Утеплитель Урса 50 мм (URSA Geo М 25) в рулонах
+7 (495) 641 16 85 город Москва
Главная \ Каталог товаров \ Изоляционные материалы \ Утеплитель URSA Geo М-25 (Урса) 50 мм
Наименование — Теплоизоляция URSA Geo М 25 ( Урса Гео М 25 )
Применение — утеплитель Урса 50 мм ( URSA Geo М 25 ) используется для теплоизоляции трубопроводов, тепло- и звукоизоляции скатных крыш, перегородок, перекрытий, элементов вентиляционных систем, промышленного оборудования. Утеплитель Урса 50 мм ( Ursa ) применяется в тепловых пунктах, в системах отопления, водоснабжения, водоотведения. Утеплитель Урса 50 мм ( Ursa ) эффективен для изоляции трубопроводов горячей воды и технологического оборудования с температурой до + 270°С
Производитель — URSA ( Урса )
Регламентирующий документ — ТУ 5763-001-71451657-2004
Марка — М-25-9000-1200-50
Материал — минеральная тепло- и звукоизоляция на основе стекловолокна
Температура применения изоляции = — 60°С . . . + 270°С
Теплопроводность при Тср.= + 10ºС = 0.034 Вт / м * °К
Класс пожарной опасности — КМ0
Группа горючести — НГ ( негорючий )
Размеры рулона = 9000х1200х50 мм:
• длина = 9 метров
• ширина = 1200 мм
• толщина = 50 мм
Объём рулона = 0.54 м3
Вес рулона = 8 кг
Сертификат соответствия ( просмотр )
Паспорт качества ( по запросу )
Цена за 1 рулон ( по запросу )
Аналогичные товары
Утеплитель минераловатный ISOTEC М 25 ( Изотек М 25 ) |
Возврат в on-line каталог >>
Получить консультацию, узнать цены или оформить заявку, чтобы купить
этот товар Вы сможете, прислав запрос по электронной почте на адрес:
proton. lm@mail.ru или позвонив по телефону в Москве
ООО «ПРОТОН», Россия, Москва, проспект Андропова, дом 38
Официальный сайт: www.proton-st.ru, тел.: +7 (495) 641 16 85
Теплоизоляционные плиты XPS Пеноплэкс Комфорт 20х585х1185 мм, объем упаковки 0.2773 м3 TU0-0002506 аналоги, замены
Теплоизоляционные плиты XPS Пеноплэкс Комфорт 20х585х1185 мм, объем упаковки 0.2773 м3 TU0-0002506 аналоги, заменыПоказать каталог ↑Скрыть каталог ↓
Уважаемые Клиенты! В связи со сложившейся ситуацией, просим Вас актуальные цены на продукцию уточнять у персональных менеджеров. Благодарим за взаимопонимание и сотрудничество!
Найти |
|
- Электрооборудование
- Кабель-Провод
- Светотехника
- Низковольтное оборудование
- Электроустановочные изделия
- Материалы общестроительные
- Общая рубрика
- Инструмент и крепеж
Популярные категории
- Светильники настенно-потолочные
- КВВГнг(А)-FRLS
- КГтп-ХЛ
- КГ-ХЛ
- КГ
- Конвектор электрический
- Для охранной-пожарной сигнализации
- SAT
- Системы кабельного обогрева (теплый пол)
- АС
Главная >Общестроительные материалы >Изоляционные материалы >Теплоизоляция >Пеноплэкс >Теплоизоляционные плиты XPS Пеноплэкс Комфорт 20х585х1185 мм, объем упаковки 0. 2773 м3 TU0-0002506 (#1189926)
Данный товар не поставляется, возможные замены в перечне “Похожие товары”
Теплоизоляционные плиты XPS Пеноплэкс Комфорт 20х585х1185 мм, объем упаковки 0.2773 м3 TU0-0002506 не поставляется, возможно товар снят с производства, по запросу, наши инженеры помогут подобрать аналоги, замены.
Расчет толщины изоляции для труб – The Piping Engineering World
Когда жидкость проходит по трубе, она отдает свое тепло окружающей атмосфере, если ее температура выше температуры окружающего воздуха. Если температура трубы ниже температуры окружающего воздуха, она получает от него тепло. Поскольку трубы, как правило, изготавливаются из металлов, таких как сталь, медь и т. д., которые являются очень хорошими проводниками тепла, потери тепла будут значительными и очень дорогостоящими. Поэтому важно обеспечить покрытие материалом, который очень плохо проводит тепло, таким как минеральная вата, пенька и т. д.
[pipingapplinkimage]
Общая теплопередача (Q) от трубы через такой изоляционный материал зависит от следующих факторов:
- N : Длина трубы.
- Tp : Рабочая температура жидкости внутри трубы.
- Ti : Максимально допустимая температура на внешней поверхности изоляции. Обычно 50°С.
- Rp : Радиус трубы.
- Ri : Радиус изоляции.
- k : Теплопроводность изоляционного материала.
Формула для стационарной теплопередачи через изоляционный материал, обернутый вокруг трубы, выглядит следующим образом:
Вышеупомянутое уравнение получено из уравнения Фурье для теплопроводности, для стационарной теплопередачи для радиальной теплопроводности через полый цилиндр.
Пример Расчет
Предположим, у нас есть труба Диаметром 12″, по которой течет горячее масло с температурой 200°C. Максимально допустимая температура изоляции на наружной стене 50°C. Допустимые потери тепла на метр трубы 80 Вт/м. В качестве теплоизоляции используется минеральная вата из стекловолокна с теплопроводностью для этого температурного диапазона 0,035 Вт/м.К. Теперь нам нужно узнать необходимую толщину изоляции.
Теплопроводность выражается в ваттах на метр на кельвин (Вт/м·К), что по существу совпадает с ваттами на метр на градус Цельсия (Вт/м·К) (Множитель для преобразования значений Кельвина в градусы отсутствует. соответствует инкрементальному изменению в градусах Цельсия.)
В приведенной выше формуле Q — это общие потери тепла, а N — длина трубы. Таким образом, Q/N становится нашими допустимыми потерями тепла на метр трубы, что составляет 80 Вт/м.
Q/N = 80 Вт/м.
Диаметр трубы 12 дюймов, следовательно, радиус 6 дюймов.
Радиус в метрах: (6″ X 25,4)/1000 = 0,1524 метра.
Итак:
80 = 2π × 0,035 × (200-50) ÷ ln(Ri/0,1524)
ln(Ri/0,1524) = 2π × 0,035 × (200-50) 3
Отсюда Ri = Rp × e 0,4123
Ri = 0,1524 × 1,5103 = 0,2302 м
Отсюда толщина изоляции = Ri – Rp = 0,2302 – 0,1524 = 0,0777 7
3 90 003
Дополнительные поля должны быть берется по толщине изоляции, так как иногда теплопередача через изоляцию может быть выше, чем конвективная теплопередача из-за воздуха на внешней стенке изоляции. В этом случае температура наружной поверхности изоляции может возрасти более чем на 50°С. Целью этой типовой задачи является демонстрация расчетов радиальной теплопроводности, а практические расчеты толщины изоляции также требуют учета конвективной теплопередачи на внешней стороне изоляционной стены.
Нравится:
Нравится Загрузка…
Теплоизоляция пластмасс: технические свойства
Почему пластик является хорошим изолятором?
Пластмассы являются плохими проводниками тепла, потому что у них практически нет свободных электронов, доступных для механизмов проводимости, таких как металлы.
Теплоизоляционная способность пластмасс оценивается путем измерения теплопроводности. Теплопроводность – это передача тепла от одной части тела к другой, с которой она соприкасается.
- Для аморфных пластиков при 0-200°C теплопроводность составляет 0,125-0,2
Wm -1 K -1 - Частично кристаллические термопласты имеют упорядоченные кристаллические области и, следовательно, лучшую проводимость
Теплоизоляция полимера ( термопласты, пены или термореактивные материалы ) необходима для:
- Понимания переработки материала в конечный продукт
- Установите соответствующие области применения материала, т. е. пенополимеры для изоляции
Например, PUR и PIR можно формовать как плитный материал и использовать в качестве изоляционной пены для крыш, оштукатуренных стен, многослойных стен и полов.
» Просмотреть все коммерчески доступные марки полимеров с превосходной теплоизоляцией
Узнайте больше о теплоизоляции:
» Как измерить теплопроводность пластмасс?
» Как ведут себя материалы — Механизм
» Факторы, влияющие на теплоизоляцию
» Значения теплоизоляции некоторых пластмасс
Как измерить теплопроводность полимеров
Существует несколько способов измерения теплопроводности. Теплопроводность пластмасс обычно измеряется в соответствии с ASTM C177 и ISO 8302 с использованием прибора с защищенной нагревательной пластиной.
Прибор с защищенной нагревательной пластиной общепризнан как основной абсолютный метод измерения свойств теплопередачи однородных изоляционных материалов в виде плоских плит.
Защищенная нагревательная плита — Твердый образец материала помещается между двумя плитами. Одна пластина нагревается, а другая охлаждается или нагревается в меньшей степени. Температуру пластин контролируют до тех пор, пока она не станет постоянной. Для расчета теплопроводности используются установившиеся температуры, толщина образца и подвод тепла к нагревательной пластине.
Следовательно, коэффициент теплопроводности k рассчитывается по формуле:
где
- Q – количество тепла, прошедшего через площадь основания образца [Вт]
- Площадь основания образца [м 2 ]
- d расстояние между двумя сторонами образца [м]
- T 2 температура на более теплой стороне образца [K]
- T 1 температура на более холодной стороне образца [K]
Механизм теплопроводности
Теплопроводность в полимерах основана на движении молекул по внутри- и межмолекулярным связям. Структурные изменения сшивание в реактопластах 9Эластомеры 0094 и повышают теплопроводность, поскольку ван-дер-ваальсовы связи постепенно заменяются валентными связями с большей теплопроводностью.
В качестве альтернативы, уменьшение длины межсвязного пути или факторов, вызывающих увеличение беспорядка или свободного объема в полимерах, приводит к снижению теплопроводности и, следовательно, к повышению теплоизоляции.
Также упоминалось выше, присутствие кристалличности в полимерах приводит к улучшенной упаковке молекулы и, следовательно, к повышенной теплопроводности.
- Аморфные полимеры демонстрируют увеличение теплопроводности с повышением температуры вплоть до температуры стеклования, Tg . Выше Tg теплопроводность уменьшается с повышением температуры
- Из-за увеличения плотности при затвердевании полукристаллических термопластов теплопроводность выше в твердом состоянии, чем в расплаве. Однако в расплавленном состоянии теплопроводность полукристаллических полимеров снижается до теплопроводности аморфных полимеров
Теплопроводность различных полимеров
(Источник: Polymer Processing by Tim A. Osswald, Juan Pablo Hernández-Ortiz)
Факторы, влияющие на теплоизоляцию
- Органические пластмассы являются очень хорошими изоляторами. Теплопроводность полимеров увеличивается с увеличением объемного содержания наполнителя (или содержания волокна до 20% по объемной доле).
- Более высокая теплопроводность неорганических наполнителей повышает теплопроводность наполненные полимеры .
- Полимерные пены демонстрируют заметное снижение теплопроводности из-за включения в структуру газообразных наполнителей. Увеличение количества закрытых ячеек в пене сводит к минимуму теплопроводность за счет конвекции, дополнительно улучшая изоляционные свойства
- Теплопроводность расплавов увеличивается при гидростатическом давлении.
- Сжатие пластмасс оказывает еще большее противоположное влияние на теплоизоляцию, так как увеличивает плотность упаковки молекул
- Другими факторами, влияющими на теплопроводность, являются плотность материала , влажность материала и температура окружающей среды. С увеличением плотности, влажности и температуры увеличивается и теплопроводность.
Теплоизоляционные свойства некоторых пластиков
Нажмите, чтобы найти полимер, который вы ищете:
A-C |
Э-М |
ПА-ПК |
ПЭ-ПЛ |
ПМ-ПП |
PS-X
Название полимера | Минимальное значение (Вт/м.К) | Максимальное значение (Вт/м.К) |
АБС-акрилонитрилбутадиенстирол | 0,130 | 0,190 |
Огнестойкий АБС-пластик | 0,173 | 0,175 |
Высокотемпературный АБС-пластик | 0,200 | 0,400 |
Ударопрочный АБС-пластик | 0,200 | 0,400 |
Смесь АБС/ПК 20 % стекловолокна | 0,140 | 0,150 |
ASA – акрилонитрилстиролакрилат | 0,170 | 0,170 |
Смесь ASA/PC – смесь акрилонитрила, стирола, акрилата и поликарбоната | 0,170 | 0,170 |
Огнестойкий ASA/PC | 0,170 | 0,700 |
CA — Ацетат целлюлозы | 0,250 | 0,250 |
CAB — Бутират ацетата целлюлозы | 0,250 | 0,250 |
CP — пропионат целлюлозы | 0,190 | 0,190 |
ХПВХ — хлорированный поливинилхлорид | 0,160 | 0,160 |
ECTFE | 0,150 | 0,150 |
EVOH – Этиленвиниловый спирт | 0,340 | 0,360 |
ФЭП – фторированный этиленпропилен | 0,250 | 0,250 |
HDPE — полиэтилен высокой плотности | 0,450 | 0,500 |
HIPS — ударопрочный полистирол | 0,110 | 0,140 |
HIPS Огнестойкий V0 | 0,120 | 0,120 |
Иономер (сополимер этилена и метилакрилата) | 0,230 | 0,250 |
LCP — жидкокристаллический полимер Стекловолокно армированное | 0,270 | 0,320 |
LDPE – полиэтилен низкой плотности | 0,320 | 0,350 |
LLDPE — линейный полиэтилен низкой плотности | 0,350 | 0,450 |
MABS (прозрачный акрилонитрилбутадиенстирол) | 0,170 | 0,180 |
PA 11 — (Полиамид 11) 30% армированный стекловолокном | 0,330 | 0,330 |
PA 11, токопроводящий | 0,330 | 0,330 |
Полиамид 11, гибкий | 0,330 | 0,330 |
Полиамид 11, жесткий | 0,330 | 0,330 |
Полиамид 12, гибкий | 0,330 | 0,330 |
Полиамид 12, жесткий | 0,330 | 0,330 |
ПА 46 — Полиамид 46 | 0,300 | 0,300 |
ПА 6 — Полиамид 6 | 0,240 | 0,240 |
ПА 6-10 — Полиамид 6-10 | 0,210 | 0,210 |
ПА 66 — Полиамид 6-6 | 0,250 | 0,250 |
ПА 66, 30% стекловолокно | 0,280 | 0,280 |
PA 66, 30% минеральный наполнитель | 0,380 | 0,380 |
PA 66, ударопрочный, 15-30% стекловолокна | 0,300 | 0,300 |
PA 66, ударопрочный | 0,240 | 0,450 |
ПАИ — полиамид-имид | 0,240 | 0,540 |
PAI, 30 % стекловолокна | 0,360 | 0,360 |
PAI, низкое трение | 0,520 | 0,520 |
ПАР — Полиарилат | 0,180 | 0,210 |
ПАРА (полиариламид), 30-60% стекловолокна | 0,300 | 0,400 |
ПБТ – полибутилентерефталат | 0,210 | 0,210 |
ПБТ, 30% стекловолокно | 0,240 | 0,240 |
ПК (поликарбонат) 20-40% стекловолокна | 0,220 | 0,220 |
ПК (поликарбонат) 20-40% стекловолокно огнестойкое | 0,210 | 0,390 |
Поликарбонат, высокотемпературный | 0,210 | 0,210 |
ПЭ – полиэтилен 30% стекловолокна | 0,300 | 0,390 |
PEEK — Полиэфирэфиркетон | 0,250 | 0,250 |
PEEK 30% Армированный углеродным волокном | 0,900 | 0,950 |
PEEK 30% Армированный стекловолокном | 0,430 | 0,430 |
ПЭИ — Полиэфиримид | 0,220 | 0,250 |
ПЭИ, 30% армированный стекловолокном | 0,230 | 0,260 |
PEKK (полиэфиркетонкетон), низкая степень кристалличности | 1. |