Основные формулы для решения задач по химии
05-Авг-2012 | комментариев 440 | Лолита Окольнова
Все, все основные задачи по химии решаются с помощью
нескольких основных понятий и формул.
У всех веществ разная масса, плотность и объем. Кусочек металла одного элемента может весить во много раз больше, чем точно такого же размера кусочек другого металла.
Моль (количество моль)
обозначение: моль, международное: mol — единица измерения количества вещества. Соответствует количеству вещества, в котором содержится NA частиц (молекул, атомов, ионов). Поэтому была введена универсальная величина — количество моль. Часто встречающаяся фраза в задачах — «было получено… моль вещества»
NA = 6,02 · 1023
1 моль = 6,02 · 1023 частиц
Это была первая из основных формул для решения задач.
Молярная масса вещества
Молярная масса вещества — это масса одного моль вещества. Обозначается как M
Есть еще молекулярная масса — Mr
Находится по таблице Менделеева — это просто сумма атомных масс вещества.
Например, нам дана серная кислота — H2
SO4. Давайте посчитаем молярную массу вещества: атомная масса H =1, S-32, O-16.Mr(H2SO4)=1•2+32+16•4=98 г\моль.
Вторая необходимая формула для решения задач —
формула массы вещества:
Т.е., чтобы найти массу вещества, необходимо знать количество моль (n), а молярную массу мы находим из Периодической системы.
Закон сохранения массы — масса веществ, вступивших в химическую реакцию, всегда равна массе образовавшихся веществ.
Если мы знаем массу (массы) веществ, вступивших в реакцию, мы можем найти массу (массы) продуктов этой реакции. И наоборот.
Третья формула для решения задач по химии —
объем вещества:
Откуда взялось число 22.4? Из закона Авогадро:
в равных объёмах различных газов, взятых при одинаковых температуре и давлении, содержится одно и то же число молекул.
Согласно закону Авогадро, 1 моль идеального газа при нормальных условиях (н. у.) имеет один и тот же объём Vm = 22,413 996(39) л
Т.е., если в задаче нам даны нормальные условия, то, зная количество моль (n), мы можем найти объем вещества.
Итак, основные формулы для решения задач по химии
Число Авогадро NA
6,02 · 1023 частиц
Количество вещества n (моль)
n=m\M
n=V\22.4 (л\моль)
Масса вещества m (г)
m=n•Mr
Объем вещества V(л)
V=n•22.4 (л\моль)
или вот еще удобная табличка:
Это формулы. Часто для решения задач нужно сначала написать уравнение реакции и (обязательно!) расставить коэффициенты — их соотношение определяет соотношение молей в процессе.
В ОГЭ и ЕГЭ по химии задач , в которых нужно было бы найти только объем \ массу \ кол-во моль нет — это обычно ЧАСТЬ решения задачи. Однако, чтобы легко решать более сложные задачи, нужно тренироваться на таких вот небольших упражнениях.
Находим количество вещества по массе
1 Какое количество вещества алюминия содержится в образце металла массой 10.8 г?2 Какое количество вещества содержится в оксиде серы (VI) массой 12 г?
3 Определите количество моль брома, содержащееся в массе 12.8 г.
Находим массу по количеству вещества:
4. Определите массу карбоната натрия количеством вещества 0.25 моль.
Объем по количеству вещества:
5. Какой объем будет иметь азот при н.у., если его количество вещества 1.34 моль?6. Какой объем занимают при н.у. 2 моль любого газа?
Ответы:/p>
- 0.4 моль
- 0.15 моль
- 0.08 моль
- 26.5 г
- 30 л
- 44.8 л
Категории: |
Обсуждение: «Основные формулы для решения задач по химии»
(Правила комментирования)Формулы для решения задач по химии
от 01. 01.2017 года
Настоящее пользовательское (лицензионное) соглашение (далее – «Соглашение») заключается между Обществом с ограниченной ответственностью «АЛЕКТА» (далее – «Лицензиар»), и Пользователем (физическим лицом, выступающем в роли конечного потребителя Продукта) совместно именуемые «Стороны».
Пожалуйста, внимательно ознакомьтесь с текстом настоящего Соглашения. Оно представляет собой публичную оферту и, после его принятия Вами, образует соглашение между Вами (Пользователем) и Лицензиаром о предмете и на условиях, изложенных в тексте Соглашения.
Принимая настоящее Соглашение, Вы соглашаетесь с положениями, принципами, а также соответствующими условиями лицензионного соглашения, изложенными ниже.
1. ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ
1.1. Программный продукт — экземпляры программы для ЭВМ «ХиШник», состоящей
из Серверной части (свидетельство о государственной регистрации базы данных
№2014621526) и Клиентского приложения (свидетельство о государственной
регистрации программы для ЭВМ № 2014661592), права на использование которой
предоставляются в соответствии с настоящим Соглашением.
1.2. Серверная часть — часть Программного продукта, размещенная в сети Интернет и используемая для хранения данных в базе данных Лицензиара под наименованием «ХиШник» (далее также – «база данных»), а также для хранения, обработки, передачи данных Пользователя между базой данных и клиентским приложением.
1.3. Клиентское приложение — часть Программного продукта, устанавливаемая на компьютер Пользователя или на мобильное устройство Пользователя и позволяющая получить доступ к базе данных Лицензиара, а также данным Пользователя, хранящимся в памяти сервера Лицензиара.
1.4. Пользовательское (лицензионное) соглашение – текст настоящего Соглашения со всеми дополнениями, изменениями, приложениями к нему, размещенный на сайте Лицензиара и доступный в сети интернет по адресу: http://www.hishnik-school.ru
1. 5. Заключение Пользовательского (лицензионного) соглашения (акцепт публичной оферты) — полное и безоговорочное принятие условий настоящего Соглашения Пользователем путем совершения Пользователем одного (или нескольких) из следующих действий:
прохождение регистрации и (или) авторизации на Сайте Лицензиара в установленном им порядке;
внесение платежа за предоставление права на использование Программного продукта;
1.6. Лицензиар — сторона в настоящем Соглашении, обладающая исключительным правом на Программный продукт и предоставляющая по настоящему Соглашению Пользователю право использования Программного продукта, в пределах и способами, указанными в настоящем Соглашении.
1. 7. Пользователь — физическое лицо, которое устанавливает на компьютер или мобильное устройство Клиентское приложение и использует его.
1.8. Неисключительная лицензия — лицензионный договор, предусматривающий предоставление права использования Программного продукта с сохранением за Лицензиаром права заключения лицензионного договора с другими лицами.
1.9. Роль – набор функций, которые доступны в Программном продукте Пользователю. Настоящим Соглашением предусмотрены следующие роли:
1.9.1. Администратор — сотрудник образовательного учреждения, осуществляющий регистрацию и предоставление доступа к Программному продукту Пользователям – участникам образовательного процесса в образовательном учреждении.
1.9.2. Преподаватель – сотрудник образовательного учреждения, организующий и осуществляющий образовательный процесс посредством использования функций Программного продукта.
1.9.3. Репетитор – преподаватель, дающий частные уроки, может проводить как индивидуальные, так и групповые занятия посредством использования функций Системы вне рамок Образовательного учреждения.
1.9.4. Учащийся – обучающийся в Образовательном учреждении и (или) вне его, получающий и проверяющий свои знания посредством Системы.
1.11. Демонстрационный режим – режим использования Программного продукта для целей ознакомления с его функциональными возможностями.
1.12. Продуктивный режим – режим использования Программного продукта для целей применения в образовательном процессе.
1.13. Регистрационный ключ — набор цифр и букв, посредством которого Пользователь получает право использования Программного продукта в Продуктивном режиме с полным доступом к Серверной части.
1.14. Логин – уникальный идентификатор Пользователя в базе данных.
1.15. Пароль – набор цифр и букв, посредством которого и совместно с Логином Пользователь получает доступ в Клиентское приложение Программного продукта.
1.16. Интернет сайт Лицензиара — http://www.hishnik-school.ru.
1.17. Контент — все объекты, размещенные на Сайте и в Программном продукте, в том числе элементы дизайна, текст, графические изображения, иллюстрации, видео, скрипты, программы, музыка, звуки и другие объекты и их подборки.
2. ПРЕДМЕТ СОГЛАШЕНИЯ
2.1. Лицензиар предоставляет Пользователю право использования Программного продукта «ХиШник» на условиях простой (неисключительной) лицензии в пределах и способами, указанными в настоящем Соглашении, а Пользователь обязуется уплатить Лицензиару вознаграждение за предоставление права использования Программного продукта в соответствии с условиями настоящего Соглашения.
2.2. Лицензиар гарантирует, что он является правообладателем исключительных прав на Программный продукт и имеет права на заключение Соглашения. Лицензиару в настоящий момент в соответствии с тем знанием, которым он обладает, не известны права третьих лиц, нарушаемые данным Соглашением.
2.3. Пользователь не вправе полностью или частично предоставлять (передавать) права третьим лицам, полученные им по Соглашению, в том числе продавать, тиражировать, копировать Программный продукт, предоставлять доступ третьим лицам, отчуждать иным образом, в т.ч. безвозмездно, без получения на все вышеперечисленные действия предварительного письменного согласия Лицензиара.
2.4. Соглашение предоставляет Пользователю право использования Программного продукта с сохранением за Лицензиаром права выдачи лицензий другим лицам. Пользователь может использовать экземпляр Программного продукта только в пределах тех прав и теми способами, которые предусмотрены Соглашением. Предоставляемое Пользователю Лицензиаром право на использование Программного продукта действует в течение срока действия Соглашения.
2.5. Программный продукт «ХиШник», состоящий из Серверной части и Клиентского приложения, представляет собой программу для ЭВМ, предназначенную для осуществления образовательного процесса.
2.6. Право использования Программного продукта (неисключительная лицензия), предоставляемое Пользователю в соответствии с настоящим Соглашением, включает право на использование Программного продукта в двух режимах:
2.6.1. Демонстрационный режим, ограниченный правом установки на компьютер или мобильное устройство, запуска, настройки Клиентского приложения и ограниченного доступа к Серверной части, для целей ознакомления с функциональными возможностями Программного продукта.
2.6.2. Продуктивный режим, ограниченный правом установки на компьютер или мобильное устройство, запуска, настройки Клиентского приложения и полного доступа к Серверной части, для целей применения Программного продукта в образовательном процессе.
2.7. Право использования Программного продукта предоставляется:
2.7.1. В демонстрационном режиме — с момента установки Клиентского приложения на компьютер или мобильное устройство.
2.7.2. В продуктивном режиме — с момента поступления денежных средств на счет Лицензиара.
2.8. Права на использование Программного продукта считаются предоставленными Пользователю:
2.8.1. В демонстрационном режиме — в момент установки Клиентского приложения на компьютер или мобильное устройство.
2.8.2. В продуктивном режиме — в момент направления Пользователю на электронную почту письма с регистрационным ключом.
2.9. Право использования Программного продукта предоставляется как на территории Российской Федерации, так и на территории всех иных стран мира, если не противоречит национальному законодательству этих стран.
2.10. Требования к компьютерам (оборудованию), необходимому для функционирования Клиентского приложения размещены в сети Интернет на сайте Лицензиара.
3. СТОИМОСТЬ И ПОРЯДОК ОПЛАТЫ
3.1. Размер вознаграждения Лицензиара за предоставление Пользователю прав на продуктивное использование Программного продукта размещен на Сайте Лицензиара.
3.2. Вознаграждение Лицензиара за предоставление прав продуктивного использования Программного продукта не облагаются НДС на основании подпункта 26 пункта 2 статьи 149 Налогового кодекса РФ.
3.3. Оплата предоставленных прав за продуктивное использование Программного продукта по настоящему Соглашению производится Пользователем в форме ежегодных платежей.
3.4. Способ оплаты по Соглашению: безналичное перечисление Пользователем денежных средств в валюте Российской Федерации (рубль) на расчетный счет Лицензиара способами, обозначенными на Сайте Лицензиара. При этом обязанность Пользователя в части оплаты вознаграждения по Соглашению считается исполненной со дня зачисления денежных средств банком на счет Лицензиара.
3.5. Лицензиар имеет право на одностороннее изменение условий и размера вознаграждения по настоящему Соглашению. Актуальный размер вознаграждения публикуется на Сайте Лицензиара.
4. СРОК ДЕЙСТВИЯ СОГЛАШЕНИЯ
4.1. Настоящее Соглашение вступает в силу с момента его заключения в соответствии с п.2.7.
4.2. Срок предоставления права продуктивного использования Программного продукта в соответствии с Соглашением составляет 1 (Один) год с момента авторизации Пользователя посредством Регистрационного ключа. Соглашение считается заключенным на тех же условиях на новый срок, равный 1 (Одному) году, при условии осуществления Пользователем полной оплаты за продление права продуктивного использования Программного продукта. Количество пролонгаций не ограничивается.
4.3. Предоставление права демонстрационного использования Программного продукта не ограничен по сроку.
4.4. Расторжение настоящего Соглашения возможно в соответствии с условиями, указанным в действующем законодательстве РФ.
5. ПРАВА И ОБЯЗАННОСТИ СТОРОН
5.1. Пользователь обязуется:
5.1.1. Соблюдать права Лицензиара на Программный продукт и не использовать Программный продукт иными способами кроме тех, что предусмотрены настоящим Соглашением.
5.1.2. Не предпринимать попыток получения исходного кода Программного продукта для дальнейшего его использования, а также не извлекать материалы базы данных.
5.1.3. Своевременно уплачивать Лицензиару вознаграждение за предоставление Пользователю права продуктивного использования Программного продукта в порядке и сроки, установленные настоящим Соглашением.
5.1.4. Указывать достоверную информацию, в том числе свой адрес электронной почты и иные данные, запрашиваемые Лицензиаром. При этом в случае указания Пользователем недостоверной информации, все возможные риски, которые могут возникнуть в связи с выполнением настоящего Соглашения, Пользователь принимает на себя.
5.1.5. Строго придерживаться и не нарушать условий Соглашения, а также обеспечить конфиденциальность коммерческой и технической информации Лицензиара.
5.1.6. Не устанавливать Программный продукт на компьютерах (оборудованиях), не соответствующих техническим требованиям для функционирования Программного продукта.
5.1.7. Заботиться о том, чтобы права Лицензиара на Программный продукт не были нарушены третьими лицами на территории действия настоящего Соглашения, и обязан сообщить Лицензиару обо всех ставших ему известными нарушениях.
5.2. Пользователь вправе:
5.2.1. Использовать Программный продукт только посредством установки (записи) Клиентского приложения Программного продукта на компьютер или мобильное устройство и его настройки для осуществления ознакомительного или образовательного процесса с помощью базы данных.
5.2.2. Использовать Программный продукт для любых целей Пользователя, за исключением ограничений, определенных Соглашением.
5.3. Лицензиар обязуется:
5.3.1. Обеспечить технические условия функционирования Серверной части и Клиентского приложения для использования Программного продукта Пользователем, в том числе обеспечить возможность получения и/или предоставить дистрибутив (установочные файлы) Клиентского приложения, с помощью которого осуществляется использование Программного продукта.
5.3.2. Защищать данные Пользователя, которые стали известны Лицензиару в связи с исполнением Сторонами своих обязательств в соответствии с настоящим Соглашением.
5.3.3. Уведомлять Пользователя о невозможности использования Программного продукта в связи с выполнением сервисных работ не менее чем за 48 (Сорок восемь) часов путем отправки сообщения на электронную почту, указанную при регистрации.
5.3.4. Воздерживаться от каких-либо действий, способных затруднить осуществление Пользователя предоставленного ему права использования Программного продукта в установленных Соглашением пределах.
5.3.5. Предоставлять новые версии (обновления) Программного продукта путем их размещения в сети Интернет на сайте Лицензиара либо в системе Google Play с возможностью скачивания.
5. 3.6. Информировать Пользователя о новых версиях (обновлениях) Программного продукта, посредством направления уведомления на адрес электронной почты Пользователя, указанный при регистрации и (или) авторизации на Сайте Лицензиара.
5.3.7. Обеспечивать круглосуточный прием обращений в Службу поддержки по адресу электронной почты: [email protected].
5.3.8. Осуществлять обработку поступивших обращений и консультации через Службу поддержки, в период с 5:00 до 14:00 по московскому времени с понедельника по пятницу, за исключением выходных и праздничных дней.
5.4. Лицензиар вправе:
5.4.1. Производить сервисные работы, которые могут повлечь перерывы в работе Клиентского приложения.
5.4.2. В случае нарушения Пользователем условий (способов) использования прав на Программный продукт в соответствии с настоящим Соглашением, лишить Пользователя лицензии на использование прав на Программный продукт путем закрытия доступа к Программному продукту.
5.4.3. Изменять в одностороннем порядке условия настоящего Соглашения в установленном порядке.
5.4.4. Отказаться в одностороннем порядке от исполнения Соглашения в порядке, предусмотренном применимым правом и/или настоящим Соглашением;
5.4.5. Осуществлять иные права, предусмотренные применимым правом, а также настоящим Соглашением.
6. ПОРЯДОК ИСПОЛЬЗОВАНИЯ ПРОГРАММНОГО ПРОДУКТА
6.1. Пользователю для использования Программного продукта предлагается установить (записать в память ЭВМ) и запустить Клиентское приложение Лицензиара, экземпляр которого скачивается Пользователем самостоятельно одним из следующих способов:
в сети Интернет на сайте Лицензиара;
в системе Google Play;
с флэш-накопителя, предоставленного Лицензиаром (опция).
6.2. После установки (записи в память ЭВМ) и запуска Клиентского приложения Лицензиара Пользователю предоставляется право использования Программного продукта в Демонстрационном режиме.
6.3. Для использования Программного продукта в Продуктивном режиме Пользователю необходимо в Клиентском приложении ввести Регистрационный ключ, который Лицензиар направляет Пользователю на адрес электронной почты, указанный на Сайте Лицензиара в запросе на предоставление доступа. Пользователь самостоятельно осуществляет использование Программного продукта путем запуска и настройки Клиентского приложения.
6.4. Программный продукт предоставляется Пользователю по принципу «as is» («как есть»), что подразумевает: Пользователю известны важнейшие функциональные свойства продукта, в отношении которого предоставляются права на использование, Пользователь несет риск соответствия Программного продукта его желаниям и потребностям, а также риск соответствия условий и объема предоставляемых прав своим желаниям и потребностям. Лицензиар не несет ответственность за какие-либо убытки или ущерб, независимо от причин их возникновения (включая особый, случайный или косвенный ущерб; убытки, связанные с недополученной прибылью, прерыванием коммерческой или производственной деятельности, утратой деловой информации, небрежностью, или какие-либо иные убытки), возникшие вследствие использования или невозможности использования Программного продукта.
6.5. Программный продукт предназначен для личных, образовательных и иных не связанных с осуществлением предпринимательской деятельности нужд физических лиц. Использование Программного продукта в коммерческих целях не допускается.
7. ОТВЕТСТВЕННОСТЬ СТОРОН
7.1. За невыполнение или ненадлежащее выполнение обязательств по настоящему Соглашению Стороны несут ответственность в соответствии с действующим законодательством, если иное не установлено Соглашением.
7.2. Стороны освобождаются от ответственности за неисполнение (ненадлежащее исполнение) Соглашения, если такое неисполнение (ненадлежащее исполнение) явилось следствием действий обстоятельств непреодолимой силы, наступление которых Стороны не могли предвидеть и предотвратить. Сторона, для которой надлежащее исполнение обязательства стало невозможным ввиду действия обстоятельств непреодолимой силы, обязана незамедлительно уведомить об этом другую Сторону. Стороны вправе ссылаться на действия обстоятельств непреодолимой силы лишь при условии, что они сделали все возможное в целях предотвращения и/или минимизации негативных последствий действия указанных обстоятельств.
7.3. Лицензиар не гарантирует абсолютную бесперебойность использования Программного продукта и не дает гарантию того, что произведенные третьими лицами программы для ЭВМ или любые другие средства, используемые при работе Программного продукта, абсолютно защищены от компьютерных вирусов и других вредоносных компонентов. Лицензиар обязуется осуществить все разумные меры для защиты информации Пользователя и обеспечения бесперебойного использования Программного продукта.
7.4. Пользователь самостоятельно отвечает за содержание информации, передаваемой им или иным лицом по сети Интернет и хранимой в памяти сервера Лицензиара, в том числе за ее достоверность и правомерность ее хранения и распространения.
7.5. В случае привлечения Лицензиара к ответственности или наложения на него взыскания в связи с допущенными Пользователем нарушениями прав третьих лиц, а равно установленных законодательством запретов или ограничений, Пользователь обязан в полном объеме возместить убытки Лицензиара.
7.6. В случае нарушения Пользователем условий и ограничений настоящего Соглашения, он является нарушителем исключительного права на Программный продукт. За нарушение авторских прав на Программный продукт Пользователь несет ответственность в соответствии с законодательством Российской Федерации.
7.7. Совокупная кумулятивная ответственность Лицензиара перед Пользователем в отношении требований любого рода, возникающих из настоящего Соглашения, не будет превышать сумму вознаграждения по данному Соглашению, фактически выплаченного Пользователем за Программный продукт, в отношении которого возникло требование, в течение 12 (двенадцати) месяцев, предшествующих возникновению требования. Вышеуказанные ограничения ответственности применяются даже в том случае, если с помощью вышеуказанного способа защиты права не удается добиться его основной цели.
8. ПЕРСОНАЛЬНЫЕ ДАННЫЕ
8.1. Информация, предоставленная Пользователем является конфиденциальной.
8.2. Предоставляя свои персональные данные Лицензиару, Пользователь соглашается на их обработку, как с использованием средств автоматизации, так и без использования средств автоматизации, в частности сбор, хранение, передачу третьим лицам и использование информации Лицензиаром в целях исполнения обязательств перед Пользователем в соответствии с настоящим Соглашением; получения Пользователем персонализированной рекламы; проверки, исследования и анализа данных, позволяющих поддерживать и улучшать Программный продукт.
8.3. Лицензиар обязуется не разглашать полученную от Пользователя информацию. Не считается нарушением предоставление Лицензиаром информации, в том числе персональные данные Пользователя третьим лицам, действующим на основании договора с Лицензиаром, в целях исполнения настоящего Соглашения.
8.4. Не считается нарушением обязательств по неразглашению информации предоставленной Пользователем, в том числе персональные данные Пользователя, в целях обеспечения соблюдения требований действующего законодательства Российской Федерации (в том числе в целях предупреждения и/или пресечения незаконных и/или противоправных действий Пользователей).
8.5. Пользователь не имеет права передавать свои Логин и Пароль третьим лицам.
8.6. Пользователь обязуется обеспечивать конфиденциальность своего Логина и Пароля и несет ответственность за использование Логина и Пароля третьими лицами. Ни при каких обстоятельствах Лицензиар не несет ответственность за использование третьими лицами Логина и пароля Пользователя.
8.7. В случае несанкционированного доступа к логину и паролю и/или персональной странице Пользователя, или распространения логина и пароля Пользователь обязан незамедлительно сообщить об этом Лицензиару посредством заполнения формы обратной связи, представленной на Сайте.
8.8. Лицензиар не несет ответственности за использование кем бы то ни было общедоступных персональных данных Пользователей.
9. ИСКЛЮЧИТЕЛЬНЫЕ ПРАВА НА КОНТЕНТ
9.1. Все объекты, размещенные на Сайте и в Программном продукте, в том числе элементы дизайна, текст, графические изображения, иллюстрации, видео, скрипты, программы, музыка, звуки и другие объекты и их подборки (далее — Контент), являются объектами исключительных прав Лицензиара, все права на эти объекты защищены.
9.2. Кроме случаев, установленных настоящим Соглашением, а также действующим законодательством Российской Федерации, Контент не может быть скопирован (воспроизведен), переработан, распространен, отображен во фрейме, опубликован, скачан, передан, продан или иным способом использован целиком или по частям без предварительного разрешения правообладателя, кроме случаев, когда правообладатель явным образом выразил свое согласие на свободное использование Контента любым лицом.
9.3. Использование Пользователем Контента, доступ к которому получен исключительно для личного некоммерческого использования, допускается при условии сохранения всех знаков авторства или других уведомлений об авторстве, сохранения имени автора в неизменном виде, сохранении произведения в неизменном виде.
9.4. Любое использование Контента, кроме разрешенного в настоящем Соглашении или в случае явно выраженного согласия правообладателя на такое использование, без предварительного письменного разрешения правообладателя, категорически запрещено.
10. ПРОЧИЕ УСЛОВИЯ
10.1. Все споры и разногласия, возникающие в связи с исполнением и (или) толкованием настоящего Соглашения, разрешаются Сторонами путем переговоров. При невозможности урегулирования Сторонами возникших разногласий путем переговоров, спор подлежит разрешению в арбитражном суде по месту нахождения ответчика с обязательным соблюдением претензионного порядка урегулирования споров и разногласий. Срок ответа на претензию 30 (тридцать) календарных дней с момента ее поступления в письменной форме или в электронном виде.
10.2. Ни одно из положений настоящего Соглашения не является и не может рассматриваться как передача (отчуждение) исключительных прав на интеллектуальную собственность Лицензиара.
10.3. В случае поступления от Пользователя замечаний к Программному продукту, предоставляемому в рамках настоящего Соглашения, такие замечания подлежат рассмотрению Лицензиаром по его желанию и необязательны для учета.
10.4. Условия настоящего Соглашения распространяются на последующие версии Программного продукта, которые являются его обновлениями. Заключения иных соглашений в отношении обновлений Программного продукта не требуется.
10.5. Во всем ином, что не предусмотрено настоящим Соглашением, Стороны руководствуются действующим законодательством РФ.
11. АДРЕС, РЕКВИЗИТЫ ЛИЦЕНЗИАРА
ООО «АЛЕКТА»
Юридический адрес: 630090, г. Новосибирск, Проспект академика Лаврентьева 2/2.
Почтовый адрес: 630090, г. Новосибирск, Проспект академика Лаврентьева 2/2.
ОГРН 1025403657135
ИНН 5408128408
КПП 540801001
ОКВЭД 72.19, 62.01, 62.02, 68.20.2;
ОКПО 26335100;
ОКАТО 50401384000;
ОКФС 16;
ОКОПФ 65.
E-mail: [email protected]
Расчет массы и объема тела
Для того чтобы определить плотность вещества, надо массу тела разделить на его объем:
(10.1)
Массу тела можно определить с помощью весов. А как найти объем тела?
Если тело имеет форму прямоугольного параллелепипеда (рис. 24), то его объем находится по формуле
V = аbс.
Если же у него какая-то другая форма, то его объем можно найти методом, который был открыт древнегреческим ученым Архимедом в III в. до н. э.
Архимед родился в Сиракузах на острове Сицилия. Его отец, астроном Фидий, был родственником Гиерона, ставшего в 270 г. до н. э. царем города, в котором они жили.
До нас дошли не все сочинения Архимеда. О многих его открытиях стало известно благодаря более поздним авторам, в сохранившихся трудах которых описываются его изобретения. Так, например, римский архитектор Витрувий (I в. до н. э.) в одном из своих сочинений рассказал следующую историю:
«Что касается Архимеда, то изо всех его многочисленных и разнообразных открытий то открытие, о котором я расскажу, представляется мне сделанным с безграничным остроумием.Во время своего царствования в Сиракузах Гиерон после благополучного окончания всех своих мероприятий дал обет пожертвовать в какой-то храм золотую корону бессмертным богам. Он условился с мастером о большой цене за работу и дал ему нужное по весу количество золота. В назначенный день мастер принес свою работу царю, который нашел ее отлично исполненной; после взвешивания вес короны оказался соответствующим выданному весу золота.
После этого был сделан донос, что из короны была взята часть золота и вместо него примешано такое же количество серебра. Гиерон разгневался на то, что его провели, и, не находя способа уличить это воровство, попросил Архимеда хорошенько подумать об этом. Тот, погруженный в думы по этому вопросу, как-то случайно пришел в баню и там, опустившись в ванну, заметил, что из нее вытекает такое количество воды, каков объем его тела, погруженного в ванну. Выяснив себе ценность этого факта, он, не долго думая, выскочил с радостью из ванны, пошел домой голым и громким голосом сообщал всем, что он нашел то, что искал. Он бежал и кричал одно и то же по-гречески: «Эврика, эврика! (Нашел, нашел!)».
Затем, пишет Витрувий, Архимед взял сосуд, доверху наполненный водой, и опустил в него золотой слиток, равный по весу короне. Измерив объем вытесненной воды, он снова наполнил сосуд водой и опустил в него корону. Объем воды, вытесненной короной, оказался больше объема воды, вытесненной золотым слитком. Больший объем короны означал, что в ней присутствует менее плотное, чем золото, вещество. Поэтому опыт, проделанный Архимедом, показал, что часть золота была похищена.
Итак, для определения объема тела, имеющего неправильную форму, достаточно измерить объем воды, вытесняемой данным телом. Располагая измерительным цилиндром (мензуркой), это сделать несложно.
В тех случаях, когда известны масса и плотность тела, его объем можно найти по формуле, вытекающей из формулы (10.1):
(10.2)
Отсюда видно, что для определения объема тела надо массу этого тела разделить на его плотность.
Если, наоборот, объем тела известен, то, зная, из какого вещества оно состоит, можно найти его массу:
m = ρV. (10.3)
Чтобы определить массу тела, надо плотность тела умножить на его объем.
1. Какие способы определения объема вы знаете? 2. Что вам известно об Архимеде? 3. Как можно найти массу тела по его плотности и объему?
Экспериментальное задание. Возьмите кусок мыла, имеющий форму прямоугольного параллелепипеда, на котором обозначена его масса. Проделав необходимые измерения, определите плотность мыла.
Расчеты массы (объема, количества вещества) продукта реакции, если одно из веществ дано в виде раствора с определенной массовой долей растворенного вещества
Что такое расчеты массы (объема, количества вещества) продукта реакции, если одно из веществ дано в виде раствора с определенной массовой долей растворенного вещества
Что такое расчеты массы (объема, количества вещества) продукта реакции? Какой алгоритм поиска массы растворенного вещества, если одно из веществ дано в виде раствора с определенной массовой долей растворенного вещества.
Для расчета массы (объема, количества вещества) продукта реакции, если данные по одному из веществ представлены в виде раствора с определенной массовой долей этого растворенного вещества, следует воспользоваться нижеследующим алгоритмом:
1) Прежде всего следует найти массу растворенного вещества. Возможны две ситуации:
* В условии даны масса раствора и массовая доля растворенного вещества (концентрация). В этом случае масса растворенного вещества рассчитывается по формуле:
формула расчета массы растворенного вещества, зная массу раствора и его концентрацию
* В условии даны объем раствора вещества, плотность этого раствора и массовая доля растворенного вещества в этом растворе. В таком случае следует воспользоваться формулой для расчета массы раствора:
m(р-ра) = ρ(р-ра) ∙V(р-ра)
После чего следует рассчитать массу растворенного вещества по формуле 1.
2) Рассчитать количество вещества (моль) участника реакции, масса которого стала известна из расчетов выше. Для этого воспользоваться формулой:
n(в-ва) = m(в-ва)/M(в-ва), где М — молярная масса вещества
3) Записать уравнение реакции и убедиться в правильности расставленных коэффициентов.
4) Рассчитать количество моль интересующего участника реакции исходя из известного количества другого участника реакции, зная, что количества веществ любых двух участников реакции A и B относятся друг к другу как коэффициенты перед этими же веществами в уравнении реакции, то есть:
n(A)/n(B) = k(A)/k(B)
Если в условии требовалось рассчитать количество вещества, то действия на этом заканчиваются. Если же требуется найти его массу или объем, следует переходить к следующему пункту.
5) Зная количество вещества, определенное в п.4, мы можем рассчитать его массу по формуле:
Расчет количества продукта по данным раствора другого вещества
Также, если вещество является газообразным и речь идет о нормальных условиях (н.у.), его объем может быть рассчитан по формуле:
V(газа) = Vm ∙ n(газа) = n(газа) ∙ 22,4 л/моль
Рассмотрим пару примеров расчетных задач по этой теме.
Пример 1
Рассчитайте массу осадка, который образуется при добавлении к 147 г 20%-ного раствора серной кислоты избытка раствора нитрата бария.
Решение:
1) Рассчитаем массу чистой серной кислоты:
m(h3SO4) = w(h3SO4) ∙ m(р-ра h3SO4)/100% = 147 г ∙ 20% /100% = 29,4 г
2) Рассчитаем количество вещества (моль) серной кислоты:
n(h3SO4) = m(h3SO4) / M(h3SO4) = 29,4 г/98 г/моль = 0,3 моль.
3) Запишем уравнение взаимодействия серной кислоты с нитратом бария:
h3SO4 + Ba(NO3)2 = BaSO4↓ + 2HNO3
4) В результате расчетов стало известно количество вещества серной кислоты. Осадок представляет собой сульфат бария. Зная, что:
n(BaSO4)/n(h3SO4) = k(BaSO4)/k(h3SO4), где n — количество вещества, а k — коэффициент в уравнении реакции,
можем записать:
n(BaSO4) = n(h3SO4) ∙ k(h3SO4)/k(BaSO4) = 0,3 моль ∙ 1/1 = 0,3 моль
5) Тогда масса осадка, т.е. сульфата бария, может быть рассчитана следующим образом:
m(BaSO4) = M(BaSO4) ∙ n(BaSO4) = 233 г/моль ∙ 0,3 моль = 69,9 г
Пример 2
Какой объем газа (н.у.) выделится при растворении необходимого количества сульфида железа (II) в 20%-ном растворе соляной кислоты с плотностью 1,1 г/мл и объемом 83 мл.
Решение:
1) Рассчитаем массу раствора соляной кислоты:
m(р-ра HCl) = V(р-ра HCl) ∙ ρ(р-ра HCl) = 83 мл ∙ 1,1 г/мл = 91,3 г
Далее рассчитаем массу чистого хлороводорода, входящего в состав кислоты:
m(HCl) = m(р-ра HCl) ∙ w(HCl)/100% = 91,3 г ∙ 20%/100% = 18,26 г
2) Рассчитаем количество вещества хлороводорода:
n(HCl) = m(HCl)/M(HCl) = 18,26 г/36,5 г/моль = 0,5 моль;
3) Запишем уравнение реакции сульфида железа (II) с соляной кислотой:
FeS + 2HCl = FeCl2 + h3S↑
4) Исходя из уравнения реакции следует, что количество прореагировавшей соляной кислоты с количеством выделившегося сероводорода связано соотношением:
n(HCl)/n(h3S) = 2/1, где 2 и 1 — коэффициенты перед HCl и и h3S соответственно
Следовательно:
n(h3S) = n(HCl)/2 = 0,5/2 = 0,25 моль
5) Объем любого газа, находящегося при нормальных условиях, можно рассчитать по формуле V(газа) = Vm ∙ n(газа), тогда:
V(h3S) = Vm ∙ n(h3S) = 22,4 л/моль ∙ 0,25 моль = 5,6 л
Узнать вес зная массу. Как найти массу, зная плотность и объем
Инструкция
Чтобы найти массу, зная плотность, разделите объем тела или вещества на его плотность. То есть воспользуйтесь формулой: m = V / ρ, где:V – объем,
ρ – плотность,
V – объем.Перед расчетом массы приведите все единицы измерения в одну систему, например, в интернациональную систему измерения (СИ). Для этого, переведите объем (м³), а плотность – в на (кг/м³). В этом случае значение массы получится в килограммах.
Если плотность и объем заданы в одной системе единиц, то предварительный в СИ производить необязательно. Масса тела или вещества в таком случае будет измеряться в той единице , которая указана в числителе единицы измерения плотности (единицы измерения объема при расчете сократятся).
Так, например, если объем задан в литрах, а плотность в граммах на литр, то расчетная масса получится в граммах.
Если объем тела (вещества) неизвестен или не задан явно в условиях задачи, то попытайтесь его измерить, вычислить или узнать, используя косвенные (дополнительные) данные.
Если вещество сыпучее или жидкое, то оно, как правило, находится в емкости, которая обычно имеет стандартный объем. Так, например, объем бочки обычно равен 200 литров, объем ведра – 10 литров, объем стакана – 200 миллилитров (0,2 литра), объем столовой ложки – 20 мл, объем чайной – 5 мл. Об объеме трехлитровых и литровых банок нетрудно догадаться из их названия.
Если жидкость занимает не всю емкость или емкость нестандартная, то перелейте ее в другую тару, объем которой известен.
Если подходящей емкости нет, перелейте жидкость с помощью мерной кружки (банки, бутылки). В процессе вычерпывания жидкости просто посчитайте количество таких кружек и умножьте на объем мерной тары.
Если тело имеет простую форму, то вычислите его объем, используя соответствующие геометрические формулы. Так, например, если тело имеет форму прямоугольного параллелепипеда, то его объем будет равен произведению длин его ребер. То есть:Vпр.пар. = a*b*c, где:Vпр.пар. – объем прямоугольного параллелепипеда, а
a, b, c — значения его длины, ширины и высоты (толщины), соответственно.
Если тело имеет сложную геометрическую форму, то попробуйте (условно!) разбить его на несколько простых частей, найти объем каждой из них отдельно и затем сложить полученные значения.
Если тело невозможно разделить на более простые фигуры (например, статуэтку), то воспользуйтесь методикой Архимеда. Опустите тело в воду и измерьте объем вытесненной жидкости. Если тело не тонет, то «утопите» его с помощью тонкой палочки (проволоки).
Если объем вытесненной телом воды посчитать проблематично, то взвесьте вылившуюся воду, или найдите разность между начальной и оставшейся массой воды. При этом, количество килограммов воды будет равняться количеству литров, количество граммов – количеству миллилитров, а количество тонн – количеству кубометров.
В химии и физике часто попадаются задачи, в которых необходимо вычислить массу вещества, зная его объём. Как найти массу через объем. В этом вам поможет таблица плотностей, поскольку чтобы найти массу, необходимо знать и плотность, и объём вещества.
Если в условии задачи не указана плотность, можно посмотреть в таблицу, в которой есть такие данные о каждом веществе. В идеале, конечно, необходимо выучить такую таблицу, но можно обратиться и к учебнику по химии.
Правило гласит, что объём вещества, умножений на его плотность, равняется массе данного вещества. Из этого правила, выводится формула массы через объем. Она выглядит так: m = V*p. Где m — масса, V — объём, а p — плотность. Зная число, которое равно объёму, можно посмотреть число, которое будет равно плотности, умножить данные. Так можно получить массу.
Пример вычисления
Например, дан объём 5 мл. Объём вещества исчисляется в таких единицах, как литры и миллилитры. Вещество, массу которого нужно найти, — желатин. Посмотрев в таблице, можно увидеть, что его плотность равна 1,3 г./мл. Теперь воспользуйтесь формулой. Объём V равен 5 мл. Необходимо умножить 5 мл. на 1,3 г./мл. То есть: 5*1,3 = 6,5 грамм. Значит m — масса равна 6,5 грамм. Почему именно грамм: при умножении объёма на плотность, у нас есть такие единицы как миллиграммы. Их сокращаем, остаются граммы, которые и обозначают массу.
Можно воспользоваться и другим способом. Необходимо знать или иметь под рукой таблицу Менделеева. Этот метод подразумевает использование молярной массы вещества (в таблице). Необходимо знать формулу, которая гласит, что масса вещества равна произведению объёма на молярную массу. То есть m = V*M, где V — объём данного вещества, а М — его молярная масса.
Масса
Инертная масса
Гравитационная масса
Примеры решения задач
Решение.
Задание. Какова масса 2м 3 меди?
Ответ. (кг)
Краткая теория
Онлайн калькуляторы
Формула массы тела
Определение и формула массы тела
В механике Ньютона массой тела называют скалярную физическую величину, которая является мерой инерционных его свойств и источником гравитационного взаимодействия. В классической физике масса всегда является положительной величиной.
Масса – аддитивная величина, что означает: масса каждой совокупности материальных точек (m) равна сумме масс всех отдельных частей системы (m i):
В классической механике считают:
- масса тела не является зависимой от движения тела, от воздействия других тел, расположения тела;
- выполняется закон сохранения массы: масса замкнутой механической системы тел неизменна во времени.
Инертная масса
где масса определяет инертные свойства материальной точки (инертная масса).
Гравитационная масса
Масса материальной точки входит в закон всемирного тяготения, при этом она определяет гравитационные свойства данной точки.при этом она носит название гравитационной (тяжелой) массы.
где g – ускорение свободного падения. Если проводить наблюдения в одной и той же точке, то ускорения свободного падения одинаковы.
Формула расчета массы через плотность тела
Масса тела может быть рассчитана как:
где – плотность вещества тела, где интегрирование проводится по объему тела. Если тело однородное (), то масса может быть рассчитана как:
Масса в специальной теории относительности
В СТО масса инвариантна, но аддитивной не является. Она здесь определена как:
где E – полная энергия свободного тела, p- импульс тела, c – скорость света.
Релятивистская масса частицы определяется формулой:
где m 0 – масс покоя частицы, v – скорость движения частицы.
Основной единицей измерения массы в системе СИ является: [m]=кг.
Примеры решения задач
Решение. При абсолютно неупругом соударении частиц, которые до удара имели одинаковые массы и скорости образуется одна покоящаяся частица (рис.1) энергия покоя которой равна:
В нашем случае выполняется закон сохранения механической энергии. Частицы обладают только кинетической энергией. По условию задачи скорость частиц близка к скорости света, следовательно? оперируем понятиями релятивистской механики:
где E 1 – энергия первой частицы до удара, E 2 – энергия второй частицы до соударения.
Закон сохранения энергии запишем в виде:
Из выражения (1.3) следует, что масса полученной в результате слияния частицы равна:
Задание. Какова масса 2м 3 меди?
При этом если известно вещество (медь), то можно при помощи справочника найти ее плотность. Плотность меди будем считать равной Cu =8900 кг/м 3 . Для расчета все величины известны. Проведем вычисления:
Ответ. (кг)
Краткая теория
Онлайн калькуляторы
Копирование материал с сайта возможно только с разрешения администрации портала и при наличие активной ссылки на источник.
http://www.webmath.ru/poleznoe/formules_21_2_massa_tela.php
Как найти массу?
Многие из нас в школьное время задавались вопросом: Как найти массу тела? Сейчас мы попытаемся ответить на этот вопрос.
Нахождение массы через его объем
Решить задачу, как найти массу вещества через его объем, довольно легко. Для этого следует применить формулу удельной плотности вещества
где p является удельной плотностью вещества;
v — занимаемым объемом.
В качестве меры массы будут использоваться граммы, килограммы и тонны. Меры объёмов: сантиметры кубические, дециметры и метры. Удельная плотность будет вычисляться в кг/дм, кг/м, г/см, т/м.
Таким образом, в соответствии с условиями задачи в нашем распоряжении есть бочка объемом двести литров. Это значит, что ее объем равняется 2 м.
Но вы хотите узнать, как найти массу. Из вышеназванной формулы она выводится так:
Сначала нам требуется найти значение р – удельной плотности дизельного топлива. Найти данное значение можно, используя справочник.
В книге мы находим, что р = 860,0 кг/м.
Затем полученные значения мы подставляем в формулу:
m = 860*2 = 1720,0 (кг)
Нахождение массы через плотность и объем
Очень часто в практических заданиях по физике можно встретить такие величины, как масса, плотность и объем. Для того чтобы решить задачу, как найти массу тела, вам требуется знать его объем и плотность.
Предметы, которые вам будут нужны:
2) Калькулятор (компьютер).
3) Емкость для измерения.
Теперь требуется решить задачу, как найти массу в соответствии с формулой d = m/V, где
m является массой предмета (в килограммах),
V является его объемом (в метрах кубических).
Таким образом, плотность вещества является массой единицы его объема.
Если вам необходимо найти плотность материала, из которого создан предмет, то следует воспользоваться таблицей плотностей, которую можно найти в стандартном учебнике по физике.
Объем предмета вычисляется по формуле V = h * S, где
H – высота предмета (м),
S – площадь основания предмета (м).
Зная объем V и плотность d предмета, вы можете легко найти его массу по формуле m = d * V. Перед тем, как вычислить массу, требуется привести все измерительные единицы в единую систему, например, в систему СИ, являющуюся интернациональной измерительной системой.
В соответствии с вышеназванными формулами можно сделать следующий вывод: для нахождения требуемой величины массы с известным объемом и известной плотностью требуется умножить значение плотности материала, из которого изготовлено тело, на объем тела.
http://fb.ru/article/50627/kak-nayti-massu
В фактических задачах по физике и математике зачастую встречаются такие величины как объем, масса и плотность . Зная плотность и объем тела либо вещества, абсолютно допустимо обнаружить его массу .
Вам понадобится
- – компьютер либо калькулятор;
- – рулетка;
- – мерная емкость;
- – линейка.
Инструкция
1. Как вестимо, предметы, имеющие один и тот же объем, но сделанные из различных материалов, будут иметь различную массу (дерево и металл, стекло и пластмасса). Массы тел, изготовленных из одного и того же вещества (без пустот), прямо пропорциональны объему рассматриваемых предметов. Напротив говоря, непрерывной величиной является отношение массы предмета к его объему. Эта величина носит наименование «плотность вещества. В будущем обозначим ее буквой d.
2. Исходя из определения, d=m/V, гдеm – масса предмета (кг),V — его объем (м3).Как видно из формулы, плотность вещества – это масса единицы его объема.
3. Узнать плотность вещества, из которого изготовлен предмет, дозволено из таблицы плотностей в приложении к учебнику физики либо на сайте http://www.kristallikov.net/page15.html, где приведены плотности фактически всех существующих веществ.
5. Если нет вероятности с точностью произвести измерение геометрических размеров тела, воспользуйтесь законом Архимеда. Для этого возьмите сосуд, имеющий шкалу (либо деления) для измерения объема жидкости, опустите предмет в воду (в сам сосуд, снабженный делениями). Объем, на тот, что увеличится содержимое сосуда, – и есть объем погруженного в него тела.
6. Если вестимы плотность d и объем V предмета, неизменно дозволено обнаружить его массу, пользуясь формулой: m=V*d. Перед расчетом массы приведите все единицы измерения в одну систему, скажем, в международную систему измерения СИ.
7. Итог из приведенных формул дальнейший: дабы получить желанное значение массы, зная плотность и объем, нужно умножить значение объема тела на значение плотности вещества, из которого оно сделано.
Массу тела традиционно определяют экспериментально. Для этого берут груз, ставят его на весы и получают итог измерения. Но при решении физических задач, приведенных в учебниках, измерение массы по объективным причинам нереально, но имеются те либо иные данные о теле. Зная эти данные, дозволено определить массу тела неявно путем расчета.
Инструкция
1. В школьных курсах физики, химии, астрономии дозволено встретить представление массы. По массе тела находят обратные величины – объем, плотность, силу. Масса – количественный показатель вещества, следственно в задачах по химии число вещества находят, исходя из массы. Масса зависит от свойств вещества, из которого состоит тело, а также от числа этого вещества.Существует несколько основных способов расчета массы. Выбирают их в зависимости от того, какие другие физические величины заданы в задаче. Разглядим всякий случай по отдельности.
2. Самый общеизвестный метод нахождения массы тела – это ее расчет на основании объема и плотности. Правда, в ряде задач перед определением массы доводится рассчитывать сам объем, руководствуясь иными геометрическими колляциями тела . Скажем, для цилиндра с знаменитыми площадью основания и высотой, изготовленного из вещества с вестимой плотностью, масса будет равна:m=?*V=?*S*h, где Vцил.=S*h, ? – плотность, S – площадь основания цилиндра, h – высота цилиндра.Если же объем указан в задаче прямо, для нахождения массы его довольно примитивно умножить на плотность:m=?*V
3. Иной раздел физики, где доводится рассчитывать массу – динамика. Традиционно в нем изучается взаимодействие между тела ми, действие внешних сил на тела , состояние тел при равномерном движении. Всякое тело силой F получает убыстрение при взаимодействии с иным телом. При этом, оно некоторую массу m. Массы связана с силой дальнейшим соотношением:F=m*a, где a – убыстрение заданного тела ; m -масса тела Отсюда дозволено узнать массу тела :m=F/a
4. В учебниках по химии мы встречаются представления числа вещества и молярной массы.3Масса рассчитывается дальнейшим образом:m=p*V=7,8*314=24,492 г
Плотность есть отношение массы к занимаемому ей объему – для твердых тел, и отношением молярной массы к молярному объему – для газов. В самом всеобщем виде объем (либо молярный объем) будет отношением массы (либо молярной массы) к ее плотности. Плотность вестима. Что делать? Сперва определить массу, после этого вычислить объем, после этого внести нужные поправки.
Инструкция
1. Объем газа равен отношению произведения числа вещества, умноженного на его молярную массу – к теснее вестимой плотности. Иными словами, даже зная плотность, нужно знать молярную массу газа и число вещества, то есть – сколько у вас есть моль газа. В тезисе, зная, сколько моль газа у вас есть, дозволено вычислить его объем, даже не зная плотности – согласно закону Авогадро, один моль всякого газа занимает объем 22,4 л. Если же непременно вычислять объем через плотность, то вам потребуется узнать массу газа в неведомом пока объеме.
2. Объем твердого тела дозволено определить, даже не зная плотности, легко измерив его, а в случае трудной и дюже неправильной формы объем определяется, скажем, по объему вытесненной твердым телом жидкости. Впрочем, если нужно вычислять объем именно через плотность, то объем твердого тела есть отношение массы тела к его плотности, а масса обыкновенно определяется простым взвешиванием. Если же взвесить тело по каким-то причинам (скажем, оно слишком огромное либо движется) немыслимо, то придется прибегать к достаточно трудным косвенным расчетам. К примеру, для движущегося тела масса есть отношение удвоенной кинетической энергии к квадрату его скорости, либо отношение силы, приложенной к телу, к его убыстрению. Для дюже большого покоящегося тела придется прибегать к расчетам по отношению к массе Земли, с применением гравитационной непрерывной и момента вращения. Либо же – через вычисление удельной теплоемкости вещества; в любом случае умения только плотности для вычисления объема будет неудовлетворительно.
3. Вычислив массу твердого тела, дозволено вычислить объем – простым делением массы на плотность.
Обратите внимание!
1. Указанные выше способы больше либо менее применимы только в случае однородности вещества, из которого состоит твердое тело2. Приведенные способы больше либо менее применимы в относительно тесном интервале температур – от минус 25 до плюс 25 градусов Цельсия. При изменении агрегатного состояния вещества плотность может меняться скачкообразно; в этом случае формулы и способы вычислений будут вовсе другими.
Масса как физическая величина – это параметр, характеризующий силу воздействия тела на гравитацию. Для расчета массы тела в физике требуется знать две его величины: плотность материала тела и его объем.
Инструкция
1. Пускай задано некое тело объемом V и плотностью его вещества p. Тогда его массу подсчитывают так:m = p*V. Для наглядности приводится пример:Пускай дан алюминиевый брусок объемом 5 куб. метров. Плотность алюминия составляет 2700 кг./куб. метр. В таком случае масса бруска составит:m = 2700/5 = 540 кг.
Обратите внимание!
Представление массы зачастую путают с иной, не менее редко встречающейся, физической величиной – весом. Вес измеряется в н/м? и характеризует силу, которая воздействует на точку опоры. Масса же, по своей природе, не имеет какой бы то ни было точки опоры, и воздействует, как было подмечено, лишь на гравитацию Земли.
При решении некоторых физических задач требуется обнаружить плотность тела . Изредка плотность физического тела нужно определить и на практике, скажем, для того дабы узнать, утонет оно либо нет. Кстати, тело человека также дозволено отнести к физическим телам. Причем представление «плотности» человеческого тела давным-давно теснее вошло в обиход. Так «прочно сбитого» человека традиционно называют «плотным», а того, кто имеет противоположную конституцию тела – «рыхлым».
Вам понадобится
- калькулятор, весы, линейка, мерная кружка, таблица плотности веществ.
Инструкция
1. Дабы обнаружить плотность физического тела, определите из какого вещества либо материала оно состоит. После этого возьмите таблицу плотности веществ и обнаружьте в ней соответствующее вещество. Так, скажем, если предмет изготовлен из алюминия, его плотность будет равна 2,7 г/см?.
2. Если тело состоит из нескольких веществ, то обнаружьте в соответствующих таблицах плотность всего из них. Дабы обнаружить плотность тела в совокупности, определите взнос всего вещества в образование плотности предмета. Для этого определите объем либо массу всей однородной части, а после этого посчитайте массу и объем каждого тела.
3. Пускай, скажем, тело состоит из 2-х частей массой m1 и m2, соответственно. Плотность всей части – ?1 и?2. Дабы обнаружить среднюю плотность тела, обнаружьте всеобщий объем: V = V1 + V2 = m1 * ?1 + m2 * ?2, а после этого поделите на всеобщую массу тела (m = m1 + m2): ? = V / m = (m1 * ?1 + m2 * ?2) / (m1 + m2), где:V – всеобщий объем тела;V1 и V2 – объем первой и 2-й части тела соответственно;m – всеобщая масса тела;m1 и m2 – масса первой и 2-й части тела соответственно;? – средняя плотность тела;?1 и?2 – плотность первой и 2-й части тела соответственно.
4. Если знамениты объемы (V1 и V2) всей части тела, а также их плотности, для вычисления плотности тела воспользуйтесь аналогичной формулой:? = V / m = (V1 + V2) / (m1 + m2) = (V1 + V2) / (V1 / ?1 + V2 / ?2). Обозначения параметров те же, что и в предыдущей формуле.
5. Если материал (вещество), из которого состоит тело, неведом либо имеет непостоянную плотность (скажем, дерево, плотность которого зависит от влажности), дабы обнаружить его плотность, определите его объем и поделите на массу. То есть воспользуйтесь формулой:? = V / m.Для этого, финально, придется посчитать либо измерить объем и массу тела, но такой способ даст самый точный итог. Если тело имеет форму примитивный геометрической фигуры, посчитайте его объем, воспользовавшись соответствующими формулами стереометрии. Объем трудных тел определите через объем вытесненной ими жидкости. Массу тела обнаружьте с поддержкой взвешивания.
Масса какого-нибудь тела является его важнейшей физической колляцией. В нынешней физической науке есть разграничение представления “масса”: гравитационная масса (как степень воздействия тела на земную гравитацию) и инертная масса (какое усилие понадобится для того, дабы вывести тело из состояния инерции). В любом случае обнаружить массу дюже легко, если знамениты плотность и объем тела.
Инструкция
1. В том случае, если у тела знамениты такие показатели, как его объем (V) и плотность (p), то для расчета массы тела понадобится применять формулу: m = p*V.
2. Для наглядности дозволено привести пример. Требуется обнаружить массу бетонной плиты, чей объем составляет 15 м?.Решение: для нахождения массы бетонной плиты требуется знать только лишь его плотность . Для того, дабы узнать эту информацию, надобно воспользоваться таблицей плотностей разных веществ.
3. Согласно этой таблице плотность бетона составляет 2300 кг/м?. Тогда для того, дабы обнаружить массу бетонной плиты, понадобится совершить примитивное алгебраическое действие: m = 15*2300 = 34500 кг, либо 34.5 тонн. Результат: масса бетонной плиты составляет 34.5 тонн
4. Измерение массы традиционным методом происходит при помощи одного из древнейших приборов общества – с поддержкой весов. Это происходит вследствие сопоставлению массы тела с подмогой эталонной массы груза – гирь.
Обратите внимание!
Проводя расчет по указанной выше формуле, нужно осмысливать, что таким образом узнается масса покоя данного тела. Увлекателен факт того, что многие элементарные частицы владеют колеблющейся массой, которая зависит от скорости их движения. Если элементарная частица движется со скоростью тела, то эта частица является безмассовой (скажем, фотон). Если же скорость движения частицы ниже скорости света, то такая частица именуется громоздкой.
Полезный совет
При измерении массы никогда невозможно забывать, в какой системе будет дан финальный итог. Имеется ввиду, что в системе СИ масса измеряется в килограммах, в то время как в системе СГС масса измеряется в граммах. Также масса измеряется в тоннах, центнерах, каратах, фунтах, унциях, пудах, а также во многих других единицах в зависимости от страны и культуры. В нашей стране, к примеру, массу издавна измеряли в пудах, берковцах, золотниках.
У вас есть двухсотлитровая бочка. Вы планируете ее всецело заправить дизельным топливом, которое используете для отопления своей мини-котельной. А сколько она будет весить, наполненная соляром? Теперь вычислим.
Вам понадобится
- – таблица удельной плотности веществ;
- – знание изготавливать простейшие математические вычисления.
Инструкция
1. Дабы обнаружить массу вещества по его объему, воспользуйтесь формулой удельной плотности вещества.p = m/vздесь p – удельная плотность вещества;m – его масса;v – занимаемый объем. Массу будем считать в граммах, килограммах и тоннах. Объемы в кубических сантиметрах, дециметрах и мерах. И удельную плотность, соответственно, в г/см3, кг/дм3, кг/м3, т/м3.
2. Выходит, по условиям задачи, у вас есть двухсотлитровая бочка. Это значит: бочка емкостью 2 м3. Двухсотлитровой ее называют, так как воды, с ее удельной плотностью равной единице, в такую бочку входит 200 литров.Вас волнует масса. Следственно выводите ее в представленной формуле на первое место.m = p*vВ правой части формулы незнакомо значение р – удельная плотность дизельного топлива. Обнаружьте его по справочнику. Еще проще – задать в поиск запрос в интернете «удельная плотность дизельного топлива».
3. Обнаружили: плотность летнего дизельного топлива при t = +200 С – 860 кг/м3.Подставляйте значения в формулу:m = 860*2 = 1720 (кг)1 тонна и 720 кг – столько весят 200 литров летнего дизельного топлива. Завесив заблаговременно бочку, дозволено рассчитать всеобщий вес и прикинуть мощность стеллажа под бочку с соляром.
4. В сельской местности пригодным бывает заблаговременно рассчитать массу нужных по кубатуре дров, дабы определиться с грузоподъемностью транспорта, на котором будут доставляться эти дрова. К примеру, вам на зиму нужен минимум в 15 куб. метров березовых дров. Ищите в справочной литературе плотность березовых дров. Это: 650 кг/м3.Вычисляйте массу, подставив значения в ту же формулу удельной плотности.m = 650*15 = 9750 (кг)Сейчас, исходя из грузоподъемности и вместимости кузова, вы можете определиться с видом транспортного средства и числом поездок.
Видео по теме
Обратите внимание!
Люди постарше огромнее знакомы с представлением удельного веса. Удельная плотность вещества – это то же, что и удельный вес.
Бывают обстановки, когда нужно вычислить массу жидкости , содержащейся в какой-нибудь емкости. Это может быть и во время учебного занятия в лаборатории, и в ходе решения бытовой загвоздки, скажем, при ремонте либо покраске.
Инструкция
1. Самый легкой способ – прибегнуть к взвешиванию. Вначале взвесьте емкость совместно с жидкостью, потом перелейте жидкость в иную емкость, подходящую по размерам, и взвесьте пустую тару. А после этого остается лишь вычесть из большего значения меньшее, и вы получите результат. Разумеется, к этому методу дозволено прибегать, только имея дело с невязкими жидкостями, которые позже перелива фактически не остаются на стенках и днище первой емкости. То есть, какое-то число и тогда останется, но оно будет настоль немного, что им дозволено пренебречь, на точности вычислений это примерно не отразится.
2. А если жидкость вязкая, скажем, глицерин? Как тогда определить ее массу ? В этом случае вам нужно знать ее плотность (?) и занимаемый объем (V). А дальше теснее все элементарно. Масса (М) вычисляется по формуле М = ?V. Разумеется, перед вычислением нужно перевести сомножители в цельную систему единиц.
3. Плотность жидкости дозволено обнаружить в физическом либо химическом справочнике. Но класснее воспользоваться измерительным прибором – плотномером (денситометром). А объем дозволено вычислить, зная форму и габаритные размеры емкости (если она имеет верную геометрическую форму).2h/4.
4. Представим, вам задана такая задача. В ходе лабораторного эксперимента, жидкость массой m, находящаяся в емкости калориметра и имеющая теплоемкость с, была нагрета от изначальной температуры t1 до финальной температуры t2. На данный нагрев было затрачено число теплоты, равное Q. Какова масса этой жидкости ?
5. Все величины, помимо m, знамениты, потерями тепла в ходе эксперимента дозволено пренебречь. В вычислении нет безусловно ничего трудного. Нужно лишь припомнить формулу, объединяющую число теплоты, массу жидкости , ее теплоемкость и разницу в температурах. Она такова: Q = mc(t2-t1). Следственно, масса жидкости вычисляется по формуле: m = Q/c(t2-t1). Подставив в формулу вестимые вам величины, вы легко вычислите массу жидкости m.
Значение непрерывной Планка, обозначаемой буквой h, определено экспериментально в лабораторных условиях с точностью до десяти знаков позже запятой. Поставить навык по ее определению дозволено и в физическом кабинете, но точность будет гораздо поменьше.
Вам понадобится
- – фотоэлемент с внешним фотоэффектом;
- – источник света с монохроматором;
- – плавно регулируемый источник питания на 12 В;
- – вольтметр;
- – микроамперметр;
- – лампа на 12 В, 0,1 А;
- – калькулятор, работающий с числами, представленными в экспоненциальной форме.
Инструкция
1. Используйте для навыка фотоэлемент с внешним фотоэффектом. Элемент с внутренним фотоэффектом (т.е., не вакуумный, а полупроводниковый) не подойдет. Испытайте его на пригодность для проведения навыка, для чего подключите к микроамперметру непринужденно, соблюдая полярность. Направьте на него свет – стрелка должна отклониться. Если этого не произойдет, используйте фотоэлемент иного типа.
2. Не меняя полярности подключения ни фотоэлемента, ни микроамперметра, разорвите цепь и включите в ее обрыв регулируемый источник питания, выходное напряжение которого дозволено плавно менять от 0 до 12 В (с двумя ручками для дерзкой и точной регулировки). Внимание: включать данный источник следует не в прямой, а в обратной полярности, дабы он своим напряжением не увеличивал, а сокращал ток через элемент. Параллельно ему подключите вольтметр – на данный раз в полярности, соответствующей обозначениям на источнике. Этого дозволено не делать, если в блоке имеется встроенный вольтметр. Также подключите параллельно выходу нагрузку, скажем, в виде лампы на 12 В, 0,1 А, на случай, если внутреннее сопротивление источника крупно. Свет лампы попадать на фотоэлемент не должен.
3. Установите напряжение источника на нуль. Направьте в фотоэлемент поток света из источника с монохроматором, выставив длину волны порядка 650 нанометров. Плавно увеличивая напряжение источника питания, добейтесь, дабы ток через микроамперметр стал равным нулю. Оставьте регулятор в этом расположении. Запишите показания вольтметра и шкалы монохроматора.
4. Выставьте на монохроматоре длину волны порядка 450 нанометров. Немножко увеличьте выходное напряжение источника питания, дабы ток через фотоэлемент вновь стал равным нулю.(-34) Дж·с, навык дозволено считать поставленным положительно.
Видео по теме
Обратите внимание!
Соблюдайте осторожность при работе с электрическим оборудованием.
Плотность вещества — как определить и чему равна?
Масса
Начнем с самого сложного — с массы. Казалось бы, это понятие мы слышим с самого детства, примерно знаем, сколько в нас килограмм, и ничего сложного здесь быть не может. На самом деле, все сложнее.
В Международном бюро мер и весов в Париже есть цилиндр массой один килограмм. Материал этого цилиндра — сплав иридия и платины. Его масса равна одному килограмму, и этот цилиндр — эталон для всего мира.
Высота этого цилиндра приблизительно равна 4 см, но чтобы его поднять, нужно приложить немалую силу. Необходимость эту силу прикладывать обуславливается инерцией тел и математически записывается через второй закон Ньютона.
Второй закон Ньютона F = ma F — сила [Н] m — масса [кг] a — ускорение [м/с2] |
В этом законе массу можно считать неким коэффициентом, который связывает ускорение и силу. Также масса важна при расчете силы тяготения. Она является мерой гравитации: именно благодаря ей тела притягиваются друг к другу.
Закон Всемирного тяготения F = GMm/R2 F — сила [Н] M — масса первого тела (часто планеты) [кг] m — масса второго тела [кг] R — расстояние между телами [м] G — гравитационная постоянная G = 6.67 × 10-11 м3 кг-1 с-2 |
Когда мы встаем на весы, стрелка отклоняется. Это происходит потому, что масса Земли очень большая, и сила тяготения буквально придавливает нас к поверхности. На более легкой Луне человек весит меньше в шесть раз. Когда думаешь об этом, хочется взвешиваться исключительно на Луне🙃
Откуда берется масса
Физики убеждены, что у элементарных частиц должна быть масса. Доказано, что у электрона, например, масса есть. В противном случае они не могли бы образовать атомы и всю видимую материю.
Вселенная без массы представляла бы собой хаос из различных излучений, двигающихся со скоростью света. Не существовало бы ни галактик, ни звезд, ни планет. Здорово, что это не так, и у элементарных частиц есть масса. Только вот пока непонятно, откуда эта масса у них берется.
Мужчину на этой фотографии зовут Питер Хиггс. Ему мы обязаны за предположение, экспериментально доказанное в 2012 году, что массу всех частиц создает некий бозон.
Источник: Википедия
Бозон Хиггса невозможно представить. Это точно не частица в форме шарика, как обычно рисуют электрон в учебнике. Представьте, что вы бежите по песку. Бежать ощутимо сложно, как будто бы увеличилась масса. Частицы пробираются в поле Хиггса и получают таким образом массу.
Объем тела
Объем — это физическая величина, которая показывает, сколько пространства занимает тело.3]
Плотность зависит от температуры, агрегатного состояния вещества и внешнего давления. Обычно если давление увеличивается, то молекулы вещества утрамбовываются плотнее — следовательно, плотность больше. А рост температуры, как правило, приводит к увеличению расстояний между молекулами вещества — плотность понижается.
Маленькое исключение
Исключение составляет вода. Так, плотность воды меньше плотности льда. Объяснение кроется в молекулярной структуре льда. Когда вода переходит из жидкого состояния в твердое, она изменяет молекулярную структуру так, что расстояние между молекулами увеличивается. Соответственно, плотность льда меньше плотности воды.
Ниже представлены значения плотностей для разных веществ. В дальнейшем это поможет при решении задач.
Твердое вещество | кг/м3 | г/см3 |
Платина | 21500 | 21,5 |
Золото | 19300 | 19,3 |
Вольфрам | 19000 | 19,0 |
Свинец | 11400 | 11,4 |
Серебро | 10500 | 10,5 |
Медь | 8900 | 8,9 |
Никель | 8800 | 8,8 |
Латунь | 8500 | 8,5 |
Сталь, железо | 7900 | 7,9 |
Олово | 7300 | 7,3 |
Цинк | 7100 | 7,1 |
Чугун | 7000 | 7,0 |
Алмаз | 3500 | 3,5 |
Алюминий | 2700 | 2,7 |
Мрамор | 2700 | 2,7 |
Гранит | 2600 | 2,6 |
Стекло | 2600 | 2,6 |
Бетон | 2200 | 2,2 |
Графит | 2200 | 2,2 |
Лёд | 900 | 0,9 |
Парафин | 900 | 0,9 |
Дуб (сухой) | 700 | 0,7 |
Берёза (сухая) | 650 | 0,65 |
Пробка | 200 | 0,2 |
Платиноиридиевый сплав | 21500 | 21,5 |
Жидкость | кг/м3 | г/см3 |
Ртуть | 13600 | 13,6 |
Мёд | 1300 | 1,3 |
Глицерин | 1260 | 1,26 |
Молоко | 1036 | 1,036 |
Морская вода | 1030 | 1,03 |
Вода | 1000 | 1 |
Подсолнечное масло | 920 | 0,92 |
Нефть | 820 | 0,82 |
Спирт | 800 | 0,8 |
Бензин | 700 | 0,7 |
Газ | кг/м3 |
Хлор | 3,22 |
Озон | 2,14 |
Пропан | 2,02 |
Диоксид углерода | 1,98 |
Кислород | 1,43 |
Воздух | 1,29 |
Азот | 1,25 |
Гелий | 0,18 |
Водород | 0,09 |
Где самая большая плотность?
Самая большая плотность во Вселенной — в черной дыре. Плотность черной дыры составляет около 1014 кг/м3
Средняя плотность
В школьном курсе чаще всего говорят о средней плотности тела. Дело в том, что если мы рассмотрим какое-нибудь неоднородное тело, то в одной его части будет, например, большая плотность, а в другой — меньшая.
Если вы когда-то делали ремонт, то знакомы с такой вещью, как цемент. Он состоит из двух веществ: клинкера и гипса. Значит нам нужно отдельно найти плотность гипса, плотность клинкера по формуле, указанной выше, а потом найти среднее арифметическое двух плотностей. Можно сделать так.
А можно просто массу цемента разделить на объем цемента и мы получим ровно то же самое. Просто в данном случае мы берем не массу и объем вещества, а массу и объем тела.
Формула плотности тела р = m/V р — плотность тела [кг/м^3] m — масса тела [кг] V — объем тела [м^3] |
Решение задач: плотность вещества
А теперь давайте тренироваться!
Задача 1
Цилиндр 1 поочерёдно взвешивают с цилиндром 2 такого же объёма, а затем с цилиндром 3, объем которого меньше (как показано на рисунке).
Какой цилиндр имеет максимальную среднюю плотность?
Решение:
Плотность тел прямо пропорциональна массе и обратно пропорциональна объему:
р = m/V
Исходя из проведенных опытов можно сделать следующие выводы:
1) масса первого цилиндра больше массы второго цилиндра при одинаковом объеме. Значит плотность первого цилиндра выше плотности второго.
2) масса первого цилиндра равна массе третьего цилиндра, объем которого меньше. Следовательно, плотность третьего цилиндра больше плотности первого цилиндра.
Таким образом, средние плотности цилиндров:
р2 < р1 < р3
Ответ: 3.
Задача 2
Шар 1 последовательно взвешивают на рычажных весах с шаром 2 и шаром 3 (как показано на рисунке). Для объёмов шаров справедливо соотношение V1 = V3 < V2.
Какой шар имеет максимальную среднюю плотность?
Решение:
Из рисунка ясно, что масса шаров 1 и 2 равна — следовательно, плотность второго шара меньше, чем первого.3
Плавание тел
Почему шарик с гелием взлетает? Или мяч при игре в водное поло не тонет?
Жидкости и газы действуют на погруженные тела с выталкивающей силой. Подробно это явление рассматривают в теме «Сила Архимеда». Если говорить простым языком: если плотность тела, погруженного в воду, больше плотности воды — тело пойдет ко дну. Если меньше – оно всплывет на поверхность.
Задача 1
Стальной шарик в воде падает медленнее, чем в воздухе. Чем это объясняется?
Решение:
Плотность воды значительно выше, чем воздуха, поэтому стальной шарик в воде падает медленнее
Задача 2
В таблице даны плотности некоторых твердых веществ. Если вырезать из этих веществ кубики, то какие кубики смогут плавать в воде? Плотность воды — 1000 кг/м3.
Название вещества | Плотность вещества, кг/м3 |
Алюминий | 2700 |
Парафин | 900 |
Плексиглас | 1200 |
Фарфор | 2300 |
Сосна | 400 |
Решение:
Плавать будут кубики, плотность которых меньше плотности воды, то есть сделанные из парафина или сосны.
Расчет массы или объёма вещества по параметрам одного из участвующих в реакции веществ
Расчет массы вещества или объема газа по известному количеству вещества, массе или объему одного из участвующих в реакции веществ
Для того чтобы решить расчетную задачу по химии, нужно воспользоваться следующим алгоритмом:
1. Составить уравнение химической реакции.
2. Над формулами веществ записать значения известных и неизвестных величин с соответствующими единицами величин (только для чистых веществ, т.е. не содержащих примесей).
Если по условию задачи в реакцию вступают вещества, содержащие примеси, то сначала нужно определить содержание чистого вещества; если в условии задачи идет речь о растворе, то сначала надо вычислить массу растворенного вещества.
3. Под формулами веществ с известными и неизвестными величинами записать соответствующие значения этих величин, найденные по уравнению реакции.
4. Составить и решить пропорцию.
5. Записать ответ.
Задача 1. Железо количеством вещества $0.5$ моль прореагировало без остатка с соляной кислотой. Определите массу образовавшегося хлорида железа (II).
Дано:
$n(Fe)=0.5$ моль
$m(FeCl_2)-?$
Решение:
1. Запишем уравнение химической реакции:
$Fe+2HCl=FeCl_2+H_2↑$.
2. Запишем известные и неизвестные числовые значения над формулами веществ в уравнении.
${Fe}↖{56}+2HCl={FeCl_2}↖{127}+H_2$
$M(Fe)=56$г/моль; $m(Fe)=56$г/м $·1$моль$=56$г
$M(FeCl_2)=56+35.5·2=127$г/моль;
$m(FeCl_2)=127$г/моль $·1$моль$=127$г
3. Найдем заданную химическим уравнением массу $0.5$ моль железа и запишем полученное значение под его формулой.
$m(Fe)=M·n=56$г/моль $·0.5$моль$=28$г
4. Уравнение примет вид:
${Fe}↙{28}↖{56}+2HCl={FeCl_2}↙{x}↖{127}+H_2↑$
5. Составим и решим пропорцию:
${56}/{28}={127}/{x}; x={28·127}/{56}=63.5$г.
Ответ: $m(FeCl_2)=63.5$ г.
Задача 2. В каком объеме кислорода (н.у.) нужно сжигать железо, чтобы получить $0.2$ моль оксида железа (III)?
Дано:
$n(Fe_2O_3)=0.2$моль
$V(O_2)-?$
Решение:
$1.4Fe+3O_2=2Fe_2O_3.$
$2.M_r(Fe_2O_3)=56·2+16·3=16$г/моль;
$m(Fe_2O_3)=M_r·n=16$г/моль $·2$моль$=320$г
$M_r(O_2)=16+16=32$/моль;
$m(O_2)=32$г/моль $·2$моль$=96$г
$4Fe+{3O_2}↙{x_{моль}}↖{96}={2Fe_2O_3}↙{0.2_{моль}}↖{320}$
$3.{96}/{x}={320}/{0.2}; x={96·0.2}/{320}=0.06$моль
$4.V=V_m·n=22.4$л/моль $·0.06$моль$=1.3$л
Ответ: $V(O_2)=1.34$л.
Нахождение объема — Метод вытеснения воды | Глава 3: Плотность
Покажите учащимся пять стержней одинаковой массы, но разного объема.
Покажите студентам пять стержней и объясните, что все они имеют одинаковую массу. Затем возьмите самые длинные, средние и самые короткие стержни и напомните учащимся, что у них одинаковая масса.
Попросите учащихся сделать прогноз:
- Какой стержень самый плотный? Наименее плотный? Между?
Студенты могут подумать, что, поскольку масса каждого стержня одинакова, объем каждого стержня должен иметь какое-то отношение к его плотности.Некоторые могут пойти дальше и заявить, что стержень наименьшего объема должен иметь наибольшую плотность, потому что такая же масса упакована в наименьший объем. Или что стержень с наибольшим объемом должен иметь наименьшую плотность, потому что та же масса распределена по наибольшему объему.
Сообщите учащимся, что, как и кубики в предыдущем упражнении, им необходимо знать объем и массу каждого образца. Они также рассчитают плотность каждого образца и используют это значение, чтобы выяснить, из какого материала сделан каждый стержень.
Покажите анимацию и продемонстрируйте, как измерить объем с помощью метода вытеснения воды.
Спроектируйте анимацию «Смещение воды».
Воспроизведите анимацию, демонстрирующую метод вытеснения воды с помощью чашки с водой, градуированного цилиндра и стержня, как это будут делать ученики в задании. Используйте образец темно-серого пластика, чтобы учащиеся могли его лучше рассмотреть.
Объем
- Продемонстрируйте, что будут делать студенты, наливая воду из чашки в мерный цилиндр емкостью 100 мл, пока он не достигнет высоты, которая будет покрывать образец.Это «начальный уровень воды».
Сообщите студентам, что поверхность воды в трубке не может быть полностью плоской. Вместо этого поверхность может иметь неглубокую U-образную форму, называемую мениском. При измерении считывайте линию прямо у основания мениска.
Наклоните градуированный цилиндр и медленно опустите образец в воду. Держите градуированный цилиндр вертикально. Запишите уровень воды. Укажите, что это «последний уровень воды».”
- Скажите ученикам, что вы хотите узнать, насколько изменился уровень воды. Вычтите начальный уровень воды из конечного уровня воды, чтобы найти объем стержня.
Объем пробы = конечный уровень воды — начальный уровень воды.
- Студенты могут быть сбиты с толку тем, что единица измерения объема в градуированном цилиндре — миллилитры (мл), когда на предыдущем уроке студенты рассчитывали объем в кубических сантиметрах (см 3 ).Объясните учащимся, что 1 мл — это то же самое, что 1 см 3 . Нажмите овальную кнопку на первом экране анимации с пометкой «1 мл = 1 см 3 ».
Спросите студентов:
- Когда вы помещаете образец в воду, почему уровень воды повышается?
- Объем, который занимает стержень, толкает или вытесняет воду. Единственное место, где может течь вода, — это вверх. Количество или объем вытесненной воды равен объему пробы.
- Равен ли объем пробы окончательному уровню воды?
- Нет. Студенты должны понимать, что объем стержня не равен уровню воды в градуированном цилиндре. Вместо этого объем стержня равен количеству воды, которое поднялось в градуированном цилиндре (количество вытесненной воды). Чтобы определить количество вытесненной воды, ученики должны вычесть начальный уровень воды (60 мл) из конечного уровня воды.
- Какие единицы следует использовать при записи объема пробы?
- Поскольку они будут использовать объем для расчета плотности, учащиеся должны записать объем образца в см. 3 .
- Масса
- Студенческим группам не нужно будет измерять массу стержней. Масса каждой удочки одинакова, 15 грамм, и она указана в их таблице на листе активности. Им нужно будет измерить объем каждого из пяти различных стержней и рассчитать их плотность. Учащиеся будут использовать свои значения плотности для идентификации каждого стержня.
- Плотность
- Продемонстрируйте, как рассчитать плотность (D = m / v) путем деления массы на объем.Укажите, что ответ будет в граммах на кубический сантиметр (г / см 3 ).
Раздайте каждому ученику по одному листу с заданиями.
Учащиеся запишут свои наблюдения и ответят на вопросы о занятии в листе действий. «Объясни это с помощью атомов и молекул» и «Возьми это». Дальнейшие разделы рабочего листа будут заполнены либо в классе, либо в группах, либо индивидуально, в зависимости от ваших инструкций. Посмотрите на версию листа с заданиями для учителя, чтобы найти вопросы и ответы.
Дайте студентам время ответить на вопросы 1–5 на листе задания перед тем, как приступить к занятию.
Попросите учащихся вычислить плотность пяти различных стержней и использовать характерное свойство плотности, чтобы правильно их идентифицировать.
Примечание. Плотность трех пластиков одинакова, поэтому учащиеся должны быть очень осторожны при измерении их объема методом вытеснения воды.Также сложно измерить объем самого маленького стержня. Намекните учащимся, что он составляет от 1,5 до 2,0 мл.
Вопрос для расследования
Можете ли вы использовать плотность, чтобы идентифицировать все пять стержней?
Материалы для каждой группы
- Набор из пяти разных стержней одинаковой массы
- Градуированный цилиндр, 100 мл
- Вода в стакане
- Калькулятор
Подготовка учителей
- С помощью перманентного маркера отметьте пять стержней буквами A, B, C, D и E.Следите за тем, какая буква соответствует какому образцу, не сообщая учащимся об этом. Если вы используете два или более наборов стержней, обязательно пометьте каждый образец из одного и того же материала одной и той же буквой.
- После того, как группа обнаружит объем образца, она должна передать этот образец другой группе до тех пор, пока все группы не найдут объем всех пяти стержней.
- Для самого длинного образца, который плавает, ученики могут использовать карандаш, чтобы аккуратно протолкнуть образец прямо под поверхность воды, чтобы измерить его полный объем.
Процедура
Том
- Налейте достаточно воды из чашки в мерный цилиндр, чтобы достичь высоты, покрывающей образец. Прочтите и запишите том.
- Слегка наклоните градуированный цилиндр и осторожно поместите образец в воду.
- Поставьте мерный цилиндр вертикально на стол и посмотрите на уровень воды. Если образец всплывает, используйте карандаш, чтобы осторожно протолкнуть верхнюю часть образца прямо под поверхность воды.Запишите количество миллилитров для этого конечного уровня воды.
Найдите количество вытесненной воды, вычтя начальный уровень воды из последнего уровня. Этот объем равен объему цилиндра в см 3 .
- Запишите этот объем в таблицу на рабочем столе.
- Удалите образец, налив воду обратно в чашку и вынув образец из мерного цилиндра.
Плотность
- Рассчитайте плотность по формуле D = m / v. Запишите плотность в (г / см 3 ).
- Обменивайтесь образцами с другими группами до тех пор, пока вы не измерите объем и не рассчитаете плотность всех пяти образцов.
Таблица 2. Объем, масса и плотность для неизвестных A – H Образец Начальный уровень воды (мл) Конечный уровень воды (мл) Объем стержней (см 3 ) Масса (г) Плотность (г / см 3 ) A 15.0 B 15,0 С 15,0 D 15.0 E 15,0
Определить образцы
- Сравните рассчитанные вами значения плотности со значениями в таблице. Затем напишите буквенное название для каждого образца в таблице.
Примечание. Рассчитанные учащимися плотности могут не совпадать с плотностями, указанными в таблице. Во время работы учеников проверяйте их значения объема, чтобы убедиться, что они используют разницу между конечным и начальным уровнями воды, а не только конечный уровень.
Материал | Приблизительная плотность (г / см 3 ) | Образец (буквы A – E) |
---|---|---|
Латунь | 8.8 | |
Алюминий | 2,7 | |
ПВХ | 1,4 | |
Нейлон | 1,2 | |
Полиэтилен | 0,94 |
Обсудите, подтверждают ли значения плотности учащихся их прогнозы с самого начала урока.
Обсудите учащиеся значения плотности для каждого образца. Обратите внимание на то, что разные группы могут иметь разные значения плотности, но большинство значений близки к значениям на диаграмме.
Спросите студентов:
- Каждая группа измерила объем одних и тех же образцов. По каким причинам группы могут иметь разные значения плотности?
- Студенты должны понимать, что небольшие неточности в измерении объема могут объяснить разницу в значениях плотности.Другая причина в том, что градуированный цилиндр сам по себе не идеален. Так что всегда есть некоторая неопределенность в измерениях.
Напомните учащимся, что в начале урока они сделали прогноз относительно плотности малой, средней и длинной выборки. Студенты должны были предсказать, что самый длинный цилиндр имеет самую низкую плотность, самый короткий цилиндр — самую высокую плотность, а средний находится где-то посередине.
Спросите студентов:
- Был ли ваш прогноз относительно плотности этих трех образцов верным?
- Попросите учащихся взглянуть на свою таблицу со значениями массы, объема и плотности для каждого цилиндра.Попросите их найти взаимосвязь между объемом и плотностью. Студенты должны понимать, что самый короткий цилиндр имеет наибольшую плотность, а самый длинный цилиндр — самую низкую.
- Можно ли сказать, что если два образца имеют одинаковую массу, то образец с большим объемом будет иметь меньшую плотность?
- Да.
- Почему?
- Поскольку образцы имеют одинаковую массу, их объемы дадут вам представление об их плотности в соответствии с уравнением D = m / v.Если в знаменателе указано большее число для объема, плотность будет ниже.
- Справедливо ли сказать, что тот, у которого меньше объем, будет иметь более высокую плотность?
- Да.
- Почему?
- Если в знаменателе указано меньшее значение объема, плотность будет выше.
Попросите учащихся посмотреть на размер и массу атомов, чтобы объяснить, почему каждый образец имеет разную плотность.
Спроецировать изображение Размер и масса атома.
Скажите студентам, что эта диаграмма основана на периодической таблице элементов, но включает только первые 20 элементов из примерно 100. Показано представление атома для каждого элемента. Для каждого элемента атомный номер выше атома, а атомная масса ниже. Эта диаграмма особенная, потому что она показывает размер и массу атомов по сравнению с другими атомами.
Примечание: учащиеся могут захотеть узнать больше о том, почему атомы имеют разные атомные номера и разные размеры.Эти вопросы будут рассмотрены в следующих главах, но вы можете сказать им, что атомный номер — это количество протонов в центре или ядре атома. Каждый элемент имеет определенное количество протонов в своих атомах, поэтому каждый элемент имеет свой атомный номер. Разницу в размерах объяснить немного сложнее. У атомов есть положительно заряженные протоны в ядре и отрицательно заряженные электроны, движущиеся вокруг ядра. На самом деле пространство, которое занимают электроны, составляет большую часть размера атома.По мере увеличения числа протонов в атоме увеличивается его масса и сила положительного заряда. Этот дополнительный положительный заряд притягивает электроны ближе к ядру, делая атом меньше. Атомы снова увеличиваются в размерах в следующем ряду, потому что больше электронов добавляются в пространстве (на энергетическом уровне) дальше от ядра.
Сообщите учащимся, что они узнают больше о периодической таблице и атомах в главе 4. На данный момент все, на чем ученикам нужно сосредоточиться, — это размер и масса атомов.
Скажите студентам, что разницу в плотности между маленькими, средними и большими образцами, которые они измеряли, можно объяснить на основе атомов и молекул, из которых они сделаны.
Проецировать изображение Полиэтилен (самый длинный стержень).
Полиэтилен состоит из длинных молекул, состоящих только из атомов углерода и водорода. На диаграмме размера и массы атома масса углерода довольно мала, а масса водорода — самая низкая из всех атомов.Эти низкие массы помогают объяснить, почему полиэтилен имеет низкую плотность. Другая причина в том, что эти длинные тонкие молекулы неплотно упакованы вместе.
Проецировать изображение Поливинилхлорид (стержень средней длины).
Поливинилхлорид состоит из атомов углерода, водорода и хлора. Если вы сравните поливинилхлорид с полиэтиленом, вы заметите, что в некоторых местах, где есть атомы водорода в полиэтилене, есть атомы хлора. На диаграмме хлор имеет большую массу для своего размера.Это помогает сделать поливинилхлорид более плотным, чем полиэтилен. Плотность различных пластиков обычно обусловлена разными атомами, которые могут быть связаны с углеродно-водородными цепями. Если это тяжелые атомы для своего размера, пластик будет более плотным; если они легкие для своего размера, пластик будет менее плотным.
Проецируйте изображение Латунь (самый короткий стержень).
Латунь представляет собой комбинацию атомов меди и цинка. Медь и цинк появляются позже в периодической таблице, поэтому они не показаны в таблице, но они оба тяжелые для своего размера.Атомы также очень плотно упакованы. По этим причинам латунь более плотная, чем полиэтилен или поливинилхлорид.
Обсудите плотность кальция по сравнению с плотностью серы.
Попросите учащихся сослаться на иллюстрацию кальция и серы на своих листах заданий. Объясните, что атом кальция больше и тяжелее атома серы. Но кусок твердой серы более плотный, чем твердый кусок кальция.Плотность серы составляет около 2 г / см 3 , а плотность кальция составляет около 1,5 г / см 3 .
Спросите студентов:
- На основании того, что вы знаете о размере, массе и расположении атомов, объясните, почему образец серы более плотный, чем образец кальция.
- Несмотря на то, что атом серы имеет меньшую массу, чем атом кальция, гораздо больше атомов серы могут объединяться в определенном пространстве. Это дает серу большую массу на объем, чем кальций, что делает ее более плотной.
| Плотность, масса и объем
Используйте этот калькулятор для преобразования между плотностью, массой и объемом. Плотность — это масса вещества на единицу объема. Несколько единиц доступны для каждого варианта расчета.
Нравится? Поделитесь, пожалуйста,
Пожалуйста, помогите мне распространить информацию, поделившись этим с друзьями или на своем веб-сайте / в блоге. Спасибо.
Ссылка на сайт
Заявление об ограничении ответственности: Несмотря на то, что для создания этого калькулятора были приложены все усилия, мы не можем несет ответственность за любой ущерб или денежные убытки, возникшие в результате или в связи с его использованием.Этот инструмент предназначен исключительно в качестве услуги для вас, пожалуйста, используйте его на свой страх и риск. Полный отказ от ответственности. Не используйте расчеты для всего, что может привести к гибели людей, деньгам, имуществу и т. Д. Из-за неточных расчетов.
Расчет плотности
Плотность материала с научной точки зрения определяется как его масса на единицу объема. Его также можно рассматривать как сжатие или сжатие вещество. При расчете плотности по массе и объему важно помнить, что на плотность могут влиять давление и температура, особенно если речь идет о газах.
Калькулятор плотности использует формулу плотности: Плотность = Масса ÷ Объем . Чтобы вычислить плотность, нужно разделить массу на объем. Если вы введете в калькулятор две цифры массы и объема, он вернет плотность.
Расчет массы по плотности и объему
Чтобы вычислить массу, просто измените структуру формулы общей плотности. Умножьте показатель плотности на свой объем рисунок: m = ρ x V
Часто люди просят узнать, как преобразовать объем в вес, надеясь, что это простое преобразование один к одному.И это по этой причине что я построил конвертер веса в объем и калькулятор кулинарии инструменты. Так что, пожалуйста, используйте эти инструменты, если вам нужно.
Расчет объема по массе и плотности
Чтобы вычислить объем, измените структуру формулы плотности, чтобы разделить значение массы на значение плотности: V = m / ρ
Концентрация раствора
Водный раствор состоит как минимум из двух компоненты, растворитель (вода) и растворенное вещество (вещество, растворенное в вода).Обычно нужно отслеживать количество растворенного вещества. в растворе. Мы называем это концентрациями. Можно было бы сделать, сохранив отслеживать концентрацию, определяя массу каждого компонента, но Обычно легче измерять жидкости по объему, а не по массе. Сделать это Обычно используется мера, называемая молярностью. Молярность (M) определяется как число молей растворенного вещества (n), деленных на объем (V) раствора в литрах.
Важно отметить, что молярность определяется как моль растворенного вещества на литр раствора, а не моль растворенного вещества на литр растворителя.Это потому, что когда вы добавляете какое-либо вещество, возможно, соль, к некоторому объему воды объем полученного раствора будет другим чем исходный объем каким-то непредсказуемым образом. Чтобы обойти эту проблему химики обычно готовят свои растворы в мерных колбах. Эти колбы с длинным горлышком с вытравленной линией, обозначающей объем. Сначала в колбу добавляют растворенное вещество (возможно, соль), а затем воду. добавляется, пока раствор не достигнет отметки.Колбы имеют очень хорошую калибровку поэтому объемы обычно известны как минимум с четырьмя значащими цифрами.
Пример № 1:
Расчет молярности
Уравнение для расчета молярности из родинки и объем очень прост. Просто разделите моль растворенного вещества на объем решение.
Молярность (M) = моль растворенного вещества / объем раствора (в литрах) |
Какая молярность (с правильными цифрами
значительных
цифры) 0.40 моль NaCl, растворенного в 0,250 л?
Ответ
Пример № 2:
Приготовление разбавлений
Раствор можно сделать менее концентрированным путем разбавления растворителем. Если раствор разбавить от V 1 до V 2 , молярность
этого решения изменяется в соответствии с уравнением:
М 1 V 1 = M 2 V 2 молей растворенного вещества в исходном растворе 1 = моль растворенного вещества в разбавленном растворе 2 |
Единицы объема должны быть одинаковыми для обоих томов. в этом уравнении.Вообще, M 1 обычно называют начальным молярность раствора. V 1 относится к тому, который переведен. M 2 относится к конечной концентрации раствора. и V 2 — конечный общий объем раствора.
Помните, что номер количества молей растворенного вещества не изменяется при добавлении к раствору большего количества растворителя. Однако концентрация меняется с добавлением количества растворителя. (иллюстрация)
Не забывайте об этой концепции. Вы будете использовать его снова в кислотно-щелочном равновесии.
Пример расчета разбавления:
Как приготовить 100 мл 0,40 M MgSO 4 из основной раствор 2,0 М MgSO 4 ?
Ответ:
Есть два решения
в этой проблеме. Обратите внимание, что вам даны две концентрации, но только
один том.Решение №1 — это то, для чего у вас есть только концентрация.
— решение, которое уже лежит на полке. Решение # 2 — это
тот, для которого у вас есть и концентрация, и объем — раствор, который
вы собираетесь подготовиться.
По крайней мере, пока вам не станет комфортно с этим типом проблемы может быть полезно записать, какие числа идут с какими буквами в нашем уравнении.
M 1 = 2,0 M MgSO 4 ; V 1 = неизвестно
M 2 = 0.40M MgSO 4 ; V 2 = 100 мл
7.15: Концентрации: масса / объем в процентах — Chemistry LibreTexts
Цели обучения- Рассчитайте массовый / объемный процент раствора.
Как указывалось ранее, химики определили несколько типов концентраций, каждый из которых использует различную химически приемлемую единицу или комбинацию единиц, чтобы указать количество растворенного вещества, которое растворено в данном количестве растворителя.В следующих параграфах будет представлено и применено уравнение, используемое для расчета массового / объемного процента, который является окончательным типом процентной концентрации, который будет обсуждаться в этой главе.
Уравнение в процентах по массе / объему
массовый / объемный процент раствора определяется как отношение массы растворенного вещества, которое присутствует в растворе, к объему раствора в целом. Поскольку этот тип концентрации выражается в процентах, указанную пропорцию необходимо умножить на 100, как показано ниже.
\ (\ text {Масса / Объем в процентах} \) = \ (\ dfrac {\ rm {m_ {solute} \; (\ rm {g})}} {\ rm {V_ {solution} \; (\ rm {mL})}} \) × \ ({100} \)
Как обсуждалось в предыдущих двух разделах этой главы, массовые проценты и объемные проценты могут быть рассчитаны с использованием альтернативного уравнения, в котором массы или объемы, соответственно, растворенного вещества и растворителя, содержащихся в растворе, добавляются для получения масса или объем, соответственно, этого раствора в целом. В то время как массовые проценты обычно указываются для твердофазных и жидкофазных растворов, а объемные проценты обычно определяются для жидких и газофазных растворов, массовая / объемная процентная концентрация чаще всего рассчитывается для растворов, специально приготовленных путем растворения твердых растворенных веществ. в жидких растворителях.Чтобы создать этот тип раствора, твердые частицы растворенного вещества должны преодолеть силы притяжения, существующие между молекулами жидкого растворителя, чтобы перемещаться повсюду и занимать «пустые» пространства, которые временно создаются в процессе сольватации. После того, как частицы растворенного вещества диспергированы в растворителе, молекулы растворителя более сильно взаимодействуют с частицами сольватированного растворенного вещества, чем с другими молекулами растворителя, и, следовательно, существуют в более близкой физической близости к этим частицам растворенного вещества по сравнению с другими молекулами растворителя.В результате этих взаимодействий растворенного вещества с растворителем сольватированные частицы растворенного вещества занимают меньше места, чем они имели до их сольватации, что приводит к уменьшению объема раствора в целом по сравнению с объединенными объемами отдельного растворенного вещества и растворитель. Поскольку величина этого объемного сжатия варьируется в зависимости от растворенного вещества и растворителя, которые используются для приготовления раствора, расчет массового / объемного процента раствора путем добавления объемов его компонентов является чрезмерно сложной задачей.Следовательно, только приведенное выше уравнение может применяться для надежного определения массового / объемного процента раствора.
Расчет массовых / объемных процентов
Для включения в уравнение, показанное выше, масса растворенного вещества должна быть выражена в граммах, объем раствора должен быть указан в миллилитрах, а химическая формула каждого компонента должна быть записана как вторичная единица измерения. от связанной с ней числовой величины. Следовательно, если любое из этих измерений сообщается с использованием альтернативной единицы, его значение необходимо будет преобразовать в соответствующую единицу перед включением в уравнение массовых / объемных процентов.
Во время процессов умножения и деления, которые используются для решения этого уравнения, отмены единиц не происходит, потому что единицы, которые присутствуют в числителе и знаменателе, «g» и «mL», соответственно, не соответствуют друг другу. Таким образом, единицей измерения указанных количеств является «г / мл», которая обычно используется для определения плотности вещества. Поскольку плотности и массовые / объемные процентные концентрации имеют уникальные определения и рассчитываются с использованием разных уравнений, эти измерения являются разными величинами и, следовательно, не могут быть выражены в одной и той же единице.Следовательно, единицы массы и объема исключаются во время упрощения уравнения массовых / объемных процентов, , даже несмотря на то, что «г» и «мл» не отменяют, математически , а рассчитанная концентрация выражается в процентах. Однако, как указывалось ранее, количество растворенного вещества, которое присутствует в данном растворе, может быть выражено с использованием трех уникальных процентных концентраций. Чтобы отличить процент массы / объема, который рассчитывается путем упрощения отношения массы к объему , от других основанных на процентах концентраций, единицей измерения концентрации массовых / объемных процентов является «% m / v «, а химическая формула растворенного вещества записывается как вторичная единица для этого рассчитанного количества.
Наконец, поскольку массовые / объемные проценты не определены как точные количества, их значения должны указываться с использованием правильного количества значащих цифр. Однако «100» является точным числом и, следовательно, не влияет на значение итоговой сообщенной концентрации.
Упражнение \ (\ PageIndex {1} \)Рассчитайте массовый / объемный процент 762,5 миллилитрового раствора, приготовленного растворением 289,15 г азида кальция, Ca (N 3 ) 2 , в воде.
- Ответ
- Чтобы рассчитать массовый / объемный процент раствора, каждое вещество, упоминаемое в задаче, должно быть сначала классифицировано как растворенное вещество или растворитель. Поскольку в данном заявлении присутствует индикаторное слово «in», указанное химическое вещество после это слово, вода, H 2 O, является растворителем. в этом растворе, а оставшееся вещество, азид кальция, Ca (N 3 ) 2 , по умолчанию является растворенным веществом.»
Прежде чем это уравнение может быть применено, необходимо подтвердить действительность единиц, связанных с данными числовыми значениями. Как указано выше, масса растворенного вещества должна быть выражена в граммах, а объем раствора должен быть указан. в миллилитрах. Таким образом, указанные количества выражаются в соответствующих единицах и могут быть непосредственно включены в уравнение массовых / объемных процентов, как показано ниже. При упрощении этого уравнения единицы массы и объема исключаются, , хотя » g «и» mL «математически не исключают , чтобы избежать получения единицы плотности в результате деления данных количеств.Чтобы отличить процент массы / объема, который вычисляется путем упрощения отношения массы к объему , от других основанных на процентах концентраций, единицей измерения результирующей концентрации является «% м / об Ca ( N 3 ) 2 . » Химическая формула растворенного вещества записывается как вторичная единица вычисленного количества, и применение правильного количества значащих цифр к этому значению приводит к окончательному ответу, который показан ниже.
\ (\ text {Масса / Объем в процентах} \) = \ (\ dfrac {289.15 \; \ rm {g} \; \ rm {Ca (N_3) _2}} {762,5 \; \ rm {mL} \; \ rm {решение}} \) × \ ({100} \)
\ (\ text {Масса / Объем в процентах} \) = \ ({37.92131 … \% \ \ rm {m / v} \; \ rm {Ca (N_3) _2}} ≈ {37.92 \% \ \ rm {m / v} \; \ rm {Ca (N_3) _2}} \)
Плотность, удельный вес и удельный вес
Плотность определяется как массы на единицу объема . Масса — это свойство, и единица измерения плотности в системе СИ составляет [ кг / м 3 ].
Плотность может быть выражена как
ρ = m / V = 1 / ν [1]
где
ρ = плотность [кг / м 3 ], [снарядов / фут 3 ]
м = масса [кг], [снаряды]
V = объем [м 3 ], [футы 3 ]
ν = удельный объем [м 3 / кг], [футы 3 / снаряды]
Империал (U.S.) единицами измерения плотности являются снарядов / фут 3 , но фунт-масса на кубический фут — фунтов м / фут 3 —. Обратите внимание, что существует разница между фунтами силы ( фунтов на ) и массой фунтов ( фунтов ) . Пули могут быть умножены на 32,2 , что дает приблизительное значение массы в фунтах (фунт м ) .
- 1 снаряд = 32,174 фунта м = 14,594 кг
- 1 кг = 2.2046 фунтов м = 6,8521×10 -2 пробок
- Плотность воды: 1000 кг / м 3 , 1,938 пробок / фут 3
См. Также Конвертер единиц — масса и Конвертер единиц — плотность
На атомном уровне частицы плотнее упакованы внутри вещества с большей плотностью. Плотность — это физическое свойство, постоянное при данной температуре и давлении, которое может быть полезно для идентификации веществ.
Ниже на этой странице: Удельный вес (относительная плотность), Удельный вес для газов, Удельный вес, Примеры расчетов
См. Также: Плотности для некоторых распространенных материалов
Вода — Плотность, Удельный вес и Коэффициент теплового расширения — изменение температуры при 1, 68 и 680 атм, единицы СИ и британские единицы
Воздух — плотность, удельный вес и коэффициент теплового расширения — изменение температуры и давления, единицы СИ и британские единицы
Как измерить плотность жидких нефтепродуктов
Пример 1: Плотность мяч для гольфа
Пример 2: Использование плотности для идентификации материала
Пример 3: Плотность для расчета объемной массы
Удельный вес (относительная плотность) — SG — это безразмерная единица , определяемая как отношение плотности вещества к плотности воды — при заданной температуре e и может быть выражено как
SG = ρ вещество / ρ h3O [2]
, где
SG = удельный вес вещества
ρ вещество = плотность жидкости или вещества [кг / м 3 ]
ρ h3O = плотность воды — обычно при температуре 4 o C [кг / м 3 ]
Обычно используют плотность воды при температуре 4 o C (39 o F) в качестве ориентира, поскольку вода в этой точке имеет самую высокую плотность 1000 кг / м 3 или 1.940 снарядов / фут 3 .
Поскольку удельный вес — SG — безразмерен, он имеет то же значение в системе СИ и британской имперской системе (BG). Удельный вес жидкости имеет то же числовое значение, что и ее плотность, выраженная в г / мл или мг / м 3 . Вода обычно также используется в качестве эталона при расчете удельного веса твердых веществ.
См. Также Теплофизические свойства воды — плотность, температура замерзания, температура кипения, скрытая теплота плавления, скрытая теплота испарения, критическая температура…
Пример 4: Удельный вес железа
Удельный вес некоторых распространенных материалов
Вещество | Удельный вес — SG — | ||||||||
---|---|---|---|---|---|---|---|---|---|
0,00182 , сухой | 0,0013 | ||||||||
Спирт | 0,82 | ||||||||
Алюминий | 2,72 | ||||||||
Латунь | 8.48 | ||||||||
Кадмий | 8,57 | ||||||||
Хром | 7,03 | ||||||||
Медь | 8,79 | ||||||||
Углекислый газ | 9018 9018 | Углерод | Углерод | 7,20 | |||||
Водород | 0,00009 | ||||||||
Свинец | 11,35 | ||||||||
Ртуть | 13.59 | ||||||||
Никель | 8,73 | ||||||||
Азот | 0,00125 | ||||||||
Нейлон | 1,12 | ||||||||
Кислород | 0,00143 | ||||||||
ПВХ | 1,36 | ||||||||
Резина | 0,96 | ||||||||
Сталь | 7,82 | ||||||||
Олово | 7.28 | ||||||||
Цинк | 7,12 | ||||||||
Вода (4 o C) | 1.00 | ||||||||
Вода, море | 1.027 |
Вернуться к началу
Удельный вес газов обычно рассчитывается по отношению к воздуху и определяется как отношение плотности газа к плотности воздуха — при указанной температуре и давлении.
Удельный вес можно рассчитать какSG = ρ газ / ρ воздух [3]
где
SG = удельный вес газа
ρ газ = плотность газа [кг / м 3 ]
ρ воздух = плотность воздуха (обычно при NTP — 1,204 [кг / м 3 ])
Молекулярные веса могут использоваться для расчета удельного веса, если плотности газа и воздуха оцениваются при такое же давление и температура.
См. Также Теплофизические свойства воздуха — плотность, вязкость, критическая температура и давление, тройная точка, энтальпии и энтропии, теплопроводность и диффузность, ……
Наверх
Определен удельный вес как вес на единицу объема . Масса , сила . Единица измерения удельного веса в системе СИ — [Н / м 3 ]. Британская система мер — [фунт / фут 3 ].
Удельный вес (или усилие на единицу объема) можно выразить как
γ = ρ a г [4]
, где
γ = удельный вес (Н / м 3 ], [фунт] / фут 3 ]
ρ = плотность [кг / м 3 ], [снаряды / фут 3 ]
a g = ускорение свободного падения (9.807 [м / с 2 ], 32,174 [фут / с 2 ] при нормальных условиях)
Пример 5: Удельный вес воды
Удельный вес для некоторых распространенных материалов
Изделие | Удельный вес — γ — | ||||
---|---|---|---|---|---|
Имперские единицы (фунт / фут 3 ) | Единицы СИ (кН / м 3 ) | ||||
Алюминий | 172 | 27 | |||
Латунь | 540 | 84.5 | |||
Тетрахлорметан | 99,4 | 15,6 | |||
Медь | 570 | 89 | |||
Спирт этиловый | 49,3 | 9018 9018 9018 9018 9018 9018 9018 9018 9018 9018 9018 9018 9018 6 | Глицерин | 78,6 | 12,4 |
Керосин | 50 | 7,9 | |||
Ртуть | 847 | 133.7 | |||
Моторное масло SAE 20 | 57 | 8,95 | |||
Морская вода | 63,9 | 10,03 | |||
Нерж. | 9,81 | ||||
Кованое железо | 474 — 499 | 74 — 78 |
В начало
Примеры
Пример 1: Плотность мяча для гольфа диаметром
A 42 мм и массой 45 г.Объем мяча для гольфа можно рассчитать как
V = (4/3) π (42 [мм] * 0,001 [м / мм] / 2) 3 = 3,8 10 -5 [м 3 ]
Плотность мяча для гольфа можно рассчитать как
ρ = 45 [г] * 0,001 [кг / г] / 3,8 10 -5 [м 3 ] = 1184 [кг / м 3 ]
Вернуться к началу
Пример 2: Использование плотности для идентификации материала
Неизвестное жидкое вещество имеет массу 18.5 г и занимает объем 23,4 мл (миллилитр).
Плотность вещества можно рассчитать как
ρ = (18,5 [г] / 1000 [г / кг]) / (23,4 [мл] / (1000 [мл / л] * 1000 [л / м] ) 3 ]))
= 18,5 10 -3 [кг] / 23,4 10 -6 [м 3 ] = 790 [кг / м 3 ]
Если мы посмотрим на плотность для некоторых распространенных жидкостей мы обнаруживаем, что этиловый спирт или этанол имеет плотность 789 кг / м 3 .Жидкость может быть этиловым спиртом!
Пример 3: Плотность для расчета объемной массы
Плотность титана составляет 4507 кг / м 3 . Массу 0,17 м 3 объемный титан можно рассчитать как
м = 0,17 [м 3 ] * 4507 [кг / м 3 ] = 766,2 [кг]
Примечание! — имейте в виду, что существует разница между «насыпной плотностью» и фактической «плотностью твердого тела или материала». Это может быть неясно в описании товаров.Перед важными расчетами всегда перепроверяйте значения с другими источниками.
В начало
Пример 4: Удельный вес железа
Плотность железа 7850 кг / м 3 . Удельный вес железа относительно воды с плотностью 1000 кг / м 3 составляет
SG (железо) = 7850 [кг / м 3 ] / 1000 [кг / м 3 ] = 7,85
Пример 5: Удельный вес воды
Плотность воды составляет 1000 кг / м3 при 4 ° C (39 ° F).
Удельный вес в единицах СИ составляет
γ = 1000 [кг / м 3 ] * 9,81 [м / с 2 ] = 9810 [Н / м 3 ] = 9,81 [кН / м 3 ]
Плотность воды составляет 1,940 пробок / фут3 при 39 ° F (4 ° C).
Удельный вес в британских единицах измерения:
γ = 1,940 [снаряды / фут 3 ] * 32,174 [фут / с 2 ] = 62,4 [фунт / фут 3 ]
К началу
Наночастицы Объем, масса и концентрация — nanoComposix
Объем, масса и концентрация наночастиц являются фундаментальными характеристиками наночастиц.В этом модуле мы описываем, как мы рассчитываем эти параметры как для твердых частиц, так и для геометрии частиц ядра / оболочки.
Как рассчитать объем наночастицы
Объем наночастицы определяется путем измерения ее размеров. В nanoComposix мы в основном используем просвечивающий электронный микроскоп (ТЕМ) для измерения размеров частиц, что позволяет рассчитать объем.
Для сферических наночастиц объем равен: V = 4/3 𝜋 r 3 , где r — радиус сферы
Для наночастиц стержневой формы объем равен: V = 𝜋 r 2 l , где r — радиус стержня, а l — длина
.Для пластинчатых наночастиц объем равен V = 𝜋 r 2 h , где r — радиус нанопластинки, а h — толщина.
Для наночастиц кубической формы объем равен: V = d 3 , где d — диаметр куба.
Для получения этих размеров изображения ПЭМ анализируются с помощью такой программы, как ImageJ / Fiji, для измерения множества частиц из нескольких сеток ПЭМ. Измерения усредняются и подставляются в приведенные выше формулы. Иногда невозможно получить все необходимые размеры только с помощью ПЭМ. Например, нанопластинки обычно располагаются ровно на сетке ПЭМ, поэтому невозможно измерить толщину непосредственно с помощью ПЭМ, и могут потребоваться дополнительные методы измерения, такие как атомно-силовая микроскопия (АСМ) или сканирующая электронная микроскопия (СЭМ) с высоким разрешением. для измерения толщины пластины.Другой метод измерения толщины пластины заключается в измерении толщины пластины в композитных частицах. Например, когда оболочка из диоксида кремния покрыта оболочкой, нанопластинки часто будут поворачиваться на краю при сушке на решетке ПЭМ, и можно выполнить прямое измерение толщины ПЭМ.
Как рассчитать массу наночастицы
После того, как объем наночастиц был рассчитан, массу можно определить, просто умножив объем на плотность материала (ρ): m = Vρ . В большинстве случаев плотность наноматериалов такая же, как и объемная плотность, но для некоторых материалов атомная структура отличается от объемной, и необходимо использовать скорректированную плотность.Расчет массы также корректируется для наночастиц, состоящих из нескольких материалов, таких как наночастицы ядра / оболочки.
Материал | Плотность наночастиц (г / см 3 ) | Насыпная плотность (г / см 3 ) |
---|---|---|
Золото | 19,32 | То же |
Серебро | 10,5 | То же |
Платина | 21.45 | То же |
Кремнезем | 2,05 | 2,65 |
Магнетит (Fe 3 O 4 ) | 5,24 | То же |
Эффективная плотность наночастиц кремнезема
Наночастицы диоксида кремнияобычно получают с использованием метода Штобера, в котором предшественники силана конденсируются в присутствии основания. В зависимости от производства, окружающей среды и условий хранения степень конденсации кремнезема различается.Первоначально внутри частицы диоксида кремния будет много групп -ОН; количество гидроксильных групп может быть уменьшено путем нагревания, которое преобразует две связи -ОН в связь Si-O-Si при высвобождении молекулы воды. Этот процесс конденсации приводит к тому, что кремнезем становится менее пористым и более плотным, но обычно имеет более низкую плотность, чем объемный кремнезем, полученный при высоких температурах.
Мы используем эффективную плотность 2,05 г / см 3 для наших наночастиц диоксида кремния, которая аналогична другим заявленным в литературе значениям, измеренным другими методами, такими как анализатор массы аэрозольных частиц (Kimoto 2014, Kimoto 2017)
Как рассчитать массу наночастицы ядро-оболочка
Если наночастица состоит из более чем одного материала, необходимо проводить отдельные вычисления для определения массы частицы.Например, золотые нанооболочки состоят из кварцевого ядра, окруженного тонкой золотой оболочкой, и масса ядра и масса оболочки должны рассчитываться отдельно, чтобы определить общую массу частицы. В этом примере общая масса частиц рассчитывается по
м всего = м жила + м оболочка = V жила ρ жила + V оболочка ρ оболочка
Масса ядра — это объем, умноженный на плотность ядра.Для сферической частицы ядра масса равна
.м жила = 4/3 𝜋 r жила 3 ρ жила
Масса раковины — это объем раковины, умноженный на ее плотность. В некоторых случаях проще всего рассчитать объем оболочки, измерив общий объем частиц и вычтя объем ядра. Например, для золотых нанооболочек мы сначала измеряем диаметр ядер наночастиц диоксида кремния, а затем измеряем окончательный диаметр золотых нанооболочек.Толщина золотой нанооболочки определяется путем вычитания общего радиуса золотой нанооболочки из радиуса сердцевины. Для подобных сферических частиц ядра / оболочки масса оболочки равна
.м оболочка = 4 / 3𝜋 (r всего 3 — r сердцевина 3 ) ρ оболочка
Общая масса частицы равна сумме массы ядра и массы оболочки. Приведенные выше формулы скорректированы с учетом других геометрий частиц.
Как рассчитать концентрацию наночастиц
Чтобы рассчитать концентрацию наночастиц, вы должны сначала определить общую массу интересующего элемента в форме наночастиц в растворе. Грубое приближение может быть получено, если предположить, что все исходные реагенты были преобразованы в форму наночастиц (например, весь добавленный хлорид золота восстанавливается до элементарного золота), но не учитывает более низкий выход реакции или технологические потери, а аналитические методы позволяют Прямое измерение концентрации элементов обеспечит более точные результаты.
В nanoComposix мы используем ИСП-МС для прямого измерения концентрации элементов в нашем конечном очищенном растворе наночастиц. Используя эту концентрацию, мы можем рассчитать числовую концентрацию наночастиц, разделив общую массу в растворе на массу одной наночастицы:
N = M C / м
, где M C — массовая концентрация измеряемого элемента, а m — масса отдельной наночастицы.Если общая массовая концентрация выражена в единицах г / мл, а масса частиц выражена в единицах г / частица, расчетная концентрация выражается в единицах частиц / мл. Для типичных составов наночастиц, которые мы предоставляем, эта концентрация находится в диапазоне от 10 9 до 10 15 частиц / мл, в зависимости от материала и продукта.
Как рассчитать концентрацию наночастиц ядра / оболочки
При расчете концентрации нанооболочек общая масса золота на мл определяется с помощью ICP-MS, а затем делится на массу золота в нанооболочке, чтобы получить общее количество частиц / мл.Для других конфигураций ядра / оболочки (например, биметаллических частиц золота / серебра) используется аналогичная стратегия.
Концентрация наночастиц в молярной концентрации
В химии и биологии концентрацию часто выражают как молярность, то есть количество молей вещества на литр. В некоторых случаях полезно выполнять расчеты, используя молярность частицы , которая отличается от молярной концентрации элементов, составляющих наночастицы.Молярность частиц рассчитана как
M = N / 6,02 × 10 23
, где N — числовая концентрация наночастиц в единицах частицы / л, а знаменатель — число Авогадро.
Типичные молярные концентрации наночастиц находятся в диапазоне концентраций от наномолярных (нМ) до пикомолярных (пМ). Например, наши золотые наносферы NanoXact диаметром 40 нм имеют общую концентрацию элементарного золота 0,05 мг / мл, что соответствует числовой концентрации частиц 8.1 × 10 10 частиц / мл и молярность частиц 130 пМ.
Другие прямые и косвенные измерения концентрации наночастиц
Существуют и другие методы прямого измерения концентрации наночастиц в растворе. Существует ряд инструментов, которые подсчитывают частицы, отслеживая прохождение частиц через небольшое отверстие. Когда наночастица проходит через отверстие, часть раствора перемещается, что изменяет электрическое сопротивление.При известной скорости потока можно подсчитать каждый электрический импульс и измерить концентрацию частиц. Два таких инструмента — Spectrodyne и qNano. Как правило, для проведения измерения требуется диспергирование частиц в буфере 1 × PBS или растворе с аналогичным уровнем концентрации соли. Кроме того, нижний предел размера при использовании этого метода составляет приблизительно 50 нм и требует, чтобы частицы были стабильными в средах с высоким содержанием соли. Другой метод измерения концентрации частиц — оптический подсчет количества частиц в небольшом объеме раствора.Malvern NanoSight визуально отслеживает отдельные наночастицы и рассчитывает их размер на основе диффузии. С помощью этого прибора можно измерять частицы размером до 30 нм, и соль для приготовления раствора не требуется. Однако частицы будут дрейфовать в фокальной плоскости и из нее, поэтому прибор необходимо сначала откалибровать с помощью стандартов количества частиц, чтобы получить точные измерения концентрации частиц. Один из самых точных методов подсчета частиц — высушить частицы на поверхности и индивидуально подсчитать каждую.Изображения большой площади, полученные с помощью сканирующего электронного микроскопа, можно использовать для подсчета частиц. Этот метод основан на очень точных объемах раствора, которые необходимо наносить на образец во время подготовки.
В целом точно определить количество частиц на удивление сложно. Альтернативный метод аналитическим решениям, представленным выше, заключается в использовании численных моделей для прогнозирования оптических свойств частицы с определенной геометрией. Расчет сечений экстинкции, поглощения и рассеяния может быть использован для прогнозирования концентрации частиц на основе измеренной экстинкции в растворе с использованием спектрофотометра УФ-видимого диапазона (Hendel 2014).Наш калькулятор частиц Mie Theory может использоваться для расчета поперечных сечений сферических частиц и сферических частиц ядро / оболочка, и было показано, что он хорошо согласуется с аналитическими измерениями.
Список литературы
Hendel, T .; Wuithschick, M .; Kettemann, F .; Birnbaum, A .; Rademann, K .; Полте, Дж. «Определение концентраций коллоидного золота на месте с помощью УФ-видимой спектроскопии: ограничения и перспективы». Анал. Chem. 2014 , 86 (22) , 11115-11124.
Масса, объем, плотность: сводка и определения
Масса: Масса — это количество материала в объекте. Масса измеряется весами, обычно в граммах или килограммах.
Том : объем — это объем пространства, занимаемого объектом. Объем измеряется с помощью градуированного цилиндра или определяется расчетом с использованием размеров объекта. Объем измеряется в см3, м3, мл и л.
Блок
Если объект представляет собой квадратный или прямоугольный блок, используйте формулу V = Д x Ш x В для расчета объема.
Цилиндр
Если объект цилиндрический, используйте формулу справа для вычисления объема.
Жидкость
Если вещество представляет собой жидкость, просто измерьте его объем с помощью градуированного цилиндра
Для предметов неправильной формы:
Используйте метод, известный как смещение. Наполните мерный цилиндр или емкость со шкалой установленным количеством воды. Запишите показания (например, 50 мл).Осторожно поместите предмет неправильной формы в цилиндр. Запишите новое показание (например, 53 мл) и вычтите его только из показания воды. Объем объекта неправильной формы должен составлять 3 мл.
Плотность : Плотность — это отношение массы к объему. Плотность можно использовать для идентификации вещества, потому что каждое чистое вещество имеет уникальное значение плотности. Объекты с меньшей плотностью будут плавать в жидкостях с большей плотностью.
Расчет плотности : Используйте следующую формулу:
Таблица плотности обычных веществВЕЩЕСТВО | СОСТОЯНИЕ ПРИ 200C | ПЛОТНОСТЬ ПРИ 200C (г / см3) |
золото | цельный | 19.32 |
Свинец | цельный | 11,35 |
серебро | цельный | 10,5 |
медь | цельный | 8,93 |
никель | цельный | 8,9 |
утюг | цельный | 7.88 |
алюминий | цельный | 2,7 |
стекло | цельный | 2,7 |
каучук | цельный | 1,2 |
дуб (дерево) | цельный | 0,7 -0,9 |
сосна (дерево) | цельный | 0.4 -0,5 |
Пенополистирол | цельный | 0,005 |
ртуть | жидкость | 13,6 |
глицерин | жидкость | 1. 26 |
Морская вода | жидкость | 1,01 |
вода | жидкость | 1 |
ацетон | жидкость | 0.791 |
Метиловый спирт | жидкость | 0,71 |
Спирт этиловый | жидкость | 0,79 |
хлор | газ | 0,0032 |
Двуокись углерода | газ | 0.002 |
воздух | газ | 0,0013 |
аммиак | газ | 0,0003 |
гелий | газ | 0,0002 |
водород | газ | 0,0001 |
Помогите нам исправить его улыбку своими старыми эссе, это займет секунды!