Как подобрать конденсатор для трехфазного двигателя
К каждому объекту изначально подается трехфазный ток. Основная причина заключается в использовании на электростанциях генераторов с трехфазными обмотками, сдвинутыми по фазе между собой на 120 градусов и вырабатывающими три синусоидальных напряжения. Однако при дальнейшем распределении тока потребителю подводится только одна фаза, к которой и подключается все имеющееся электрооборудование. Иногда возникает необходимость в использовании нестандартных устройств, например как подобрать конденсатор для трехфазного двигателя. Как правило, требуется рассчитать емкость данного элемента, обеспечивающего устойчивую работу агрегата.
Принцип подключения трехфазного устройства к одной фазе
Во всех квартирах и большинстве частных домов все внутреннее энергоснабжение осуществляется по однофазным сетям. В этих условиях иногда необходимо выполнить подключение трехфазного двигателя к однофазной сети. Эта операция вполне возможна с физической точки зрения, поскольку отдельно взятые фазы различаются между собой лишь сдвигом по времени.
Подобный сдвиг легко организовать путем включения в цепь любых реактивных элементов – емкостных или индуктивных. Именно они выполняют функцию фазосдвигающих устройств когда используются рабочего и пускового элементов.
Следует учитывать то обстоятельство, что обмотка статора сама по себе обладает индуктивностью. В связи с этим, вполне достаточно снаружи двигателя подключить конденсатор с определенной емкостью. Одновременно, обмотки статора соединяются таким образом, чтобы первая из них сдвигала фазу другой обмотки в одну сторону, а в третьей обмотке конденсатор выполняет эту же процедуру, только в другом направлении. В итоге образуются требуемые фазы в количестве трех, добытые из однофазного питающего провода.
Таким образом, трехфазный двигатель выступает в качестве нагрузки лишь для одной фазы подключенного питания. В результате, в потребляемой энергии образуется дисбаланс, отрицательно влияющий на общую работу сети. Поэтому такой режим рекомендуется использовать в течение непродолжительного времени для электродвигателей небольшой мощности. Подключение обмоток в однофазную сеть может быть выполнено двумя способами – звездой или треугольником.
Схемы подключения трехфазного двигателя к однофазной сети
Когда трехфазный электродвигатель планируется включать в однофазную сеть, рекомендуется отдавать предпочтение соединению треугольником. Об этом предупреждает информационная табличка, закрепленная на корпусе. В некоторых случаях здесь стоит обозначение «Y», что означает соединение звездой. Рекомендуется переподключить обмотки по схеме треугольника, чтобы избежать больших потерь мощности.
Электродвигатель включается в одну из фаз однофазной сети, а две другие фазы создаются искусственным путем. Для этого используется рабочий (Ср) и пусковой конденсатор (Сп). В самом начале запуска двигателя необходим высокий уровень стартового тока, который не может быть обеспечен одним лишь рабочим конденсатором. На помощь приходит стартовый или пусковой конденсатор, подключаемый параллельно с рабочим конденсатором. При незначительной мощности двигателя их показатели равны между собой. Специально выпускаемые стартовые конденсаторы имеют маркировку «Starting».
Эти устройства работают только в периоды пуска, для того чтобы разогнать двигатель до нужной мощности. В дальнейшем он выключается с помощью кнопочного или двойного выключателя.
Виды пусковых конденсаторов
Небольшие электродвигатели, мощность которых не превышает 200-400 ватт, могут работать без пускового устройства. Для них вполне достаточно одного рабочего конденсатора. Однако при наличии значительных нагрузок на старте, обязательно используются дополнительные пусковые конденсаторы. Он подключается параллельно с рабочим конденсатором и в период разгона удерживается во включенном положении с помощью специальной кнопки или реле.
Для расчета емкости пускового элемента необходимо умножить емкость рабочего конденсатора на коэффициент, равный 2 или 2,5. В процессе разгона двигатель требует емкость все меньше и меньше. В связи с этим, не стоит держать пусковой конденсатор постоянно включенным. Высокая емкость при больших оборотах приведет к перегреву и выходу из строя агрегата.
В стандартную конструкцию конденсатора входят две пластины, расположенные напротив друг друга и разделенные слоем диэлектрика. При выборе того или иного элемента, необходимо учитывать его параметры и технические характеристики.
Все конденсаторы представлены тремя основными видами:
- Полярные. Не могут работать с электродвигателями, подключенными к переменному току. Разрушающийся слой диэлектрика может привести к нагреву агрегата и последующему короткому замыканию.
- Неполярные. Получили наибольшее распространение. Могут работать в любых вариантах включения за счет одинакового взаимодействия обкладок с диэлектриком и источником тока.
- Электролитические. В этом случае электроды представляют собой тонкую оксидную пленку. Они могут достигать максимально возможной емкости до 100 тыс. мкФ, идеально подходят к двигателям с низкой частотой.
Выбор конденсатора для трехфазного двигателя
Конденсаторы, предназначенные для трехфазного мотора, должны иметь достаточно высокую емкость – от десятков до сотен микрофарад. Электролитические конденсаторы не годятся для этих целей, поскольку для них требуется однополярное подключение. То есть, специально для этих устройств потребуется создание выпрямителя с диодами и сопротивлениями.
Постепенно в таких конденсаторах происходит высыхание электролита, что приводит к потере емкости. Кроме того, в процессе эксплуатации данные элементы иногда взрываются. Если все же решено использовать электролитические устройства, нужно обязательно учитывать эти особенности.
Классическим примеров служат элементы, представленные на рисунке. Слева изображен рабочий конденсатор, а справа – пусковой.
Подбор конденсатора для трехфазного двигателя выполняется опытным путем. Емкость рабочего устройства выбирается из расчета 7 мкФ на 100 Вт мощности. Следовательно, 600 Вт будет соответствовать 42 мкФ. Пусковой конденсатор как минимум в 2 раза превышает емкость рабочего. Таким образом 2 х 45 = 90 мкФ будет наиболее подходящим показателем.
Выбор осуществляется постепенно, исходя из работы двигателя, поскольку его реальная мощность напрямую зависит от емкости используемых конденсаторов. Кроме того, это можно сделать по специальной таблице. При недостатке емкости двигатель будет терять свою мощность, а при ее избытке наступит перегрев от чрезмерного тока. Если конденсатор выбран правильно, то двигатель будет работать нормально, без рывков и посторонних шумов. Более точно подбираем устройство путем расчетов, выполняемых по специальным формулам.
Расчет емкости
Емкость конденсатора для электродвигателя рассчитывается исходя из схемы соединения обмоток – звездой или треугольником.
В обоих случаях применяется общая расчетная формула: Сраб = к х Iф/Uсети, к которой все параметры имеют следующие обозначения:
- к – является специальным коэффициентом. Его значение составляет 2800 для схемы «звезда» и 4800 для схемы «треугольник».
- Iф – номинальный ток статора, указанный на информационной табличке. При невозможности прочтения, выполняются измерения с помощью специальных измерительных клещей.
- Uсети – напряжение питающей сети, величиной в 220 вольт.
Подставив все необходимые значения, можно легко рассчитать, какая емкость будет у рабочего конденсатора (мкФ). Во время расчетов необходимо учитывать ток, поступающий к фазной обмотке статора. Он не должен превышать номинальное значение, точно так же, как нагрузка двигателя с конденсатором должна быть не выше 60-80% номинальной мощности, обозначенной на информационной табличке.
Как подключить пусковой и рабочий конденсаторы
На рисунке указана простейшая схема подключения пускового и рабочего элементов. Первый из них устанавливается сверху, а второй – снизу. Одновременно к двигателю подключается кнопка включения и выключения. Самое главное – внимательно разобраться с проводами, чтобы не перепутать концы.
Данная схема позволяет выполнить предварительную проверку с неточной прикидкой. Она же используется и после окончательного выбора наиболее оптимального значения.
Такой подбор осуществляется экспериментальным путем с использованием нескольких конденсаторов разной емкости. При параллельном подключении их суммарная мощность будет увеличиваться. В это время нужно контролировать работу двигателя. Если работа устойчивая и ровная, в этом случае можно покупать конденсатор с емкостью, равной сумме емкостей проверочных элементов.
Емкость рабочего конденсатора для трехфазного двигателя таблица
Чтобы подключить асинхронный электродвигатель трехфазного типа к однофазной сети на напряжение 220 В, необходимо создать условия для сдвига фаз на обмотках статора двигателя. Сдвиг фаз сформирует имитацию кругового вращающегося магнитного поля, заставляющего вращаться вал ротора двигателя. Конденсатор даёт току «запас» в π/2=90° относительно напряжения, и это создаёт дополнительный момент вращения ротора.
При подключении двигателя к сети используют два подключенных параллельно конденсатора — пусковой и рабочий. Данный калькулятор позволяет рассчитать ёмкость этих конденсаторов, ёмкость пускового конденсатора берется из расчёта 2,5 емкости рабочего конденсатора.
Для получения необходимых значений ёмкости, заполните поля формы ниже. Тип соединения обмоток двигателя, мощность двигателя, КПД и коэффициент мощности обозначены на шильдике электродвигателя. Способ соединения обмоток зависит от напряжения сети, к которой выполняется подключение: 220 В — «треугольник», когда концы обмоток соединены между собой, к их началам подводится питающее напряжение; 380 В — «звезда», при котором концы одной обмотки соединены с началом другой.
Наши сети электропитания созданы трехфазными. Потому что генераторы, работающие на электростанциях, имеют трехфазные обмотки и вырабатывают три синусоидальных напряжения, сдвинутых по фазе относительно друг друга на 120°.
Но мы чаще всего пользуемся всего одной фазой — проводим себе один фазный провод из трех и все к нему подключаем. Только в технике нашей часто встречаются электродвигатели, и они по природе своей трехфазны. Ну а фаза от фазы чем отличается? Только сдвигом во времени. Сдвига такого очень просто добиться, включив в цепь питания реактивные элементы: емкости или индуктивности.
Но ведь обмотка на статоре сама и является индуктивностью. Поэтому остается добавить к двигателю снаружи только емкость, конденсатор, а обмотки подключить так, чтобы одна из них в другой сдвигала фазу в одну сторону, а конденсатор в третьей делал то же самое, только в другую. И получатся те же самые три фазы, только «вынутые» из одной фазы питающих проводов.
Последнее обстоятельство означает, что мы нагружаем трехфазным двигателем только одну из фаз приходящего питания. Разумеется, это вносит дисбаланс в потребление энергии. Поэтому все-таки лучше, когда трехфазный двигатель питается трехфазным напряжением, а построить цепь его питания от одной приходящей фазы хорошо, только если мощность двигателя не особо велика.
Включение трехфазного электродвигателя в однофазную сеть питания
Обмотки электродвигателя соединяют двумя способами: звезда (Y) или треугольник (Δ).
При подключении трехфазного двигателя к однофазной сети предпочтительнее соединение типа треугольник. На шильдике двигателя об этом есть информация, и когда там обозначено Y — звезда, самым лучшим вариантом было бы открыть его кожух, найти концы обмоток и правильно переключить обмотки в треугольник. Иначе потери мощности будут слишком большими.
Включение двигателя на одну фазу питающей сети требует создания из нее и двух остальных. Это можно сделать по следующей схеме
При запуске двигателя в работу в самом начале требуется высокий стартовый ток, поэтому емкости рабочего конденсатора обычно не хватает. Чтобы «ему помочь», используют специальный стартовый конденсатор, который подключается к рабочему конденсатору параллельно. В самом простом случае (невысокая мощность двигателя) его выбирают точно таким же, как и рабочий. Но для этой цели выпускаются и специально стартовые конденсаторы, на которых так и написано: starting.
Стартовый конденсатор должен быть включен в работу только во время пуска и разгона двигателя до рабочей мощности. После этого его отключают. Используется кнопочный выключатель. Или двойной: одной клавишей включается сам двигатель и кнопка фиксируется во включенном положении, кнопка же, замыкающая цепь рабочего конденсатора, каждый раз размыкается.
Как подобрать конденсатор
Конденсаторы для трехфазного двигателя нужны достаточно большой емкости — речь идет о десятках и сотнях микрофарад. Однако конденсаторы электролитические для этой цели не годятся. Они требуют подключения однополярного, то есть специально для них придется городить выпрямитель из диодов и сопротивлений. Кроме того, со временем в электролитических конденсаторах высыхает электролит и они теряют емкость. Поэтому если будете ставить такой на двигатель, необходимо делать на это скидку, а не верить тому, что на них написано. Ну и еще одно за ними числится: электролитические конденсаторы имеют свойство иногда взрываться.
Поэтому задачу, как выбрать конденсатор под трехфазный двигатель, часто решают в несколько этапов
Сначала подбираем приблизительно. Надо рассчитать емкость конденсатора по простейшему соотношению как 7 мкФ на каждые 100 ватт мощности. То есть 700 ватт дает нам 49 мкФ первоначально. Емкость выбираемого пускового конденсатора берется в диапазоне 1–3-кратного превышения емкости рабочего конденсатора. Выберите 2*50 = 100 мкФ — будет само то. Ну, для начала можно взять побольше, потом подобрать конденсаторы, ориентируясь на работу двигателя. От емкости конденсаторов зависит реальная мощность движка. Если ее мало, двигатель при тех же оборотах потеряет мощность (обороты не зависят от мощности, а только от частоты напряжения), так как ему будет не хватать тока. При чрезмерной емкости конденсаторов у него будет перегрев от избытка тока.
Нормальная работа двигателя, без шума и рывков — это неплохой критерий правильно выбранного конденсатора. Но для большей точности можно сделать расчет конденсаторов по формулам, а такую проверку оставить на потом в качестве окончательного подтверждения успешности результатов подбора конденсаторов.
Однако надо все-таки подключить конденсаторы.
Подключение пускового и рабочего конденсаторов для трехфазного электромотора
Вот оно соответствие всех нужных приборов элементам схемы
Теперь выполним подключение, внимательно разобравшись с проводамиТак можно подключить двигатель и предварительно, используя неточную прикидку, и окончательно, когда будут подобраны оптимальные значения.
Подбор можно сделать и экспериментально, имея несколько конденсаторов разных емкостей. Если их присоединять параллельно друг другу, то суммарная емкость будет увеличиваться, при этом нужно смотреть, как ведет себя двигатель. Как только он станет работать ровно и без перенагрузки, значит, емкость находится где-то в районе оптимума. После этого приобретается конденсатор, по емкости равный этой сумме емкостей испытываемых конденсаторов, включенных параллельно. Однако можно при таком подборе измерять фактический потребляемый ток, используя измерительные токовые клещи, а провести расчет емкости конденсатора по формулам.
Как рассчитать емкость рабочего конденсатора
Для двух соединений обмоток берутся несколько разные соотношения.
В формуле введен коэффициент соединения Кс, который для треугольника равен 4800, а для звезды — 2800.
Где значения Р (мощность), U (напряжение 220 В), η (КПД двигателя, в процентном значении деленном на 100) и cosϕ (коэффициент мощности) берутся с шильдика двигателя.
Вычислить значение можно с помощью обычного калькулятора или воспользовавшись чем-то вроде подобной вычислительной таблицы. В ней нужно подставить значения параметров двигателя (желтые поля), результат получается в зеленых полях в микрофарадах
Однако не всегда есть уверенность, что параметры работы двигателя соответствуют тому, что написано на шильдике. В этом случае нужно измерить реальный ток измерительными клещами и воспользоваться формулой Cр = Кс*I/U.
Расчет емкости фазосдвигающего конденсатора
для трехфазного асинхронного двигателя в бытовой однофазной сети
Рабочий и пусковой конденсаторы включаются в цепь параллельно, во время пуска работают одновременно, затем пусковой отключают. В момент пуска асинхронных двигателей (особенно, с нагрузкой на валу) в сети 220 В требуется повышенная емкость фазосдвигающего конденсатора (в 2-3 раза выше емкости рабочего).
Двигатель, имеющий маркировку 220/380 и Δ/Y включается в однофазную сеть 220В по схеме треугольник, по схеме звезда в сети 220В такой двигатель будет терять в мощности троекратно и сильно греться.
При соединении конденсаторов параллельно их емкость суммируется. При соединении конденсаторов последовательно, рабочее напряжение в цепи будет равняться сумме напряжений всех конденсаторов, а емкость вычисляется по формуле: 1/C = 1/C1 + 1/C2 + . + 1/Cn. Рабочее напряжение в цепи конденсаторов должно быть минимум в полтора раза выше напряжения сети (то есть не менее 330В в сети 220В). Таким образом, два конденсатора на 200 мкф с рабочим напряжением 200В дадут при последовательном соединении емкость 100 мкф и допустимое рабочее напряжение 400В. При параллельном соединении емкость будет 400 мкф и рабочее напряжение 200В (самое низкое значение допустимого напряжения из всего набора конденсаторов в цепи). Необходимые конденсаторы представлены в сетевых магазинах в разделе пусковых конденсаторов (не ищите по старинке бумажные — их практически перестали выпускать).
Видеопримеры работы двигателя 2.2 кВт и 1.1 кВт с одной и той же нагрузкой и правильно подобранными рабочими и пусковыми конденсаторами, разница в скорости пуска 3 и 20 секунд. И сборка на 3.3 кВт весело крутится (пильный диск 350 мм в диаметре).
Схема включения в однофазную сеть трёхфазного асинхронного двигателя с обмотками статора, соединёнными по схеме «звезда» (а) или «треугольник» (б): B1 — Переключатель направления вращения (реверс), В2 — Выключатель пусковой ёмкости; Ср — рабочий конденсатор; Cп — пусковой конденсатор; АД — асинхронный электродвигатель.
На схеме представлено последовательное (сверху) и параллельное (снизу) соединение конденсаторов.
На рисунке представлена схема соединения обмоток двигателя «Звезда».
На рисунке представлена схема соединения обмоток двигателя «Треугольник».
Конденсатор для трехфазного двигателя | У электрика.ру
Конденсатор для трехфазного двигателя является ключевой комплектующей частью. Для работоспособности двигателя в однофазной сети необходимо правильно подобрать его тип с определенной емкостью.
В независимости от того, какой тип соединения используется, необходимо подобрать конденсатор для трехфазного двигателя, емкость которого будет соответствовать требованиям. Для этого можно произвести расчет при помощи формул. Таким образом, для соединения «звездой», при вычислении нужно применить следующую формулу:
В случае, если используется тип соединения «треугольником», нужно воспользоваться иной формулой:
Параметр силы тока необходимо вычислить формулой:
Чтобы узнать КПД, а также коэф. мощности, необходимо заглянуть в паспорт или же взять эти параметры с таблички, размещенной на двигателе. Как правило, эти значения колеблются в интервале от 0,8 до 0,9.
При применении типа соединения «треугольник» можно использовать упрощенную формулу: Ср=70*Р. Согласно этой формуле можно уверенно говорить о том, что, если Р = 200 кВт, емкость конденсатора должна быть в районе четырнадцати мкФ.
Узнать верно ли подобрана емкость конденсатора можно только при непосредственном запуске двигателя. В случае, если емкость больше, чем требуется, двигатель будет подвержен перегреву. В случае заниженного количественного показателя, двигатель не сможет функционировать на пределе возможностей, которые прописаны в паспорте. Очень часто специалисты припаивают конденсатор с меньшей емкостью и, если двигатель не будет работать в нормальном рабочем режиме, его нужно менять на конденсатор с чуть большей емкостью. Но если есть возможность провести замеры силы тока в используемой электросети и на выходе к конденсатору, лучше этой возможностью воспользоваться, потому, что это считается наиболее оптимальным вариантом для расчета количественного показателя емкости.
Для расчета пусковой емкости, в первую очередь учитываются требования, которые необходимы для пускового момента. Если пуск производится без нагрузок, то конденсатор не нужен совсем, а это позволит упростить схему и сэкономить финансы. Нагрузки можно уменьшить искусственно, например, сделать возможным изменение положения двигателя, чтобы уменьшить ременную передачу или установить для нее прижимной ролик.
Если же пуск осуществляется с нагрузкой, потребуется дополнительная пусковая емкость на момент старта работы. При увеличении емкости, пусковой момент поступательно растет и в определенный отрезок времени он достигает своего максимального значения, но после этого, если емкость будет продолжать увеличиваться, это приведет к абсолютно обратному результату и пусковой момент будет падать.
В случае старта работы двигателя с нагрузкой, которая эквивалентна номинальной, пусковая емкостная характеристика должна быть в два или в три раза больше, чем рабочая. Но, при небольшой стартовой нагрузке, конденсатор может иметь низкий показатель емкости или же, как уже было ранее сказано, он может и вовсе не устанавливаться.
Учитывая то, пусковой конденсатор работает лишь в момент включения несколько мгновений, для установки можно выбрать недорогие, из серии электролитических, которые созданы специально для этих потребностей.
Оптимальным вариантом будет применение не одного конденсатора, а группы более слабых, соединенных параллельно. Это позволит наиболее точно подобрать емкостную характеристику, припаивая или отбрасывая по одному, ведь общая емкость будет суммироваться. Допустимое напряжение конденсаторов должно равняться подаваемому напряжению (U) на двигатель, умноженное на полтора (1,5U).
Поделиться ссылкой:
ПохожееКак подобрать конденсаторы на трехфазный двигатель (формула, видео)
Подключение силового оборудования в однофазную сеть (220В) чаще всего производят емкостным методом. При этом нужно знать, как подобрать конденсаторы на трехфазный двигатель, от которого осуществляется привод. Из них собирается пусковая цепь, создающая необходимый момент и перекос фаз. В этой статье мы постараемся вкратце рассмотреть вопросы расчета и подбора емкости, а также возможные схемы подключения асинхронного электромотора.
Что такое трехфазный двигатель?
Большинство силовых агрегатов, преобразующих электрическую энергию с тепловую, представляют собой асинхронные машины. Если разобрать любой такой двигатель, то станет понятно, что он имеет два ключевых компонента, на взаимодействии которых строится вся его работа.
Статор
Это неподвижная часть мотора, имеющая кольцевидную форму – полый цилиндр. Сразу следует уточнить, что он не является цельным, грубо говоря изготовленным через точение круглой стальной болванки. Статор набирается из кольцевых пластин (магнитопровода), что позволяет избежать образования так называемых поверхностных токов Фуко, которые могут сильно разогревать металл. На внутреннем диаметре имеются продольные пазы, в которые укладывается обмотка из проволоки. Большинство стандартных двигателей являются трехфазными, то есть имеют три обмотки статора (по одной на каждую фазу). Геометрически каждая обмотка/фаза является смещенной относительно других на 120°. Такой расчет позволяет при подаче на фазные клеммы напряжения 380В возбудить в обмотках вращающееся магнитное поле.
Ротор
Это подвижная (вращающаяся) часть, конструктивно объединенная с приводным валом. Он также имеет наборный пластинчатый сердечник (магнитопровод), но в отличии от статора, пазы для обмоток располагаются на внешнем диаметре. Более того, называть их обмотками можно только с функциональной точки зрения, поскольку реально они представляют собой медные прутки определенного диаметра, а не пучки (катушки) проволоки.
С обоих сторон прутки соединяются на кольцевые ограничивающие пластины, образуя некоторое подобие беличьей клетки. Такая компоновка наиболее распространена и называется «коротко замкнутый ротор». При подаче напряжения здесь также магнитное поле, но оно имеет несколько меньшую частоту вращения (асинхронную), нежели у статора. Эта разница называется скольжением и составляет порядка 2…10%. Благодаря ей, между полями наводится ЭДС (электродвижущая сила), которая и заставляет вал вращаться с рабочей частотой.
Как подключить 3ех фазный двигатель в однофазную сеть?
Запуск двигателя с тремя рабочими обмотками возможет потому, что он по умолчанию имеет сдвинутые на 120° фазы. Если подать напряжение всего на одну фазу, то не произойдет ровным счетом ничего по аналогии с однофазным двигателем на 220В, где в таком случае возникают эквивалентные разнонаправленные магнитные поля. Формально для этого нужно включить в работу хотя бы еще одну фазу, чтобы создать сдвиг и набрать необходимый момент. Подключение в сеть с напряжением 220В чаще всего производят через дополнительный контур – цепь из рабочих и пусковых конденсаторов.
Общая пусковая схема при подключении звездой (слева) и треугольником (справа) будет иметь следующий вид:
Как можно видеть, и в первом, и во втором случае две из трех обмоток подключаются напрямую к однофазной сети на 220В. Третья фаза закольцовывается на одну из двух предыдущих посредством промежуточной цепи конденсаторов: Сраб – основной/рабочий и Сп–для запуска. Второй подключен параллельно через ключ SA. Последний имеет нормально разомкнутые контакты, а крайнее положение кнопки не фиксируется – для того, чтобы через пусковой конденсатор пошел ток, ее нужно удерживать нажатой.
Почему используются параллельные емкости?
Любой человек, в свое время не зевавший на уроках физики, должен помнить, что максимальное потребление энергии 3ех фазным двигателем наблюдается именно в момент его запуска, когда происходит рост частоты вращения от 0 до номинала. Чем больше мощность, тем это пиковое потребление электричества выше. Из чего следует логический вывод – емкости, которая будет поддерживать работу на 220В скорее всего не хватит для старта. Поэтому, для вывода мотора на режим ее по расчету нужно увеличить примерно вдвое относительно рабочей.
После запуска, когда будут достигнуты оптимальные обороты (не менее 70% от номинальных), пусковые конденсаторы отключают, отпуская кнопку SA. Сделать это нужно обязательно, иначе большая суммарная емкость вызовет серьезный перекос фаз и перегрев обмоток.
Если же мощность мотора невелика или он не работает под серьезной нагрузкой, то скорее всего можно будет обойтись пуском через рабочий контур.
Как рассчитать емкость и подобрать конденсатор
Очевидно то, что вопрос выбора емкостей для запуска и работы трехфазного двигателя в однофазной сети, зависит от его мощности, номинального (фазного) тока и напряжения. Расчет обычно ведется через следующие формулы:
В данном уравнении присутствуют две величины:
- U – напряжение в однофазной сети (220В),
- IН– номинальный или фазный ток, А.
Обе схемы подключений дают разные значения линейных и фазных характеристик, что видно на следующих иллюстрациях:
Вычислить необходимый ток между обмотками можно с помощью клещей либо используя формулы. Если же и тот, и другой вариант видятся сложными, то можно провести расчет и подобрать конденсатор через эмпирическую зависимость: 7 мкФ на 100 Вт мощности.
Что касается пусковых конденсаторов, то их подбор ведется с расчетом, что емкость должна быть выше, нежели у рабочих, чтобы покрыть пиковое потребление при запуске. Разные источники указывают на разные значения пропорционального коэффициента: от 1,5 до 3. На практике же чаще всего используют рекомендацию по двукратному увеличению.
Далее можно подобрать конденсаторы и приступить к компоновке. Для организации запуска двигателя используются бумажные (МБГП, КБП, МБГО), электролитические или металлизированные полипропиленовые (СВВ) модели. Первые, как правило, массовые и дешевые, но имеют сравнительно большие габариты при малой емкости, что вынуждает набирать целые батареи. Электролитические модели требуют использования в схеме управления диодных элементов и сопротивления, повреждение или выход из строя которых приведет к разрушению конденсатора. СВВ модели более современные, а посему в них нет практически тех недостатков, которые присутствуют в аналогах. По форме емкостные блоки могут выпускаться либо квадратными, либо круглыми (бочонками).
Также следует подобрать рабочее напряжение конденсатора, которое по расчету должно быть примерно в 1,15 раза выше чем в однофазной сети на 220В. Меньшие значения негативно сказываются на долговечности блоков, а большие – на габаритах сборки.
: Инженерные системы загородного дома. Газ. Электричество. :: BlogStroiki
У меня мотор 3квт,1400оборотов.Какой емкости надо пусковой конденсатор и рабочий для нормальной работы двигателя. Двигатель хочу использовать на пиле- циркулярке для распилки дров разного диаметра. Спасибо, с уважением Олег Викторович.
Ответ: В тех случаях, когда требуется подключить электродвигатель трехфазный к сети 220 вольт (однофазной) используют два типа схем для подключения –«треугольником» или «звездой». Конечно лучше использовать «треугольник», в таком случае потеря мощности трехфазного двигателя меньше 50%.
Расчет емкости рабочего конденсатора в таком случае проводим по такой формуле:
Срабоч.=k*Iфаз./Ucет., к-коэффициент схемы подключения( для « звезды»=2800, для «треугольника»=4800; Iфаз.-паспортный номинальный ток двигателя,А; U-сетевое питающее напряжение напряжение, В.
Если запуск трехфазного двигателя проходит без нагрузки, то пусковую емкость можно не ставить. Например ,если у вас система передачи крутящего момента от вала двигателя к циркулярной пиле идет с помощью плоского ремня или клинообразного и натяжение его осуществляется весом двигателя(двигатель крепится на пластине с одной стороны закрепленной к станине циркулярной пилы и в момент старта вы просто приподнимаете пластину с двигателем сняв нагрузку с оси двигателя а по мере набора мощности опускаете ее и подключаете саму пилу).
Что бы получить близкую к номинальной пусковую мощность устанавливают как обычно емкость пускового конденсатора в два три раза больше чем рабочая емкость. Сп.=(2-3)*Срабоч.
Что касается номинального напряжения устанавливаемых конденсаторов, оно должно быть 1.5-2 раза выше, чем напряжение используемой сети. Это связано с тем, что при запуске двигателя с помощью конденсатора в этой обмотке протекает повышенный ток по сравнению с обмотками прямого включения в сеть на 30-40% от номинала. Таким образом применять можно конденсаторы с рабочим напряжением не менее 350 вольт не ниже, лучше конечно на 450 вольт.
Исходя из практики принимается следующее решение, при выборе пускового и рабочего конденсаторов исходить надо из следующего: на один киловатт мощности двигателя надо брать 200 мкф на пусковой конденсатор и 100 мкф на рабочий.
В вашем случае Срабочий=300 мкф и Спусковой=600 мкф.
Если не найдете подходящие бумажные конденсаторы такой емкости можно использовать и электролитические(схема ниже) , главное правильно их подключить, при неправильной сборке они могугт закипеть и взорваться!!!!!
Добавлено: 01.12.2015 17:08
Трёхфазный двигатель в однофазной сети
Трёхфазные движки используются для циркулярок, заточки различных материалов, станков для сверления и т.п.
Имеется много вариантов запуска трёхфазных двигателей в однофазной сети, но самый эффективный, это подключение третьей обмотки через фазосдвигающий кондесатор. Нужно учитывать, что конденсатор сдвигает фазу третьей обмотки на 90 градусов, между первой и второй фазами сдвиг очень мал, электромотор начинает терять мощность около 40 — 50% на включении обмоток по схеме треугольника.
Для того, чтобы Электродвигатель с конденсаторным пуском работал хорошо, нужно чтобы ёмкость конденсатора менялась в зависимоти от количества оборотов. На деле этого добиться довольно тяжело, поскольку двигателем обычно управляют двухступенчатым способом, сначала активируют с пусковым конденсатором (с помощью больших пусковых токов), а после того как движок разгонится его отсоединяют и остаётся только рабочий (рис.1).
Если нажать на кнопку SB1 (её можно снять со стиральной машины — пускатель ПНВС-10 УХЛ2) электромотор М начинает набирать оброты, когда он разгонится кнопку отпускают. SB1.2 размыкается, a SB1.1 и SB1.3 остаются в замкнутом состоянии. Их размыкают, чтобы остановить движок. Бывает такое, что SB 1.2 в кнопке не отходит, в таком случае подложите под него шайбу таким образом, чтобы он отошёл. Чтобы соединить обмотки электродвигателя по схеме «треугольник» ёмкость С2 (рабочего конденсатор) определим с помощью формулы:
С2=4800 I/Uгде I — ток, потребляемый двигателем, А;U — напряжение сети, В.Ток, который потребляет электродвигатель, можно измерить амперметром или использовать формулу:
где Р — мощность электромтора, Вт;U — напряжение сети, В;n— КПД ; cos? — коэффициент мощности
Ёмкость С1 (пускового конденсатор) нужно выбирать в 2 — 2.5 раза больше рабочего на большой нагрузке на вал, их допустимые напряжения должны быть в 1.5 раза больше напряжения сети. В нашём случае наиболее лучшие конденсаторы это МГБО, МБГП, МБГЧ, у которых рабочее напряжение 500 В и больше.
Пусковые конденсаторы нужно будет зашунтировать с помощью резистора R1 сопротивлением 200 — 500 кОм, через него выходит остаток электрического заряда.
Реверсировать электромотор нужно с помощью переключения фазы на его обмотке тумблером SA1 (рис. 1) типа ТВ1 — 4.
На холостом ходу по питаемой через конденсаторы по обмотке протекает ток па 20 — 40% больше номинального. Поэтому уменьшайте ёмкость конденсатора С2 если двигатель будет часто работать в недогруженом режиме или на холостм ходу. Для активации двигателя с мощностью 1,5 кВт будет достаточно использовать рабочий конденсатор ёмкостью 100 мкф, а пусковой — 60 мкФ. Ёмкости рабочих и пусковых конденсаторов зависят от мощности самого двигателя, эти значения представлены в таблице, которая указана выше.
Желательно конечно использовать бумажные конденсаторы в роли пусковых, но если такой возможности у вас нет, то можно в качестве альтернативы использовать оксидные, т.е. электролитические. На рис. 2 показано как производить замену бумажных конденсаторов на электролитические. Положительная полуволна переменного тока протекает через цепь VD1C1, а отрицательная — через VD2C2, по это причине электролиты можно использовать с меньшим допустимым напряжением, чем для бумажных конденсаторов. Для бумажных конденсаторов нужно напряжение 400 В и более, то для электролита вполне хватает 300 — 350 В, по той причине, что он проводит лишь одну полуволну переменного тока и поэтому к нему прикладывается только половина напряжения, для точной надежности он должен держать амплитудное напряжение однофазной сети, это около 300 В. Этот расчет аналогичен расчету бумажных конденсаторов.
Схема для включения трёхфазного двигателя в однофазную сеть, используя электролитические конденсаторы показана на рис. 3. Чтобы подобрать нужную емкость бумажных и оксидных конденсаторов, лучше всего измерить ток в точках а, в, с — эти токи в обязательном порядке должны быть равны между собой при оптимальной нагрузке на вал электродвигателя. Диоды VD1, VD2 подбирайте с обратным напряжением не меньше 300 В и 1пр. мах=10А. Если мощность дыижка больше, то диоды устанавливайте на теплоотводы, по два в плече, в противном случае может случиться пробой диодов и через оксидный конденсатор побежит переменный ток, после чего, спустя немного времени электролит скорее всего нагреется и разорвётся. Электролитические конденсаторы в роли рабочих использовать не рекомендуется, потому что длительный проход через них высоких токов, как правило приводит к их нагреву и взрыву. Лучше используйте их для пусковых.
В случае если ваш трехфазный электромотор будет использоваться на динамических (высоких) нагрузках на вал, лучше используйте схему подключения пусковых конденсаторов при помощи токового реле, которое будет при больших нагрузках на вал автоматически включать и выключать пусковые конденсаторы (рис.3).
Во время подключения обмоток трехфазного электродвигателя в однофазную сеть с помощью схемы, которая представлена на рис. 4, мощность электромотора составляет 75% от номинальной мощности в трехфазном режиме, это значит потери составляют около 25%, потому что обмотки А и В подключены противофазно на всё напряжение 220 В, напряжение вращения определяется включением обмотки С. Фазирование обмоток изображено в виде точек.
Самые более надёжные,практичные и удобные при работе с трехфазными электродвигателями резисторно-индуктивноемкостные преобразователи однофазной сети 220 Вольт в трехфазную сеть, с токами в фазах до 4 ампер и сдвигом напряжений в фазах приверно 120 градусов. Эти устройства универсальны, устанавливаются они в жестяном корпусе и позволяют подсоединять трехфазные электромоторы мощностью до 2,5 килловатт в однофазную сеть 220 Вольт почти без потерь мощности.
В преобразователе используем дроссель с воздушным зазором. Его устройство представлено на рис. 6. Если правильно подобраны R, С и соотношения витков в секциях обмотки дросселя, то такой преобразователь даёт нормальную длительную работу электромоторов, это независимо от их характеристик и уровня нагрузки на вал. Вместо индуктивности представлено индуктивное сопротивление XL, потому что его легче измерить, обмотка дросселя крайними выводами через амперметр подсоединяется к напряжению 100 — 220 Вольт, частотой 50 Герц, параллельно с вольтметром. Индуктивное сопротивление (активным сопротивлением можно пренебречь) определяется отношением напряжения в вольтах к току в амперах XL=U/J.
Конденсатор С1 должен жержать напряжение не меньше 250 Вольт, а конденсатор С2 — не меньше чем 350 Вольт. Если вы используете конденсаторы КБГ, МБГ-4, то в таком случае напряжение будет соответствовать номиналу, который указан на маркировке, а конденсаторы МБГП, МБГО при посоединении к цепи переменного тока должны быть с двухкратным запасом напряжения. Резистор R1 должен быть рассчитан на ток до ЗА, это значит на мощность около 700 Вт (наматывается никелево-хромовая проволока диаметром 1,3 — 1,5 мм на фарфоровой трубке с передвигающейся скобой, которая позволяет получать необходимое сопротивление для различных мощностей электродвигателя). Резистор обязательно должен быть защищен от перегрева и ограждён от остальных компонентов, токоведущих частей, а также от возможного конакта человека с ним. Металлическое шасси корпуса в обязательном порядке необходимо заземлить.
Сечение магнитопровода дросселя должно составлять S=16 — 18cm2, диаметр провода d=l,3 — 1,5 мм, общее число витков W=600 — 700. Форма магнитопровода и марка стали могут быть любыми, главное помнить о воздушном зазоре (это даст вам возможность изменять индуктивное сопротивление), которое устанавливаем при помощи винтов (рис. 6). Для того чтобы избежать сильного дребезжания дросселя, нужно между Ш-об-разными половинами магнитопровода проложить деревянный брусок и зажать винтами. В роли дросселя подойдут силовые трансформаторы от ламповых цветных телевизоров с мощностью 270 — 450 Ватт. Обмотка дросселя в целом производится в виде одиной катушки, которая имеет три секции и четыре вывода. Если вы будете использовать сердечник с постоянным воздушным зазором, то вам придется изготавливать пробную катушку,которая не имеет промежуточных отводов, сделать дроссель с примерным зазором, подключить в сеть и измерить XL. XL необходимо отмотать или домотать ещё немного витков. Выясните необходимое количество витков, мотайте необходимую катушку, разделите каркас на секции в отношении W1:W2:W3=1:1:2. Итак, если у нас общее колисество витков равно 600, то из этого исходит Wl =W2= 150, a W3=300. Для того чтобы поднять выходную мощность преобразователя и не допустить при этом несиметрии напряжений, необходимо поменять значения XL, Rl, Cl, С2, которые отталкиваются от того,что токи в фазах А, В, С должны быть равными при номинальной нагрузке на вал электромотора. В режиме недогрузки электродвигателя несимметрия напряжений фаз не представляет какой либо опасности, в том случае если наибольший из токов фаз не будет превышать номинальный ток электродвигателя. Для пересчета параметров преобразователя на иную мощность используется формула:
С1 = 80РС2 = 40РRl = 140/PXL = 110/PW = 600/ РS = 16Pd = 1,4P
где P — это мощность преобразователя (в киловаттах), а мощность двигателя по паспорту — это является его мощностью на самом валу электродвигателя. В том случае если КПД (т.е. коэффициент полезного действия) электродвигателя вам неизвестен, то в таком случае его можно считать в среднем около 75 — 80%.
Включение 3-фазного двигателя в однофазную сеть
Среди различных способов запуска трехфазных электродвигателей в однофазную сеть наиболее простой базируется на подключении третьей обмотки через фазосдвигающий конденсатор. Полезная мощность, развиваемая двигателем в этом случае, составляет 50…60% от его мощности в трехфазном включении.
Электрическая принципиальная схема подключения 3-х фазного двигателя.
Не все трехфазные электродвигатели, однако, хорошо работают при подключении к однофазной сети. Среди таких электродвигателей можно выделить, например, модель с двойной клеткой короткозамкнутого ротора серии МА.
В связи с этим при выборе трехфазных электродвигателей для работы в однофазной сети следует отдать предпочтение двигателям серий А, АО, АО2, АПН, УАД и др.
Для нормальной работы электродвигателя с конденсаторным пуском необходимо, чтобы емкость используемого конденсатора менялась в зависимости от числа оборотов. На практике это условие выполнить довольно сложно, поэтому используют двухступенчатое управление двигателем. При пуске двигателя подключают два конденсатора, а после разгона один конденсатор отключают и оставляют только рабочий конденсатор.
Расчет параметров и элементов электродвигателя
Рисунок 1. Принципиальная схема включения трехфазного электродвигателя в сеть 220 В: С р – рабочий конденсатор; С п – пусковой конденсатор; П1 – пакетный выключатель.
Если, например, в паспорте электродвигателя указано напряжение его питания 220/380 В, то двигатель включают в однофазную сеть по схеме, представленной на рис. 1.
После включения пакетного выключателя П1 замыкаются контакты П1.1 и П1.2, после этого необходимо сразу же нажать кнопку “Разгон”.
После набора оборотов кнопка отпускается. Реверсирование электродвигателя осуществляется путем переключения фазы на его обмотке тумблером SA1.
Емкость рабочего конденсатора Ср в случае соединения обмоток двигателя в “треугольник” определяется по формуле:
, где
- Ср – емкость рабочего конденсатора, в мкФ;
- I – потребляемый электродвигателем ток, в А;
- U -напряжение в сети, В.
А в случае соединения обмоток двигателя в “звезду” определяется по формуле:
, где
- Ср – емкость рабочего конденсатора, в мкФ;
- I – потребляемый электродвигателем ток, в А;
- U -напряжение в сети, В.
Потребляемый электродвигателем ток в вышеприведенных формулах, при известной мощности электродвигателя, можно вычислить из следующего выражения:
, где
- Р – мощность двигателя, в Вт, указанная в его паспорте;
- h – КПД;
- cos j – коэффициент мощности;
- U -напряжение в сети, В.
Рисунок 2. Принципиальная схема соединения электролитических конденсаторов для использования их в качестве пусковых конденсаторов.
Емкость пускового конденсатора Сп выбирают в 2…2,5 раза больше емкости рабочего конденсатора. Эти конденсаторы должны быть рассчитаны на напряжение в 1,5 раза больше напряжения сети.
Для сети 220 В лучше использовать конденсаторы типа МБГО, МБПГ, МБГЧ с рабочим напряжением 500 В и выше. При условии кратковременного включения в качестве пусковых конденсаторов можно использовать и электролитические конденсаторы типа К50-3, ЭГЦ-М, КЭ-2 с рабочим напряжением не менее 450 В.
Для большей надежности электролитические конденсаторы соединяют последовательно, соединяя между собой их минусовые выводы, и шунтируют диодами (рис. 2)
Общая емкость соединенных конденсаторов составит:
На практике величину емкостей рабочих и пусковых конденсаторов выбирают в зависимости от мощности двигателя. Значение емкостей рабочих и пусковых конденсаторов трехфазного электродвигателя в зависимости от его мощности при включении в сеть 220 В.
Мощность трехфазного
двигателя, кВт:
- 0,4;
- 0,6;
- 0,8;
- 1,1;
- 1,5;
- 2,2.
Минимальная емкость рабочего
конденсатора Ср, мкФ:
- 40;
- 60;
- 80;
- 100;
- 150;
- 230.
Минимальная емкость пускового
конденсатора Ср, мкФ:
- 80;
- 120;
- 160;
- 200;
- 250;
- 300.
Следует отметить, что у электродвигателя с конденсаторным пуском в режиме холостого хода по обмотке, питаемой через конденсатор, протекает ток, на 20…30 % превышающий номинальный. В связи с этим, если двигатель часто используется в недогруженном режиме или вхолостую, емкость конденсатора Ср следует уменьшить. Может случиться, что во время перегрузки электродвигатель остановился, тогда для его запуска снова подключают пусковой конденсатор, сняв нагрузку вообще или снизив ее до минимума.
Емкость пускового конденсатора Сп можно уменьшить при пуске электродвигателей на холостом ходу или с небольшой нагрузкой. Для включения, например, электродвигателя АО2 мощностью 2,2 кВт на 1420 об./мин можно использовать рабочий конденсатор емкостью 230 мкФ, а пусковой – 150 мкФ. В этом случае электродвигатель уверенно запускается при небольшой нагрузке на валу.
Переносной универсальный блок для пуска трехфазных электродвигателей мощностью около 0,5 кВт от сети 220 В
Рисунок 3. Принципиальная схема переносного универсального блока для пуска трехфазных электродвигателей мощностью около 0,5 кВт от сети 220 В без реверса.
Для запуска электродвигателей различных серий мощностью около 0,5 кВт от однофазной сети без реверсирования можно собрать переносной универсальный пусковой блок (рис. 3).
При нажатии на кнопку SB1 срабатывает магнитный пускатель КМ1 (тумблер SA1 замкнут) и своей контактной системой КМ 1.1, КМ 1.2 подключает электродвигатель М1 к сети 220 В.
Одновременно с этим третья контактная группа КМ 1.3 замыкает кнопку SB1.
После полного разгона двигателя тумблером SA1 отключают пусковой конденсатор С1.
Остановка двигателя осуществляется нажатием на кнопку SB2.
Детали
В устройстве используется электродвигатель А471А4 (АО2-21-4) мощностью 0,55 кВт на 1420 об./мин и магнитный пускатель типа ПМЛ, рассчитанный на переменный ток напряжением 220 В. Кнопки SB1 и SB2 – спаренные типа ПКЕ612. В качестве переключателя SA1 используется тумблер Т2-1. В устройстве постоянный резистор R1 – проволочный, типа ПЭ-20, а резистор R2 типа МЛТ-2. Конденсаторы С1 и С2 типа МБГЧ на напряжение 400 В. Конденсатор С2 составлен из параллельно соединенных конденсаторов по 20 мкФ 400 В. Лампа HL1 типа КМ-24 и 100 мА.
Рисунок 4. Схема пускового устройства в металлическом корпусе размером 170х140х50 мм.
Пусковое устройство смонтировано в металлическом корпусе размером 170х140х50 мм (рис. 4):
- 1- корпус;
- 2 – ручка для переноски;
- 3 – сигнальная лампа;
- 4 – тумблер отключения пускового конденсатора;
- 5 -кнопки “Пуск” и “Стоп”;
- 6 – доработанная электровилка;
- 7- панель с гнездами разъема.
На верхней панели корпуса расположены кнопки “Пуск” и “Стоп” – сигнальная лампа и тумблер для отключения пускового конденсатора. На передней панели корпуса устройства находится разъем для подключения электродвигателя.
Для отключения пускового конденсатора можно использовать дополнительное реле К1, тогда надобность в тумблере SA1 отпадает, а конденсатор будет отключаться автоматически (рис.5).
Рисунок 5. Принципиальная схема пускового устройства с автоматическим отключением пускового конденсатора.
При нажатии на кнопку SB1 срабатывает реле К1 и контактной парой К1.1 включает магнитный пускатель КМ1, а К1.2 – пусковой конденсатор Сп. Магнитный пускатель КМ1 самоблокируется с помощью своей контактной пары КМ 1.1, а контакты КМ 1.2 и КМ 1.3 подсоединяют электродвигатель к сети.
Кнопку “Пуск” держат нажатой до полного разгона двигателя, а после отпускают. Реле К1 обесточивается и отключает пусковой конденсатор, который разряжается через резистор R2. В это же время магнитный пускатель КМ 1 остается включенным и обеспечивает питание электродвигателя в рабочем режиме.
Для остановки электродвигателя следует нажать кнопку “Стоп”. В усовершенствованном пусковом устройстве по схеме рис.5 можно использовать реле типа МКУ-48 или ему подобное.
Использование электролитических конденсаторов в схемах запуска электродвигателей
При включении трехфазных асинхронных электродвигателей в однофазную сеть, как правило, используют обычные бумажные конденсаторы. Практика показала, что вместо громоздких бумажных конденсаторов можно использовать оксидные (электролитические) конденсаторы, которые имеют меньшие габариты и более доступны в плане покупки.
Рисунок 6. Принципиальная схема замены бумажного конденсатора (а) электролитическим (б, в).
Схема замены обычног бумажного конденсатора дана на рис. 6.
Положительная полуволна переменного тока проходит через цепочку VD1, С2, а отрицательная VD2, С2. Исходя из этого можно использовать оксидные конденсаторы с допустимым напряжением в два раза меньшим, чем для обычных конденсаторов той же емкости.
Например, если в схеме для однофазной сети напряжением 220 В используется бумажный конденсатор на напряжение 400 В, то при его замене по вышеприведенной схеме можно использовать электролитический конденсатор на напряжение 200 В. В приведенной схеме емкости обоих конденсаторов одинаковы и выбираются аналогично методике выбора бумажных конденсаторов для пускового устройства.
Включение трехфазного двигателя в однофазную сеть с использованием электролитических конденсаторов
Схема включения трехфазного двигателя в однофазную сеть с использованием электролитических конденсаторов приведена на рис.7.
В приведенной схеме SA1 – переключатель направления вращения двигателя, SB1 – кнопка разгона двигателя, электролитические конденсаторы С1 и С3 используются для пуска двигателя, С2 и С4 – во время работы.
Подбор электролитических конденсаторов в схеме рис. 7 лучше производить с помощью токоизмерительных клещей. Измеряют токи в точках А, В, С и добиваются равенства токов в этих точках путем ступенчатого подбора емкостей конденсаторов. Замеры проводят при нагруженном двигателе в том режиме, в котором предполагается его эксплуатация.
Рисунок 7. Принципиальная схема включения трехфазного двигателя в однофазную сеть при помощи электролитических конденсаторов.
Диоды VD1 и VD2 для сети 220 В выбираются с обратным максимально допустимым напряжением не менее 300 В. Максимальный прямой ток диода зависит от мощности двигателя. Для электродвигателей мощностью до 1 кВт подойдут диоды Д245, Д245А, Д246, Д246А, Д247 с прямым током 10 А.
При большей мощности двигателя от 1 кВт до 2 кВт нужно взять более мощные диоды с соответствующим прямым током или поставить несколько менее мощных диодов параллельно, установив их на радиаторы.
Следует обратить внимание на то, что при перегрузке диода может произойти его пробой и через электролитический конденсатор потечет переменный ток, что может привести к его нагреву и взрыву.
Включение мощных трехфазных двигателей в однофазную сеть
Конденсаторная схема включения трехфазных двигателей в однофазную сеть позволяет получить от двигателя не более 60% от номинальной мощности, в то время как предел мощности электрифицированного устройства ограничивается 1,2 кВт. Этого явно недостаточно для работы электрорубанка или электропилы, которые должны иметь мощность 1,5…2 кВт. Проблема в данном случае может быть решена использованием электродвигателя большей мощности, например 3…4 кВт. Такого типа двигатели рассчитаны на напряжение 380 В, их обмотки соединены «звездой», и в клеммной коробке содержится всего 3 вывода.
Включение такого двигателя в сеть 220 В приводит к снижению номинальной мощности двигателя в 3 раза и на 40 % при работе в однофазной сети. Такое снижение мощности делает двигатель непригодным для работы, но может быть использовано для раскрутки ротора вхолостую или с минимальной нагрузкой. Практика показывает, что большая часть электродвигателей уверенно разгоняется до номинальных оборотов, и в этом случае пусковые токи не превышают 20 А.
Доработка трехфазного двигателя
Наиболее просто можно осуществить перевод мощного трехфазного двигателя в рабочий режим, если переделать его на однофазный режим работы, получая при этом 50 % номинальной мощности. Переключение двигателя в однофазный режим требует небольшой его доработки.
Рисунок 8. Принципиальная схема коммутации обмоток трехфазного электродвигателя для включения в однофазную сеть.
Вскрывают клеммную коробку и определяют, с какой стороны крышки корпуса двигателя подходят выводы обмоток. Отворачивают болты крепления крышки и вынимают ее из корпуса двигателя. Находят место соединения трех обмоток в общую точку и подпаивают к общей точке дополнительный проводник с сечением, соответствующим сечению провода обмотки. Скрутку с подпаянным проводником изолируют изолентой или поливинилхлоридной трубкой, а дополнительный вывод протягивают в клеммную коробку. После этого крышку корпуса устанавливают на место.
Схема коммутации электродвигателя в этом случае будет иметь вид, показанный на рис. 8.
Во время разгона двигателя используется соединение обмоток «звездой» с подключением фазосдвигающего конденсатора Сп. В рабочем режиме в сеть остается включенной только одна обмотка, и вращение ротора поддерживается пульсирующим магнитным полем. После переключения обмоток конденсатор Сп разряжается через резистор Rр. Работа представленной схемы была опробована с двигателем типа АИР-100S2Y3 (4 кВт, 2800 об./мин), установленном на самодельном деревообрабатывающем станке, и показала свою эффективность.
Детали
В схеме коммутации обмоток электродвигателя в качестве коммутационного устройства SA1 следует использовать пакетный переключатель на рабочий ток не менее 16 А, например переключатель типа ПП2-25/Н3 (двухполюсный с нейтралью, на ток 25 А). Переключатель SA2 может быть любого типа, но на ток не менее 16 А. Если реверс двигателя не требуется, то этот переключатель SA2 можно исключить из схемы.
Недостатком предложенной схемы включения мощного трехфазного электродвигателя в однофазную сеть можно считать чувствительность двигателя к перегрузкам. Если нагрузка на валу достигнет половины мощности двигателя, то может произойти снижение скорости вращения вала вплоть до полной его остановки. В этом случае снимается нагрузка с вала двигателя. Переключатель переводится сначала в положение «Разгон», а потом в положение «Работа», после чего продолжают дальнейшую работу.
Для того чтобы улучшить пусковые характеристики двигателей, кроме пускового и рабочего конденсатора можно использовать еще и индуктивность, что улучшает равномерность загрузки фаз.
Калькулятор размера конденсатора для 3-фазных двигателей
Размер конденсатора Калькулятор для 3-фазных электродвигателей — Вы должны заполнить Номинал двигателя и текущий коэффициент мощности (от счетчика). Результат Размер конденсатора будет в кВАр.
Калькулятор размера конденсатора для трехфазных двигателей
Почему мы выполняем расчет KVAR
Поскольку мы знаем, что двигатель является индуктивной нагрузкой. Которая потребляет как активную, так и реактивную мощность. То есть помимо активной мощности есть еще и реактивная мощность.Как мы знаем, реальная мощность — это фактическая мощность, которая работает для привода двигателя, а реактивная мощность — это своего рода потерянная мощность из-за этой потери. Но энергия, затрачиваемая электросчетчиком, складывается из активной и реактивной мощности. Чтобы уменьшить реактивную мощность, которая является своего рода потерями, в фазе R Y B двигателя используется конденсатор, что позволяет свести к минимуму эти потери. Если мы установили конденсатор, то реальная мощность, которая используется для привода двигателя, измеряется измерителем, а реактивная мощность обнуляется через конденсатор.В этой статье мы расскажем вам о калькуляторе емкости конденсатора для 3-фазных двигателей и о том, сколько номинальных (KVR) конденсаторных батарей будет использовано. Для этого требуются два параметра, первый — номинальная мощность двигателя, а второй — коэффициент мощности электродвигателя, считываемый счетчиком. Следовательно, коэффициент мощности регистрируется с помощью электрического счетчика, установленного на двигателе. Мы сможем рассчитать емкость конденсатора рядом с двигателем по формуле, приведенной ниже, используя номинальную емкость двигателя и коэффициент мощности, полученный с помощью измерителя.
Формула для расчета размера конденсатора для трехфазных двигателей —
Требуемый размер конденсатора (в кВАр) = P (Tan θ1 — Tan θ2)
, где P = номинальная мощность двигателя
Tan θ1 = тангенс угла между истинной мощностью и полная мощность (для тока PF)
Tan θ2 = тангенс угла между истинной мощностью и полной мощностью (для требуемого PF)
Преимущество использования конденсатора в 3-фазном двигателе —
За счет установки конденсаторов в двигатель электричество счет меньше по сравнению с без конденсаторов, это связано с тем, что потери уменьшаются, если мы используем конденсатор.
И ресурс мотора тоже увеличивается. Потому что двигатель должен делать больше работы из-за больших потерь.
в этом калькуляторе нам нужны только номинальная мощность двигателя и коэффициент мощности, поступающие в счетчик. тогда мы можем легко вычислить номинал конденсатора, необходимого для установки в него.
Как работает калькулятор размера конденсатора для трехфазных двигателей —
Давайте посмотрим несколько примеров для расчета размера конденсатора —
Например — предположим, что имеется 3-фазный асинхронный двигатель мощностью 50 кВт, который имеет P.F (коэффициент мощности) 0,8 с запаздыванием. Какой размер конденсатора в кВАр требуется, чтобы повысить коэффициент мощности (P.F) до 0,99?
Мощность двигателя = P = 50 кВт
Исходный коэффициент мощности = Cosθ1 = 0,8
Окончательный коэффициент мощности = Cosθ2 = 0,99
θ1 = Cos-1 = (0,8) = 36 ° 0,86; Tan θ1 = Tan (36 ° 0,86) = 0,74
θ2 = Cos-1 = (0,90) = 8 ° 0,10; Tan θ2 = Tan (8 ° .10) = 0,14
Требуемый конденсатор, кВАр для улучшения коэффициента мощности с 0,8 до 0,99
Требуемый конденсатор, кВАр = P (Tan θ1 — Tan θ2)
= 5 кВт (0,74 — 0,14)
= 30 кВАр
И Номинальные характеристики конденсаторов, подключенных в каждой фазе
30/3 = 10 кВАр
, поэтому в идеале требуется конденсатор на 30 квар, но часто рекомендуется использовать на 5% меньше 30 квар из-за проблемы перенапряжения.так что в этом случае идеально подходит 28,5 квар.
Связанная статья –Распределительный трансформатор: Строительство | Тип | Рейтинг — ЭЛЕКТРИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ (electricsells.com)
Как запустить трехфазный двигатель от однофазного источника питания
Как запустить трехфазный двигатель от однофазного источника питания:
В наше время количество электродвигателей увеличивается как угодно. Основная причина в том, что, кроме электроэнергии, вся энергия является гораздо более дорогостоящим примером: дизельное топливо.Для всей нашей сельскохозяйственной линейки мы используем трехфазное питание. В Индии для нужд сельского хозяйства правительство предлагает 12-часовую бесплатную подачу электроэнергии.
Оставшиеся 12 часов электрическая панель отключила подачу электроэнергии, а это значит, что они отключили одну фазу через GOS (групповые рабочие переключатели). В то же время, 12 часов недостаточно, чтобы залить водой наши сельскохозяйственные угодья.
Итак, нам нужно запустить один и тот же трехфазный двигатель на двух доступных фазах. В этой статье мы увидим, как запустить трехфазный двигатель на однофазном.Давай начнем.
Стартер для сельскохозяйственных погружных насосовКак правило, это действие может быть выполнено путем установки статических преобразователей фазы. Преобразователи статической фазы — это пусковое устройство для трехфазных двигателей от однофазного питания. Статический фазовый преобразователь фактически не вырабатывает трехфазную мощность непрерывно.
Вместо этого он генерирует фазовый сдвиг через конденсатор, который позволяет смещать напряжение во времени от его родительского напряжения. В результате получается напряжение, отличное от двух однофазных линий.Если конденсатор вырабатывает достаточный электрический ток, двигатель будет работать.
Выходное напряжение конденсатораПосле запуска трехфазного двигателя схема статического фазового преобразователя отключается. Единственным фактом здесь является то, что двигатель непрерывно работает от одной фазы, а две обмотки получают активную мощность, так что полезная мощность двигателя обычно снижается на 2/3 или его номинальной мощности.
Пример: если вы планируете использовать трехфазный двигатель мощностью 5 л.с. в однофазном режиме, то общая выходная мощность двигателя будет снижена до 3.3HP. Если вы приложите дополнительные нагрузки к тому же двигателю, обмотка двигателя потребует большого тока. Чтобы избежать этого, вы можете выбрать двигатель с диапазоном на одну ступень выше.
См. Также:
Конструкция конденсатора для трехфазного двигателя на однофазном источнике питания:
Как свойство асинхронного двигателя, который потребляет высокий пусковой ток (почему?) (В 4-6 раз превышающий его ток полной нагрузки), поэтому нам нужен конденсатор высокой мощности на несколько секунд для быстрого запуска двигателя. Статический преобразователь фазы состоит из двух конденсаторов.Один из них — пусковой конденсатор, а другой — рабочие конденсаторы.
Пусковой конденсатор требуется только для запуска двигателя, и рабочий конденсатор будет стоять в цепи. Более того, регулировка этих конденсаторов для выравнивания токов, измеренных в трех фазах, позволяет получить наиболее эффективную машину.
Пусковой конденсатор должен быть в 4-5 раз больше, чем рабочий конденсатор, чтобы соответствовать высокому пусковому току асинхронного двигателя.
Пусковой конденсатор = 50-100 мкФ / л.с. Рабочие конденсаторы = 12-16 мкФ / л.
Здесь Конденсатор подает синтетическую фазу примерно на полпути на 90 градусов между выводами однофазного источника питания на 180 градусов для запуска. Во время работы двигатель генерирует приблизительно стандартные 3-φ, как показано на рисунке ниже.
Примечание: Двигатель следует подключать по схеме треугольник, так как одна обмотка двигателя получает полное напряжение. Поэтому, если вы планируете использовать однофазный трехфазный двигатель, рекомендуется подключение по схеме треугольника.
Ограничение статических фазовых преобразователей:
- Выходная мощность ограничена 2/3 rd проектной мощности
- Не подходит для двигателя, работающего постоянно, может использоваться временно
- Сокращает срок службы двигателя из-за постоянной нагрузки двух обмоток на одну фазу.
Работа трехфазного двигателя от однофазного источника питания:
См. Также:
Как использовать трехфазный двигатель в однофазном источнике питания
На этот раз я хотел бы поделиться некоторыми важными знаниями, которые я использовал при возникновении аварийной или критической ситуации. Что вы делаете, если у вас есть только трехфазный двигатель и однофазный источник питания?
Как использовать трехфазный двигатель в однофазном питании Фактически трехфазный двигатель может работать в однофазном питании с помощью постоянного КОНДЕНСАТОРА.Эта маленькая вещь (конденсатор) очень полезна для работы трехфазного двигателя от однофазного источника питания.
Согласно нашему последнему обсуждению трехфазного двигателя, обычно у него есть две (2) общие обмотки, соединение ЗВЕЗДА или ТРЕУГОЛЬНИК. В этом посте я объяснил, как подключить конденсатор в трехфазном двигателе, как изменить вращение двигателя, как оценить значение емкости и выбрать подходящий конденсатор.
Как установить и подключить конденсатор для трехфазного двигателя с однофазным питанием?
1) Подключение конденсатора для вращения ВПЕРЕД
-Для вращения ВПЕРЕД, мы должны установить конденсатор в соединение ТРЕУГОЛЬНИК, как показано на рисунке ниже.
* символ -> Изменение клеммы подключения * конденсатора позволяет инвертировать направление вращения двигателя.
2) Подключение конденсатора для ОБРАТНОГО вращения
— Для ОБРАТНОГО вращения мы должны установить конденсатор в любые две фазы обмотки в соединении ЗВЕЗДА (Y), как показано на рисунке ниже.
* символ -> Изменение клеммы подключения * конденсатора позволяет инвертировать направление вращения двигателя.
Мощность двигателя
Мы должны учитывать мощность двигателя при переходе с трехфазного источника питания на однофазный, чтобы соответствовать и подходить для нашего приложения. Но мы не можем получить фактическое значение из-за множества аспектов, которые мы должны рассчитать, и это так сложно. можете оценить приблизительное значение мощности двигателя в процентах (%) ниже: —
Как выбрать подходящий конденсатор?
Это очень важное решение, которое мы должны учитывать относительно размера конденсатора при планировании работы трехфазного двигателя от однофазного источника питания.При неправильном выборе это может повлиять на состояние двигателя, а его производительность также может повредить обмотку двигателя.
Ниже приведено приблизительное значение требуемого конденсатора. Мы должны учитывать рабочее напряжение VS напряжение сети, чтобы избежать повреждения обмотки трехфазного двигателя или самого конденсатора. См. Таблицу ниже: —
Калькулятор коэффициента мощности
Калькулятор коэффициента мощности. Вычислить коэффициент мощности, полную мощность, реактивную мощность и емкость корректирующего конденсатора.
Калькулятор предназначен для образовательных целей.
Конденсатор коррекции коэффициента мощности должен быть подключен параллельно каждой фазной нагрузке.
При вычислении коэффициента мощности не различаются опережающие и запаздывающие коэффициенты мощности.
Расчет коррекции коэффициента мощности предполагает индуктивную нагрузку.
Расчет однофазной цепи
Расчет коэффициента мощности:
PF = | cos φ | = 1000 × P (кВт) / ( V (V) × Я (А) )
Расчет полной мощности:
| S (кВА) | = В (В) × I (А) /1000
Расчет реактивной мощности:
Q (кВАр) = √ ( | S (кВА) | 2 — P (кВт) 2 )
Расчет емкости конденсатора коррекции коэффициента мощности:
S с поправкой (кВА) = P (кВт) / PF с поправкой
Q с поправкой (кВАр) = √ ( S с поправкой (кВА) 2 — P (кВт) 2 )
Q c (кВАр) = Q (кВАр) — Q с поправкой (кВАр)
C (F) = 1000 × Q c (кВАр) / (2π f (Гц) × V (V) 2 )
Расчет трехфазной цепи
Для трех фаз со сбалансированной нагрузкой:
Расчет при линейном напряжении
Расчет коэффициента мощности:
PF = | cos φ | = 1000 × P (кВт) / ( √ 3 × В Л-Л (В) × I (А) )
Расчет полной мощности:
| S (кВА) | = √ 3 × В L-L (В) × I (A) /1000
Расчет реактивной мощности:
Q (кВАр) = √ ( | S (кВА) | 2 — P (кВт) 2 )
Расчет емкости конденсатора коррекции коэффициента мощности:
Q c (кВАр) = Q (кВАр) — Q с поправкой (кВАр)
C (F) = 1000 × Q c (кВАр) / (2π f (Гц) × V L-L (V) 2 )
Расчет с линейным напряжением
Расчет коэффициента мощности:
PF = | cos φ | = 1000 × P (кВт) / (3 × V L-N (V) × I (A) )
Расчет полной мощности:
| S (кВА) | = 3 × В L-N (В) × I (A) /1000
Расчет реактивной мощности:
Q (кВАр) = √ ( | S (кВА) | 2 — P (кВт) 2 )
Расчет емкости конденсатора коррекции коэффициента мощности:
Q c (кВАр) = Q (кВАр) — Q с поправкой (кВАр)
C (F) = 1000 × Q c (кВАр) / (3 × 2π f (Гц) × V LN (V) 2 )
Калькулятор мощности ►
См. Также
Коэффициент мощности — индуктивная нагрузка
Коэффициент мощности системы электроснабжения переменного тока определяется как отношение активной (истинной или реальной) мощности к полной мощности , где
- Активная (действительная или истинная) мощность измеряется в ваттах ( Вт, ) и представляет собой мощность, потребляемую электрическим сопротивлением системы, выполняющей полезную работу
- Полная мощность измеряется в вольт-амперах (ВА) и представляет собой напряжение в системе переменного тока, умноженное на всем током, который в нем течет.Это векторная сумма активной и реактивной мощности
- Реактивная мощность измеряется в вольт-амперах реактивной ( ВАР ). Реактивная мощность — это энергия, накапливаемая и разряжаемая асинхронными двигателями, трансформаторами и соленоидами.
Реактивная мощность требуется для намагничивания электродвигателя, но не выполняет никакой работы. Реактивная мощность, необходимая для индуктивных нагрузок, увеличивает количество полной мощности — и требуемую подачу в сеть от поставщика энергии к распределительной системе.
Увеличение реактивной и полной мощности приведет к уменьшению коэффициента мощности — PF .
Коэффициент мощности
Обычно коэффициент мощности — PF — определяют как косинус фазового угла между напряжением и током — или « cosφ »:
PF = cos φ
где
PF = коэффициент мощности
φ = фазовый угол между напряжением и током
Коэффициент мощности, определенный IEEE и IEC, представляет собой соотношение между приложенной активной (истинной) мощностью — и полная мощность , и в общем случае может быть выражена как:
PF = P / S (1)
, где
PF = коэффициент мощности 77
77
P = активная (истинная или действительная) мощность (Вт)
S = полная мощность (ВА, вольт-амперы)
Низкий коэффициент мощности lt индуктивных нагрузок, таких как трансформаторы и электродвигатели.В отличие от резистивных нагрузок, создающих тепло за счет потребления киловатт, индуктивные нагрузки требуют протекания тока для создания магнитных полей для выполнения желаемой работы.
Коэффициент мощности является важным измерением в электрических системах переменного тока, потому что
- общий коэффициент мощности меньше 1 указывает на то, что поставщик электроэнергии должен обеспечить большую генерирующую мощность, чем фактически требуется
- Искажение формы сигнала тока, которое способствует снижению коэффициента мощности, составляет вызванные искажением формы сигнала напряжения и перегревом в нейтральных кабелях трехфазных систем
Международные стандарты, такие как IEC 61000-3-2, были установлены для управления искажением формы сигнала тока путем введения ограничений на амплитуду гармоник тока.
Пример — коэффициент мощности
Промышленное предприятие потребляет 200 А при 400 В , а трансформатор питания и резервный ИБП рассчитаны на 400 В x 200 А = 80 кВА .
Если коэффициент мощности — PF — нагрузки составляет 0,7 — только
80 кВА × 0,7
= 56 кВт
реальной мощности потребляется системой. Если коэффициент мощности близок к 1 (чисто резистивная цепь), система питания с трансформаторами, кабелями, распределительным устройством и ИБП может быть значительно меньше.
- Любой коэффициент мощности меньше 1 означает, что проводка схемы должна пропускать больший ток, чем тот, который потребовался бы при нулевом реактивном сопротивлении в цепи для передачи того же количества (истинной) мощности на резистивную нагрузку.
Зависимость поперечного сечения проводника от коэффициента мощности
Требуемая площадь поперечного сечения проводника с более низким коэффициентом мощности:
Коэффициент мощности | 1 | 0,9 | 0.8 | 0,7 | 0,6 | 0,5 | 0,4 | 0,3 |
Поперечное сечение | 1 | 1,2 | 1,6 | 2,04 | 2,8 | 6,32,04 | 2,8 |
Низкий коэффициент мощности дорог и неэффективен, и некоторые коммунальные предприятия могут взимать дополнительную плату, если коэффициент мощности меньше 0,95 . Низкий коэффициент мощности снизит пропускную способность электрической системы, увеличивая ток и вызывая падение напряжения.
«Опережающий» или «запаздывающий» коэффициенты мощности
Коэффициент мощности обычно указывается как «опережающий» или «запаздывающий», чтобы показать знак фазового угла.
- При чисто резистивной нагрузке полярность тока и напряжения изменяется ступенчато, а коэффициент мощности будет 1 . Электрическая энергия течет в одном направлении по сети в каждом цикле.
- Индуктивные нагрузки — трансформаторы, двигатели и обмотки — потребляют реактивную мощность, форма кривой тока которой отстает от напряжения.
- Емкостные нагрузки — батареи конденсаторов или проложенные кабели — генерируют реактивную мощность, причем фаза тока опережает напряжение.
Индуктивные и емкостные нагрузки накапливают энергию в магнитных или электрических полях в устройствах во время частей циклов переменного тока. Энергия возвращается обратно к источнику питания в течение остальных циклов.
В системах с преимущественно индуктивными нагрузками — как правило, на промышленных предприятиях с большим количеством электродвигателей — запаздывающее напряжение компенсируется конденсаторными батареями.
Коэффициент мощности для трехфазного двигателя
Общая мощность, необходимая индуктивному устройству, например, двигателю или аналогичному, состоит из
- Активная (истинная или действительная) мощность (измеряется в киловаттах, кВт)
- Реактивная мощность — Нерабочая мощность, вызванная током намагничивания, необходимая для работы устройства (измеряется в киловарах, кВАр)
Коэффициент мощности трехфазного электродвигателя может быть выражен как:
PF = P / [(3) 1/2 UI] (2)
где
PF = коэффициент мощности
P = приложенная мощность (Вт, Вт)
U = напряжение (В)
I = ток (А, амперы)
— или альтернативно:
P = (3) 1/2 UI PF
= (3) 1/2 U I cos φ (2b)
U, l и cos φ обычно указаны на паспортной табличке двигателя.
Типичный коэффициент мощности двигателя
Мощность (л.с.) | Скорость (об / мин) | Коэффициент мощности (cos φ ) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Без нагрузки | без нагрузки 1/2 нагрузки | 3/4 нагрузки | полная нагрузка | |||||||||
0-5 | 1800 | 0,15 — 0,20 | 0,5 — 0,6 | 0,72 | 0,82 | 0,84 | 9069 9069 — 201800 | 0.15 — 0,20 | 0,5 — 0,6 | 0,74 | 0,84 | 0,86 |
20-100 | 1800 | 0,15 — 0,20 | 0,5 — 0,6 | 0,79 | 9067 9067 0,66 9067 100-300 | 1800 | 0,15 — 0,20 | 0,5 — 0,6 | 0,81 | 0,88 | 0,91 |
Коэффициент мощности по отраслям
Типичные неулучшенные коэффициенты мощности:
38 ПромышленностьПреимущества коррекции коэффициента мощности
- Снижение счетов за электроэнергию — отсутствие штрафа за низкий коэффициент мощности от энергокомпании
- Повышенная мощность системы — дополнительные нагрузки может быть добавлен без перегрузки системы
- улучшенная рабочая характеристика системы s за счет уменьшения потерь в линии — из-за меньшего тока
- улучшенные рабочие характеристики системы за счет увеличения напряжения — предотвращение чрезмерных падений напряжения
Коррекция коэффициента мощности с помощью конденсатора
Поправочный коэффициент конденсатора | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Коэффициент мощности до улучшения (cosΦ) | Коэффициент мощности после улучшения (cosΦ) | ||||||||||||||||||||
1.0 | 0,99 | 0,98 | 0,97 | 0,96 | 0,95 | 0,94 | 0,93 | 0,92 | 0,91 | 0,90 | 1,56 | 1,44 | 1,40 | 1,37 | 1,34 | 1,30 | 1,28 | 1,25 | |||
0,55 | 1,52 | 1.38 | 1,32 | 1,28 | 1,23 | 1,19 | 1,16 | 1,12 | 1,09 | 1,06 | 1,04 | ||||||||||
0,60 | 9067 9067 9067 9067 1,06 1,01 | 0,97 | 0,94 | 0,91 | 0,88 | 0,85 | |||||||||||||||
0,65 | 1,17 | 1,03 | 0.97 | 0,92 | 0,88 | 0,84 | 0,81 | 0,77 | 0,74 | 0,71 | 0,69 | ||||||||||
0,70 | 1,02 | 0,68 9067 9067 0,66 9067 0,66 | 0,62 | 0,59 | 0,56 | 0,54 | |||||||||||||||
0,75 | 0,88 | 0,74 | 0,67 | 0.63 | 0,58 | 0,55 | 0,52 | 0,49 | 0,45 | 0,43 | 0,40 | ||||||||||
0,80 | 0,75 | 0,61 | 9067 9067 9067 9067 9067 9067 | 0,350,32 | 0,29 | 0,27 | |||||||||||||||
0,85 | 0,62 | 0,48 | 0,42 | 0,37 | 0.33 | 0,29 | 0,26 | 0,22 | 0,19 | 0,16 | 0,14 | ||||||||||
0,90 | 0,48 | 0,34 | 0,28 | 0,16 9067 9067 9067 9067 9067 0,03 0,06 | 0,02 | ||||||||||||||||
0,91 | 0,45 | 0,31 | 0,25 | 0,21 | 0,16 | 0,13 | 0.09 | 0,06 | 0,02 | ||||||||||||
0,92 | 0,43 | 0,28 | 0,22 | 0,18 | 0,13 | 0,18 | 0,13 | 0,10 | 0,06 0,06 | 0,10 | 0,06 | 9067 90,25 | 0,19 | 0,15 | 0,10 | 0,07 | 0,03 | ||||
0,94 | 0.36 | 0,22 | 0,16 | 0,11 | 0,07 | 0,04 | |||||||||||||||
0,95 | 0,33 | 0,18 | 0,129 | 0,96 | 0,29 | 0,15 | 0,09 | 0,04 | |||||||||||||
0.97 | 0,25 | 0,11 | 0,05 | ||||||||||||||||||
0,98 | 0,20 | 0,06 |
Пример — Повышение коэффициента мощности с помощью конденсатора
Электродвигатель мощностью 150 кВт имеет коэффициент мощности до улучшения cosΦ = 0.75 .
При требуемом коэффициенте мощности после улучшения cosΦ = 0,96 — коэффициент коррекции конденсатора составляет 0,58 .
Требуемая мощность KVAR может быть рассчитана как
C = (150 кВт) 0,58
= 87 KVAR
Рекомендуемые характеристики конденсаторов для двигателей с Т-образной рамой NEMA класса B
Рекомендуемые размеры блоков KVAR, необходимых для коррекция асинхронных двигателей до коэффициента мощности примерно 95%.
Номинальная мощность асинхронного двигателя (л.с.) | Номинальная скорость двигателя (об / мин) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3600 | 1800 | 1200 | ||||||||||||
Номинальная мощность конденсатора 908AR Ток | Номинал конденсатора (кВАр) | Снижение линейного тока (%) | Номинал конденсатора (кВАр) | Снижение линейного тока | ||||||||||
3 | 1.5 | 14 | 1,5 | 23 | 2,5 | 28 | ||||||||
5 | 2 | 14 | 2,5 | 22 | 3 | 26 | 2,5 | 3 | 20 | 4 | 21 | |||
10 | 4 | 14 | 4 | 18 | 5 | 21 | ||||||||
21 | ||||||||||||||
18 | 6 | 20 | ||||||||||||
20 | 6 | 12 | 6 | 17 | 7.5 | 19 | ||||||||
25 | 7,5 | 12 | 7,5 | 17 | 8 | 19 | ||||||||
30 | 8 | 11 | 9067 9 | 8 | 11 | 9067 | ||||||||
40 | 12 | 12 | 13 | 15 | 16 | 19 | ||||||||
50 | 15 | 12 | 18 | 12 | 18 | 9067 9067 60 | 18 | 12 | 21 | 14 | 22.5 | 17 | ||
75 | 20 | 12 | 23 | 14 | 25 | 15 | ||||||||
100 | 22,5 | 11 14 | 22,5 | 11 14 | 9067||||||||||
125 | 25 | 10 | 36 | 12 | 35 | 12 | ||||||||
150 | 30 12 | 10 | 42 | 9067 9067 9067 9067 9067 12 20035 | 10 | 50 | 11 | 50 | 10 | |||||
250 | 40 | 11 | 60 | 10 | 62.5 | 10 | ||||||||
300 | 45 | 11 | 68 | 10 | 75 | 12 | ||||||||
350 8679 | 50 | 12 | 9067 9067 9067 9067 9067 9067 | |||||||||||
400 | 75 | 10 | 80 | 8 | 100 | 12 | ||||||||
450 | 80 | 8 | 90 | 9067 9067 8 9067 9067 9067 9067 500 | 100 | 8 | 120 | 9 | 150 | 12 |
конденсатор — 3-фазный двигатель, работающий от одной фазы с подключением по схеме треугольника Steinmetz
Как трехфазные двигатели могут работать от однофазной сети, используя соединение треугольником Штейнмеца с одним конденсатором?
Подключение не дает хорошей производительности, но дает лучшее, что может быть достигнуто без трехфазного источника питания.2 x 50 / f где:
C в микрофарадах
л.с. — номинальная мощность двигателя
л.с.В — номинальное напряжение двигателя
f — номинальная частота двигателя
К сожалению, я скопировал ссылки, которые у меня есть некоторое время назад, без указания их происхождения.
Приложение 1:
Ёмкость конденсатора должна быть оптимизирована в зависимости от фактической нагрузки двигателя.
Формула взята из PDF-файла на сайте engineering.com, щелчок по ссылке поиска Google загружает PDF-файл.Я не знаю, как получить доступ к какому-либо связанному контексту на сайте.
В целом можно сказать, что хороший многофазный двигатель делает плохой однофазный двигатель. Хороший многофазный двигатель может быть однофазным. двигатель, и чтобы получить хороший однофазный двигатель чрезвычайно хороший требуется многофазный двигатель.
Однофазный асинхронный двигатель , Чарльз Протеус Стейнмец, заседание Американского института инженеров-электриков, Нью-Йорк, 23 февраля 1898 г.
Приложение 2:
Метод оптимизации емкости конденсатора состоит в том, чтобы отрегулировать емкость таким образом, чтобы ток в конденсаторе был равен номинальному току двигателя для соединения треугольником.
Существуют варианты подключения Steinmetz для конденсаторного запуска, конденсаторного запуска с конденсаторным запуском и для соединения звездой (звездой).
1,8 Как рассчитать конденсатор для схемы Штейнмеца? | 1. Алюминиевые электродвигатели переменного тока | Часто задаваемые вопросы
Схема Штейнмеца — это метод использования трехфазных двигателей, соединенных звездой или треугольником, с однофазным переменным током; это соединение должно соответствовать сетевому напряжению, например, в Европе обычно 230 В. Рабочий конденсатор может быть металлическим бумажным конденсатором согласно DIN EN 60252-1 (VDE 0560-8: 2011-10), который подключается к третьему выводу двигателя и к фазному проводу или к нейтральному проводу в зависимости от направления вращения. желанный.Если конденсатор подключен к фазному проводу, двигатель будет вращаться по часовой стрелке; подключение конденсатора к нейтральному проводу заставит двигатель вращаться против часовой стрелки. В различных профессиональных учебниках и форумах, ссылающихся на стандарт DIN 48501, который был отменен несколько лет назад, рекомендуется использовать емкость примерно 70 мФ на кВт номинальной выходной мощности двигателя при рабочем напряжении 230 В. Формула для расчета рабочего конденсатора выглядит следующим образом, где C — емкость, P — номинальная мощность, U — номинальное напряжение двигателя, где — угловая частота, а
— угловая частота.
Соединение треугольником — направление вращения обратное
Пусковой конденсатор двигателя