды он довольно лоялен.

Устройство этого типа представляет собой комбинацию двух металлов:

  • сталь – используется для изготовления коллектора;
  • алюминий – применяется для изготовления ребер.

Такой тандем позволяет компенсировать недостатки каждого из материалов:

  • сталь неплохо переносит гидроудары и некачественную в плане химсостава воду;
  • алюминий обладает хорошей теплопроводностью, что положительно сказывается на общей теплоотдаче отопительной батареи.

Больше о плюсах и минусах читайте в нашем обзоре.

Изделия из биметалла плохо сочетаются с твердотопливными котлами из-за их высокой теплоотдачи. Если у вас газовый котел, а температура теплоносителя превышает 60 градусов, можете смело ставить биметалл.

В общем, биметаллическую батарею можно было бы назвать лучшей заменой традиционной чугунной, если бы не высокая цена: биметалл в два раза дороже.

Чугунные

Радиатор из чугуна

Привычные «советские» радиаторы изначально проектировались под централизованную отопительную систему:

  • они без проблем выдерживают гидроудары и плохое качество воды;
  • их можно использовать и в системах автономного теплоснабжения;
  • они достаточно эффективно греют помещение.

Но этот металл обладает высокой инертностью, поэтому устанавливать на радиаторы терморегуляторы бесполезно. Впрочем, именно инерционность в сочетании с большим объемом теплоносителя в батарее способствуют равномерному обогреву помещения.

Долговечность и низкая стоимость делает чугунные радиаторы самыми востребованными как для квартиры, так и для частного дома. Перейдя по этой ссылке вы узнаете, какие чугунные батареи лучше с точки зрения дизайна, технических характеристик, тепловой мощности и способу установки.

Если в доме используется твердотопливный котел, изделия из чугуна будут самым правильным выбором. Они будут долго сохранять тепло после того, как топливо прогорит.

Алюминиевые

Обогреватель из алюминия

Легкие, привлекательные на вид и удобные в монтаже алюминиевые радиаторы отопления пользуются достаточно большим спросом у потребителя. Алюминий не инерционный — он быстро нагревается, и также быстро отдает тепло. Благодаря этому свойству, батареи хорошо работают в паре с терморегуляторами.

Но один существенный недостаток не позволяет широко их использовать: алюминий очень плохо переносит контакт с плохо подготовленной водой.

Высокая щелочность теплоносителя способна за короткий срок «убить» алюминиевый радиатор. Какого качества вода в центральном отоплении, мы все знаем. Но и в случае автономной отопительной системы далеко не каждый домовладелец в состоянии организовать водоподготовку.

Тем не менее, эти модели используются во многих загородных домах, особенно в тех случаях, когда в доме планируется внедрение автоматической системы управления теплом.

Но имейте в виду, что температура теплоносителя должна быть не менее 60 градусов. Перейти к полному перечню технических характеристик этих моделей.

Стальные радиаторы: панельные и трубчатые

Панельный радиатор представляет собой сварную конструкцию. Она двух пластин, на которых при помощи штамповки сформованы коллекторы и соединительные каналы.

Для изготовления прибора используют листовую сталь толщиной 1,25 – 1,5 мм. Естественно, выдержать гидроудары, присущие центральным отопительным системам, батарея такого типа не в состоянии. При давлении 13 атм её может порвать или раздуть, да и оставлять надолго без воды не рекомендуется: сталь подвержена коррозии. А центральные системы отопления до наступления отопительного сезона стоят пустые.

Исходя из вышесказанного, можно сделать вывод: стальные панельные батареи можно использовать только в автономной системе, где для них можно создать режим наибольшего благоприятствования.

Причем система должна быть закрытой: это позволит защитить батареи от попадания в них воздуха, а, следовательно, предотвратить образование коррозии металла.

Стальные трубчатые батареи

Трубчатые радиаторы лучше переносят резкие перепады давления теплоносителя. На этом основании некоторые поставщики утверждают, что они пригодны для установки в многоэтажных домах.

Но не стоит обольщаться: толщина стенки трубы всего 1,5 мм, а наличие сварных швов ставит это заявление под сомнение.

Трубчатые батареи из стали лучше всего подходят для малоэтажных построек с отопительными системами закрытого типа.

С точки зрения теплоотдачи они неэффективны, да и стоимость таких конструкций в пересчете на 1 кВт очень высокая.

Специалисты заявляют, что эти модели скорее относятся к предметам декора. И действительно, трубе можно придать самую причудливую форму. Единственное преимущество трубчатого прибора – гигиеничность (у него отсутствуют труднодоступные места, где может скапливаться пыль).

Здесь можно больше узнать, какая модель больше подойдет в каждом конкретном случае.

Медные батареи — самые лучшие

Нажмите на фото для увеличения

Для большинства наших соотечественников медные радиаторы не по карману. Если бы не цена, они были бы самыми востребованными.

У какого радиатора лучше теплоотдача? У медного!

Теплопроводность меди в значительной степени превышает аналогичный показатель у стали, чугуна и алюминия. Это означает, что медные радиаторы являются самыми эффективными приборами отопления.

Они превосходно держат гидроудары и, что немаловажно, совершенно не боятся химических примесей в теплоносителе.

На внутренней поверхности секций образуется окисная пленка, которая надежно защищает металл от разрушения. Их можно использовать как в централизованной, так и автономной системах отопления любого типа.

Сравнительные характеристики разных моделей

По мнению нашей редакции оптимальный выбор (соотношение цены и качества) — чугунные радиаторы, но пальма первенства у медных!

ПараметрыМедныеЧугунныеБимет-иеПанельныеТрубчатыеАлюм-ые
Теплоотдача, Втсвыше 100080 - 160130 - 200180 - 73520 - 700125 - 180
Рабочее давление, атм1610 - 12до 356 – 8,58 - 10до 16
Опрессовочное давление, атм5015 - 1852,51313 - 1524

Каждый из представленных обогревателей обладает преимуществами и недостатками. Немаловажное значение имеет не только свойства металла, но и его качество.

Вертикальные батареи отопления идеально подходят для помещений, где нет места радиаторам стандартных размеров.

Не секрет, что многие (а может быть и большинство) производителей используют в производстве радиаторов вторичное сырье. Это может отразиться на долговечности изделия (больше всех «страдают» алюминиевые батареи). За внушительную сумму покупатель рискует приобрести обогреватели, которые выйдут из строя уже через несколько лет.

Какие радиаторы лучше греют, какая реальная теплоотдача

Радиаторы в домашних условиях не дают той мощности, которая прописана в документации. Чтобы узнать реальную теплоотдачу от радиатора нужен небольшой расчет. Данные о мощности на прилавках скорее рекламируют изделие, чем информируют нас. Мы же можем рассчитывать на более скромную теплоотдачу, рассмотрим, как определить реальную мощность разных радиаторов.

 

Что означает мощность радиаторов указанная в документации

Мощность радиатора будет напрямую зависеть от их температуры. Чем она больше, и чем холоднее в комнате, тем больше тепла будет отдаваться.  Но сколько в действительности?

Открыв паспорт, прилагаемый к радиатору, можно узнать, что одна секция радиатора обладает тепловой мощностью, например, 180 Вт. Но при маленькой оговорочке, — при «Δt = 50 град».
Что это?

Обозначение в документации Δt, или dt, или DT, или «Разница Температур», —  это разница между средней температурой радиатора и температурой воздуха в комнате. Например, 60 град, минус 20 град – получаем  Δt равную 40 град.

Производители указывают мощность своих радиаторов обычно при для  Δt равной 50 град. Но может ли такая разность температур  быть в реальности?

 

Какие реальные температуры отопления и воздуха

Что такое средняя температура радиатора?
Это среднее значение температур подачи и обратки.  Например, — подача 70 град, обратка 50 град. Тогда в среднем в радиаторах +60 град.

Котлы имеют ограничение нагрева +80 градусов. Но их на  максимум обычно никто не выкручивает и ограничиваются температурой подачи +70 град, чтобы не обжигаться о радиаторы, по крайней мере. Тогда реальная средняя температура в радиаторах окажется +60 град С.

Прохладный воздух в комнате +20 град обычно не устраивает жильцов,они стараются разогреть до +25- +27 град. В дальнейшем для расчетов примем скромные +23 град.

Таким образом, реальная Δt оказывается: 60 – 23 = 37 град.

 

Вычисление реальной мощности и количества радиаторов

Δt = 37 град – разница температур при «обычной» работе домашнего котла, и когда «не слишком то тепло» в доме.
Какая же будет мощность радиаторов при этом?
Оказывается, что в 1,5 раза меньше от заявленной мощности при Δt 50 градусов.

Для вычисления реальной теплоотдачи пользуются поправочными коэффициентами, чтобы не вдаваться сложные расчеты.
Если паспротная мощность указана при «Δt = 50 град», то метод вычилсения количества секций следующий.

  • Определяется количество секций по паспортной мощности радиатора.
  • Полученное значение умножается на  1,5.

Например, в комнату 10 кв. м с теплопотерями 1 кВт, нам нужно по расчету 6 секций с паспортной мощностью 180 Вт (указанной при Δt = 50 град). Тогда в реальности требуется установить, чтобы не перегревать котел, 6х1,5= 10 секций.

Но производители иногда указывают мощности и при условии «Δt = 70 град» (подача 100, обратка 80, комната 20). При Δt 70 лучше воспользоваться поправочными коэффициентами к указанной производителями мощности. Они зависят от реальной Δt.

Приведены реальная Δt в градусах, затем поправочный коэффициент.

40 – 0,48
42 – 0,51
45 – 0,56
47 – 0,60
50 – 0,65
55 – 0,73
60 – 0,82
65 – 0,91
70 – 1,0
75 – 1,09

Так, при реальной Δt 40 (63 — 23, например), нам нужно заявленную мощность умножить на 0,48, например, 210х0,48, получаем 100 Вт реальной теплоотдачи на одну секцию и отсюда вычисляем нужное количество секций.

 

Какая тепловая мощность у чугунных и стальных радиаторов

Мощность радиатора зависит не только от температур теплоносителя и воздуха в комнате, но и еще от двух параметров:

  • Площади поверхности радиатора (площадь теплоомбена).
  • Теплопроводности материла радиатора, — от того с какой скоростью передается тепло от теплоносителя к воздуху. Напомним, что у алюминия это значение примерно 170 Вт/м*К,  а у стали и чугуна около 70 — 90 Вт/м*К

Следовательно:

  • У алюминиевых и биметаллических радиаторов ощутимой разницы по площади оребрения, и в материале нет, их принято считать одинаковыми по теплоотдаче, если размеры сходные.
  • Для чугунного радиатора с такими же габаритами, как и у алюминьки, мощность будет на 20% меньше. Сказывается заниженная площадь теплообмена и материал. Поэтому, если нет паспортных данных на чугун, можно посчитать по аналогии с алюминием и умножить на 0,8.
  • Для стальных панельных, при одинаковых высоте и ширине с алюминиевым радиатором, но при глубине в 1,5 раза больше (тип 30), мощность будет примерно такой же, может чуть меньше. Большей глубиной у цельных панелей добирается недостающая им площадь теплообмена.

В целом же можно сказать, что все радиаторы «греют неплохо» и мощность не является решающей характеристикой при выборе…

Выводы

  • При проектировании расстановки радиаторов важно правильно посчитать их реальную теплоотдачу в условиях своего дома. Нужно определиться с приемлемыми температурами теплоносителя и воздуха. Чаще принимается +70 град подача и +25 в доме. Отсюда все остальные расчеты.
  • Оптимальным выбором для домов и квартир остаются алюминиевые радиаторы, но качественно сделанные, с хромовым покрытием внутри. Приборы дешевле биметалла на 20%,  удовлетворяют всем потребностям домашней сети отопления, имеют наибольшую удельную мощность с линейного размера, хоть это и не критически важно.
  • Для современных систем отопления важной характеристикой остается и тепловая инертность отопительного прибора. Чем она меньше, тем меньше температурные колебания воздуха в комнатах при обычном режиме котла «нагрел-остановился». Чугунные радиаторы в этом плане проигрывают — долго разогреваются и долго же остывают, утягивая за кривой своей тепловой инертности и наш комфорт в колебания…

 

Сравнение теплоотдачи радиаторов | Lammin

Теплоотдача радиаторов — показатель, который определяет эффективность системы обогрева жилых, производственных и офисных помещений. Она зависит от многих факторов и является важным критерием при выборе батарей.

Зависимость теплоотдачи от различных факторов

Теплоотдача или тепловая мощность отражает количество тепла, которое передается отопительным прибором в единицу времени. Она влияет на микроклимат в помещении и обеспечивает создание комфортных условий.

Первичные факторы

Величина тепловой мощности одной секции батареи указывается в технической документации, прилагаемой производителями оборудования для водяной системы отопления. Она зависит от следующих факторов:

  • Материала изготовления. Каждый металл имеет определенный коэффициент теплопроводности, влияющий на теплоотдачу. Самыми высокими показателями отличаются медь и серебро, но их не используют для производства батарей из-за значительной стоимости.
  • Температуры теплоносителя, циркулирующего в сети обогрева. Чем она выше, тем больше тепла отдает прибор отопления.
  • Площади теплообмена. Ее величина определяется особенностями конструкции радиаторов, количеством секций и габаритными размерами.

Чтобы повысить эффективность функционирования сети обогрева, можно остановить свой выбор на радиаторах из металла, который имеет более высокую теплопроводность. Среди материалов, используемых для массового производства батарей, таким является алюминий. Еще один способ ускорить нагрев воздуха в помещениях до комфортных показателей — увеличить температуру теплоносителя. Его можно использовать в автономных сетях частных домов, учитывая при этом технические характеристики радиаторов и условия эксплуатации.

Подбирая изделия по площади теплообмена, следует отдавать предпочтение моделям с большим межосевым расстоянием и с ребристой поверхностью, которая значительно повышает эффективность обогрева.

Вторичные факторы

На уровень тепловой мощности приборов отопления и скорость нагрева помещений влияют и другие факторы, среди которых:

  • месторасположение;
  • способ подключения;
  • цветовое решение и вид покрытия батарей;
  • климатическая зона.

Поскольку на окна может приходиться до 26% от общих потерь тепла, то самый оптимальный вариант размещения радиаторов — под ними. Такое расположение отопительных приборов способствует созданию тепловой завесы и позволяет уменьшить утечку тепла из помещения. Использование декоративных экранов, закрывающих батареи, снижает их эффективность на 5-7% при наличии снизу пространства для доступа воздуха, и на 20% — при его отсутствии.

В целом общая тепловая мощность приборов отопления, установленных в помещении, должна быть больше потерь тепла примерно на 10-20%. В этом случае обеспечивается поддержание в комнатах комфортной температуры без лишних затрат.

Способ подключения радиаторов определяется их типом. Наиболее эффективными считаются модели с боковым односторонним и диагональным подключением. Первый вариант востребован, если количество секций не превышает 12, а второй целесообразно использовать при подсоединении более габаритных батарей. Изменение способа подключения, как и повышение температуры теплоносителя или увеличение габаритных размеров помогает повысить уровень теплоотдачи. Прежде чем воспользоваться одним из этих методов, следует произвести перерасчет мощности.

Эффективность обогрева системы также зависит от наличия пыли на поверхности, циркуляции воздуха в помещении и способа отделки стены. Чем больше отражающие свойства поверхности, тем лучше теплоотдача.

Сравнение теплоотдачи

При выборе радиаторов по материалу изготовления недостаточно оценивать их возможности по величине теплоотдачи. Сравнение приборов нужно проводить, учитывая особенности отопительной сети и ее основные технические параметры.

Стальные

У стальных батарей наименьший показатель тепловой мощности среди аналогичных изделий из других металлов. Это обусловлено низким коэффициентом теплопроводности, которым отличается конструкционная сталь. Кроме того, панельные приборы отопления имеют небольшую площадь теплообмена, которую нельзя увеличить путем добавления секций. Такой вариант изменения габаритных размеров можно использовать только для секционных моделей из стали. Для них также характерно следующее:

  • чувствительность к составу теплоносителя и склонность к заиливанию при использовании загрязненной воды;
  • низкая стойкость к гидравлическим ударам;
  • образование коррозии при сливе рабочей среды.

Стальные приборы отопления целесообразно применять при обустройстве автономной сети отопления.

Чугунные

Коэффициент теплопроводности чугуна составляет 50-56 Вт/(м*К), поэтому приборы из этого металла отличаются большей эффективностью обогрева, чем стальные аналоги. Затрудняет передачу тепла и повышенная толщина стенок. Мощность моделей старого образца составляла 60-80 Вт, а у новых изделий она варьируется в пределах 140-160 Вт. Передача тепла в основном осуществляется путем излучения, а на конвекцию приходится не более 20%. Чугунные модели отличаются большим весом и хрупкостью, которая приводит к разрушению изделий под воздействием гидравлических ударов. Они медленно нагреваются и также остывают. Радиаторы из чугуна не чувствительны к качеству теплоносителя, способны выдерживать до 9 атм и востребованы в автономных системах отопления частных домов и загородных коттеджей.

Алюминиевые

Самая лучшая теплопроводность у алюминия: она составляет 230 Вт/(м*К). Поэтому по теплоотдаче алюминиевые батареи превосходят аналогичные свойства приборов отопления, выпускаемых из других материалов. Максимальная эффективность обогрева достигается благодаря особым свойствам металла и значительной полезной площади, увеличенной за счет оребрения поверхности. Передача тепла осуществляется путем конвекции и излучения.

Выбирая алюминиевые приборы отопления, нужно учитывать следующие недостатки изделий:

  • склонность к появлению коррозии из-за электрохимических процессов, причиной которых является низкое качество теплоносителя;
  • неспособность выдерживать гидравлические удары и рабочее давление выше 9 атм.

Их используют при прокладке автономных сетей для малоэтажных домов. Батареи из алюминия отличаются малым весом и предоставляют возможность подобрать модель с нужным количеством секций.

Биметаллические

Биметаллические приборы отопления представляют собой конструкцию, для изготовления которой служат два металла. В результате получают изделия, которые почти не уступают по уровню теплоотдачи аналогам из алюминия. Причина снижения эффективности заключается в особой конструкции. Сердечник производят из конструкционной стали, поэтому он отличается сравнительно небольшой теплопроводностью. Однако стальной элемент быстро нагревает алюминиевые панели, что обеспечивает интенсивное распространение тепла и высокую теплоотдачу. К другим преимуществам биметаллических радиаторов относятся:

  • устойчивость к появлению ржавчины и низкая чувствительность к качеству теплоносителя;
  • высокое рабочее давление, достигающее не менее 20-35 атм;
  • способность сохранять свои параметры при возникновении гидравлических ударов в сети;
  • простая форма, благодаря которой значительно упрощаются уход и обслуживание.

Биметаллические изделия можно устанавливать в автономных системах частных домов, но наиболее эффективно их использование в центральных сетях многоквартирных зданий. Сравнение радиаторов на примере продукции Lammin представлено в таблице.

Сравнение приборов отопления с межосевым расстоянием 350 мм

Вид батарей

Теплоотдача секции, Вт

Максимально допустимая температура, °C

Биметаллические Eco

110

110

Алюминиевые Eco

115

110

Биметаллические Premium

130

110

Алюминиевые Premium

135

110

Подбор радиаторов по тепловой мощности

После сравнения теплопередачи разных типов батарей и оценки условий эксплуатации изделий подбирают оптимальный вариант. Однако в техническом паспорте приборов отопления этот параметр указывается по отношению к одной секции или к их общему количеству. Чтобы выбрать радиатор, который оптимально подойдет для помещения по габаритным размерам, нужно провести предварительный расчет. Для этого нужно воспользоваться формулой, позволяющей определить нужное количество секций с учетом обогреваемой площади помещения и величины теплоотдачи одной секции.

Особенности радиаторов Lammin

Приборы отопления, выпускаемые компанией Lammin, представлены алюминиевыми и биметаллическими моделями двух серий — Eco и Premium. Для них характерен высокий показатель тепловой мощности, который достигается:

  • в изделиях из алюминия благодаря использованию уникального сплава, содержащего помимо основного металла добавки в виде цинка, железа и кремния;
  • в биметаллических моделях за счет особой конструкции, состоящей из стальных труб и алюминиевого корпуса с высоким коэффициентом теплопроводности.

Среди других преимуществ радиаторов Lammin можно выделить надежную защиту внутренней поверхности в виде прочного и гладкого слоя, препятствующего оседанию частиц. Их окрашивают методом двухступенчатой окраски, что позволяет сохранить привлекательный вид на протяжении длительного времени.

Показатели теплоотдачи и другие характеристики радиаторов Lammin с разным межосевым расстоянием приведены в таблице.

Тип батарей

Межосевое расстояние, мм

Показатель теплоотдачи 1 секции, Вт

Рабочая температура,

°C

Биметаллические Premium

350

130

110

Биметаллические Premium

500

153

110

Алюминиевые Premium

350

135

110

Алюминиевые Premium

500

165

110

Биметаллические Eco

350

110

110

Биметаллические Eco

500

139

110

Алюминиевые Eco

200

115

110

Алюминиевые Eco

350

115

110

Алюминиевые Eco

500

133

110

Как выбрать радиаторы отопления - какие лучше и почему? Обзор вариантов

Важное звено любой системы отопления — радиатор, который устанавливается в каждом из обогреваемых помещений. Именно этот прибор отвечает за то, насколько комфортные условия проживания будут созданы в вашей квартире или частном доме. 

К сожалению, не каждый продавец-консультант окажет вам адекватную помощь в выборе, поэтому давайте разбираться последовательно: как правильно подойти к выбору батареи отопления, чтобы хорошо грела, красиво выглядела и по цене не «кусалась»? Так сразу ответить на этот вопрос непросто — необходимо учесть много нюансов. Мы вам расскажем, как избежать основных ошибок.

Сравнительные характеристики радиаторов отопления

На рынке обогревающего оборудования радиаторы отопления представлены изделиями, которые различаются между собой как конструктивно, так и материалами изготовления. При их выборе можно воспользоваться таблицей сравнительных характеристик наиболее популярных отопительных приборов. Данные по конкретной модели производитель указывает в техническом паспорте.

Сравнительная таблица современных радиаторов отопления

Очень часто при выборе основным критерием выступает цена и внешний вид. Бесспорно, эти моменты очень важны. И, тем не менее, они не должны быть решающими. В первую очередь следует обратить внимание на совместимость с отопительной системой по таким параметрам, как максимальное давление и тип теплоносителя. Не менее важное значение имеет коррозионная стойкость и долговечность радиатора. В конечном итоге правильный выбор сбережёт вам деньги, время и нервы. Далее рассмотрим особенности каждого типа.

Чугунные радиаторы

Чугунные батареи уже более 100 лет используются в системах теплоснабжения жилья и, до сих пор, ни один тип обогревательных приборов не превзошел их по устойчивости к коррозии и долговечности. Обладая высокой теплоотдачей, чугунные «гармошки» как нельзя лучше приспособлены для эксплуатации на просторах бывшего СНГ.

Случись аварийное отключение теплоснабжения — «чугунок» еще долго будет хранить в себе накопленное тепло и продолжит нагревать воздух. Ему не страшны критические перепады давления, гидроудары и плохое качество теплоносителя. Жесткая щелочная вода с воздушными пробками и частицами ржавчины не оказывает на батареи из чугуна такое губительное воздействие, как на остальные нагревательные приборы, а цена их намного ниже. Все упомянутые преимущества до сих пор побуждают многих наших сограждан приобретать именно эти радиаторы в качестве отопительных приборов.

К недостаткам причисляют невыразительный дизайн, громоздкость и высокую инерционность, за счет которой их невозможно использовать в современных системах отопления с терморегуляцией. Но в современной интерпретации тепловые приборы стали более стильными и привлекательными, оставив при себе потрясающую прочность и долговечность.

В отличие от громоздких «гармошек» советской эпохи, современные чугунные радиаторы являются образцом дизайна и стиля. Что же касается эксклюзивных моделей, то многие из них можно отнести к произведениям искусства.

Ознакомившись с техническими характеристиками и другими особенностями современных чугунных радиаторов, вы уже не сможете сбрасывать их с чаши весов при выборе.

Сводная таблица чугунных радиаторов

Средний срок эксплуатации составляет 35-40 лет, в реальности же многие радиаторы трудятся с 50-х годов прошлого века. Называя недостатки тепловых приборов из чугуна, все вспоминают громоздкость и большой вес, совершенно забывая о высокой тепловой инерционности. А ведь последний фактор очень важен, учитывая общую тенденцию к экономии тепла, и, как следствие, применение в отопительных контурах термостатических регуляторов протока.

В связке с чугунным радиатором не сможет работать даже самый высокотехнологичный терморегулятор – всему причиной высокая тепловая инерционность отопительного прибора

Алюминиевые радиаторы

В отличие от чугунных батарей, алюминиевые радиаторы имеют минимальную тепловую инерционность, поэтому лучше всего подходят для совместного использования с терморегуляторами.

Алюминиевые радиаторы выделяются стильным, интересным дизайном, и в процессе эксплуатации не требуют особого ухода

Высокая теплоотдача сочетается с небольшим весом, удобной секционной конструкцией и отличными эксплуатационными показателями. Если учесть, что эти факторы дополняются простотой монтажа и элегантным дизайном, то нетрудно понять причины популярности изделий из алюминиевых сплавов при обустройстве индивидуальных обогревающих систем.

Сравнительная таблица алюминиевых радиаторов отопления наиболее популярных марок

Выбирая алюминиевый радиатор, не следует забывать о том, что подобное оборудование выдвигает более высокие требования к качеству теплоносителя(воды). Вода с высоким содержанием щёлочи вызывает коррозию металла, а протекающие во время этого процесса химические реакции приводят к газообразованию. В итоге сокращается срок службы радиаторов и повышается риск межсекционных протечек. По этой причине следует отказаться от дешёвой продукции китайского производства в пользу изделий известных европейских производителей.

Вероятность межсекционных протечек фактически сведена к нулю в конструкции алюминиевых радиаторов от бренда STOUT. Оборудование производится на итальянском заводе GLOBAL, отопительные приборы адаптированы для условий эксплуатации в России. Рабочее давление каждого радиатора – 16 атмосфер, они подходят для работы с антифризом и имеют гарантию от производителя 10 лет. Современный дизайн в итальянских традициях впишется в любой интерьер, а увеличенная площадь излучения тепла повысит комфорт в помещении.

Алюминиевый радиатор отопления STOUT на 8 секций

Как свидетельствует статистика, алюминиевые радиаторы имеют практически такой же срок службы, как и стальные — не более 25 лет, тогда как биметаллические батареи можно эксплуатировать 30-35 лет, а изделия из чугуна и вовсе легко переживают полувековой рубеж.

Разрушение алюминиевых радиаторов чаще всего происходит из-за низкого качества воды и превышения допустимого давления в системе

Стальные радиаторы

Как и другое отопительное оборудование с открытыми сварными швами, стальные радиаторы требуют стабильного давления теплоносителя. По этой причине их чаще всего используют для монтажа в частных домах и других зданиях с автономным обогревом. В этом случае закрытый обогревающий контур способствует замедлению окислительных процессов, к тому же индивидуальное отопление не страдает постоянным загрязнением теплоносителя щёлочью и другими агрессивными примесями. При использовании очищенной воды и регулярном контроле напора стальные радиаторы не требуют замены в течение 20 и более лет.

Технические характеристики стальных радиаторов известных европейских производителей

Устанавливая радиаторы из стали в зданиях с центральным отоплением, следует осознавать опасность гидроударов и низкого качества теплоносителя. Резкие перепады давления и вода с примесями солей и щёлочи снижают долговечность батарей более чем наполовину. В этом случае не следует рассчитывать на срок службы оборудования более 10 лет.

Подобные отложения в трубе центрального отопления указывают на сильное загрязнение теплоносителя примесями – стальные радиаторы в этом случае лучше не использовать.

В продаже можно найти стальные радиаторы двух типов:

  • трубчатые,
  • панельные.

Преимущества первых проистекают из простой и надёжной конструкции, которая напоминает лесенку из параллельных вертикальных трубок.

Трубчатые радиаторы переживают вторую молодость, являясь объектом внимания дизайнеров и любителей современных тенденций в интерьере.

Трубчатые радиаторы более устойчивы к гидроударам, чем панельные. Их конструкция позволяет реализовать любую схему подводки и произвольное размещение в пространстве. В ассортименте трубчатых батарей встречаются как монолитные, так и секционные модели, из которых можно легко собрать батарею требуемой мощности. Простая технология изготовления находит своё отражение в доступной стоимости, а внешний вид радиатора из множества вертикальных элементов даёт широкое поле для дизайнерских изысканий. Непритязательные на первый взгляд трубчатые радиаторы не так уж и плохи в деле, если напишите свое мнение об этом в комментариях, с удовольствием по-дискутируем?

Плоские, ровные поверхности панельных радиаторов значительно облегчают уход. Именно поэтому их так любят домохозяйки

Для изготовления панельных радиаторов используются стальные зигзагообразные пластины, которые приваривают друг к другу точечной сваркой. Образованные при этом полости служат каналами, по которым циркулирует теплоноситель. Для повышения теплоотдачи производители усложняют конструкцию, собирая радиатор из трёх панелей. Обратной стороной такого улучшения является утяжеление конструкции – вес многослойных стальных теплообменников приближается к чугунным.

Для изготовления панельного радиатора используются профильные стальные пластины, пространство между которыми выступает в роли водяного контура теплообменника

Как вы сами можете видеть, такие достоинства панельных радиаторов, как низкая цена и привлекательный внешний вид, омрачают минусы в виде низких эксплуатационных показателей. Чаще всего эти отопительные приборы выбирают для нетребовательных отопительных систем бюджетной категории.

Биметаллические радиаторы

Биметаллический радиатор сочетает в себе высокую прочность и долговечность стального отопительного регистра и превосходные теплотехнические показатели алюминиевых конвекторов.

Биметаллические радиаторы неотличимы от алюминиевых приборов, но обладают более высокой надёжностью и долговечностью

Внутренние каналы прибора сваривают из цельнотянутых стальных труб, благодаря чему батарея выдерживает давление более чем в 50 атмосфер и отлично противостоит коррозии. На этот остов наплавляют алюминиевый кожух с конвекционными рёбрами. В результате такой хитрости удаётся получить изделие с максимальной теплоотдачей, низкой теплоинерционностью и сроком службы до 25 лет.

Технические характеристики популярных биметаллических радиаторов. Таблица доступна в большом размере по клику.

Кроме описанных выше монолитных биметаллических радиаторов промышленностью выпускаются алюминиево-стальные теплообменники, собранные из отдельных секций. Составная батарея проигрывает нераздельной конструкции в плане надёжности и долговечности, но зато имеет плюсы в виде гибкой регулировки тепловой мощности. Всё, что для этого понадобится – добавить или убрать несколько дополнительных секций. Кроме того, неоспоримым достоинством наборных биметаллических батарей является их высокая ремонтопригодность.

Биметаллические радиаторы STOUT Space сочетают в себе легкость монтажа, эстетику без излишеств и надежную конструкцию, которая выдерживает давление более 100 атмосфер. Изделия производятся на крупнейшем российском заводе «РИФАР» и соответствуют ГОСТ 31311-2005 «Приборы отопительные». Максимальная температура теплоносителя 135°C, гарантия от производителя – 10 лет, срок эксплуатации – 25 лет. Доступное количество секций от 4 до 14: биметаллические радиаторы можно установить как на маленькой кухне, так и в гостиной частного дома.

Биметаллический радиатор отопления STOUT в разрезе. Стальной теплообменный контур и алюминиевое оребрение делают биметаллический радиатор максимально долговечным и эффективным

Доступное количество секций от 4 до 14: биметаллические радиаторы можно установить как на маленькой кухне, так и в гостиной частного дома.

Биметаллический радиатор отопления STOUT на 8 секций

Делая свой выбор в пользу наиболее технологичных из всех существующих радиаторов, не дайте себя обмануть. В целях экономии материалов и снижения цены конечного продукта производители идут на ухищрения. В отдельных моделях из стальных труб выполняется не монолитный контур, а лишь вертикальные каналы радиатора. Что же касается горизонтальных рабочих полостей, то они отливаются одновременно с алюминиевым корпусом.

В так называемых «полубиметаллических» батареях сталь выполняет армирующую роль и не оказывает положительного влияния на срок службы. Распознать Light-версию очень просто – достаточно «прозвонить» магнитом отдельные части отопительного прибора.

В полубиметаллических радиаторах из стали выполнены только вертикальные каналы, поэтому по критериям надёжности и долговечности они не отличаются от алюминиевых.

Медные радиаторы

Медные радиаторы выгодно отличаются от других отопительных приборов тем, что их контур изготавливаются из цельнотянутой медной трубы без использования других металлов.

Про особенности работы с медными трубами и фитингами можно узнать из статьи: https://aqua-rmnt.com/uchebnik/truby/mednye-truby-i-fitingi.html

Внешний вид медных радиаторов подходит лишь для поклонников индустриального дизайна, поэтому производители комплектуют тепловые приборы декоративными экранами из дерева и других материалов.

Труба диаметром до 28 мм дополняется медным или алюминиевым оребрением и декоративной защитой из массива дерева, термопластов или композитных материалов. Этот вариант обеспечивает эффективный нагрев помещения за счет уникальной теплоотдачи цветных металлов. К слову, по показателю теплопроводности медь опережает алюминий более чем в 2 раза, а сталь и чугун — в 5-6 раз. Обладая низкой инерционностью, батарея из меди обеспечивает быстрый прогрев помещения и позволяет использовать терморегулирующую аппаратуру.

По своей теплопроводности медь уступает лишь серебру, со значительным отрывом опережая остальные металлы

Присущая меди пластичность, коррозийная стойкость и способность без вреда контактировать с загрязнённым теплоносителем позволяет использовать медные батареи в квартирах высотных домов. Примечательно то, что через 90 часов эксплуатации внутренняя поверхность медного радиатора покрывается оксидной плёнкой, которая в дальнейшем защищает отопительный прибор от взаимодействия с агрессивными веществами. Недостаток у медных радиаторов только один – слишком высокая стоимость.

Сравнительная таблица технических характеристик медных и медно-алюминиевых радиаторов

Пластиковые радиаторы

На данный момент радиаторы отопления сделанные полностью из пластика, своего рода ноу-хау. В том числе над таким типом отопителя работают и российские инженеры в Сколково. Вопреки расхожему мнению, в плане надёжности пластиковые радиаторы приближаются к изделиям из металла, а по такому показателю, как коррозионная стойкость, и вовсе не имеют себе равных. Изделия из термопластов имеют высокую механическую прочность, хорошую теплопроводность и износостойкость. Пластиковые радиаторы не отличаются большим весом, поэтому их легко транспортировать и устанавливать.

Схема пластикового радиатора

Для тех, кто сомневается в теплофизических свойствах пластика, рекомендуем вспомнить о контурах водяных тёплых полов из сшитого полипропилена. Его теплопроводность ниже, чем у жёстких термопластов, и, тем не менее, это не мешает использовать пластмассовые трубы для построения надёжных и эффективных систем напольного обогрева.

Простота изготовления и, как следствие, низкая себестоимость делают батареи из термопластов отличным предложением для тех, кто поставил себе задачу сэкономить. Существенный минус пластиковых теплообменников заключается в том, что их можно использовать только в системах со стабильным давлением до 3 атм и температурой теплоносителя не выше 80 °С. По этой причине продвижение пластиковых батарей на нашем рынке затруднено.

Электрические радиаторы

Помимо рассмотренных выше обогревающих приборов существуют и другие – те, которые не требуют подключения к отопительной системе. Наверное, вы уже догадались, что речь идёт об электрических радиаторах.

В современных электрических радиаторах сочетается высокая экономичность, надёжность и безопасность.

В зависимости от конструкции можно выделить несколько видов теплообменников, работающих от электрической сети:

  • масляные радиаторы;
  • конвекторы;
  • инфракрасные приборы.

Конструкция масляного радиатора больше всего напоминает традиционную отопительную батарею. В качестве теплоносителя используется минеральное масло, а нагрев осуществляется трубчатым электронагревателем (ТЭН). Закрытая конструкция способствует пожарной безопасности и мобильности устройства, к тому же масляный обогреватель не сжигает кислород и пыль. К минусам можно отнести громоздкость, низкую экономичность и возможность обжечься при касании к металлической поверхности.

Масляные радиаторы отличаются от традиционных отопительных батарей мобильностью – при необходимости их можно легко переносить с места на место

Электрические конвекторы также используют нагрев за счёт омических потерь, только в их конструкции используется не жидкостной, а воздушный ТЭН. Благодаря закрытой конструкции обогреватели этого типа имеют те же достоинства, что и масляные радиаторы. Что же касается конструкции, то она оптимизирована таким образом, чтобы прибор как можно эффективнее использовал конвекцию. К недостаткам конвектора можно отнести лишь низкую мобильность – чаще всего такие приборы предназначаются для стационарного использования.

Простая конструкция и теплопередача конвекцией способствуют надёжности и эффективности электрических конвекторов

Инфракрасные радиаторы являются самым современным типом обогревающего оборудования. В отличие от любого другого оборудования, в их конструкцию заложен принцип передачи тепла излучением.

Принцип действия инфракасных радиаторов позаимствован у Солнца – нагревается не воздух в помещении, а отражающие объекты

Нагревая не воздух, а окружающие предметы, ИК-обогреватели отличаются высокой эффективностью и при этом имеют самый высокий КПД. К недостаткам приборов, работающих аналогично Солнцу, можно отнести лишь относительно высокую стоимость.

В отличие от других радиаторов, инфракрасные приборы наиболее эффективно работают на потолке – в этом случае излучение проникает в самые отдалённые уголки помещения

Как определить оптимальный размер радиатора

Габариты радиатора оказывают влияние не только на то, сможет ли обогревающий прибор нагреть помещение до комфортной температуры, но и на экономичность отопительной системы.

Определяя размер батареи отопления, в числе прочих факторов следует учитывать ширину оконного проёма и высоту подоконника

Размеры батареи находятся в прямой зависимости с её тепловой мощностью, поэтому первым делом следует посчитать тепловые потери помещения. Для этого объём в кубических метрах умножают на 41 Вт – количество тепла, необходимое для обогрева 1 куб. м строения, расположенного в средних широтах. К искомому значению следует прибавить 20% — этот запас не будет лишним при наступлении экстремально низких температур. Зная затраты тепла, которое понадобится для поддержания комфортной температуры в комнате, можно выбрать монолитную батарею нужного размера или подсчитать количество секций модульного радиатора. В последнем случае полученную цифру следует разделить на мощность одной секции.

При определении количества секций радиаторов отопления можно воспользоваться специальной таблицей.

Таблица увеличивается при клике.

Для помещений с нестандартными потолками потребуется отопительная батарея увеличенного размера. В этом случае определиться с количеством секций радиатора поможет таблица, учитывающая высоту потолков.

Таблица увеличивается при клике.

Необходимо помнить, что установленный под окном радиатор должен перекрывать ¾ длины оконного проёма. В этом случае у стёкол не будет скапливаться холодный воздух, и они не будут запотевать.

Для тех, кто не хочет заниматься расчётом мощности, на нашем сайте есть удобный онлайн-калькулятор. Всё, что понадобится в этом случае – ввести параметры помещения и теплоотдачу одной секции выбранного радиатора. Все необходимые вычисления программа сделает за вас.

Общие рекомендации по выбору, которые должен знать каждый

Подводя итог сравнительной характеристике различных видов отопительных приборов, можно выделить такие основные моменты:

  1. Для централизованной открытой тепловой сети, присутствующей в многоэтажках, как и много лет назад, наилучшим вариантом остается чугунный радиатор. Он устойчив к воздействию воды плохого качества, циркулирующей по нашим трубопроводам, и прослужит много лет. «Гармошка» выдержит перепады давления и гидроудары, при этом эффективно нагреет воздух в помещении. Небольшая цена данного вида отопительного прибора делает его вполне доступным для каждого. Однако, высокая инертность чугуна не позволит комбинировать такой радиатор совместно с терморегулятором.
  2. Неплохая альтернатива чугунной батарее в условиях многоквартирных домов — биметаллическая на основе стали с алюминием или медью. Сталь обладает достаточной жесткостью и коррозийной устойчивостью, чтобы противостоять гидроударам и неблагоприятному химическому составу воды в центральной системе, а алюминий или медь компенсируют не самую выдающуюся теплоотдачу стали. Однако, высокая стоимость не позволяет сказать, что это будет лучший вариант.
  3. Для закрытых систем отопления, присутствующих в частных домах, выбрать батареи, как правило, проще — здесь нет завышенного давления в отопительной системе, а вода проходит подготовку, прежде чем попасть в трубопровод. Поэтому, оптимальный вид отопительного прибора для дома — алюминиевый. Его цена доступна, дизайн хорош, теплоотдача высока. Низкая инертность такого позволит применять его совместно с системой терморегуляции.
  4. Неплохая альтернатива алюминиевым батареям в условиях автономного теплоснабжения — стальные радиаторы. Обладая более низкой теплоотдачей, чем алюминиевые, стальные приборы для обогрева имеют много преимуществ — небольшой вес, низкая инерционность, приятный дизайн, привлекательная цена.
  5. Стальные и алюминиевые батареи выпускаются грунтованными по внутренней плоскости нагревательного элемента для предотвращения коррозии от агрессивной среды теплоносителя. Окалина и частицы ржавчины, присутствующие в теплоносителе открытых систем отопления, приводят к механическому разрушению грунтовочного слоя внутри приборов, поэтому производители рекомендуют их эксплуатировать в закрытых системах отопления частных домов. Неплохим вариантом для открытых централизованных систем  может стать медный радиатор, однако не всех порадует его стоимость.

Видео: как выбрать отопительные батареи

На этом все друзья, надеюсь вам пригодится эта информация при выборе радиатора, задавайте свои вопросы в комментариях и через форму обратной связи. С большим удовольствием на них отвечу!

Благодаря разносторонним увлечениям пишу на разные темы, но самые любимые - техника, технологии и строительство. Возможно потому, что знаю множество нюансов в этих областях не только теоретически, вследствие учебы в техническом университете и аспирантуре, но и с практической стороны, так как стараюсь все делать своими руками. Оцените статью: Поделитесь с друзьями!

Таблица теплоотдачи чугунных и биметаллических радиаторов отопления

Создание комфортной температуры жилья в отопительный период зависит от множества факторов: от типа стены, высоты помещения, площади оконных проемов, характера расположенного пространства и многого другого. Большое значение имеет тепловой расчет устанавливаемых приборов. Традиционные методы расчета требуют учета вышеуказанных факторов, достаточно трудоемки. Для упрощения выбора типа оборудования применяется таблица радиаторов отопления.

Радиаторы отопления

Характеристики радиаторов отопления

Эффективность батарей зависит от следующих факторов:

  • температуры подачи теплоносителя;
  • теплопроводности материала;
  • площади поверхности батареи;

Чем выше эти показатели, тем больше тепловая мощность приборов.

Эффективная теплоотдача батарей отопления в зависимости от способа установки и подключения

В качестве единицы измерения теплоотдачи радиатора принято считать Вт/м*К, наравне с этим в паспорте часто указывается формат кал/час. Коэффициент перевода из одной единицы измерения в другую: 1 Вт/м*К = 859,8 кал/час.

Чугунные радиаторы отопления

В зависимости от материалов изготовления отличают чугунные, стальные, алюминиевые и биметаллические радиаторы. Каждый материал имеет показатели по следующим параметрам:

  • теплоотдаче одной секции;
  • рабочему давлению;
  • давлению опрессовки;
  • емкости одной секции;
  • массе одной секции.

Совет! Не следует забывать про подверженность материала изготовления батарей к коррозионному воздействию. Это важная характеристика при покупке обогревателя.

Чугунные батареи

Этот вид радиаторов, которые в народе называют «гармошками». Они обладают довольно большой эффективностью, стойкостью к коррозии, удару. Эти батареи достаточно долговечны и имеют доступную рыночную цену. Благодаря большим размерам сечения одной секции, засорение для таких батарей не представляет угрозы.

Чугунные батареи нового поколения

Теплоотдача секции чугунного радиатора ниже, чем у аналогов. Через час после отключения отопления чугунные батареи сохраняют 30% тепла. Современные производители выпускают эстетичные чугунные батареи с гладкой поверхностью и изящными формами, поэтому спрос на них остается высоким. Сравнение чугунных радиаторов отопления с другими видами приборов, приводится в нижеуказанной таблице.

Таблица тепловой мощности радиаторов отопления

Вид радиатора

Теплоотдача секции, Вт

Рабочее давление, Бар

Давление опрессовки, Бар

Емкость секции, л

Масса  секции, кг

Алюминиевый с зазором между осями секций 500мм

183,0

20,0

30,0

0,27

1,45

Алюминиевый с зазором между осями секций 350мм

139,0

20,0

30,0

0,19

1,2

Биметаллический с зазором между осями секций 500мм

204,0

20,0

30,0

0,2

1,92

Биметаллический с зазором между осями секций 350мм

136,0

20,0

30,0

0,18

1,36

Чугунный с зазором между осями секций 500мм

160,0

9,0

15,0

1,45

7,12

Чугунный с зазором между осями секций 300мм

140,0

9,0

15,0

1,1

5,4

Алюминиевые батареи

Теплоотдача алюминиевых радиаторов отопления, как видно из таблицы, лучше, чем у чугунных батарей, но хуже чем у биметаллических. Они достаточно прочны, а легкий собственный вес позволяет облегчить монтаж приборов. Из-за уязвимости к кислородной коррозии в последнее время стали проводить анодирование алюминия.

Алюминиевые радиаторы.

Биметаллические батареи

Этот вид радиатора является сочетанием элементов из стали и алюминия. Каналом для движения теплоносителя являются трубы, а соединительными деталями – резьбовые соединения. В качестве защиты и придания эстетичного внешнего вида такие батареи покрываются кожухом из алюминия. Недостатком изделия является относительно высокая стоимость по сравнению с аналогами. Но это компенсируется тем, что теплоотдача у биметаллических радиаторов отопления самая высокая.

Биметаллические радиаторы отопления

Стальные батареи

Старые стальные радиаторы обладают достаточно высокой тепловой мощностью, но при этом плохо удерживают тепло. Их нельзя разобрать или наращивать количество секций. Радиаторы данного типа подвержены к коррозии.

Стальные радиаторы

В настоящее время начали выпускать панельные радиаторы из стали, которые привлекательны высокой отдачей тепла при небольших размерах по сравнению с секционными радиаторами. Панели имеют каналы, по которым происходит циркуляция теплоносителя. Батарея может состоять из нескольких панелей, кроме этого, оснащаться гофрированными пластинами, увеличивающими теплоотдачу.

Устройство стальных панельных радиаторов

Тепловая мощность панелей из стали напрямую связана с габаритами батареи, зависящими от количества панелей и пластин (оребрение). Классификация проводится в зависимости от оребрения радиатора. Например, тип 33 присвоен трехпанельным обогревателям с тремя пластинами. Диапазон типов батарей составляет от 33 до 10.

Самостоятельный расчет требуемых радиаторов отопления связан с большим объемом рутинной работы, поэтому производители начали сопровождать изделия таблицами характеристик, которые сформированы по записям результатов испытаний. Эти данные зависят от типа изделия, монтажной высоты, температуры теплоносителя при входе и выходе, нормативной температуры в помещении и многих других характеристик.

Стальной панельный радиатор

Расчет приборов по теплопотерям помещения

Тепловые показатели устанавливаемых приборов определяются из расчета потери тепла помещением. Нормативное значение тепла, необходимого на единицу объема обогреваемой комнаты, за которую принимается 1 м3, составляет:

  • для кирпичных зданий – 34 Вт;
  • для крупнопанельных зданий – 41 Вт.

Теплопотери

Температура теплоносителя у входа и выхода и стандартная температура помещения отличаются для различных систем. Поэтому для определения реального теплового потока рассчитывается дельта температуры по формуле:

Dt = (T1 + T2)/2 – T3, где

  • T1 – температура воды у входа системы;
  • T2 – температура воды у выхода системы;
  • T3 – стандартная температура помещения;

Таблица для расчета теплоносителя

Важно! Паспортная теплоотдача умножается на поправочный коэффициент, определяемый в зависимости от Dt.

Для определения количества тепла, которое необходимо для помещения, достаточно умножить его объем на нормативное значение мощности и коэффициент учета средней температуры зимой, в зависимости от климатической зоны. Этот коэффициент равен:

  • при -10оС и выше — 0,7;
  • при -15оС — 0,9;
  • при -20оС — 1,1;
  • при -25оС — 1,3;
  • при -30оС — 1,5.

Кроме этого, необходима коррекция на количество наружных стен. Если одна стена выходит наружу, коэффициент 1,1, если две — умножаем на 1,2, если три, то увеличиваем на 1,3. Используя данные изготовителя радиатора, всегда легко выбрать нужный обогреватель.

Теплопотери помещения

Помните, что самое важное качество хорошего радиатора — это его долговечность в работе. Поэтому постарайтесь сделать свою покупку так, чтобы батареи прослужили вам необходимое количество времени.

Какие радиаторы отопления лучше: алюминиевые или чугунные

При монтаже новой или реконструкции старой отопительной системы часто возникает вопрос, какие радиаторы отопления лучше использовать: алюминиевые или чугунные. Эти виды приборов имеют существенные отличия по своим эксплуатационным характеристикам. Поэтому перед выбором очень важно сравнить чугунные и алюминиевые радиаторы с учетом особенностей системы отопления, в составе которой их предполагается использовать.

Система отопления как критерий выбора типа батарей

Чтобы выяснить, что лучше: алюминиевые радиаторы отопления или чугунные, необходимо в первую очередь определиться с системой отопления. Алюминиевые радиаторы принципиально не подходят для установки в системах центрального отопления. Для этого есть сразу несколько причин:

  • слабая стойкость к гидроударам;
  • высокая чувствительность к химическому составу теплоносителя;
  • слабая стойкость к абразивному износу, который возникает в связи с наличием в составе теплоносителя примесей;
  • проходные каналы алюминиевой батареи имеют малый диаметр сечения и быстро засоряются при использовании загрязненного теплоносителя.

Учитывая эти факторы, батареи из алюминия можно использовать только в автономных системах отопления, где в качестве теплоносителя используется чистая вода и не возникает избыточных давлений и гидроударов.

Существенное преимущество чугунных радиаторов перед алюминиевыми заключается в том, что они могут эксплуатироваться в сложных условиях. Качественные батареи из чугуна работают в составе централизованных систем отопления по 50 лет и более. Нет принципиальных ограничений на их использование и в составе автономных систем. Однако насколько эффективно они будут работать в данном случае?

Эффективность отопления батареями из алюминия и чугуна

Если сравнить чугунные и алюминиевые радиаторы по качеству и эффективности отопления, то безусловным будет преимущество батарей из алюминия. Они превосходят чугунные аналоги по всем наиболее важным параметрам.

В частности, значительно отличается теплоотдача чугунных и алюминиевых радиаторов. Тепловая мощность одной чугунной секции в зависимости от габаритов составляет 100-160 Вт. Для секции алюминиевого радиатора мощность может превышать 200 Вт. Это достигается за счет высокой теплопроводности алюминия и особой конструкции секции, которая имеет фигурную форму с ребрами, что повышает уровень теплоотдачи конвективным и лучевым способом. При этом благодаря меньшему размеру и габаритам секций, их количество в батарее может увеличиваться, что позволяет эффективно отапливать помещение большой площади. Алюминиевые радиаторы также отличаются минимальной тепловой инерцией. Благодаря этому они набирают максимальную температуру и эффективно обогревают помещение практически сразу после запуска системы в работу.

Внутренний объем алюминиевой секции составляет от 0,7 до 1 литра, тогда как одна чугунная секция может вмещать от 4,5 до 6 литров воды. За счет этого разница в КПД алюминиевых и чугунных радиаторов является очень высокой.

При использовании в системе алюминиевых радиаторов котлу приходится нагревать в 4-5 раз меньший объем жидкости. Соответственно снижается и расход топлива. Кроме того, за счет меньшего объема воды снижается нагрузка на котел и насос, что повышает эксплуатационный ресурс оборудования.

Большим преимуществом алюминиевых радиаторов является их малый вес. Масса одной секции составляет около 1 килограмма, что примерно в 8 раз меньше, по сравнению с чугуном. В результате значительно упрощаются работы по установке радиаторов, а монтировать их можно практически на любой стене.

Алюминиевые батареи имеют современный эстетичный дизайн, что позволяет отлично вписывать их практически в любой интерьер. Окрашиваются такие радиаторы в процессе производства, а значит, вам не нужно будет их красить перед установкой. При этом применяется технология порошковой окраски, которая позволяет получать очень прочное и долговечное покрытие, которое обеспечивает надежную защиту от коррозии и отличный внешний вид в течение многих лет.

Учитывая все характеристики, можно говорить, что алюминиевые радиаторы являются оптимальным вариантом для использования в системах автономного отопления. Они обеспечат максимально качественный и эффективный обогрев помещений с экономией энергоносителей. При этом условия эксплуатации в индивидуальных системах позволяют обеспечить их долговечную службу.

Алюминиевые и чугунные батареи Ogint

Компания Ogint выпускает как чугунные, так и алюминиевые радиаторы, чтобы каждый наш клиент смог подобрать отопительные приборы с оптимальными параметрами и характеристиками.

Мы применяем передовые производственные технологии и используем только лучшие материалы. Это позволяет получать продукцию, отвечающую высоким требованиям качества и подходящую для эксплуатации в российских условиях, что подтверждается наличием всех необходимых сертификатов. При отличном качестве наших радиаторов они имеют выгодную стоимость.

Наша компания осуществляет оптовую продажу радиаторов из алюминия и чугуна. Обратившись к нам, вы имеете возможность получить высококачественные отопительные приборы по цене производителя, что позволит значительно снизить общую стоимость покупки. Для оформления заказа вы можете обратиться через контактную форму или позвонить по телефону.

Сколько тепла выделяет свинцово-кислотная батарея?

Сколько тепла выделяет свинцово-кислотная батарея?

Иногда нам задают очень интересные вопросы. Недавно нас спросили, сколько тепла выделяет промышленная резервная батарея. Честно говоря, это зависит от того, кого вы спрашиваете. У разных производителей аккумуляторов разные ответы на этот вопрос, и разные методы расчета дают существенно разные ответы.

Выделяемое или генерируемое тепло иногда называют «потерей тепла».

Автор статьи не дает рекомендаций по методам, приведенным ниже. Статья подготовлена, чтобы показать, что между различными используемыми методами существует противоречие.

В общих чертах вопрос задается для расчета требований к вентиляции, и в этой статье исследуются различные методы и демонстрируется изменчивость результатов.

Тепло выделяется при подзарядке, подзарядке и разрядке. Тепло, выделяемое при зарядке, является конечным, т.е. когда аккумулятор полностью заряжен, тепло больше не выделяется, но в этот момент аккумулятор переходит в фазу плавающего заряда, и пока аккумулятор находится на зарядке, тепло выделяется.Тепло, выделяемое при разряде, также ограничено, потому что после полной разрядки аккумулятора тепло не выделяется. Следовательно, у нас есть три условия, которые необходимо учитывать:

1) нагрев при подзарядке.

2) нагрев на плавающем заряде.

3) нагрев при разряде.

Все мы знаем, что свинцово-кислотные батареи тяжелые и имеют большую тепловую массу. Из-за этого во время перезарядки, плавающего заряда и разряда тепло, генерируемое внутри элементов, не будет немедленно рассеиваться в окружающую атмосферу, и существуют разные мнения о том, насколько быстро это будет происходить.Частично разногласия являются результатом разных размеров и форм элементов или моноблоков, составляющих батарею, а также того, являются ли они типами VRLA AGM, VRLA GEL или вентилируемыми.

В общих чертах, тепло - это ватты, а ватты можно рассчитать из V x I (вольт x ампер) или мы можем использовать I2R (амперы x амперы x сопротивление). Этот принцип эти формулы могут использоваться для расчета выделяемого тепла.

В этой статье в примерах используется следующая система батарей.В примерах рассматривается следующее: -

a) Аккумуляторная батарея мощностью 300 кВт в течение 15 м при температуре 20 ° C до не менее 408 В (в среднем 1,70 В на канал).

b) Батарея состоит из 3 параллельных цепочек, каждая из которых состоит из 40 моноблоков на 12 В; то есть 240 ячеек.

c) Напряжение холостого хода 2.27Vpc = 545V.

г) Номинальная емкость каждой гирлянды составляет 110 Ач, т. Е. Общая емкость батареи 330 Ач.

e) Внутреннее сопротивление каждого моноблока равно 3.8мОм. Это значение взято из информации производителя аккумулятора. Следовательно, сопротивление батареи составляет 3,8 мОм x 40 блоков / 3 струны = общее сопротивление 50,7 мОм.

f) Полностью заряженный ток холостого хода 1 мА на Ач = 330 мА. Значение 1 мА на Ач соответствует I-поплавку. (примечание ниже) значение из BS EN 50272.

g) Параметры перезарядки: ток 10% (33A) и постоянное напряжение 2,27Vpc (544,8V).

(Примечание) - Полностью заряженный ток холостого хода можно получить у производителя батареи.Однако в BS EN 50272 (Требования безопасности для вторичных батарей и их установки) типичное значение можно найти в таблице 1. В таблице приведены значения тока при зарядке с помощью зарядных устройств IU или U. Хотя эти значения используются для расчета выбросов газа при зарядке, их также можно использовать для оценки силы тока при полной зарядке. На практике это значения для наихудшего сценария со встроенным запасом прочности.

Для вентилируемых свинцово-кислотных аккумуляторов, свинцово-кислотных аккумуляторов VRLA и для никель-кадмиевых аккумуляторов значение дается как 1 мА на Ач для условий плавающего напряжения.Мы должны рассматривать Ah как номинальное значение при скорости 10 часов для свинцово-кислотного продукта и 5 часов для продукта NiCd.

Во-первых, нам нужно определить «перезарядку», и в этом контексте мы имеем в виду ток / время, необходимое для возврата емкости, удаленной для предыдущей разрядки. Мы только рассматриваем время полной зарядки.

Количество выделяемого тепла существенно не меняется, даже если параметры подзарядки могут отличаться. Например, ток зарядного устройства, то есть 5%, 10% или 15% C10 ампер, или при использовании истинного плавающего напряжения (например.грамм. 2.27Vpc) или повышенное напряжение (например, 2,40Vpc), существенно не изменяют выделяемое тепло или тепловые потери от батареи. Однако выделяемое тепло будет существенно отличаться в зависимости от глубины предыдущего разряда. Для промышленных резервных батарей и в этой статье мы рассматриваем характеристику перезарядки при постоянном напряжении / ограниченном токе; иначе известный как метод IU или модифицированного постоянного потенциала, такой как 2,27 В на канал или 2,40 В на канал или аналогичный, с ограничением тока.

На этом этапе стоит отметить, что некоторые производители аккумуляторов считают, что количество тепла, выделяемого при перезарядке, можно рассчитать с использованием того же метода, как если бы аккумулятор находился на плавающем заряде.Этот метод используется в п. 1.1) ниже. Эта точка зрения принята потому, что любое тепло, выделяемое при перезарядке, не будет немедленно выделено из-за тепловой массы батареи.

Вычисления тепла усложняются, если мы принимаем во внимание удельные тепловые характеристики аккумулятора и, по крайней мере, один производитель аккумуляторов представил результаты, основанные на фактическом типе и конфигурации аккумулятора. Это не помогает определить количество тепла, выделяемого для каждой конфигурации батареи, и нам нужно что-то гораздо более простое для использования в повседневной ситуации.В конце концов, мы смотрим на типичное значение, которое может использоваться для целей охлаждения помещения, а не на конечную «лабораторную оценку». На практике хорошее приближение является достаточно точным.

Отсюда следует, что если количество тепла, выделяемого при перезарядке, меняется с предыдущим разрядом, все остальные параметры в целом не имеют значения. Затем мы можем оценить количество тепла, выделяемого при перезарядке, в зависимости от предыдущего разряда. Чтобы сделать расчет немного более точным, мы должны оценить время до полной зарядки на основе характеристик IU и предыдущей глубины разряда.У большинства производителей есть таблицы или даже программный метод определения времени до различных состояний заряда, включая время полной зарядки. Однако в целом можно сказать, что время до полной зарядки будет много часов, но время до 80% будет зависеть от характеристики IU. Во время перезарядки большая часть тепла будет выделяться в виде потерь, вплоть до того, что батарея будет заряжена на 80%, что будет составлять «постоянный ток» части перезарядки. Во время фазы постоянного тока i.е. до 80% заряда, тепло можно оценить с помощью принципа I2R. От 80% до 100% ток поплавка может использоваться для расчета тепла. Некоторые производители аккумуляторов считают, что ток заряда от 80% до 100% равен удвоенному теоретическому току холостого хода. В контексте реальной жары это можно рассматривать как разумный метод. Этот метод используется в п. 1.2) ниже.

1.1) Учитывая, что нагрев такой же, как если бы аккумулятор находился на плавающем заряде, мы имеем: -

V x I = W или альтернативно методом I2R = W.

1.1.1) В x I = Вт.

Единственная проблема - решить, какое напряжение и какой ток использовать.

Для напряжения разумно рассматривать напряжение как фактическое напряжение холостого хода на клеммах батареи.

Для тока разумно использовать значение I float, как определено в BS EN 50272.

Рассчитать на 1 блок: -

2,27 В на канал x 6 ячеек x 110 мА = 1,498,2 мВт

Следовательно, для блоков 40 x 3 = 1498.2 x 40 x 3 = 179 784 мВт = 179,784 Вт.

Это тепло будет на время перезарядки 76 часов. Следовательно, тепло можно выразить как 180 Вт x 76h = 13 680 Втч , но более 76h = 180 Вт.

1.1.2) I2R = Вт

Мы можем использовать тот же ток, что и выше, то есть я плаваю, а для напряжения R мы можем использовать сопротивление блока, то есть 3,8 мОм. Из расчета на 1 блок: -

110 мА x 110 мА x 3.8 мОм. = 0,04598 мВт

Следовательно, для блоков 40 x 3 = 5,5176 мВт.

Это тепло будет на время перезарядки 76 часов. Следовательно, тепло можно выразить как 5,5176 мВт x 76ч = 0,42Втч , но за время перезарядки 76 часов = 5,5 мВт.

1.2) Нагрев до 80% заряда плюс нагрев от 80 до 100% заряда

1.2.1) Нагреть до 80% заряда

Принимая во внимание описанную выше систему аккумуляторов, мы знаем, что ток перезарядки будет составлять 33 А до 80% заряда, а с 80% мы будем использовать 2-кратный плавающий ток, то есть, если мы используем метод 2-кратного плавающего тока, ток 330 х 2 = 660 мА.Нам нужно установить состояние заряда после разряда. Предположим наихудший случай максимального тока на 15 м: -

Максимальный ток = 300кВт x 1000 / 408В = 735A

Удаленная емкость = (735 А x 15 м) / 60 = 184 Ач или 146 Ач заряженных (330 Ач - 184 Ач).

Эти 184 Ач соответствуют 56% разряженным или 44% заряженным.

Мы знаем, что ток перезарядки 33 А (11 А на цепочку) будет течь до тех пор, пока аккумулятор не будет заряжен на 80%.Состояние заряда 80%: = 330 Ач x 0,8 = 264 Ач.

Время от 146Ач в аккумуляторе в конце предыдущего разряда до 264Ач в аккумуляторе = 118Ач / 33А = 3,6ч.

Теперь мы можем оценить тепло от начала подзарядки до 80% заряда, как показано ниже.

Использование I2R на блок: -

11A x 11A x 3,8 мОм = 495,8 мВт.

Следовательно, для блоков 40 x 3 = 59,496 мВт

Этот ток будет течь 3.6h, что может быть выражено как 214Wh.

ПРИМЕЧАНИЕ. Внутреннее сопротивление промышленных аккумуляторов существенно не меняется со 100% заряженных до 10% заряженных. Следовательно, принцип I2R действителен.

1.2.2) Нагрев с 80% до 100% заряда

Нам необходимо установить время от 80% заряда до полного заряда, и производитель батареи должен предоставить эту информацию. Однако разумным предположением для оценки тепла было бы 72 часа.Принято считать, что полностью разряженный аккумулятор можно перезарядить, используя постоянный ток и ток перезарядки от 5% до 15% в течение 72 часов. Если мы предполагаем полные 72 часа, мы рассматриваем наихудший сценарий.

Теплоотдача на блок теперь может быть оценена как: -

110 мА x 110 мА x 3,8 мОм. = 0,04598 мВт

Следовательно, для блоков 40 x 3 = 5,5176 мВт.

Это тепло будет на время перезарядки 72 часа.Следовательно, тепло можно выразить как 5,5176 мВт x 72 ч = 0,40 Вт-ч , и если мы удвоим это значение, мы получим 0,79 Вт-ч.

Складывая 1.2.1) с 1.2.2) получаем 214Wh + 0,79Wh = 215Wh. Это соответствует времени полной зарядки, что составляет 215 Втч / 76 часов = 2,83 Вт

.

Большинство производителей аккумуляторов рассматривают тепловыделение при подзарядке как простое выражение вольт x ток. V x I = W, то есть вольт x ток = ватт. В качестве альтернативы может использоваться принципал I2R.

Для получения информации о токе мы можем связаться с производителем батарей или обратиться к международным стандартам, таким как BS EN 50272.

Теперь мы можем произвести расчет. Ниже приведен расчет для той же батареи, о которой говорилось выше, то есть для батареи, состоящей из 40 моноблоков на 12 В по 330 Ач. Можно сделать два альтернативных расчета. В 2.1) мы используем метод V X I, а в 2.2) мы используем метод I2R.

2.1) С учетом метода V x I: -

С учетом 1 блока: 2.27 В на канал x 6 ячеек x 1 мА на А · ч x 110 А · ч = 1,496 Вт.

Следовательно, для полной батареи из 40 блоков и 3-х струн: -

1,496 Вт x 40 x 3 = 180 Вт.

Это тепло будет генерироваться, пока батарея находится в режиме постоянного заряда.

2.2) С учетом метода I2R: -

Рассмотрим для одного блока: 110 мА x 110 мА x 3,8 мОм = 0,04598 мВт

Следовательно, для блоков 40 x 3 = 5.5176 мВт или 0,005 Вт.

Это тепло будет генерироваться, пока батарея находится в режиме постоянного заряда.

Интересно, что многие производители аккумуляторов не указывают значение тепла, выделяемого при разряде, потому что свинцово-кислотные аккумуляторы считаются эндотермическими. Однако производители обычно соглашаются с тем, что все внутренние компоненты и внешние соединения имеют сопротивление и будут выделять тепло при протекании тока.

Опять же, можно использовать простой математический расчет, и большинство производителей батарей принимают I2R как разумное приближение к потерям тепла при разряде.Нам нужно знать ток разряда и внутреннее сопротивление аккумуляторной системы.

Используя ту же батарею 40 x 12 В, разряженную на 300 кВт на 15 м, нам сначала нужно изменить 300 кВт на ток, который можно использовать в расчетах. «Безопасный вариант» - это рассмотреть конец напряжения разряда, а затем рассчитать максимальный ток. Конечное напряжение разряда было задано равным 408 В (см. Выше). Следовательно, максимальный ток составляет 300кВт x 1000 / 408В = 735А.

Тепловые потери рассчитываются как: -

735A x 735A x 50.7 мОм = 27,4 кВт.

Это может быть выражено как Вт-ч, т. Е. 27,4 кВт x 0,25 ч = 6,85 кВт-ч

Поскольку аккумулятор имеет тепловую массу, может пройти много часов, прежде чем это тепло передается в окружающий воздух. Батарея в этой статье будет весить приблизительно 4800 кг. Некоторые производители считают, что тепло, рассеиваемое в комнате, будет распределяться в 10 раз больше времени разряда. В этом примере это будет 2,5 часа. Это будет 2.74кВт за 10ч.

Стоит посмотреть на общие размеры и вес батареи, чтобы оценить потери тепла по сравнению с физическими параметрами батареи. Если бы тепло производилось в пределах 1 м3, это было бы значительно. Однако, если бы тепло находилось в пределах 10 м3, воздействие было бы минимальным. Следующие параметры являются реальными для батареи из блоков 3 x 40 x 110 Ач x 12 В, что дает такую ​​перспективу.

Несмотря на то, что размеры и вес, указанные ниже, являются действительными, мы должны помнить, что подставка открытого типа с большим свободным объемом вокруг моноблоков.Общий объем с учетом открытой площади внутри ячеек, а также между рядами и ярусами рассчитывается как: -

3,7 x 0,8 x 1,3 = 3,8 м3

Тип стойки: 2 ряда х 3 яруса открытого стального типа.

Длина: 3,7 м

Глубина: 0,8 м

Общая высота: 1.3м

Объем: 3,8 м3

Вес: 4000 кг

Трудно обосновать результаты нагрева, когда батарея находится на подзарядке или в режиме плавающего заряда, потому что батареи не соответствуют стандартным электрическим характеристикам, и поэтому результаты должны быть сомнительными. Мы знаем, что закон Ома применительно к батареям не работает. Во многом это связано с характеристиками ОБРАТНОЙ ЭДС аккумуляторов, что делает расчеты V x I сомнительными.Следовательно, любые математические результаты, основанные на этом принципе, должны вызывать подозрение. Соответственно, расчеты V x I должны вызывать подозрение. Чтобы понять это более полно, мы можем рассчитать теоретический ток холостого хода, используя метод I = V / R. В наших примерах мы знаем, что приложенное напряжение холостого хода составляет 2,27 В на канал, то есть 13,62 В для блока из 6 ячеек 12 В, и мы знаем, что сопротивление составляет 3,8 МОм. По закону Ома ток холостого хода должен быть I = V / R = 13,62 В / 3,8 мОм = 3584 А. Ясно, что это неверно.

Если расчеты V x I ненадежны, мы также должны подвергнуть сомнению результаты I2R.Что мы действительно знаем, так это то, что ток - это реальная величина, и внутреннее сопротивление также реально. Поэтому, надеемся, результаты должны быть более точными!

Результаты I2R более реальны, потому что мы знаем, что такое ток, и мы знаем внутреннее сопротивление продукта. Результаты I2R для подзарядки очень малы, и с практической точки зрения нагрев можно не учитывать. В данном примере это всего 5,5 мВтч.

Опять же, если результаты I2R более реальны и метод V x I ненадежен, то 0.005 Вт тепла на плавающем заряде снова можно считать несущественным.

Единственный метод, который, похоже, используется для нагрева при разряде, - это I2R, и, как и ожидалось, нагрев при разряде значительно выше, чем при подзарядке или плавающем заряде. Что мы должны помнить, так это то, что тепло не будет прекращено немедленно, и необходимо сделать некоторую оценку времени, в течение которого оно будет прекращено. Без сомнения, это будут часы, а не минуты, но это вопрос мнения без консультации с инженером-теплотехником.

При подзарядке и подзарядке нагревается очень мало, особенно если учесть массу аккумулятора. Это к счастью, потому что, хотя используются разные методы, результаты незначительны, если рассматривать их в контексте отвода тепла из аккумуляторной.

Что касается тепла, выделяемого при разряде, ситуация иная, потому что большинство производителей аккумуляторов считают метод I2R наиболее точным. Кроме того, мы можем более легко принять результаты, потому что при разряде нет обратной ЭДС.В этом примере выделяемое тепло может быть выражено как 27,4 кВт · ч, но, учитывая массу батареи, мы должны учитывать, что это тепло будет отдаваться в течение более длительного времени, чем фактический период разряда, равный 15 мес. Не все производители считают, что время разряда в 10 раз превышает время разряда, но ясно, что тепло не будет отдано мгновенно.

Исследование характеристик рассеивания тепла пространственной компоновки литиевых батарей в АНПА

Для удовлетворения требований энергопотребления автономных подводных аппаратов (АНПА) источник питания обычно состоит из большого количества высокоэнергетических групп литиевых батарей.Свойства рассеивания тепла литиевой батареей не только влияют на характеристики подводного аппарата, но и создают определенные риски для безопасности. Основываясь на широко распространенном применении литиевых батарей, литиевые батареи в АПА взяты в качестве примера для исследования характеристик рассеивания тепла пространственной компоновки литиевых батарей в АПА. С целью повышения безопасности литиевых батарей разработана модель процесса теплопередачи, основанная на уравнении сохранения энергии, и проанализированы характеристики рассеивания тепла батареями пространственной компоновки.Результаты показывают, что наиболее подходящее расстояние между ячейками и перекрестное расположение лучше, чем расположение последовательности с точки зрения характеристик охлаждения. Температурный градиент и изменение температуры внутри кабины со временем в первую очередь зависят от скорости навигации, но они мало связаны с температурой окружающей среды.

1. Введение

Поскольку автономные подводные аппараты (АНПА) развиваются в направлении больших расстояний и высоких скоростей, для поддержки навигации срочно требуется все больше мощности.Поскольку электрохимические реакции, происходящие в литий-ионных батареях, будут генерировать тепло, батарейный отсек автономных подводных аппаратов долгое время работает на крупномасштабных интегрированных литий-ионных аккумуляторных батареях в ограниченном пространстве, и, таким образом, будут существовать проблемы с безопасностью и надежностью. В [1] тепло можно разделить на две части. С одной стороны, в аккумуляторной кабине происходит накопление тепла, потому что тепло от аккумуляторной батареи не может рассеиваться своевременно. С другой стороны, неравномерно излучающий тепло аккумуляторный блок вызовет локальную разницу температур, что приведет к неравномерной работе аккумуляторов и, в конечном итоге, повлияет на общую производительность аккумуляторов.

В настоящее время отечественные и зарубежные ученые сосредоточили свое внимание на проблеме безопасности АНПА, использующей литиевые батареи для проведения соответствующих исследований. В [2–7] проведено исследование стратегии управления тепловым балансом литиевой батареи и системы терморегулирования, рассчитанной на непостоянное влияние срока службы батареи. В [8–10] метод сопряженной теплопередачи между жидкостью и твердым телом был использован для создания математической физической модели процесса теплопроводности внутри аккумуляторной кабины АПА применительно к проблеме охлаждения аккумуляторной батареи.Кроме того, ток разряда аккумуляторной батареи и теплопроводность аккумуляторной батареи навигационных устройств также были проанализированы в [11], в которой программа анализа методом конечных элементов ANSYS использовалась для анализа температурного поля группы литиевых аккумуляторов АПА и обсуждения влияния различного времени разрядки. и граничные условия на поле температуры батареи. В [12], анализ стационарного теплового моделирования кабины аккумуляторной батареи АНПА был выполнен в соответствии с процессом теплопередачи ключевой точки проекта пассивного терморегулирования конструкции.Что касается тепловых аспектов аккумуляторных батарей в исследовательских работах, основное внимание уделяется области электроэнергии для транспортных средств на новой энергии. В [13] была создана модель крупномасштабного аккумуляторного блока для исследования рассеивания тепла аккумуляторным блоком; в первую очередь он был сосредоточен на области электроэнергетики для транспортных средств на новой энергии. В [14, 15] модель для прогнозирования производительности литиевых батарей была создана для электромобилей, и влияние различных групп на производительность батареи было проанализировано в том же режиме охлаждения с 9 одноэлементными батареями в качестве батареи. пакет.Кроме того, с использованием принудительного воздушного охлаждения и материалов с фазовым переходом, охлаждающая способность автомобильного аккумуляторного блока была проанализирована на основе метода вычислительной гидродинамики в [16, 17]. Подходящая модель аккумулятора необходима для правильного проектирования и работы аккумуляторных систем с использованием BMS. Доступны несколько подходов к моделированию: эмпирические модели, статистические модели и электрические модели [18, 19]. В [20] локальное тепловыделение в однослойном литий-ионном аккумуляторном элементе было исследовано в зависимости от -скорости и состояния заряда (SOC).В [21] комбинированная модель использовалась для изучения тепловыделения и рассеивания тепла, а также их влияния на температуру аккумуляторной батареи с вентилятором и без него при разрядке постоянным током и разрядке переменного тока на основе вождения электромобиля (EV). циклы.

Существующие исследования в основном сосредоточены на разработке системы контроля теплового баланса аккумуляторной батареи. Что касается исследований схемы охлаждения аккумуляторной батареи АПА, анализ проводился только для навигации в температурном поле аккумуляторного отсека, но с исследованиями структурной схемы тепловых характеристик аккумуляторной батареи мало что связано.Кроме того, по сравнению с электромобилями аккумуляторная кабина АПА представляет собой замкнутое компактное пространство, и использование обычных методов охлаждения, таких как охлаждение холодным ветром и растворителем, ограничено. Теплопроводность аккумуляторной батареи может быть достигнута только через корпус аккумуляторной батареи и морскую воду, и физические проблемы связаны с тем, как реализовать охлаждение аккумуляторной батареи с помощью воздушного потока, вызываемого локальными колебаниями температуры внутри аккумуляторной кабины и конструкции теплопроводности.

Основной вклад этой статьи двоякий: (i) мы анализируем процесс теплообмена аккумуляторной батареи транспортного средства и устанавливаем модель естественной конвекции и теплопередачи для ограниченного пространства аккумуляторного отсека и (ii) мы исследуем тепло передаточные характеристики литиевых батарей в различных пространственных распределениях.

2. Моделирование литиевого аккумуляторного отсека АПА с внешним охлаждением

В соответствии с внутренней структурой аккумуляторного отсека АПА и теоретическими знаниями в области теплообмена, тепло, передаваемое от аккумулятора к внешней морской воде, можно резюмировать следующим образом: аспекты теплопроводности. Первая часть теплопроводности включает тепло, выделяемое аккумуляторной батареей, и процесс теплообмена между аккумуляторной кабиной и стенкой корпуса. Вторая часть процесса теплопроводности происходит между стенкой корпуса кабины и внешней стенкой корпуса.Наконец, третья часть теплопроводности - это теплообмен батареи между внешней стенкой корпуса кабины и морской водой. Процедура показана на рисунке 1.


Чтобы облегчить анализ распределения температуры в аккумуляторной кабине при различных рабочих условиях, процесс теплопередачи в аккумуляторной кабине был предположен и упрощен следующим образом: (1) Концы аккумуляторная кабина и внутренний аккумуляторный блок изолированы. (2) Распределение температуры внутри аккумуляторной кабины и аккумуляторного блока изменяется только в радиальном направлении и остается практически неизменным в осевом направлении.(3) При работе аккумуляторной кабины тепловые параметры не меняются со временем.

На основании приведенного выше анализа модель рассеивания тепла ограниченного пространства аккумуляторной кабины эквивалентна задачам постоянных свойств, внутреннего источника тепла и трехмерной нестационарной теплопередачи.

2.1. Батарея внутри модуля Анализ тепла

Процесс внутренней теплопередачи в литиевой батарее можно упростить до обычного физического, трехмерного нестационарного процесса теплопередачи внутри источника тепла.По этой причине уравнение энергии внутренней литий / тионилхлоридной батареи может быть выражено как Граничные условия: где - скорость тепловыделения всей батареи (), - теплопроводность батареи (Вт / (м · k)), - плотность батареи (), это число Био, это удельная теплоемкость батареи (Дж / (кг · К)), и это диаметр батареи.

Когда число Био батареи меньше 0,1 в условиях естественной конвекции, можно считать, что внутренняя температура батареи распределена приблизительно равномерно.Согласно гипотезе Бернарди, скорость тепловыделения в отдельной батарее постоянна, что приблизительно можно выразить следующим образом: где - объем отдельной батареи (), - напряжение холостого хода батареи (), - разряд напряжение батареи, - внутреннее сопротивление батареи (), - радиус батареи (), - это ток отдельной батареи.

Тепловая конвекция отдельных ячеек происходит в основном за счет конвекции воздуха и лучистого теплопереноса в соответствии с уравнением идеального газа: плотность воздуха

Как показано в приведенном выше уравнении, изменение температуры может вызвать изменение плотности воздуха в аккумуляторная кабина, а естественная конвекция формируется под действием силы тяжести.Без учета влияния объемной силы и силы вязкости уравнение сохранения количества движения воздуха в аккумуляторной кабине можно выразить следующим образом: где - кинематическая вязкость воздуха (Па · с), - ускорение свободного падения (9,8 м /), - молярная масса воздуха, - давление воздуха (), а - температура воздуха ().

Интегральное уравнение сохранения энергии в форме уравнения работы аккумуляторной батареи кабины можно выразить следующим образом: где - общее количество тепла, выделяемого аккумуляторным блоком (), - это тепло, рассеиваемое из аккумуляторной кабины наружу ( ), и - тепло, поглощаемое аккумуляторной кабиной ().

Теплообмен между аккумулятором и стеной автомобиля происходит в основном за счет естественной конвекции воздуха, а тепло, выделяемое аккумуляторной частью, рассеивается в окружающую среду через кожух. Другая часть тепла поглощается корпусом транспортного средства, что приводит к повышению температуры аккумуляторной кабины. Целью данного исследования является увеличение и уменьшение доли, тем самым снижая температуру аккумуляторного модуля: Граничные условия: где - площадь теплопередачи внутренней стенки транспортного средства (), - объем воздуха внутри аккумуляторной кабины (), - плотность воздуха (), - удельная теплоемкость воздуха (Дж / (кг · К)), - теплопроводность корпуса транспортного средства (Вт / (м · К)), является коэффициент конвективной теплопередачи воздуха в аккумуляторной кабине (Вт / (м 2 · k)), это температура морской воды (° C) и начальная температура в аккумуляторном отсеке (° C).

2.2. Теплообмен между внутренней и внешней стенками аккумуляторной кабины

Теплоотдачу от внутренней стены к внешней стене аккумуляторной кабины можно рассматривать как теплопроводность цилиндрической стены, которую можно выразить следующим образом: где - общая тепло через переборку и водообмен (), - площадь теплопередачи внутренней стенки (), - эквивалентная теплопроводность стенки батареи (Вт / (м · k)), - температура внутренней части батареи стена (° C).

2.3. Теплообмен между внешней стенкой корпуса транспортного средства и морской водой

Во время движения под водой между внешней стенкой аккумуляторной кабины и морской водой происходит принудительный конвекционный теплоперенос, который можно выразить следующим образом: где происходит теплообмен между аккумуляторной кабиной и морской воды (), - площадь теплопередачи внутренней стенки (), - внешний диаметр корпуса транспортного средства (), - температура внешней стенки (° C), - температура морской воды (° C), - коэффициент теплопередачи принудительной конвекции между внешней стеной и морской водой (Вт / (м 2 · K)).

Коэффициент теплопередачи принудительной конвекции между внешней стенкой и морской водой связан со скоростью движения, которая может быть определена числами Рейнольдса и Нуссельта конвективной теплопередачи между внешней стенкой и морской водой: без учета потока морской воды, где - теплопроводность морской воды (Вт / (м · К)), - число Нуссельта конвективной теплопередачи между корпусом транспортного средства и морской водой, Re - число Рейнольдса конвективной теплопередачи между корпусом транспортного средства и морской водой, Pr - Число Прандтля морской воды, - кинематическая вязкость морской воды (), - относительная скорость () между морской водой и транспортным средством, - это барицентрическая скорость транспортного средства (), и - характерная длина аккумуляторной кабины ().

3. Анализ влияния пространства и расположения на характеристики рассеивания тепла аккумуляторным блоком

На основе литий-ионного аккумуляторного блока для внешней тепловой модели подводного пространства и поскольку аккумуляторный отсек АПА представляет собой закрытое и компактное пространство, расстояние между батареями и комбинированные типы для распределения температурного градиента внутри батарейного отсека имеют большое значение. В этой статье в качестве примера для анализа ячеек с разным пространством и различными перестановками выбрана обмоточная литий-тионилхлоридная батарея с названием 18650.Числовые параметры, относящиеся к одной батарее 18650, показаны в таблице 1.

909

Параметр Значение

Диаметр [м] Диаметр [м] Длина [м] 0,065
Вес [кг] 0,048
Внутреннее сопротивление [] 0,03–0,06
Плотность [кг · м −3 ]
Удельная теплоемкость [Дж · кг −1 · K −1 ] 1000
Эквивалентная теплопроводность [Вт · м −1 · K −1 ] 3
Номинальное напряжение [В] 3.6
Номинальная мощность [Ач] 2,5

3.1. Влияние расстояния между батареями на температурное поле батарейного блока

Область описывается с помощью треугольных элементов, общее количество которых составляет примерно 20 000. Сетки, наиболее близкие к профилям батарей, были уточнены треугольными граничными элементами для описания граничного потока с достаточной точностью. Расстояние между двумя соседними ячейками одинаковое, а расстояние между границей и батареями остается постоянным.Расстояния между батареями постоянно меняются в зависимости от формы и постоянного количества батарей.

Используя 5 одиночных батареек 18650 в качестве объектов, исследуется пространство между батареями (). Температура аккумуляторного отсека определяется, когда значения равны,,,,,,,,, и (где - диаметр аккумулятора). Распределение температуры показано на Рисунке 2.

В таблице 2 представлены разницы температур внутри батарейного отсека, когда батареи расположены на разном расстоянии между элементами.Различия в разнице температур в аккумуляторном отсеке при различных расстояниях между элементами показаны на рисунке 3.


Расстояние между элементами (м)
Значение разности температур (° C) 0,68 0,63 0,59 0.56 0,53 0,51 0,50 0,49 0,48 0,47


, расстояние между внутренними батареями увеличивается по мере увеличения расстояния между батареями в таблице 2 и на рисунке 3. температурный градиент постепенно уменьшается. Изменение температуры внутри батарейного отсека стабильное, и при увеличении расстояния между батареями температура снижается на 0,01 ° C, от.Следовательно, оптимальное расстояние между батареями.

3.2. Влияние расположения батарей на температурное поле блока батарей

Исходя из предположения о наиболее подходящем расстоянии () от батареи внутри модели, 15 отдельных батарей 18650 разделены на три части как объекты, каждая из которых состоит из 5 батарей и расстояние между батареями. В этой статье мы исследуем влияние последовательного расположения и перекрестного расположения батарей на температурное поле аккумуляторной батареи.Первый ряд и третий ряд батарейного блока перемещаются влево на, а второй ряд перемещается вправо на. Распределение температурного поля в аккумуляторной батарее показано на рисунке 4.


(a) Последовательное расположение
(b) Поперечное расположение
(a) Последовательное расположение
(b) Поперечное расположение

Рис. 4 показывает, что разница температур между аккумуляторными блоками составляет 1,19 ° C при последовательном расположении и что разница температур между аккумуляторными блоками составляет 1.06 ° C при перекрестном расположении. Сравнение двух наборов данных показывает, что перекрестное расположение лучше последовательного с точки зрения температурного градиента.

4. Анализ теплового моделирования пространственной компоновки аккумуляторной батареи подводного аппарата

На основе предыдущего обсуждения возьмите батареи, расположенные крест-накрест. Дополнительно выберите расстояние между батареями как; команда проекта разработала литиевый аккумулятор для АПА определенного типа для исследования (рис. 5).Изучается пространственная структура и компоновка его батареи. Кроме того, моделирование распределения температуры в аккумуляторном отсеке АПА при различных скоростях и различной температуре моря выполняется для исследования влияния скорости транспортного средства и температуры воды на распределение температуры в салоне.


4.1. Схема пространственной структуры аккумуляторной батареи подводного аппарата

Некоторые технические характеристики силовой передачи подводного аппарата показаны в таблице 3.Согласно энергетическим оценкам, для аккумуляторной батареи требуется не менее 189 батарей при использовании 18650 литий / тионилхлоридных батарей.


Параметр Значение

Скорость 4 kn
Полет км 9046 180 Вт
Рабочее напряжение 21 В ~ 30 В

Формула для расчета количества батарей выглядит следующим образом: где - количество необходимых батарей, - полет (), - мощность АПА (), - скорость АПА (), - номинальное напряжение батареи 18650 (), - номинальная емкость батареи 18650 ().

Батарейный блок объединяет 189 батарей в 7 последовательных групп, каждая из которых включает 27 параллельных батарей. Аккумуляторный блок был установлен в аккумуляторной кабине диаметром 200 мм, чтобы обеспечить рабочее напряжение от 21 до 30 В. См. Рисунок 6 для конструкции.


4.2. Анализ теплового моделирования литиевой батареи AUV

Согласно предположениям анализа, модель рассеивания тепла ограниченного пространства аккумуляторной кабины эквивалентна задачам постоянных свойств, внутреннего источника тепла и двумерной нестационарной теплопередачи.Поперечное сечение аккумуляторной кабины было принято в качестве расчетной области, и программа предварительной обработки ANSYS была использована для построения модели анализа методом конечных элементов путем выбора типа ячейки, определения параметров материала, геометрического моделирования и генерации ячеек.

Домен описывается треугольными элементами, общее количество которых составляет примерно 72 000. Общее количество узлов составляет примерно 7300, и некоторые сетки, наиболее близкие к профилям батарей и навигационной оболочки, были уточнены треугольными граничными элементами для описания граничного потока с достаточной точностью.Сетка модели была разделена, как показано на рисунке 7.


4.2.1. Влияние скорости плавания на температуру внутри аккумуляторного отсека, изменяющуюся во времени

Аккумуляторы для подводных кают имеют разную температуру нагрева в единицу времени при плавании с разной скоростью. После анализа направление, в котором транспортное средство испытывает сопротивление (направление скорости центра тяжести), противоположно направлению навигации. А именно, линия скорости находится в направлении, противоположном оси.Безразмерные коэффициенты могут быть выражены как Мощность транспортного средства может быть выражена следующим образом: где - сопротивление транспортному средству, - коэффициент сопротивления, - плотность морской воды и - максимальная площадь поперечного сечения транспортного средства.

Следовательно, ток через одну батарею равен выходной мощности отдельной батареи () и ее номинальному напряжению (). это общее количество ячеек батареи в теле.

Видно, что выделение тепла отдельной батареей связано со скоростью транспортного средства.Выберите скорость автомобиля 4 узла, 5 узлов и 6 узлов. Рабочие параметры батарей при различных скоростях показаны в Таблице 4.


Скорость / кН Ток одной батареи / А Коэффициент поверхностной теплопередачи (Вт / (м 2 · K)) Тепловая мощность (Вт / м 3 )

4 0,27 1564 172
5 0.52 2854 655
6 0,90 4094 1958

После разряда батарей анализ показывает, что после разряда батарей в течение 10 часов аккумуляторная кабина выглядит так, как показано на рисунке 4, когда температура морской воды составляет 15 ° C, а скорость плавания составляет 4 узла, 5 узлов и 6 узлов. Более того, кривая изменения максимальной температуры во времени представлена ​​на рисунке 8.

После непрерывной разрядки в течение 10 часов кривая максимальной температуры аккумуляторного отсека с течением времени показана на Рисунке 9.


Как показано на Рисунках 8 и 9, температура морской воды составляет 15 ° C, а температура разряда время 10 ч. При скорости плавания 4 узла разница температур составляет 1,58 ° C; при скорости 5 узлов разница температур составляет 4,60 ° C; а при скорости 6 узлов разница температур составляет 10,96 ° C.

Следовательно, по мере увеличения скорости автомобиля максимальная температура внутри аккумуляторного отсека увеличивается, и соответственно увеличивается разница температур.Причины этого явления резюмируются следующим образом: по мере увеличения скорости подводного аппарата скорость производства тепла увеличивается, и в единицу времени выделяется больше тепла. Поскольку коэффициент поверхностной теплопередачи мал, тепловыделение батареи в единицу времени меньше, чем теплораспределение кожуха в единицу времени, что приводит к концентрации тепла и увеличению максимальной температуры. Кроме того, минимальной температурой всегда является температура окружающей среды, которая остается неизменной, а температура аккумуляторного отсека увеличивается по мере увеличения скорости автомобиля.

4.2.2. Влияние различных температур окружающей среды на температуру внутри кабины батареи в зависимости от времени

Для обеспечения точности выберите навигационные скорости 4 узла, 5 узлов и 6 узлов, чтобы изучить влияние температуры морской воды на распределение температуры внутри кабины аккумуляторной батареи, когда температура воды составляет 10 ° C, 15 ° C и 20 ° C соответственно.

После непрерывной разрядки аккумуляторов в течение 10 часов анализ моделирования показывает, что, когда крейсерская скорость транспортного средства составляет 4 узла, температуры морской воды составляют 10 ° C, 15 ° C и 20 ° C, и показано распределение температуры аккумуляторного отсека. на рисунке 10.

После непрерывной разрядки в течение 10 часов кривая максимальной температуры аккумуляторного отсека с течением времени показана на рисунке 11. Как показано на рисунках 10 и 11, после того, как подводный аппарат плывет со скоростью 4 узла и непрерывно работает в течение 10 часов, разница внутренней температуры аккумуляторного отсека составляет 1,57 ° C при температуре воды 10 ° C; разница внутренней температуры аккумуляторного отсека составляет 1,58 ° C при температуре воды 15 ° C; а внутренняя разница температур в аккумуляторном отсеке равна 1.59 ° C при температуре воды 20 ° C.


После непрерывной разрядки аккумуляторов в течение 10 часов анализ моделирования показывает, что, когда крейсерская скорость транспортного средства составляет 5 узлов, температура морской воды составляет 10 ° C, 15 ° C и 20 ° C, а также распределение температуры аккумуляторного отсека. показана на рисунке 12.

После непрерывной разрядки в течение 10 часов кривая максимальной температуры аккумуляторного отсека с течением времени показана на рисунке 13. Как показано на рисунках 12 и 13, после того, как подводный аппарат плывет со скоростью 5 узлов и непрерывно работает 10 ч, разница внутренней температуры аккумуляторного отсека составляет 4.55 ° C при температуре воды 10 ° C; разница внутренней температуры аккумуляторного отсека составляет 4,60 ° C при температуре воды 15 ° C; а внутренняя разница температур в аккумуляторном отсеке составляет 4,65 ° C при температуре воды 20 ° C.


После непрерывной разрядки аккумуляторов в течение 10 часов анализ моделирования показывает, что, когда крейсерская скорость транспортного средства составляет 6 узлов, температура морской воды составляет 10 ° C, 15 ° C и 20 ° C, а также распределение температуры аккумуляторного отсека. показан на рисунке 14.

После непрерывной разрядки в течение 10 часов максимальная температура внутри аккумуляторного отсека с течением времени показана на рисунке 15. Как показано на рисунках 14 и 15, после того, как подводный аппарат плывет со скоростью 6 узлов и непрерывно работает в течение 10 часов. разность внутренней температуры аккумуляторного отсека составляет 10,84 ° C при температуре воды 10 ° C; разница внутренней температуры аккумуляторного отсека составляет 10,96 ° C при температуре воды 15 ° C; а внутренняя разница температур в аккумуляторном отсеке составляет 11.07 ° C при температуре воды 20 ° C.


Подводя итог, можно сказать, что температура воды практически не влияет на разницу температур внутри аккумуляторных отсеков. Причины этого явления резюмируются следующим образом: скорость выделения тепла батареями в единицу времени и коэффициент теплопередачи принудительной конвекции между внешней стенкой транспортного средства и морской водой не изменяются и почти равны при постоянной скорости движения. Когда температура морской воды увеличивается, общая температура в аккумуляторной кабине увеличивается, но разница температур в основном не меняется.

5. Заключение

В этой статье, используя теоретический анализ в сочетании с реальной ситуацией и программой конечных элементов ANSYS, мы устанавливаем объем литиевых батарей для подводной тепловой модели. Затем мы изучаем пространственное расположение тепловых характеристик и делаем следующие выводы: (1) существует корреляция между температурой подводного батарейного отсека и расстоянием между батареями. По мере увеличения расстояния между батареями градиент температуры постепенно изменяется, и когда он достигает определенного порога, градиент постепенно стабилизируется.(2) Различные варианты и комбинации батарей влияют на температурный градиент. Поперечное расположение лучше, чем последовательное, с точки зрения температурного градиента. (3) Скорость движения влияет на изменение температурного градиента и максимальной температуры внутри аккумуляторной кабины с течением времени. Чем выше скорость и ток разряда батареи, тем больше тепла выделяют батареи. Затем температура увеличивается быстрее, и для достижения устойчивого состояния требуется меньше времени.(4) Повышение температуры забортной воды может вызвать общее повышение температуры в аккумуляторной кабине. Однако это почти не влияет на температурный градиент и однородность.

Конкурирующие интересы

Авторы заявляют, что у них нет конкурирующих интересов.

Благодарности

Эта работа была поддержана Национальным фондом естественных наук Китая (NSFC) в рамках гранта 51509205 и Китайским фондом естественных наук провинции Шэньси 2015JQ5136.

Произошла ошибка при настройке пользовательского файла cookie

Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, нажмите кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Как правило, в файле cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

Исследование теплового взаимодействия и рассеивания тепла цилиндрических литий-ионных аккумуляторных элементов

Abstract

Цилиндрические литий-ионные аккумуляторы широко используются в качестве источников питания для электрических и гибридных транспортных средств из-за их компактных размеров и высокой удельной мощности. Аккумуляторная батарея обычно состоит из сотен цилиндрических литий-ионных аккумуляторных элементов в несколько рядов. Поскольку расстояние между элементами батареи составляет всего несколько миллиметров, тепловое состояние батареи напрямую влияет на эффективность тока и срок службы батареи.Для обеспечения надлежащего функционирования аккумуляторной батареи необходимо тщательно исследовать и контролировать рассеивание тепла вокруг аккумуляторных элементов. Этот вопрос, несомненно, важен и привлекает к себе все большее внимание. Исследователи разработали несколько моделей распределения переходной температуры в литий-ионной батарее во время цикла разряда, а также изучили терморегулирование различных типов аккумуляторных блоков. Однако из-за компактной и сложной конструкции внутри аккумуляторного блока сложно одновременно выявить полное тепловое состояние и распределение деталей.В этой работе методы трехмерного моделирования были использованы для решения вышеуказанных вопросов о комбинации нескольких цилиндрических литий-ионных аккумуляторных элементов. Существующие модели тепловыделения в литий-ионной батарее определяются как тепловые граничные условия. Изучены течение и конвекция на промежутке. Переходные тепловые взаимодействия и конвекции между соседними аккумуляторными элементами были исследованы, чтобы изучить влияние интервалов и правил выделения переходного тепла. Достигнутые результаты могут быть использованы в качестве критических справочных материалов при проектировании конструкции аккумуляторной батареи и планировании стратегий охлаждения.

Ключевые слова

Цилиндрическая литий-ионная батарея

Численное моделирование

Рекомендуемые статьиЦитирующие статьи (0)

© 2017 Автор (ы). Опубликовано Elsevier Ltd.

Рекомендуемые статьи

Цитирующие статьи

% PDF-1.6 % 3203 0 объект > эндобдж xref 3203 82 0000000016 00000 н. 0000003272 00000 н. 0000003654 00000 п. 0000003700 00000 н. 0000003847 00000 н. 0000004241 00000 п. 0000004293 00000 н. 0000004345 00000 п. 0000004424 00000 н. 0000005542 00000 н. 0000006173 00000 п. 0000006429 00000 н. 0000007065 00000 н. 0000007315 00000 н. 0000007782 00000 н. 0000008044 00000 н. 0000036751 00000 п. 0000061987 00000 п. 0000078039 00000 п. 0000078186 00000 п. 0000078387 00000 п. 0000082843 00000 п. 0000095972 00000 п. 0000116605 00000 н. 0000116680 00000 н. 0000116806 00000 н. 0000116910 00000 н. 0000116955 00000 н. 0000117065 00000 н. 0000117110 00000 н. 0000117212 00000 н. 0000117257 00000 н. 0000117431 00000 н. 0000117476 00000 н. 0000117604 00000 н. 0000117649 00000 н. 0000117813 00000 н. 0000117858 00000 н. 0000117995 00000 н. 0000118040 00000 н. 0000118212 00000 н. 0000118257 00000 н. 0000118471 00000 н. 0000118516 00000 н. 0000118694 00000 н. 0000118739 00000 н. 0000119151 00000 п. 0000119196 00000 н. 0000119450 00000 н. 0000119495 00000 н. 0000119661 00000 н. 0000119706 00000 н. 0000119864 00000 н. 0000119909 00000 н. 0000120293 00000 н. 0000120338 00000 н. 0000120478 00000 н. 0000120523 00000 п. 0000120807 00000 н. 0000120851 00000 н. 0000121085 00000 н. 0000121129 00000 н. 0000121229 00000 н. 0000121273 00000 н. 0000121453 00000 н. 0000121497 00000 н. 0000121631 00000 н. 0000121675 00000 н. 0000121829 00000 н. 0000121873 00000 н. 0000121993 00000 н. 0000122037 00000 н. 0000122153 00000 н. 0000122197 00000 н. 0000122347 00000 н. 0000122390 00000 н. 0000122578 00000 н. 0000122621 00000 н. 0000122757 00000 н. 0000122800 00000 н. 0000003034 00000 н. 0000001980 00000 н. трейлер ] / Назад 18 / XRefStm 3034 >> startxref 0 %% EOF 3284 0 объект > поток h ެ ToLg z = h = Q [aX62 @ 1hl, NIcM ( , KpD 94dTl ا} Xfwh> y} _

Аккумуляторы для гибридных и подключаемых к электросети электромобилей

В большинстве подключаемых к электросети гибридов и полностью электрических транспортных средств используются подобные литий-ионные батареи.

Системы накопления энергии, обычно аккумуляторы, необходимы для гибридных электромобилей (HEV), подключаемых гибридных электромобилей (PHEV) и полностью электрических транспортных средств (EV).

Типы систем хранения энергии

Следующие системы хранения энергии используются в HEV, PHEV и EV.

Литий-ионные батареи

Литий-ионные батареи

в настоящее время используются в большинстве портативных бытовых электронных устройств, таких как сотовые телефоны и ноутбуки, из-за их высокой энергии на единицу массы по сравнению с другими системами хранения электроэнергии.Они также обладают высоким удельным весом, высокой энергоэффективностью, хорошими высокотемпературными характеристиками и низким саморазрядом. Большинство компонентов литий-ионных аккумуляторов можно переработать, но стоимость рекуперации материалов остается проблемой для отрасли. Министерство энергетики США также поддерживает Премию за переработку литий-ионных аккумуляторов, чтобы найти решения для сбора, сортировки, хранения и транспортировки использованных и выброшенных литий-ионных аккумуляторов для последующей переработки и восстановления материалов.В большинстве современных PHEV и электромобилей используются литий-ионные батареи, хотя точный химический состав часто отличается от химического состава батарей для бытовой электроники. Продолжаются исследования и разработки, направленные на снижение их относительно высокой стоимости, продление их срока службы и решение проблем безопасности в отношении перегрева.

Никель-металлогидридные батареи

Никель-металлогидридные батареи, обычно используемые в компьютерном и медицинском оборудовании, предлагают разумную удельную энергию и удельные мощности.Никель-металлогидридные батареи имеют гораздо более длительный срок службы, чем свинцово-кислотные, и безопасны и устойчивы к неправильному обращению. Эти батареи широко используются в HEV. Основными проблемами никель-металлгидридных батарей являются их высокая стоимость, высокий саморазряд и тепловыделение при высоких температурах, а также необходимость контролировать потери водорода.

Свинцово-кислотные батареи

Свинцово-кислотные аккумуляторы

могут быть разработаны с учетом высокой мощности, а также недорогих, безопасных и надежных. Однако низкая удельная энергия, плохие характеристики при низких температурах, а также короткий календарный и циклический срок службы препятствуют их использованию.В настоящее время разрабатываются современные высокомощные свинцово-кислотные батареи, но эти батареи используются только в коммерчески доступных транспортных средствах с электрическим приводом для вспомогательных нагрузок.

Суперконденсаторы

Ультраконденсаторы хранят энергию в поляризованной жидкости между электродом и электролитом. Емкость накопления энергии увеличивается с увеличением площади поверхности жидкости. Ультраконденсаторы могут обеспечить транспортным средствам дополнительную мощность во время разгона и подъема на холм, а также помочь восстановить энергию торможения.Они также могут быть полезны в качестве вторичных накопителей энергии в транспортных средствах с электрическим приводом, поскольку помогают электрохимическим аккумуляторам выравнивать мощность нагрузки.

Утилизация аккумуляторов

Транспортные средства с электрическим приводом являются относительно новыми для автомобильного рынка США, поэтому лишь небольшое количество из них подошло к концу своего срока службы. В результате доступно немного бывших в употреблении аккумуляторов для электромобилей, что ограничивает масштабы инфраструктуры по переработке аккумуляторов. Поскольку электромобили становятся все более распространенными, рынок утилизации аккумуляторов может расшириться.

Широко распространенная переработка аккумуляторов предотвратит попадание опасных материалов в поток отходов как в конце срока службы аккумулятора, так и во время его производства. В настоящее время ведется работа по разработке процессов утилизации аккумуляторов, которые минимизируют влияние на жизненный цикл литий-ионных и других типов аккумуляторов в транспортных средствах. Но не все процессы переработки одинаковы:

  • Плавка : В процессе плавки восстанавливаются основные элементы или соли. Эти процессы в настоящее время используются в больших масштабах и могут работать с различными типами батарей, включая литий-ионные и никель-металлгидридные.Плавка происходит при высоких температурах, и органические материалы, включая электролит и угольные аноды, сжигаются в качестве топлива или восстановителя. Ценные металлы извлекаются и отправляются на аффинаж, чтобы продукт был пригоден для любого использования. Остальные материалы, в том числе литий, содержатся в шлаке, который теперь используется в качестве добавки в бетон.
  • Прямое восстановление : С другой стороны, некоторые процессы переработки напрямую восстанавливают материалы, пригодные для аккумуляторов. Компоненты разделяются различными физическими и химическими процессами, и все активные материалы и металлы могут быть восстановлены.Прямое восстановление - это низкотемпературный процесс с минимальными энергозатратами.
  • Промежуточные процессы : Третий тип процесса находится между двумя крайностями. В таких процессах можно использовать несколько типов батарей, в отличие от прямого восстановления, но извлекать материалы дальше по производственной цепочке, чем при плавке.

Разделение различных материалов аккумуляторных батарей часто является камнем преткновения при извлечении ценных материалов. Таким образом, конструкция аккумуляторной батареи, учитывающая разборку и переработку, важна для успеха электромобилей с точки зрения устойчивости.Стандартизация батарей, материалов и конструкции элементов также упростит переработку и сделает ее более рентабельной.

См. Отчет: «Технико-экономическая целесообразность использования отработанных аккумуляторов электромобилей в стационарных установках».

Дополнительная информация

Узнайте больше о исследованиях и разработках аккумуляторов на страницах Национальной лаборатории возобновляемых источников энергии, посвященных хранению энергии, и на странице Управления автомобильных технологий Министерства энергетики США.

Энтропия и тепловыделение литиевых элементов / батарей

1.Введение

Согласно законам термодинамики, энергия Гиббса - это максимально возможная работа без расширения, производимая замкнутой системой в процессе с постоянными температурой и давлением. В закрытой электрохимической системе нерасширяющейся выходной мощностью является электрическая энергия, поэтому, когда химическая энергия преобразуется в электрическую в обратимом процессе, электрическая энергия равна энергии Гиббса, то есть Δ G = - nFE . Когда химическая энергия преобразуется в электрическую при необратимом процессе, электрическая энергия меньше энергии Гиббса, т.е.е., нФЭ <–Δ G . Остаточная энергия Гиббса преобразуется в тепловую энергию. [1]

Во втором законе термодинамики энтропия - это обширная функция состояния при обратимом процессе: d S ≡ d q / T , то есть при обратимом процессе с постоянными температурой и давлением

и в замкнутой электрохимической системе Δ S = –Δ G / T = нФ ( E / T ).Затем в закрытой электрохимической системе выделение тепла Q = T Δ S = nFT ( E / T ) при обратимом процессе.

Основываясь на законах термодинамики, теоретический потенциал электрохимической системы может быть рассчитан на основе данных энергии Гиббса, а максимальная электрическая энергия, которая может быть доставлена ​​химическими веществами, которые хранятся внутри или подводятся к электродам в ячейке, зависит от изменение энергии Гиббса Δ G электрохимической пары.Открытый потенциал ячейки может быть получен экспериментально и меньше или равен теоретическому потенциалу. И теоретический потенциал, и открытый потенциал определяются типом электрохимических пар и электролитом, содержащимся в ячейке.

В практическом элементе желательно, чтобы вся энергия Гиббса могла быть преобразована в полезную электрическую энергию во время разряда. Однако потери энергии из-за поляризации происходят, когда ток нагрузки проходит через элемент, сопровождающий электрохимические реакции.

Наиболее важным фактором, влияющим на потери энергии в элементе, является поляризация. Общие поляризации ячейки включают: () Омическую поляризацию, которая вызывает падение напряжения во время работы, а также потребляет часть полезной энергии в виде отработанного тепла. Полная омическая поляризация ячейки - это сумма поляризаций, вызванных ионным сопротивлением электролита, электронным сопротивлением электродов, токосъемников и электрических выводов обоих электродов, а также контактным сопротивлением между активными материалами и токосъемниками. .Омическая поляризация подчиняется закону Ома с линейной зависимостью между током и падением напряжения. (ii) активационная поляризация, которая запускает электрохимическую реакцию на границе раздела электрод / электролит, и (iii) концентрационная поляризация, которая возникает из-за разницы концентраций между реагентами и продуктами на границе раздела электрод / электролит и различий концентраций в сыпучие материалы в результате массопереноса.

Все эти поляризации вызывают потребление энергии Гиббса, которая выделяется в виде тепловой энергии в процессе заряда-разряда.

В литиевых элементах активные материалы являются пористыми, что позволяет ионам лития вводиться в них или извлекаться из них во время процесса заряда-разряда, поэтому поляризация литиевого элемента более сложная, а тепловыделение в литиевых элементах также больше сложный из-за тепла, выделяемого при каждом физическом процессе.

Литиевые элементы имеют высокую удельную энергию, поэтому энергия Гиббса в элементах высока. Они будут генерировать высокую тепловую энергию, сопровождающую процесс преобразования энергии Гиббса в полезную электрическую энергию.Если такая тепловая энергия не может быть распределена, температура закрытого литиевого элемента / батареи увеличивается, что может повлиять на характеристики элемента / батареи.

Кроме того, из-за высокой энергии Гиббса в литиевых элементах, если происходят побочные реакции, из энергии Гиббса преобразуется больше тепловой энергии, что приводит к увеличению температуры. Когда температура литиевых элементов достаточно высока, чтобы вызвать разложение электродов или электролитов, может произойти авария.

Таким образом, исследования энтропии в литиевых элементах сосредоточены на оценке тепла и оценке деградации ячеек, поскольку энтропия - это обширная функция состояния.Исследования тепла в литиевых элементах были сосредоточены на оценке и измерении тепла. Основываясь на оценке тепла и точных измерениях, управление литиевыми элементами / батареями / системами и управление ими можно было бы осуществлять плавно, и количество аварий могло бы быть меньше. [2]

2. Энтропия 2.1. Определение энтропии

Согласно законам термодинамики, в замкнутой электрохимической системе Δ S = –Δ G / T = нФ ( E / T ), поэтому изменение энтропии (Δ S ) можно получить через наклон напряжения холостого хода (OCV) в зависимости от температуры.Изменение энтропии обычно можно определить потенциометрическим методом. [3] В таком методе элемент разряжается до желаемого состояния заряда (SOC), и после релаксации напряжение холостого хода достигает равновесия, затем элемент подвергается пошаговому изменению температуры, в течение которого контролируется напряжение холостого хода. Типичные результаты потенциометрического метода включают кривую соответствующих OCV в зависимости от температуры и линию наклона графика зависимости OCV от температуры (рис.1).

Рис. 1.

Рис. 1. Кривые зависимости соответствующих OCV от температуры для ячеек NCA / C при различных SOC. (а) SOC = 0,122; (б) SOC = 0,458; (c) SOC = 0,644; (d) SOC = 0,813.

Недавно Schmidt et al . разработал метод спектроскопии электротермического импеданса для определения изменения энтропии, при котором время измерения может быть в 100 раз короче, чем в потенциометрическом методе. [4] Точность этого метода аналогична точности потенциометрического метода. В спектроскопии электротермического импеданса можно использовать взаимосвязь между тепловым потоком внутри ячейки и результирующим изменением температуры, используя источник синусоидального тока. Когда функция теплопередачи (тепловое сопротивление) известна и измерена температура поверхности, можно рассчитать тепловой поток внутри ячейки. Изменение энтропии (Δ S ) можно вычислить с помощью линейной функции между тепловым потоком и умножением тока на энтропию.Δ S в ячейках LiFePO 4 , определенных обычным потенциометрическим методом и спектроскопией электротермического импеданса, показали аналогичное поведение и находятся в хорошем соответствии. Однако наблюдается гистерезисное поведение Δ S из-за наложения тока заряда и разряда.

2.2. Применение в оценке тепла

Тепловыделение литиевых элементов в процессе заряда и разряда можно отнести к двум основным источникам: обратимое тепло и необратимое тепло.Необратимое тепло является сложным и описывается в разных формах в разных моделях оценки тепла, но обратимое тепло последовательно описывается как Q об. = T Δ S = nFT ( E / T ) во всех тепловизионных моделях.

В типичной электрохимико-термической модели, [5] , скорость обратимого тепловыделения описывается как

, где a s , j - удельная межфазная площадь электрода, i n , j - поверхностная плотность тока, E j - потенциал разомкнутой цепи электродной реакции, N - отрицательный электрод, а p - положительный электрод.

В типичной эквивалентной схеме - тепловой модели, [6] , скорость обратимого тепловыделения описывается как

, где I представляет ток.

Следовательно, скорость обратимого тепловыделения может быть легко рассчитана на основе изменения энтропии или изменения d E / d T .

2.3. Применение в оценке деградации

Если состояния электрода или электрохимической системы изменяются, энтропия должна изменяться одновременно, потому что энтропия является обширной функцией состояния.Следовательно, изменение энтропии может применяться для характеристики изменений электродных структур и оценки состояния элемента / батареи. Язами и др. . исследовали энтропийную кривую и кристаллическую структуру графита, интеркалированного литием. [7, 8] Кривая энтропии показывает резкий повторный рост при x = 0,5 дюйма Li x C 6 , в ответ на переход от хорошо упорядоченного соединения стадии 2 LiC 12 к хорошо упорядоченному соединению стадии 1 LiC 6 , и наличие промежуточной фазы (фаз) между двумя стадиями интеркаляции с высоким содержанием лития подтверждается данными in situ, XRD и рамановскими спектрами во время интеркаляции иона лития в графит.Кроме того, отрицательное значение энтропии интеркаляции при x > 0,25 в Li x C 6 объясняется тем, что частота колебаний атомов лития в графите выше, чем в металлическом литии. Лу и др. . исследовали изменения энтропии LiMn 2 O 4 , Li 1,156 Mn 1,844 O 4 и Li 1,06 Mn 1,89 Al 0,05 O 4 катодных материалов в полушпинелевых материалах. -сотовые системы. [9] Результаты показывают, что профили энтропии различных шпинелевых катодов во время циклирования хорошо коррелируют с фазовым переходом и изменениями порядка / беспорядка.

Кроме того, Махера и Язамиа разработали метод оценки степени деградации ионно-литиевых элементов на основе энтропии и термодинамического поведения. Они исследовали влияние перезаряда, циклического старения и термического старения на энтропию литий-ионных батарей с использованием катодов из оксида лития-кобальта и графитовых анодов.Энтропия сильно зависит от приложенного напряжения отсечки (4,2–4,9 В). Эти изменения хорошо коррелируют с деградацией кристаллической структуры катода и анода. [10] При увеличении номера цикла энтропия показывает более значительные изменения, чем наблюдаемые в кривых разряда и потенциала холостого хода, особенно при определенных состояниях заряда и значениях потенциала холостого хода. Эти различия объясняются более высокой чувствительностью функций состояния энтропии к изменениям кристаллической структуры катода и анода, вызванным циклическим старением. [11] Кроме того, энтропия показывает более очевидные изменения со временем старения, чем потенциал холостого хода, когда клетки хранятся при 60 ° C и 70 ° C. [12] Таким образом, они предполагают, что энтропию можно использовать для характеристики уровня деградации электродных материалов и, следовательно, для оценки состояния здоровья клетки (SOH). Кроме того, Wu et al. предполагают, что дифференциальную тепловую вольтамперометрию (d T / d V ) можно использовать для отслеживания деградации литий-ионных батарей. [13]

3. Тепловыделение

Основными исследованиями тепловыделения являются исследования процессов и механизмов, в дополнение к побочным реакциям (реакциям разложения) в литиевых элементах и ​​тепловой энергии, преобразованной из энергии Гиббса в каждом из них. физический процесс и электрохимический процесс.

3.1. Процесс заряда-разряда

Оценка нагрева необходима для управления тепловым поведением батареи в увеличенных системах и для повышения эффективности систем охлаждения.Количественные измерения и расчеты тепла - полезные способы оценки тепла.

3.1.1. Количественные измерения тепловыделения

Калориметр с ускоренной скоростью (ARC), [14 - 17] теплопроводный калориметр [18] и изотермический калориметр [19] использовались в исследованиях тепловыделения во время зарядки. -увольнять. В тесте ARC не происходит потери тепла в окружающую среду, поэтому вся выделяемая энергия реакции касается только самонагрева батареи.С другой стороны, как в калориметре теплопроводности, так и в изотермическом калориметре тепло, выделяемое во время заряда-разряда, передается количественно. Количественные измерения тепловыделения литиевых элементов важны для управления тепловым режимом увеличенных аккумуляторных систем.

Selman et al. измерял ячейки Panasonic (тип CGR 18650H), Sony (тип US18650), A&T (тип 18650) и x-18650 (LiCo 0,2 Ni 0,8 O 2 и графит в качестве катода и анода соответственно) при Скорость заряда / разряда C / 6 при использовании ARC. [14] Сайто измерил ячейки Sony (тип US14500, LiCoO 2 и твердый углерод в качестве катода и анода, соответственно) при скорости разряда C / 5, используя теплопроводный калориметр двойного типа. [18]

3.1.2. Тепловые расчеты

Расчеты тепла во время заряда – разряда выполняются с помощью моделей литиевых элементов / батарей. Среди них наиболее распространены термические модели эквивалентной схемы и электрохимико-термические модели.

В схеме замещения - тепловых моделях литиевые элементы представлены схемами, состоящими из традиционных электрических компонентов.Тепло, генерируемое во время заряда-разряда, разделяется на обратимое ( Q рев. ) и необратимое тепло ( Q ирв ). Обратимое тепло ( Q об. ) рассчитывается по изменению энтропии (Δ S ): Q об. = T Δ S = nFT ( E / T ), как обсуждалось выше. Существует два распространенных метода расчета необратимого тепла ( Q ирв ). [20, 21] Один рассчитывается за счет омического тепла: Q ирр. = I 2 R , в котором R изменяется с изменением состояний ячеек, работы и условий окружающей среды. , например, SOC, циклы, плотность тока, температура и т. д. [20] Другой метод - вычислить через сохранение энергии и напряжение: Q ирв = нФ ( E - E cur ), в котором E - теоретический потенциал системы ячеек, а E cur - фактический потенциал с током. [21] Тепловые расчеты с помощью эквивалентной схемы – тепловых моделей являются краткими, поэтому они используются в большинстве систем управления теплом, а точность результатов зависит от сложности моделей.

Choi et al. рассчитал тепловыделение литий-ионных элементов, используемых в системах гибридных электромобилей (HEV), с целью разработки простой модели для описания теплового поведения литий-ионной аккумуляторной системы с воздушным охлаждением, предложенной с точки зрения проектировщика компонентов транспортного средства. Посмотреть. [20] Walker et al. рассчитал тепловыделение литий-ионных элементов для космических приложений и соединил его со специализированным программным обеспечением для орбитальных тепловых измерений, тепловым рабочим столом (TD), чтобы смоделировать профили зависимости температуры от глубины разряда (DOD) и диапазоны температур для всех разрядных и вариации конвекции с минимальным отклонением. [18] Srinivasan et al. Компания разработала модель для расчета тепловыделения по пяти различным внутренним параметрам: сопротивление электролита ( R с ), сопротивление анода ( R a ), катодное сопротивление ( R c ) и энтропия. изменения катода (Δ S c ) и анода (Δ S a ). [22] Эти пять параметров не зависят друг от друга; они зависят от уровня заряда и температуры окружающей среды. Харихаран разработал модель нелинейной эквивалентной схемы для литий-ионных элементов с использованием переменных резисторов, которые зависят от температуры элемента. Модель может использоваться для прогнозирования напряжения и температуры элемента в широком диапазоне мощностей с глобальным набором параметров. [6]

В электрохимико-термических моделях процесс заряда-разряда разделен на многие физические и химические процессы, например диффузию иона лития в жидкости и твердом теле, перенос лития между жидкостью и твердым телом, поляризация на поверхности электродов и т. д.Тепло, выделяемое во время заряда-разряда, представляет собой тепловое воздействие каждого физического и химического процесса, которое обычно можно рассчитать как [23]

, где E разомкнуто : разомкнутая цепь электрода; S a : удельная поверхность пористой области; i loc : скорость реакции поверхности; ϕ 1 : потенциал твердой фазы; ϕ 2 : потенциал жидкой фазы; T : температура Кельвина; : эффективная электронная проводимость твердой фазы; : эффективная ионная проводимость для жидкой фазы; R : постоянная идеального газа; F : постоянная Фарадея; f : средний молярный коэффициент активности соли; c 2 : концентрация фазы раствора; и t + : число катионного переноса.

Расчет тепла, выделяемого во время заряда-разряда, на основе электрохимико-термических моделей очень сложен, поэтому он используется в теоретических исследованиях, но не часто в приложениях.

Кумаресан и др. . разработала тепловую модель литий-ионных элементов LiCoO 2 / MCMB для прогнозирования характеристик разряда при различных температурах (15–45 ° C). [21] Палс и Ньюман разработали одномерную тепловую модель литиево-полимерного элемента для прогнозирования профиля температуры в Li / PEO 15 -LiCF 3 SO 3 / TiS 2 пакет элементов разрядка со скоростью 3 часа. [24] Baba et al . разработала улучшенную одночастичную модель для понимания теплового поведения литий-ионных элементов и распределения информации, связанной с локальным тепловыделением по всей плоскости электрода, а также был разработан метод двустороннего электрохимико-термического моделирования. [5]

3.1.3. Применение в системах управления

Управление нагревом / температурой является важной частью систем управления литиевыми батареями.Выделение тепла литиевыми элементами во время заряда-разряда является основой для управления теплом / температурой. Джулиано и др. показал, что система с жидкостным охлаждением является жизнеспособным вариантом для управления температурным режимом. [25] А система охлаждения может легко охладить батареи и достичь установившегося состояния значительно ниже максимальной рабочей температуры. Тонг и др. Компания разработала активную систему управления температурой, включающую принудительное жидкостное охлаждение, на основе электрохимических и тепловых характеристик биполярной батареи. [26] Более высокая скорость охлаждающей жидкости и толщина охлаждающей пластины помогают контролировать максимальную температуру и температурную неравномерность; однако такой подход увеличивает паразитную нагрузку, а также вес и объем упаковки.

3.2. Термический разгон

При аварии химическая энергия в электродах может преобразоваться в тепловую энергию, а не в электрическую, что может вызвать тепловой разгон литиевых элементов. [27] Есть несколько факторов, которые могут привести литиевые элементы к тепловому разгоне, среди которых температура литиевого элемента является одним из ключевых определяющих факторов.Исследования тепловыделения во время теплового разгона можно использовать для прогнозирования безопасности и критичности литиевых элементов / батарей.

Выделение тепла во время теплового разгона может быть измерено калориметрами, которые могут выдержать взрыв литиевых элементов, таких как ARC (рис. 2). Измерения тепловыделения во время теплового разгона позволяют получить результаты теплового разгона из первых рук. Feng et al. оценил характеристики теплового разгона крупноформатной призматической литий-ионной батареи емкостью 25 Ач с литиевым (Ni x Co y Mn z ) O 2 (NCM) катодом с использованием катода калориметр с увеличенной скоростью ускорения (EV-ARC).Они обнаружили, что от резкого падения напряжения до мгновенного повышения температуры до теплового разгона требуется 15–40 с. [28] Такой интервал времени может использоваться для раннего предупреждения о тепловом разгоне.

Рис. 3.

Рис. 3. Результаты моделирования LiFePO 4 ячеек / C с использованием сепараторов с различной температурой плавления, (а) результаты моделирования температуры кривые; (б) результаты моделирования кривых скорости нагрева.

Расчеты тепла, выделяемого в процессе теплового разгона, обычно основываются на тепловом поведении материалов в литиевом элементе. Результаты расчетов могут быть использованы для изучения происхождения и последствий теплового разгона с целью повышения безопасности конструкции литиевых элементов.

Ричард и др. . предложена модель теплового разгона литий-ионного элемента 18650 углерод / Li 1+ x Mn 2– x O 4 литий-ионного элемента, основанная на термостабильности деинтеркалированного Li 1+ x Mn 2– x O 4 и электроды MCMB с интеркалированным литием в LiPF 6 EC: электролит DEC. [29] Модель была использована для прогнозирования поведения при коротком замыкании и воздействия печи на ячейку. Результаты качественно согласуются с результатами экспериментов. Kim et al. расширил подход к одномерному моделированию, сформулированный Hatchard et al. [30] в трех измерениях. Результаты расчетов испытаний на неправильное использование в печи ячеек с катодом из оксида кобальта и графитовым анодом с электролитом LiPF 6 показывают, что тепловой разгон произойдет раньше или позже, чем в модели с сосредоточенными параметрами, в зависимости от размера элемента, и реакции первоначально распространяются в в азимутальном и продольном направлениях с образованием полой цилиндрической реакционной зоны. [31] Wang et al. рассчитал тепло, выделяемое при тепловом разгоне элементов LiFePO 4 / C, и результаты показывают, что внутреннее короткое замыкание, вызванное плавлением сепаратора, является основным фактором теплового разгона таких элементов, в которых сепаратор с более низкой температурой плавления.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *