Схемы электронных балластов: Электронный балласт — устройство, ремонт и схема подключения для люминисцентных ламп

Электронные балласты

Электронные балласты последнее время прочно занимают своё место в системах уличного освещения, освещения зданий и транспорта. Связано это с целым рядом преимуществ, которые отсутствуют у электромагнитных балластов – отсутствие мерцания, более высокий КПД, больший срок службы лампы благодаря щадящему пусковому режиму. В этой статье будет рассказано про микросхему ICB1FL02G Infineon, которая позволяет на её основе реализовать эффективный и экономичный электронный пускорегулирующий аппарат, в дальнейшем ЭПРА.

Для маломощных ЭПРА форма потребляемого тока от сети и уровень гармонических составляющих регламентируется ГОСТом Р 51317. 3.2-99 (МЭК 61000-3-2-95) относящихся к классу C. Исходя из этих требований, при разработке ЭПРА разработчик решает, необходимо ли оснащать его корректором коэффициента мощности или нет. Также коэффициент мощности – cos φ и значение реактивной составляющей потребляемой мощности от сети регламентируется для предприятий.

Для крупных заводов, метрополитена и других организаций, где необходимо использование большого количества люминесцентных ламп, уровень реактивной мощности может превысить допустимый уровень. В таких случаях ЭПРА обязательно должен содержать корректор коэффициента мощности.

На рис 1. представлена схема ЭПРА с корректором коэффициента мощности. Как правило, в таких устройствах используется контроллер корректора мощности (MC34063A ON Semiconduktor или TDA4863 Infineon) и контроллер двухтактного полумостового преобразователя.

Рис.1 Схема электронного пускорегулирующего аппарата с корректором коэффициента мощности.

Микросхема ICB1FL02G Infineon включает в себя контроллер коэффициента мощности и контроллер двухтактного полумостового преобразователя – рис.2. Такая интеграция позволяет уменьшить количество внешних компонентов, уменьшить размеры ЭПРА.

Рис. 2 Схема электронного пускорегулирующего аппарата на основе микросхемы ICB1FL02G Infineon.

Микросхема позволяет реализовать следующие функции:

  • Мягкое включение и предразогрев лампы, что позволяет существенно увеличить срок службы лампы
  • Коррекция коэффициента мощности, возможность работы в широком диапазоне питающих напряжений
  • Защита от отсутствия лампы в цоколе
  • Защита от ёмкостного режима (защита от не зажигания лампы)
  • Перезапуск в случае не зажигания лампы
  • Возможность работы с одной лампой, двумя и более
  • Выходные ключи переключаются при нуле напряжения

Рассмотрим работу балласта. Начнём с корректора коэффициента мощности (ККМ) – Рис.3. ККМ работает в режиме прерывистых токов, что позволяет значительно снизить потери на обратном восстановлении диода. Вначале напряжение питания подаётся на вывод микросхемы VCC через цепь R1, R2, D9, этого хватает для первого старта для корректора мощности.

Цепочка R7- R9, C3 связанная с выводом микросхемы PFCVS позволяет контролировать выходное напряжение ККМ. Вывод микросхемы PFCCS – компаратор с порогом 1В, предназначен для измерения тока, протекающего через транзистор, и ограничения в случае перегрузки. Вывод PFCZCD предназначен для считывания входного тока, и детектирования перехода через «0».

Рис.3 Управление корректором коэффициента мощности

На рис. 4 представлена схема управления полумостовым драйвером люминесцентной лампы. Спустя 97мс после запуска корректора мощности запускается полумостовой драйвер на фиксированной частоте 125кГц±10% (мягкий старт 10мс) и микросхема питается через ёмкость C6 и выпрямитель D7 и D8. Мониторинг наличия верхней по схеме нити лампы осуществляется через резисторы R15 – R19 (выводы микросхемы LVS1 и LVS2). Мониторинг нижней нити осуществляется через вывод RES (сигнал подаётся через емкостной делитель C8 и C9), этот вывод также позволяет отслеживать переключение транзисторов при 0 напряжения (ZVS), что позволяет минимизировать динамические потери.

В случае если лампа извлекается из цоколя, происходит автоматическая блокировка и перезапуск балласта. При использовании одной лампы вывод LVS2 соединяется с землёй.

После старта микросхема переходит в режим предразогрева лампы Рис.5 , в течение которого происходит прогрев нитей накала лампы, частота задаётся резистором R12, длительность предразогрева задаётся резистором R13. Затем частота плавно снижается, при достижении частоты равной (где Vbus – напряжение на выходе корректора мощности, Vign – напряжение пробоя лампы) происходит пробой лампы, после чего частота снижается до рабочей частоты, которая задаётся резистором R5.

В случае, если лампа по каким-то причинам не зажглась существует опасность возникновения «ёмкостного» режима, то есть когда суммарное реактивное сопротивление цепи L2, C10 стремится к 0 и ток в цепи стремиться к бесконечности. В таком режиме возможен выход из строя выходных транзисторов. В большинстве контроллеров защита от такого режима отсутствует. В микросхеме ICB1FL02G защита реализована через вывод LSCS, ток протекающий через лампу отслеживается через резистор R14. Ограничение тока происходит при 0.8В, если напряжение превысит 1.6В происходит отключение и перезапуск.

Рис.4 Схема управления полумостовым драйвером электронного балласта

Рис.5 Режим старта и предразогрева лампы

Величина дросселя L2 определяется необходимым током через лампу, емкостью конденсатора С10, рабочей частотой в режиме горения. Величина емкости С10 определяется индуктивностью L2, величиной приводящего к зажиганию напряжения на лампе при заданном токе подогрева. Обычно величина ёмкости C10 варьируется в пределах 5.6 – 8.2нФ.

Расчет дросселя ККМ осуществляется по следующей формуле где Vinmax – максимальное входное напряжение сети, Vbus – напряжение питания на выходе ККМ, fmin – минимальная частота преобразования ККМ (обычно выбирается более 20кГц) , PoutPFC – мощность на выходе ККМ.

Максимальный ток на выходе балласта равен , исходя из этого рассчитывается резистор R14 для уровня 0.8В на выводе LSCS Следует отметить что аварийный ток, при котором произойдёт отключение равен — это необходимо учесть при выборе транзисторов по предельно допустимому току стока.

Частотозадающие и времязадающие резисторы рассчитываются по следующим формулам

Где frun – рабочая частота, fph – частота предразогрева лампы, Tph – время предразогрева

При проектировании электронного балласта есть возможность номинал выходного дросселя и номинал дросселя ККМ сделать одинаковым, что позволит унифицировать моточные изделия.

Существует множество контроллеров для электронных балластов, разных фирм производителей IRF (IRS2153, IR2520, IRS2166), Infineon ICB1FL02G, NXP – UBA2021, UBA2014 и многие другие, каждый имеет свой набор функций о них будет написано в последующих статьях.

На фото представлена фотография рабочего электронного балласта, сконструированного на базе микросхемы ICB1FL02G


Схема электронного балласта для люминесцентной лампы. Принцип работы люминесцентных ламп

Экономные люминесцентные лампы способны работать только с электронными балластами. Предназначены данные устройства для выпрямления тока. Информации про электронный балласт (схема, ремонт и подключение) имеется очень много. Однако в первую очередь важно изучить устройство прибора.

Стандартная модель включает в себя трансформатор, динистор и транзистор. Довольно часто для защиты системы устанавливается предохранитель. Для подключения ламп предусмотрены специальные каналы. Также в устройстве имеются выходы, на которые подается электроэнергия.

Принцип работы

Принцип работы электронного балласта построен на преобразовании тока. Весь процесс начинается после подачи электроэнергии на канал. Далее в работу вступает дроссель. На этом этапе предельная частота устройства значительно снижается. При этом отрицательное сопротивление в цепи, наоборот, возрастает. Далее ток проходит через динистор и попадает на транзистор. В результате осуществляется преобразование тока. В конечном счете через трансформатор проходит напряжение нужного диапазона для люминесцентной лампы.

Модели диодного типа

Модели диодного типа на сегодняшний день считаются бюджетными. В данном случае трансформаторы используются лишь понижающего типа. Некоторые производители транзисторы устанавливают открытого типа. За счет этого процесс понижения частоты в цепи происходит не очень резко. Для стабилизации выходного напряжения применяются два конденсатора. Если рассматривать современные модели балластов, то там имеются динисторы операционного типа. Ранее их заменяли обычными преобразователями.

Двухконтактные модели

Данного типа схема электронного балласта для люминесцентной лампы отличается от прочих моделей тем, что в ней используется регулятор. Таким образом, пользователь способен настраивать параметр выходного напряжения. Трансформаторы используются в устройствах самые различные. Если рассматривать распространенные модели, то там установлены понижающие аналоги. Однако однофазовые конфигурации не уступают им по параметрам.

Всего конденсаторов в цепи у моделей предусмотрено два. Также двухконтактные схемы электронных балластов энергосберегающих ламп включают в себя дроссель, который устанавливается за выходными каналами. Транзисторы для моделей подходят лишь емкостные. На рынке они представлены как постоянного, так и переменного типа. Предохранители в устройствах используются редко. Однако если в цепи установлен тиристор для выпрямления тока, то без него не обойтись.

Данная схема электронного балласта для люминесцентной лампы включает в себя понижающий трансформатор, а также две пары конденсаторов. Транзистор для модели предусмотрен лишь один. Отрицательное сопротивление он максимум способен выдерживать на уровне 33 Ом. Для устройств данного типа это считается нормальным. Также схема электронного балласта 18 Вт включает в себя дроссель, который расположен над трансформатором. Динистор для преобразования тока применяется модульного типа. Понижение тактовой частоты происходит при помощи тетрода. Находится данный элемент возле дросселя.

Балласт «Эпра» 2х18 Вт

Указанный электронный балласт 2х18 (схема показана ниже) состоит из выходных триодов, а также понижающего трансформатора. Если говорить про транзистор, то он в данном случае предусмотрен открытого типа. Всего конденсаторов в цепи имеется два. Еще у схемы электронных балластов «Эпра» 18 Вт есть дроссель, который располагается под трансформатором.

Конденсаторы при этом стандартно устанавливаются возле каналов. Процесс преобразования осуществляется через понижение тактовой частоты устройства. Стабильность напряжения в данном случае обеспечивается благодаря качественному динистору. Всего каналов у модели имеется два.

Схема балласта «Эпра» 4х18 Вт

Этот электронный балласт 4х18 (схема показана ниже) включает в себя конденсаторы инвертирующего типа. Емкость их составляет ровно 5 пФ. В данном случае параметр отрицательного сопротивления в электронных балластах доходит до 40 Ом. Также важно упомянуть о том, что дроссель в представленной конфигурации расположен под динистором. Транзистор у этой модели имеется один. Трансформатор для выпрямления тока применяется понижающего типа. Перегрузки он способен от сети выдерживать большие. Однако предохранитель в цепи все-таки установлен.

Балласт Navigator

Электронный балласт Navigator (схема показана ниже) включает в себя однопереходный транзистор. Также отличие этой модели кроется в наличии специального регулятора. С его помощью пользователь сможет настраивать параметр выходного напряжения. Если говорить про трансформатор, то он в цепи предусмотрен понижающего типа. Расположен он возле дросселя и фиксируется на пластине. Резистор для этой модели подобран емкостного типа.

В данном случае конденсаторов имеется два. Первый из них расположен возле трансформатора. Предельная емкость его равняется 5 пФ. Второй конденсатор в цепи располагается под транзистором. Емкость его равняется целых 7 пФ, а отрицательное сопротивление максимум он может выдерживать на уровне 40 Ом. Предохранитель в данных электронных балластах не используется.

Схема электронного балласта на транзисторах EN13003A

Схема электронного балласта для люминесцентной лампы с транзисторами EN13003A является на сегодняшний день довольно сильно распространенной. Выпускаются модели, как правило, без регуляторов и относятся к классу бюджетных приборов. Однако прослужить устройства способны долго, и предохранители у них имеются. Если говорить про трансформаторы, то они подходят только понижающего типа.

Устанавливается транзистор в цепи возле дросселя. Система защиты у таких моделей в основном используется стандартная. Контакты приборов защищены динисторами. Также схема электронного балласта на 13003 включает в себя конденсаторы, которые часто устанавливаются с емкостью около 5 пФ.

Использование понижающих трансформаторов

Схема электронного балласта для люминесцентной лампы с понижающими трансформаторами часто включает в себя регуляторы напряжения. В данном случае транзисторы используются, как правило, открытого типа. Многими специалистами они ценятся за высокую проводимость тока. Однако для нормальной работы устройства очень важен качественный динистор.

Для понижающих трансформаторов часто используют операционные аналоги. В первую очередь они ценятся за свою компактность, а для электронных балластов это является существенным преимуществом. Дополнительно они отличаются пониженной чувствительностью, и небольшие сбои в сети для них нестрашны.

Применение векторных транзисторов

Векторные транзисторы в электронных балластах применяются очень редко. Однако в современных моделях они все-таки встречаются. Если говорить про характеристики компонентов, то важно отметить, что отрицательное сопротивление они способы держать на уровне 40 Ом. Однако с перегрузками они справляются довольно плохо. В данном случае большую роль играет параметр выходного напряжения.

Если говорить про транзисторы, то для указанных трансформаторов они подходят больше ортогонального типа. Стоят они на рынке довольно дорого, однако расход электроэнергии у моделей крайне низок. В данном случае модели с векторными трансформаторами по компактности значительно проигрывают конкурентам с понижающими конфигурациями.

Схема с интегральным котроллером

Электронный балласт для люминесцентных ламп с интегральным контроллером довольно прост. В данном случае трансформаторы применяются понижающего типа. Непосредственно конденсаторов в системе имеется два. Для понижения предельной частоты у модели имеется динистор. Транзистор используется в электронном балласте операционного типа. Отрицательное сопротивление он способен выдерживать не менее 40 Ом. Выходные триоды в моделях данного типа практически никогда не используются. Однако предохранители устанавливаются, и при сбоях в сети они помогают сильно.

Применение низкочастотных триггеров

Триггер на электронный балласт для люминесцентных ламп устанавливается в том случае, когда отрицательное сопротивление в цепи превышает 60 Ом. Нагрузку с трансформатора он снимает очень хорошо. Предохранители при этом устанавливаются очень редко. Трансформаторы для моделей этого типа используются лишь векторные. В данном случае понижающие аналоги неспособны справляться с резкими скачками предельной тактовой частоты.

Непосредственно динисторы в моделях устанавливаются возле дросселей. По компактности электронные балласты довольно сильно отличаются. В данном случае многое зависит от используемых компонентов устройства. Если говорить про модели с регуляторами, то места они требуют очень много. Также они способны работать в электронных балластах только на два конденсатора.

Модели без регуляторов очень компактны, однако транзисторы для них могут использоваться лишь ортогонального типа. Отличаются они хорошей проводимостью. Однако следует учитывать, что данные электронные балласты на рынке покупателю обойдутся недешево.

Полупроводниковые и системные решения — Infineon Technologies

Что наши клиенты говорят о CoolSiC™

Будь то солнечная энергия, зарядка электромобилей, центр обработки данных или тягач, карбид кремния кардинально меняет способы производства, передачи и потребления энергии.

Смотреть видео

Объявление конкурса дизайна «Основное»

Приглашаем всех новаторов! Примите новый вызов проектирования, сосредоточившись на ядре Arm® Cortex®-M0+ на двухъядерном микроконтроллере PSoC™ 62 с ModusToolbox™

. Оставить заявку …

Электрификация основного электрораспределения

Узнайте, как мегатенденции в автомобилестроении вызывают децентрализацию и электрификацию системы электроснабжения.

кликните сюда

Экологически чистая мобильность

Мобильность — экологичная, умная, персональная. Как Infineon способствует устойчивой мобильности?

Узнайте здесь

Производительность GiGaNtic в адаптерах/зарядных устройствах USB-C

Первая в отрасли комбинированная ИС с коррекцией коэффициента мощности и гибридной обратной связью для конструкций сверхвысокой плотности. Узнай одним из первых!

Скачать техническое описание

Новинка! PSoC™ 62S2 Wi-Fi BT Matter Pioneer Kit

Надежное решение Matter over Wi-Fi со сверхнизким энергопотреблением, которое поможет вам быстро выйти на рынок

Учить больше

Новости

13 октября 2022 г. | Деловая и финансовая пресса

Infineon и VinFast расширяют сотрудничество в области электромобилей

06 октября 2022 г. | Business & Financial Press

Содействие развитию электромобильности и экологически чистой энергии: Infineon открывает новый завод по производству мощных полупроводниковых модулей в Цеглед

Новости рынка

31 октября 2022 г. | Новости рынка

Новая энергонезависимая память EXCELON™ F-RAM от Infineon, 8 и 16 Мбит, поступила в продажу

Посетите Infineon в Twitter

Электронный балласт

 

 

Люди выросли на видах и звуках люминесцентных ламп, которые оживают после нескольких попыток. По мере того, как новая волна энергосберегающих приборов захватывала мир, технологии уменьшали толщину люминесцентных ламп, а также уменьшали количество попыток ламп светить максимально ярко. Сегодня во многих домах используются энергосберегающие компактные люминесцентные лампы и люминесцентные лампы, которые начинают светить в момент включения.

Рис. 1. Репрезентативное изображение лампы с электронным балластом

Это мгновенное производство света достигается за счет использования электронных балластов .

Электронный пускорегулирующий аппарат представляет собой устройство, регулирующее пусковое напряжение и рабочие токи осветительных приборов, построенное по принципу газового электрического разряда. Это относится к той части цепи, которая ограничивает протекание тока через осветительное устройство и может варьироваться от одного резистора до более крупного и сложного устройства. В некоторых флуоресцентных системах освещения, таких как диммеры, он также отвечает за контролируемый поток электрической энергии для нагрева электродов лампы.

 

Балласт Основы:

Для работы осветительного прибора на основе электрического газового разряда необходима ионизация газа в трубке. Это явление имеет место при относительно высокой разности потенциалов и/или температуре, чем при нормальных условиях эксплуатации лампы. После того, как дуга настроена, условия могут быть доведены до нормальных. Для этого обычно используются три типа методов: предварительный нагрев , мгновенный пуск и быстрый пуск 9.0096 . При предварительном нагреве электроды лампы нагреваются до высокой температуры, прежде чем на них подается напряжение через стартер. Мгновенные пусковые балласты были разработаны для запуска ламп без задержки или мигания и использования начального высокого напряжения вместо повышенных температур. Балласты быстрого запуска обеспечивают компромисс между предварительным нагревом и мгновенным запуском и используют отдельный набор обмоток для первоначального нагрева электродов в течение меньшей продолжительности, а затем с использованием относительно более низкого напряжения для запуска лампы. Другой тип балластов с программируемым пуском представляет собой вариант быстрого пуска. Любой из этих пусковых принципов может быть использован в балластах. Первоначально, когда газ объединяется, он создает путь тока с высоким сопротивлением. Но после ионизации и зажигания дуги сопротивление падает до очень низкого значения, почти как короткое замыкание. Если весь этот ток пропустить через лампу, лампа либо перегорит, либо блок питания выйдет из строя. Таким образом, балласт должен выполнять ограничение тока.

 

Типы балластов:

В основном существует три типа балластов : магнитные, электронные и гибридные. В магнитных и гибридных балластах в качестве основных компонентов используется медная катушка, намотанная на магнитный сердечник, в то время как в электронных балластах используется твердотельная электронная схема для обеспечения надлежащих рабочих электрических условий для подключенных ламп. Краткое сравнение приведено ниже:

 

Рис. 2: Таблица, представляющая различные типы электронных балластов

История

История электронных балластов:

Хотя концепция электронных балластов возникла в 1950-х годах в General Electric, именно Сэм Берман и Руди Вердербер из Berkeley Labs проложили путь к созданию первого коммерчески жизнеспособного электронного балласта. балласты. Программа электронного балласта, финансируемая Министерством энергетики США, началась в лаборатории Беркли в 1977 году, когда две небольшие фирмы Iota Engineering и Luminoptics (ныне Lumenergi) получили технологическую поддержку для разработки первых электронных балластов. Вскоре к ним присоединились и другие компании, и сегодня насчитывается более 300 компаний, таких как Philips, производящих и продающих электронные балласты. Программы и стандарты скидок способствовали росту продаж электронных балластов. Некоторые из них — ENERGY STAR 9.0123 ® Программа Американского общества инженеров по отоплению, охлаждению и кондиционированию воздуха, добровольные строительные нормы и правила IES 90.1-1999 и т. д.

 

Работа

Работа электронных балластов:

В примитивных электронных балластах использовался общий принцип выпрямления входной мощности и сглаживания формы сигнала путем пропускания его через простой фильтр, подобный электролитическому конденсатору. Выпрямитель преобразует переменный ток в постоянный. Улучшенные электронные балласты теперь обычно основаны на топологии SMPS, как показано на рисунке выше. Первым шагом является выпрямление входной мощности, а затем сигнал прерывается для увеличения частоты. Этот тип балластов работает в диапазоне от 20 до 60 кГц. Другие балласты, такие как магнитные балласты, обычно работают на частоте сети, которая составляет около 50-60 Гц. Они страдают от таких проблем, как мерцание и жужжание, которое иногда мешает окружающей среде. Примерная схема электронного балласта для демонстрационной платы CFL показана ниже: 

Рис. 4. Рисунок, демонстрирующий пример конструкции схемы электронного балласта. Обоснование увеличения частоты в электронных балластах заключается в том, что эффективность лампы быстро увеличивается при изменении частоты от 1 кГц до 20 кГц, а затем постепенно увеличивается до 60 кГц. По мере увеличения рабочей частоты лампы количество тока, необходимого для получения того же количества света, уменьшается по сравнению с частотой сети, что увеличивает эффективность лампы. Увеличение эффективности с частотой можно изобразить следующим образом:

 

Рис. 5: График, показывающий увеличение эффективности работы лампы время между последовательной ионизацией и деионизацией газа переменным током. Таким образом, плотность ионизации в лампе поддерживается практически постоянной вблизи оптимальных условий работы в течение всего периода переменного тока. Следовательно, он действует как омический резистор, который увеличивает коэффициент мощности. В то время как на низких частотах плотность ионизации больше колеблется около оптимального уровня, вызывая плохие средние условия разряда.

 

Широтно-импульсная модуляция или любой другой метод прерывания используется для наложения входящего переменного напряжения на выпрямленный и отфильтрованный выходной сигнал. Это делает взаимосвязь пиков тока приблизительной синусоидой. Прерывание и/или широтно-импульсная модуляция также могут использоваться для диммирования ламп через такие сети, как DALI, DSI или даже простой сигнал управления яркостью 0–10 В постоянного тока.

Для получения более подробной информации о работе электронного балласта см. статью Electronic Ballast Insight.

 

Рабочие параметры

Рабочие параметры:

Рабочие характеристики электронных балластов измеряются по различным параметрам. Наиболее важным является фактор балласта. Это отношение светоотдачи лампы, работающей от рассматриваемого балласта, к светоотдаче той же лампы, работающей от эталонного балласта. Это значение находится между 0,73 и 1,50 для электронных балластов. Значение такого широкого диапазона заключается в широком диапазоне уровней светоотдачи, которые могут быть получены с использованием одного балласта. Это находит большое применение в цепях затемнения. Однако обнаружено, что как слишком высокий, так и слишком низкий коэффициент балласта ухудшают срок службы лампы из-за уменьшения светового потока в результате соответственно высокого и низкого тока лампы. Когда необходимо сравнить электронные балласты одной модели и производителя, часто используется коэффициент эффективности балласта, который представляет собой отношение коэффициента балласта (выраженное в процентах) к мощности и дает относительное измерение эффективности системы всей лампы. балластная комбинация. Мерой эффективности работы балласта является параметр Power Factor (PF). Коэффициент мощности — это мера эффективности, с которой электронный балласт преобразует напряжение питания и ток в полезную мощность, подаваемую на лампу, при идеальном значении, равном 1. Это, однако, не свидетельствует о способности балласта обеспечивать свет с низким коэффициентом мощности. для балластов потребуется примерно в два раза больше тока, чем для балластов с более высоким коэффициентом мощности, и, следовательно, они будут поддерживать меньшее количество ламп в цепи.

 

Любое электронное устройство имеет предел своей линейности, и когда входной сигнал выходит за пределы диапазона, происходит искажение сигнала, приводящее к нелинейным и гармоническим искажениям. Когда форма сигнала отличается от нормальной синусоидальной, говорят, что имеет место гармоническое искажение, и его измеряют как полное гармоническое искажение. THD для электронных балластов представляет собой процент гармонического тока, добавляемого балластом к току системы распределения электроэнергии. Большинство производителей стараются поддерживать THD ниже 20%, хотя стандарты ANSI допускают максимальное искажение до 32%. Электронные балласты позволяют легче поддерживать искажения на таких уровнях, что не так просто в случае магнитных или гибридных балластов.

 

Проблемы с электронными балластами

Проблемы с электронными балластами:

Переменный ток может генерировать всплески тока вблизи максимумов напряжения, создавая высокие гармоники тока в случае электронных балластов. Это проблема не только для системы освещения, но и может вызвать дополнительные проблемы, такие как паразитные магнитные поля, коррозия труб, помехи для радио- и телевизионного оборудования и даже сбои в работе ИТ-оборудования. Высокое содержание гармоник также может вызвать перегрузку трансформаторов и нейтральных проводов в трехфазных системах. Более высокая частота мерцания может остаться незамеченной человеческим глазом, но может вызвать проблемы с инфракрасными пультами дистанционного управления, используемыми в домашних мультимедийных устройствах, таких как телевизоры. Интеллектуальная документация и конструкция балластов позволяют уменьшить помехи и минимизировать их в диапазонах частот, которые используются в приложениях. Однако в частотном спектре есть некоторые неизведанные уголки, которые не используются ни в каких приложениях, и большинство помех от балластов в этой области, как правило, не документируются и ими пренебрегают, что дает более четкую картину на бумаге, чем она есть на самом деле. Электронные балласты не имеют цепей, способных выдерживать скачки напряжения и перегрузки. Мало того, электронные балласты имеют высокую начальную стоимость, которая может быть бельмом на глазу импульсивных клиентов, хотя они более чем компенсируют эту высокую стоимость в долгосрочной перспективе.

 

Преимущества

Преимущества:

Но некоторые широко разрекламированные неисправности и недостатки ранних балластов не должны омрачать суждения покупателей. Технология прошла долгий путь от уровня отказов около 20-30% несколько лет назад до менее 1% в настоящее время. Надежность балласта стареет, как вино, чем больше времени он проводит в эксплуатации, тем меньше шансов, что он выйдет из строя. Первые полгода — это как инкубационный период для электронного балласта, если он их переживет, продолжительность жизни увеличивается до 10-12 лет. Выходная мощность ламп снижается медленнее при использовании электронных балластов по сравнению с магнитными балластами. График производительности, сравнивающий электронный и магнитный балласт, показан ниже:

 

Рис. 6. График сравнения рабочих характеристик электронного и магнитного балластов

 

Чтобы укрепить веру клиентов в электронные балласты, были введены стандарты обеспечения качества для электронных балластов. Сертифицированные производители балластов (CBM) тестируют электронные балласты для различных ламп, таких как T8, T12/ES, T12 Slimline, компактных люминесцентных ламп и т. д. Эти устройства не только более эффективны, но и намного тише и легче. Электронные балласты имеют почти вдвое меньшие потери мощности по сравнению с магнитными или гибридными балластами. Кроме того, они могут легко работать с лампами, которые не могут работать напрямую от дросселя на линии из-за больших требований к напряжению лампы. В основном существует три способа повышения энергоэффективности систем лампа-балласт: уменьшить потери в балласте, работать на более высоких частотах и ​​уменьшить потери на электродах лампы. Все эти три элемента одновременно включены в электронные балласты, что делает их более энергоэффективными.

 

Рис. 7. Статистическое представление роста продаж электронных балластов и сокращения продаж магнитных балластов электронные к 2010 году и, в конечном итоге, отказ от магнитных балластов. Рынок буквально взорвался, продажи увеличились в разы за несколько десятилетий. Там, где в середине 70-х они были практически неизвестны, электронные балласты заняли значительную долю рынка в различных странах, от более чем 80% в США до 30% в Европейском Союзе.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *